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ABSTRACT This work aims to develop a search planning strategy to be used by a drone equipped with an
inverse synthetic-aperture radar (ISAR) and an electro-optical sensor. After describing the specifics of our
maritime scenario, we discuss four methodologies that can be used to find vessels involved in illegal fishing
activities as quickly as possible. In addition to the clustering of the vessels, determined by the drone’s electro-
optical sensor range, we introduce a novel technique to bias a traveling salesman problem (TSP) tour. This
bias is based on deliberately increasing distances to vessels that are classified as probable fishing vessels.
This increase in distance is meant to prioritize visits to probable fishing vessels. Vessels are classified based
on their length. The classification result and the vessel clustering are available before the actual planning
of the tour. Simulations of scenarios in which we have a few vessels fishing illegally show that the novel
technique, the bias-TSP, combined with a tour orientation based on operational considerations, outperforms
the classic TSP: the mean distance traveled to find all the vessels involved in illegal fishing activities is
reduced by at least 35–50%. We also show that different drone take-off locations significantly impact the
results.

INDEX TERMS Optimization methods, design of experiments, traveling salesman problem (TSP), decision
support systems, drones.

I. INTRODUCTION
In many communities, fishing is an essential component of
the economy and ecosystem in the daily lives of citizens [1].
In a study carried out in West Africa, Merem et al. [1]
show that the losses from unauthorized fishing reached close
to two billion dollars in 2015 in that region. In addition,
the associated impacts on the loss of ecosystem services
and the destruction of habitats are devastating. Conventional
valuation of lost potential and the price of stock recovery
for preferred species from 1980 onwards show prices in the
hundreds of billions of dollars for West Africa.

Illegal fishing is a serious problem that profoundly affects
the economic sector of a country and the ecosystem of an
entire region. As a result, several countries have been improv-
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ing their methods of deterring and searching for these illicit
acts and improving their methods of planning and executing
maritime patrols to inspect the oceans [2].

Unmanned aerial vehicles (UAVs) have been increasingly
used in different types of missions, as they have many advan-
tages over manned aircraft [3]. Regarding maritime patrol
missions, we can highlight greater autonomy, lower radar
cross section (RCS), and a much lower operating cost.

The objective of this work is to develop a maritime patrol
planning methodology to find vessels carrying out illegal
fishing as quickly as possible in a realistic maritime sce-
nario without a trigger report. The data used for route plan-
ning come from the MarineTraffic site [4], from the inverse
synthetic-aperture radar (ISAR) that locates the vessels and
measures their size, and from the drone’s electro-optical sen-
sor. Integer linear programming (ILP) is used, and a weight-
ing technique is applied at the points (fishing boats) to be
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visited to bias the route and prioritize the visitation of this
type of vessel.

The Brazilian coast extends for about 8,000 km from Cabo
Orange (4◦N) to Chuí (34◦S) [5]. The exclusive economic
zone (EEZ) extends 200 nautical miles (370 km) from the
coast and corresponds to an area of 3,539,919 km2. The Con-
tinental Shelf extends up to 350 nautical miles from the coast
and corresponds to an additional 960,000 km2. Together,
these zones cover almost 4.5 million km2 [6]. With an
immense diversity of marine fauna, this is an area of Brazil-
ian jurisdiction in which the state can exercise sovereign
rights over the exploration, conservation, and management of
resources and other economic activities. The state also has
judicial and supervisory powers in its EEZ to combat the
dumping of ship waste and pollution from offshore activities
and is primarily responsible for the preservation of living
resources [7].

Designating the means to constantly monitor this immense
maritime area, which is a responsibility of the Brazilian state,
is a complicated task. With this in mind, a methodology was
developed to optimize the means of surveillance of illegal
fishing in this area, carrying out scheduledmaritime patrols in
random areas in the Brazilian EEZ, using only drone sensors
and MarineTraffic data.

