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Abstract
Forests’ capability to sequester and store a large amount of carbon makes it imperative to assess the carbon stocked in them. 
The present study aimed to map the tree aboveground carbon stock of sal (Shorea robusta) forests of Doon valley, India using 
object-based image analysis (OBIA) of WorldView-2, a very high resolution satellite imagery (VHRS). The study evaluated 
different pan-sharpening techniques for improving the spatial resolution of WorldView-2 multispectral imagery and found 
that the high pass filter resolution merge technique was better compared to others. OBIA was used for image segmentation 
and classification. It enabled the delineation of tree crowns and canopy projection area (CPA) calculation. The overall accu-
racy of image segmentation and classification were found to be 72.12% and 84.82% respectively. The study unveiled that 
there exists a strong relationship between diameter at breast height and the CPA of trees as well as CPA and tree carbon. The 
average forest carbon density in the study area was found to be 108 Mg ha−1. The study highlighted that OBIA of VHRS 
imagery coupled with field inventory can be efficiently used to quantify and map the tree carbon stock.

Keywords  Shorea robusta · WorldView-2 · Pan-sharpening · Multi-resolution image segmentation · Canopy projection 
area · Carbon stock

Introduction

Forests are the most valuable natural assets on earth which 
functions as the planet's inherent defense against climate 
change. Their unparalleled ability to sequester and store vast 
amounts of carbon is well-documented (Gibbs et al., 2007). 
This stored carbon plays a crucial role in climate change 
mitigation. Recognizing the pivotal role of forests in miti-
gating climate change, precise estimation of forest carbon 

is essential (FAO, 2010). Challenges like inaccessibility, 
labor-intensive fieldwork, and time constraints underscore 
the need for integrating remote sensing (RS) techniques. 
Establishing statistical relationships between ground-based 
samples and satellite-derived variables is crucial for forest 
carbon stock mapping, following a pixel-based approach. 
(Dang et al., 2019; Kushwaha et al., 2014; Manna et al., 
2014; Heyojoo & Nandy, 2014; Nandy et al., 2017, 2019; 
2021). Nevertheless, the pixel-based approach is inadequate 
for assessing forest carbon stock on an individual tree level.

For estimating the carbon stock of a tree, diameter at 
breast height (dbh) is the key parameter. However, it is 
impossible to enumerate each tree to estimate forest carbon 
stock. This can be overcome by using RS-based techniques 
as it covers large areas. With the advent of very high reso-
lution satellite imagery (VHRS) imagery, like IKONOS, 
QuickBird, Worldview-2, GeoEye, Cartosat 2S and 3, it 
is now possible to identify objects, like trees. The chal-
lenge arises from the limitation that optical RS satellite 
data cannot measure a tree dbh from space; they can only 
capture canopy reflectance values. In this context, object-
based image analysis (OBIA) (Blaschke, 2010) plays a 
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very significant role in the delineation of canopy projec-
tion area (CPA) of individual trees from VHRS imagery 
(Jing et al., 2012). Research has demonstrated a correla-
tion between CPA and a tree dbh (Shimano, 1997). Conse-
quently, establishing this relationship allows for accurate 
estimation of both individual tree carbon stock as well 
as the overall forest carbon stock. Various studies have 
demonstrated the potential of VHRS imagery and OBIA 
in conjunction with field information in mapping the tree 
aboveground carbon (AGC) stock effectively (Baral, 2011; 
Karna et al., 2015; Maharjan, 2012; Pandey et al., 2020). 
Baral (2011) estimated the AGC stock in a sub-tropical 
forest of Chitwan, Nepal using VHRS images, GeoEye 
and WorldView-2, and OBIA accompanied by field data. 
GeoEye performed better than WorldView-2 in image seg-
mentation as well as classification in the study. Tsendbazar 
(2011) estimated the AGC stock of trees using VHR Geo-
Eye image and OBIA, based on the allometric relationship 
of CPA and tree biomass, in the upper-subtropical forest of 
Dolakha district, Nepal. Shah and Acharya (2013) devel-
oped regression models to predict AGC stock by analyz-
ing the relationship between CPA, derived from GeoEye 
imagery, and the carbon stock of trees in the Khayarkhola 
Watershed of Chitwan district, Central Nepal. Goncalves 
et al. (2019) estimated aboveground biomass (AGB) in 
monospecies as well as multi-species agroforestry sys-
tems of Alca-cerdo Sal and Mora, Portugal by using crown 
cover as an independent variable derived using contrast 
split segmentation and object-oriented classification of 
QuickBird and WorldView-2 images. Pandey et al. (2020) 
utilized WorldView-2 imagery and OBIA techniques to 
map the aboveground tree carbon stock in the Barkot for-
est of Uttarakhand, India. Their study demonstrated the 
effectiveness of this approach in accurately assessing car-
bon stock at the level of individual trees. Mareya et al. 
(2018) showcased the applicability of freely accessible 
high-resolution red, green, blue (RGB) satellite imagery, 
obtained via Google Maps, in conjunction with OBIA for 
accurately estimating tree canopy area and AGB in the 
Miombo woodlands of Harare, Zimbabwe. Workie (2017) 
utilized OBIA of QuickBird satellite images and in situ 
dbh measurements to estimate AGC at the individual tree 
level in Enschede, the Netherlands, leveraging the strong 
correlation between CPA and dbh. Hussin et al. (2014) 
demonstrated that VHRS imagery and OBIA-based auto-
matic delineation and detection of tree crowns offer valu-
able insights into forest cover and carbon content, empha-
sizing the effectiveness of this method in a mixed forest 
in the hilly Gorkha district, Nepal, and recommending its 
application in diverse natural mixed and planted forests. 
Bagheri et al. (2021) investigated AGB and carbon stock 
of wild pistachio (Pistacia atlantica) in arid woodlands 
by employing OBIA of GeoEye-1, focusing on individual 