One finds several other applications of UAVs in surveil-
lance and maritime search missions in the literature.
Dridi et al. [8] develop a multi-objective optimization to solve
a maritime surveillance problem where a set of resources is
assigned to a specific set of tasks. Amaral et al. [9] optimize
target detection and tracking using a swarm of UAVs for mar-
itime border surveillance. Kumar andVanualailai [10] present
a Lagrangian swarm model that can cover large areas of the
sea effectively and could be a very good model for effective
surveillance of an exclusive economic zone (EEZ) and search
and rescue. Suteris et al. [11] create a route optimization
method for UAVs for maritime surveillance to find the fastest
route to cover all locations at sea.

Fauske et al. [12] present a model to study the movement
of vehicles used in surveillance to maintain a recognized
and updated maritime picture. Brown and Anderson [13]
optimize the trajectory of a UAV for wide-areamaritime radar
surveillance and provide a method for obtaining the UAV’s
fuel consumption, detection probability, and revisit time for
a given trajectory.

Amethod to create a flight path for a maritime surveillance
mission to identify vessels carrying out illegal fishing is
proposed by Suseno and Wardana [14]. The number of nodes
in the route is significantly reduced using a point clustering
technique based on the history of places frequently visited
by fishing vessels (vulnerable points), thus shortening the
flight path. The flight path of the UAVs is planned using the
nearest neighbour algorithm from the take-off location to
the vulnerable points and then back to the landing site.

Finally, Lima Filho et al. [2] present an operational plan-
ning procedure for a time-critical UAV search mission. The
mission is the quickest possible identification of a target

vessel based on a triggering report that contains only informa-
tion about the category and displacement of a vessel carrying
out a prohibited activity. A neural network trained to classify
vessels is combinedwith vessel grouping to reduce waypoints
in the flight plan. The UAV’s onboard sensors provide input
to this neural network for each vessel in the search area,
resulting in a prioritization of the vessels to be visited.

II. OPERATIONAL CONTEXT AND PROBLEM
FORMULATION
The traveling salesman problem (TSP) is a classic prob-
lem in the literature, with a well-known ILP formulation
(see hereafter). Various approaches have been introduced
to find an (approximately) optimal solution. For example,
Gupta et al. [15] modify the genetic algorithm (GA) using
the parent selection in the randomized bias (RBGA) method
to compute an optimal solution. Nikfarjam et al. [16] intro-
duces the biased 2-OPT mutation into Evolutionary Diversity
Optimization for the TSP, which mainly focuses on more
frequent components in the population and aims to decrease
their frequency to increase diversity.

Bossek et al. [17] introduce a new variant called the node
weight-dependent TSP (W-TSP), where nodes have weights
that influence the cost of the tour, as the weights are collected
during the route, and each distance is multiplied by the weight
of the cities already visited. It captures aspects of other TSP
variants, such as the time-dependent TSP or the traveling thief
problem (TTP). In the TTP, the overall benefit is given by the
profit of the collected items minus the cost of the tour. This
cost increases with the weight of the collected items. Clearly,
the weights impact the structure of the solution found.

In this paper, we present a maritime patrol TSP where,
as we will explain later, we also use weights to alter the
Euclidean distances. The goal is to find target vessels that are
involved in some illegal activity as soon as possible. As ille-
gal fishing is a serious problem that profoundly affects the
economic sector of a country, we consider the case of fishing
vessels that are fishing illegally. The sooner these specific
fishing boats can be located, the better it is for successfully
completing the mission. For example, if it takes too long to
visit these boats, they can escape or cease their illegal activity.
Our problem may be seen as a special case of the traveling
repairman problem (TRP), where the goal is to minimize the
sum of the waiting times of jobs; see Afrati et al. [18]. In our
case, it is the total time until the drone reaches the last of a
set of yet-unknown targets; see van Ee et al. [19].