tree crown detection and allometric relationship develop-
ment within a reserved forest area in the South Khorasan 
Province, East of Iran.

Maharjan (2012) integrated airborne LiDAR data and 
high-resolution digital camera imagery to estimate and map 
aboveground woody carbon stocks in the Gorkha district 
forests, Nepal, revealing a notable correlation of AGC with 
CPA and height; the accuracy of AGC stock estimation was 
enhanced when both variables were combined, surpass-
ing the use of either variable alone. Mbaabu et al. (2014) 
estimated carbon stocks of two forest regimes, government 
and community-managed, in the Chitwan district of Nepal 
based on field data, OBIA of VHR GeoEye-1 satellite image, 
and airborne LiDAR data. Karna et al. (2015) combined 
WorldView-2 satellite imagery and airborne LiDAR data 
to estimate tree carbon at the species level in Nepal’s Chit-
wan district, employing OBIA for tree canopy retrieval 
and supervised nearest neighbor classification methods for 
species-level classification. They found that WorldView-2 
satellite imagery and airborne LiDAR data along with OBIA 
have great potential in tree species level carbon stock map-
ping. Wangda et al. (2019) showcased the effectiveness of 
integrating GeoEye and small footprint airborne LiDAR data 
to accurately model and estimate AGC in community forests 
of the Gorkha district, Nepal.

In India, Sal (Shorea robusta) holds significance as a 
vital timber species, constituting approximately 13.3% of 
the country's total forest area (Satya et al., 2005), and stands 
as a dominant tree species in both tropical moist and dry 
deciduous forests (Champion & Seth, 1968; Kushwaha & 
Nandy, 2012). In India, it occurs generally as gregarious 
formation in the states of Himachal Pradesh, Uttarakhand, 
Uttar Pradesh, Bihar, Jharkhand, Odisha, West Bengal, 
Assam, Tripura, Meghalaya, Madhya Pradesh and Chhat-
tisgarh states (Champion & Seth, 1968; Roy et al., 2015; 
Satya et al., 2005; Troup, 1921) up to approx. 1000 m eleva-
tion and possess a significant carbon sequestration poten-
tial (Kaul et al., 2010; Navalgund et al., 2019; Pillai et al., 
2019; Watham et al., 2020). Its geographical range indicates 
the significance of the study on carbon storage. Despite its 
importance, limited studies have been carried out in India’s 
forests to quantify the carbon stock at the tree level. Hence, 
the current study focuses on quantifying and mapping the 
AGC stock in the Sal forests of the northwest Himalayan 
foothills of India, utilizing OBIA of VHRS imagery.

Materials and Methods

Study Area

The present study was carried out in part of the Timli forest 
range of Kalsi soil conservation forest division, Dehradun, 
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Uttarakhand, India (Subudhi & Shah, 2010). Timli forest 
range is further divided into blocks, viz., Aduwala, Dara-
rit, Dharmanwala, Dhaula, Kulhal, Majari and Timli. The 
study area extends from 30°  19′34″–30°  25′04″  N and 
77° 41′57″–77° 45′15″ E (Fig. 1), covering an area of 36 km2 
of Dharmanwala, Majari, Dararit and Timli blocks, in the 
foothills of northwest Himalaya. The area is mainly com-
prised of tropical moist deciduous forests (Champion & 
Seth, 1968), with sal as the dominated top storey species 
often forming pure stands. The major associated tree spe-
cies of sal are Mallotus philippensis, Terminalia tomentosa, 
T. bellirica and Lagerstroemia parviflora (Yadav & Nandy, 
2015). The terrain is relatively flat to undulating with eleva-
tion ranging from 440 to 790 m asl. The climate of the study 
area is tropical to sub-tropical. The temperature ranges from 
2 to 40 °C with an average annual rainfall of 2000 mm. The 
area has a moist deciduous plant functional type (Srinet 

et al., 2020) and has the potential to sequester a huge amount 
of carbon (Srinet et al., 2022).

Data

This study utilized WorldView-2 (WV-2) satellite imagery, 
consisting of a panchromatic image (PI) with a spatial reso-
lution of 0.5 m and eight multi-spectral (MSS) bands with a 
spatial resolution of 2 m. The spectral bands included coastal 
(400–450 nm), blue (450–510 nm), green (510–580 nm), 
yellow (585–625  nm), red (630–690  nm), red-edge 
(705–745 nm), near-infrared1 (NIR1) (770–895 nm), and 
NIR2 (860–1040 nm), covering the electromagnetic spec-
trum from 400 to 1040 nm. The panchromatic (Pan) band 
encompassed 450  nm to 800  nm. Acquired from Digi-
talGlobe, Inc. on 23 October 2011, the WV-2 image was 
already geometrically corrected and orthorectified, featuring 

Fig. 1   Location of the study 
area in India
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Universal Transverse Mercator (UTM) Zone 43 projection 
and WGS 84 datum.

Methodology

In order to get a precise estimation of carbon at the tree level, 
pan-sharpening was performed to enhance the spatial prop-
erties of the MSS bands of WV-2 imagery. Pan-sharpening 
was followed by image segmentation which was aimed at 
delineating the individual tree crowns to calculate CPA and 
estimate carbon at individual tree level. Object-based image 
classification was done to extract the forest class from the 
segmented image. Both image segmentation and classifica-
tion were evaluated for their accuracies. After deriving the 
relationship between CPA and carbon, from the field data, 
the equation was used to estimate carbon at individual tree 
level. The regression model was also evaluated for the R2 
value. The detailed methodology is depicted in Fig. 2.

Estimation of Carbon Stock

Pan‑Sharpening and  Its Evaluation  The WV-2 platform 
simultaneously captures the Pan and MSS bands, with PI 
at a 0.5 m resolution and eight MSS bands at a 2.0 m reso-
lution. Seven distinct techniques, including high pass filter 

(HPF) resolution merge, modified intensity hue saturation 
(MIHS), Ehler’s fusion, wavelet resolution merge, hyper-
spherical colour space (HCS), principal component (PC), 
and Brovey transform, were employed in this study for pan-
sharpening the image.