Duca et al. [20] use a dataset of 600,000 ships to show
that the length of a fishing vessel usually has a maximum
of 50 meters. As the coast guard and the armed forces are
only concerned with boats larger than 8.5 meters fishing
illegally [2], vessels that are between 8.5 and 50 meters
in length should therefore be prioritized (or classified as
probable fishing boats) in the maritime patrol. This priori-
tization is based on the MarineTraffic [4] and information
from the inverse synthetic-aperture radar (ISAR) of the drone.
The ISAR is capable of locating and measuring the size of
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vessels (larger than 8 m) up to its maximum range (400 km).
Although the result of this prioritization is available before
the actual planning of the route, there is no information about
the number and location of fishing boats that are committing
illegal actions. As there are real cases (less than 5%) in which
the fishing vessel is longer than 50 meters, and there are pos-
sible measurement errors, the actual route of the drone must
eventually visit all vessels. The planned tour will therefore be
one route visiting all vessels, where we must find the illegal
fishing boats as soon as possible. (The range of the drone is
not large enough to make a tour along the probable fishing
boats (the prioritized vessels) and then also make a tour of
the remaining vessels). To this end, we introduce a special
variant of the classic TSP, where we use weights to deliber-
ately increase the Euclidian distance toward vessels that are
prioritized. As we will show, increasing the distances to any
of these probable fishing boats is a simple and successful way
to make sure that a computed tour visits the target vessels as
soon as possible, even though, in the end, the complete TSP
tour may not be the fastest route along all vessels.

In the TSP, one is given a set of N nodes with cardinality
|N| = n. We denote a depot location by 0 /∈ N . Let N+ = N
∪{0}. To each arc ij ∈ A⊂ N+× N+, we associate a cost cij
representing the cost of using that arc in a tour. We introduce
a binary variable xij for each arc ij. This variable is 1 if and
only if the arc is used in the tour. An auxiliary variable ui is
introduced to denote the position of node i in the tour. We will
investigate the TSP on the graph G = (N ,A). The objective
is to find a tour that visits each vertex at least once, starting
and ending at 0, with a minimum total cost.

min
∑

ij∈A
cijxij (1)

Subject to :∑
i∈N

x0i =

∑
i∈N

xi0 = 1 (2)∑
i∈N+\{j}

xij =

∑
i∈N+\{j}

xji = 1, ∀j ∈ N

(3)

ui − uj + 1 ≤
(
1 − xij

)
|N | , ∀i, j ∈ N (4)

1≤ ui ≤ |N | , ∀i ∈ N (5)

xij ∈ {0, 1} , ∀ (i, j) ∈ A (6)

The objective function is given by (1). Constraint (2) guaran-
tees that the tour starts and ends at the depot. Constraint (3)
is the flow conservation constraint and ensures that a node
is visited exactly once. Constraint (4) prevents sub-tours,
and Constraints (5) and (6) are boundary and integrality
constraints on the decision variables. The cost in the objec-
tive function represents the (Euclidean) distances between
nodes.

As mentioned before, in this present work, distances
toward probable fishing boats will be increased. An intuitive
explanation of how this might be effective in finding target
vessels as soon as possible is the following. Increasing the real
distance locates the fishing vessel in a ‘‘remote’’ area, forcing

an optimal route most of the time to prioritize these fishing
vessels over the vessels not classified as probable fishing
vessels. If the optimization algorithm left this remote point
to visit later, the cost would most often be higher. Increasing
distance will, so to speak, tempt the solution to prioritize the
visit to these vessels, as can be seen in Fig. 3, which shows the
TSP versus the bias-TSP. The effectiveness of our scenario
will be shown in a later section by means of simulations.

The main goals of this article are to:
1) Demonstrate the usefulness of increasing the distances

to probable fishing boats to find vessels fishing illegally
as quickly as possible.

2) Propose a preferred direction of the tour (clockwise or
counterclockwise) based on the prioritization of vessels
and operational practice.

3) Analyze the impact of the drone taking off from differ-
ent locations along the coast in our scenario.