The HPF resolution merge technique, introduced by 
Schowengerdt (1980), extracts edge information from the 
high-resolution PAN band and extends it to the MSS bands. 
The MIHS method, as described by Nikolakopoulos (2008), 
approximates spectral characteristics from MSS bands while 
retaining spatial features from the PAN band. Utilizing an 
optimum index factor (OIF) (Chavez et al., 1982), only three 
spectral bands out of eight were included in this study. Ehler 
fusion method, also known as fast fourier transform (FFT) 
enhanced intensity, hue, saturation transform (Yuhendra 
et al., 2012), preserves spectral information from the MSS 
bands. The wavelet resolution merge technique proceeds 
in three steps: decomposing the high-resolution PAN band 
into low-resolution PIs with wavelet coefficients, replacing 
low-resolution PAN components with MSS bands, and then 
reverting the transformed PAN to its original resolution 
(Balcik & Sertel, 2007). HCS transformation defines col-
our and intensity using variables, allowing intensity adjust-
ments without altering colours in the pan-sharpening process 
(Padwick et al., 2010). PC analysis transforms correlated 

Fig. 2   Methodology followed for tree carbon estimation
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bands into uncorrelated components, where high and low-
resolution images are arranged into vectors, subtracting 
their means, and computing normalized components from 
resulting eigenvectors (Chavez et al., 1991). Brovey transfor-
mation involves multiplying each MSS band with the high-
resolution PAN band and dividing the products by the sum 
of the MSS bands (Nikolakopoulos, 2008).

All these pan-sharpening techniques underwent evalua-
tion through seven assessment methods to gauge the quality 
of the resultant images. The evaluation methods (Table 1) 
encompassed various aspects of image quality. Among the 
seven assessment methods, mean square error (MSE) and 
root mean square error (RMSE) gauged spectral distortion, 
while the spectral correlation coefficient provided insights 
into fused image spectral quality. Universal image quality 
index (UIQI) and relative dimensionless global error in 
synthesis (ERGAS) offered a comprehensive assessment of 
overall quality, considering both spectral and spatial aspects. 
Peak signal-to-noise ratio (PSNR) addressed radiometric 
distortion, and the spatial correlation coefficient was com-
puted to evaluate spatial quality.

Image Segmentation  Crown delineation was performed 
through image segmentation, a process of spatial clustering 
that divides the image into non-overlapping subdivisions 
known as segments, as described by Möller et  al. (2007). 
Multiresolution segmentation in eCognition was used for 
image segmentation. Before segmentation, Gaussian filter 
over the image was applied. Scale parameter of 19–21 was 

used to delineate the crowns from the image. After segmen-
tation, watershed transformation of scale 7 was applied to 
avoid errors due to crown intermingling. Morphology was 
applied for edge smoothening and objects below 20 pixels 
were removed.

To assess the “goodness of fit” of segmentation, the 
D-value (Clinton et al., 2008) was computed to measure the 
“closeness” between pre-defined polygons (manually deline-
ated reference polygons) and extracted polygons (segments). 
This metric evaluated both over-segmentation and under-
segmentation. D-value ranges from 0 to 1; a D-value of zero 
indicates a perfect segmentation.

Over-segmentation and under-segmentation were calcu-
lated as follows:

where xi is the reference polygon and yj is the corresponding 
segment.

The D-value was calculated as:

(1)Over − segmentationij = 1 −
Area(xi ∩ yi)

Area(xi)

(2)Under − segmentationij = 1 −
Area(xi ∩ yi)

Area(yi)

(3)

D =

√

Over − segmentation
2
+ Under − segmentation

2

2

Table 1   Evaluation methods for pan sharpening techniques

S. no. Method Equation Description

1 Mean square error MSE =
1

MN

∑M

i=1

∑N

j=1
(IF(i, j) − IR(i, j))

2 MSE and RMSE are the measure of spectral distortion in the 
image

IF(i, j) Represents the pixels of PI and IR(i, j) the pixels of 
fused image. M × N is the size of the image

2 Root mean square error RMSE =
√

MSE

3 Peak signal to signal noise ratio PSNR = 10log
10

(

L2

MSE

)

PSNR is the measure of radiometric distortion in the resulting 
image

L is the radiometric resolution of the sensor
4 Spatial correlation coefficient CC spatial (P(k),M(k)) Correlation coefficient is the measure of correlation or simi-

larity between the two images. Pearson correlation coef-
ficient was calculated between the original MSS and fused 
images for assessing spectral correlation