III. THE MARITIME SCENARIO
Usually, maritime scenarios are complex, as the maritime
traffic environment near the coast can be very chaotic: there
are many fishing boats in this strip, and the maritime traffic
close to a port is very intense [2]. In addition, it is very
difficult to predict the speed and displacement of fishing
vessels, as they generally do not have a route as regular as a
merchant ship. On the positive side, MarineTraffic [4] is used
to eliminate vessels with an automatic identification system
(AIS) that are not fishing boats.

To generate maritime scenarios for our simulations,
we used information from the MarineTraffic website [4],
complemented with information frommaritime traffic reports
from the Brazilian Air Force and Brazilian Navy. It was
used to generate the distribution of vessels in an area of
370 × 370 km off the Brazilian coast.
As a result, the following assumptions, reflecting real-life

maritime scenarios, were made:
1) Vessels with AIS and that were identified in Marine-

Traffic as non-fishing boats were ignored;
2) The scenario comprises 30 vessels in an area of

370 × 370 km;
3) Only fishing boats longer than 8.5 m are considered in

this work.
4) Of all vessels, 36% are fishing boats;
5) Most (83%) fishing boats are located up to 60 km from

the coast;
6) Some (17%) fishing vessels are located between 60 and

370 km from the coast;
7) 64% of the total number of vessels are non-fishing

boats randomly distributed within an area of
370 × 370 km.

8) One (or more) of the points designated as fishing boats
is (are) randomly tagged as a criminal or target boat.
For this study, a maximum number of four targets was
considered, assuming that in a real situation, it is very
unlikely to find more than four boats fishing illegally
in the area considered.
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FIGURE 1. Scenario 1 on the left and Scenario 2 on the right.

Considerations regarding the drone:
1) It has an ISAR capable of locating and measuring the

size of vessels (longer than 8 m) up to its maximum
range (400 km). Note: The ISAR measurement accu-
racy considered in this work is 95%;

2) It carries out a maritime patrol at an altitude of 8100 m,
which allows the location of all vessels considered
important up to a distance of 370 km.

3) It has an electro-optical sensor capable of identifying
any vessel greater than 8 m at a distance of 35 km at an
altitude of 8100 m.

4) The flight range of the drone is 2,000 km.
We created two different scenarios that differ only in the

take-off location in the search area; see Fig. 1. In Scenario I,
the drone takes off from the lower (or upper) corner of the
search area. In Scenario II, the drone takes off from themiddle
of the search area. The two scenarios were created to verify
if the take-off position influences the optimization. In Fig. 1,
the land is to the left of the y-axis.

IV. METHODOLOGY
This work uses an ILP formulation of the TSP with some
adjustments to find vessels fishing illegally as quickly as
possible. To this end, we introduce four algorithmswhich will
be compared regarding themean distance traveled before they
find all targets:

1) The TSP algorithm serves as a baseline approach.
It uses the ILP formulation of the TSP, the same algo-
rithm used in Lima Filho et al. [2]. The tour direc-
tion criterion used in this algorithm is as follows: the
drone flies from its start to the closest vessel. This
determines the orientation of the tour (clockwise or
counterclockwise).

2) The cluster algorithm. In this case, the various vessels
in the area are clustered, depending on the range of
the UAV’s electro-optical sensor, and then the pro-
cess proceeds as in the TSP algorithm. The clustering
technique employed is a hierarchical clustering of the
vessels. First, the (Euclidean) distance between every

pair of vessels is calculated. Then, from the set of
pairs of vessels that are within a pre-chosen distance L,
the two closest vessels are paired in a cluster. The
cluster replaces the vessels inside and new pairwise
distances are calculated. This adjusted distance from
one cluster to another, or to a vessel outside any cluster,
is calculated as the largest distance between vessels
in the two clusters, or from the vessels in the cluster
to the vessel outside. Based on the new distances a
new pairing is performed and then the process repeats
until the minimal distance is larger than L. For each
cluster, we create a newwaypoint, replacing the vessels
inside the cluster. To assure that all vessels of a cluster
are within range of the electro-optical sensor when the
UAV visits the new waypoint w = (wx ,wy), we take
L = R

√
2 in the hierarchical clustering described

above. Then, taking wx to be exactly halfway between
the minimum and maximum value of the vessel’s
x-coordinates, and likewise, for the y-coordinate of w,
we may use Pythagoras’ theorem to prove that all ves-
sels are within range R. We refer to Lima Filho et al. [2]
for more details. In this work, the clustering process
uses the distance L = 50 km, which means that the
drone must have an electro-optical sensor capable of
identifying vessels at 35 km. The tour and tour direction
criteria used in this algorithm are the same as in the
TSP algorithm.

3) The weight algorithm is also based on the TSP. How-
ever, before applying the ILP, the real segment dis-
tances between points to visit are multiplied by a
weight Z if any point of a given segment is a probable
fishing boat and by Z2 if both points are fishing boats.
Here, we assume, as mentioned in Section II, that the
drone can make a simple classification between fishing
and non-fishing boats based on their size as measured
by the ISAR. The tour is then generated based on
the adjusted distances; however, the actual distances
are used to determine the results. The direction of the
tour used in this algorithm is determined as follows:
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FIGURE 2. Traditional TSP on the left and BIAS-TSP on the right (multiplying 1.3 on the arcs leading to the fishing boat,
node number 3). Note: The numbers on the arcs are distances in kilometers.

Calculate the number of probable fishing boats visited
when, going clockwise, half the length (using real dis-
tances) of the total tour has been completed. Do the
same for the counterclockwise case. Choose the direc-
tion that visits the most fishing boats. (Note that in
Scenario I, this always will be parallel to the coast due
to Assumption 5 in Section III).

4) The bias-TSP algorithm combines the cluster algo-
rithm with the weight algorithm. The clustering proce-
dure of Lima Filho et al. [2] is used. Then, comparable
to the situation in the weight algorithm, the real dis-
tances to both the origin and destination of the segment
are multiplied by Z k , where k is the number of probable
fishing boats within the cluster. The direction of the
route used in this algorithm is the same as in the weight
algorithm.

Note that the last two algorithmsmay have a different route
orientation than the first two, as they are assumed to have
equipment capable of classifying fishing boats. Hereafter,
we will elaborate on the weight algorithm, and the bias-TSP
algorithm.

A. THE WEIGHT ALGORITHM
In the traditional TSP, the points to be visited are equally
important. However, in our maritime scenario, fishing vessels
have a higher priority and must be visited as quickly as possi-
ble. Probable fishing vessels are identified by length due to a
simple ISAR classification. However, the other vessels must
also be visited due to fishing vessels that exceed 50 meters
in length and possible measurement errors (5% error in the
ISAR classification).

As mentioned before, the range of the drone is not large
enough to make a tour along the probable fishing boats
(the prioritized vessels) and also tour the remaining vessels.
The planned tour will therefore be one route visiting all

vessels. In addition, in a mannedmaritime patrol, a pilot often
deviates from the ideal route to investigate a possible target
and then returns to the route and visits all vessels. Therefore,
we allow the visitation of all points, as in the classic TSP.
To prioritize the visit of fishing boats, we use a weight to
multiply the distances to these boats. After the algorithm plots
the tour, the actual distances would be re-entered into the
calculation of the true distance to the target.

Several weights between 0.8 and 1.4 were tested, as will be
discussed in Section V. For the proposed scenario, weights
between 1.1 and 1.25 obtained the best results. We will show
that slightly increasing the real distances to probable fishing
boats gives the best results and outperforms the TSP.

In the context of Fig. 2, the use of weights does not seem
to make sense. However, in the context of Fig. 3, where there
is a specific scenario, the use of weights leads to a desired
prioritization of fishing vessels. Note that in the traditional
TSP, the total route is shorter (307 km), and in the weight
algorithm, although the total route is longer (334 km), the
route prioritizes the fishing vessels and finds the target first
(29 km before the traditional TSP). This 29 km of flight
can be the difference between the target escaping the area or
stopping illegal fishing activity and the drone not being able
to register the fact.

The weights are used before computing the route; how-
ever, after optimization and tour orientation, the weights are
replaced with the original distances. It is worth mention-
ing that to give the tour orientation, the algorithm checks
which direction has more fishing boats, up to the radar limit
(370 km in this work).

B. BIAS-TSP ALGORITHM
Bias-TSP uses the clustering process of Lima
Filho et al. [2]. We create a new waypoint for each cluster,

28194 VOLUME 11, 2023



G. M. D. Lima Filho et al.: Novel Bias-TSP Algorithm for Maritime Patrol

FIGURE 3. Examples of Traditional TSP and BIAS-TSP in an operational context. Note: The numbers on the arcs
are distances in kilometers.

replacing the vessels within the cluster and thus decreasing
the number of points.

After applying the weights, the ILP is used to find the
shortest tour. Then, the true distances are used to calculate
the total distance of the route to the targets. As in the weight
algorithm, the direction of the route is given by the direction
that contains more fishing boats, as explained before. The
pseudo-code can be seen in Table 1

TABLE 1. Pseudo-code.

V. RESULTS AND ANALYSIS
This section presents the results obtained from the simula-
tions and the analysis from a statistical and operational point
of view.

A t-testwas performed on themean values presented in this
section, and a p-value of 5%was determined to be significant.

A. CHOICE OF WEIGHTS
Several simulations were performed with different weights in
the two proposed scenarios introduced in Section III to ver-
ify whether the weight algorithms proposed in the previous
section are effective.

Preliminary tests of weights with values from 0.2 to 3 with
a spacing of 0.1 were carried out. Only the most extreme
values are shown in Figures 4 and 5. Note that a weight equal

FIGURE 4. Weight tuning of Scenario I. Note 1: Error bars represent 95%
confidence intervals.

FIGURE 5. Weight tuning of Scenario 2. Note 1: Error bars represent 95%
confidence intervals.

to 1 refers to the classic TSP, supplemented with the route
orientation, as in the weight algorithm. Therefore, this part of
the experiment sought to find a weight that was significantly
better than weight 1.

Based on a statistical analysis with the t-test and defining
a p-value of 5% as significant, we found that in Scenario I,
the algorithm using a weight of 1.2 had the best performance,
resulting in the smallest mean total distance traveled to the
targets. Using the same tests in Scenario II it was verified

VOLUME 11, 2023 28195



G. M. D. Lima Filho et al.: Novel Bias-TSP Algorithm for Maritime Patrol

that the algorithm with a weight of 1.2 also obtained the best
performance; however, the difference was not significantly
better. We can conclude that the application of weights in
Scenario II did not significantly influence the result. Note:
If we have a scenario that differs from the one described in
Section III, probably the optimal weight may change.

B. EVALUATION OF THE FOUR ALGORITHMS
This subsection seeks to evaluate the algorithms described in
Section IV to determine which one finds the targets in the
shortest mean distance; that is, which one finds the targets as
soon as possible.

Figs. 6 and 7 show the results of 16,000 simulations for
each scenario. For this experiment, a random distribution of
vessels and targets is generated as described in Section III,
and the four algorithms are applied. Scenarios with one, two,
three and four targets were created. Each time, the mean
distance to the targets for each of the four algorithms is
calculated.

FIGURE 6. Algorithm evaluation in Scenario I. Note 1: Each colored dot in
the figure above represents the mean of 1000 simulations with the
respective algorithm. Note 2: Error bars represent 95% confidence
intervals.

FIGURE 7. Algorithm evaluation in Scenario II. Note 1: Each colored dot in
the figure above represents the mean of 1000 simulations with the
respective algorithm. Note 2: Error bars represent 95% confidence
intervals.

Using Fig. 6, we can see that for Scenario I, where the
drone departs from the lower (or upper) corner of the search
area, the algorithms that use the weight Z (weight algorithm

and bias-TSP algorithm) obtain the best performance, even
with the increase in the number of targets.

In Scenario II, the bias-TSP algorithm had a significantly
better performance than the traditional TSP and the cluster
algorithm. However, as shown in the previous subsection, the
use of weights in Scenario II did not significantly influence
the result; this performance improvement was due to the route
direction criterion and not the weighting system.

Figs. 8 and 9 show the results of the same simulations in
the form of percentage gains of the bias-TSP algorithm over
the other algorithms.

FIGURE 8. Gain of the bias-TSP algorithm in relation to the other
algorithms in Scenario I.

FIGURE 9. Gain of the bias-TSP algorithm in relation to the other
algorithms in Scenario II.

In Scenario I, the gain of the bias-TSP algorithm decreases
compared to the TSP and cluster algorithm in the cases where
the number of targets is increased. The bias-TSP algorithm
presented a gain of 49%, 46%, 40%, and 35% over the tradi-
tional TSP algorithm in the simulations with one, two, three
and four targets, and a gain of 43%, 39%, 31%, and 24% over
the about the cluster algorithm in the simulations with one,
two, three and four targets. When the bias-TSP is compared
with the weight algorithm, the gain stays approximately the
same, between 16% and 19%, because the difference between
the two algorithms is only the clustering process, which does
not change with the increase in the number of targets.

In Scenario II, the gain of the bias-TSP algorithm over
the others varied between 4% and 11% because, as already
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shown, there was no contribution from the weights; the con-
tribution was made by the direction of the route combined
with the clustering process.

When the mean distances to the target in Scenarios I and II
were compared, it was found that all algorithms performed
better by an average of 44% in Scenario I.

C. OPERATIONAL ANALYSIS
From an operational point of view for situations that resemble
our maritime scenario, the bias-TSP algorithm should be
used in any scenario that intends to identify illegal fishing
vessels when there is no information beyond the search area.
Analyzing the two scenarios using any of the algorithms
presented in this work showed that beginning at the corners
of the area is always better.

The algorithm proposed in this work is simple to imple-
ment and has a low computational cost. Regarding opera-
tional requirements, the drone only needs an ISAR to locate
and measure the size of vessels and an electro-optical sensor
capable of identifying large fishing vessels at a distance
of 35 km.

The algorithms based on weights were also compared with
the state-of-the-art algorithm for fast vessel identification,
the pre-classification algorithm [2]. In this test, 10,000 sim-
ulations were carried out. However, the pre-classification
algorithm did not have the flight range to fulfill 74% of the
simulations because in this work’s scenario, in addition to
finding the targets, the drone must identify all the vessels
since there is no information about the exact number of
targets.

VI. CONCLUSION
Flying a drone to check for a vessel fishing illegally is a
routine mission for many security agencies. Therefore, this
work developed a methodology to search for illegal fishing
vessels when there is no information about the vessels, and
only the search area is known.

The application of weights in the algorithm showed
good performances in Scenario I but was not found to be
significantly different in Scenario II. The bias-TSP algo-
rithm should be used in Scenario II, as it has characteris-
tics, such as the direction of the route, that give it better
performance than the other algorithms presented in this
work.

Whenever possible, the drone should take off from the
upper or lower corner of the search area. This improves the
performance of the algorithms presented in this study. In our
scenarios, the fishing boats are, in most cases, near the coast.
This preference is easy to understand given the decision that
must be made about the orientation of the tour.

The bias-TSP algorithm outperformed the other algo-
rithms in all scenarios. It proved to be an effective algo-
rithm, is easy to implement, and can be used in drones with
basic maritime patrol equipment (ISAR and electro-optical
sensor).
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