For calculating spatial correlation reference image, i.e., PI 
was first filtered with Laplacian filter

5 Spectral correlation coefficient CC spectral (P(k), M(k))

6 Universal image quality index
UIQI =

(

�xy

�x�y

)

(

2�x�y

�2
x
+�2

y

)(

2�x�y

�2
x
+�2

y

)

UIQI assesses the overall similarity between the reference and 
fused image

�xy is the covariance of two images, �x  and �y are the standard 
deviations of the images. �x and �y are the mean of the 
images

7 Relative dimensionless global 
error in synthesis ERGAS = 100

h

l

�

1

N

∑N

N=1

�

RMSE(n)

�(n)

�2 ERGAS assesses the global quality and measures the trade-off 
between spectral and spatial quality, respectively

h and l are the spatial resolutions of the high resolution and 
low resolution images, respectively. N is the number of 
bands and µ (n) is the mean of nth band
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In this study, validation of the segmentation was done by 
the method suggested by Zhan et al. (2005) which assessed 
the overall quality, correctness, and completeness of seg-
mentation by one-to-one matching of reference polygons 
and segments.

Object‑Based Image Classification  In this study, object-
based image classification was conducted through ecogni-
tion software. The classification algorithms evaluated image 
objects based on defined criteria, assigning them to the 
most suitable class. Samples from all classes were collected 
through field surveys and visual interpretation. The clas-
sification accuracy was assessed using a confusion matrix, 
which calculated the producer’s accuracy, user’s accuracy, 
and overall accuracy, following the methodology outlined 
by Congalton (1991).

Carbon Stock Calculation  The field inventory data was col-
lected using a stratified random sampling approach. Forest 
canopy density was considered as a stratum for sampling 
since there was no variation in forest type. Three canopy 
density classes, viz., 10–40%, 40–70%, and > 70% were pre-
pared based on the tonal differences using on-screen visual 
interpretation. A total of 19 plots were laid. CPA and dbh of 
trees were recorded in these sample plots.

One of the most prevalent techniques for estimating bio-
mass is the utilization of allometric equations. For the study 
area, species as well as site-specific volumetric equation was 
used instead, due to the unavailability of an allometric equa-
tion for the area. The volumetric equation used was:

where V = Volume and D = Diameter at breast height.
This equation was developed by FSI (1996) to calculate 

the tree volume of Shorea robusta for the Dehradun forest 

(4)V = 0.03085 − 0.77794D + 8.42051D
2 + 5.91067D

3

division, India. Utilizing this volumetric equation, tree vol-
umes were computed. These volumes were then multiplied 
by the specific gravity (FRI, 2002) and biomass expansion 
factor (Haripriya, 2000) to determine tree biomass. This bio-
mass value was subsequently converted to estimate carbon, 
applying a conversion factor of 0.47 as recommended by 
IPCC (2006).

Regression Analysis and Validation  In this study, a regres-
sion analysis was conducted to examine the relationship 
between CPA and tree carbon, with CPA serving as the 
independent variable and carbon as the dependent vari-
able. A non-linear regression model was constructed using 
field-collected data to represent the relationship between 
CPA and carbon. To validate the model, a linear regression 
was performed between the predicted carbon values and the 
actual amounts calculated from the field data, using a sepa-
rate test dataset collected from the field.

Results and Discussion

Pan‑Sharpening

The pan-sharpening techniques were assessed both statisti-
cally and through visual interpretation of the results. Table 2 
provides a summary of the statistical evaluation of the twelve 
applied techniques. According to the statistical analysis, the 
HPF resolution merge demonstrated the most favourable out-
come, with HCS pan-sharpening following closely behind 
(Table 2). Figure 3 displays the pan-sharpened images pro-
duced by the different pan-sharpening methods.

The MSE and RMSE values indicated that the HPF res-
olution merge (without edge enhancement) gave the least 
spectral distortion. While the spectral correlation coeffi-
cient values of MIHS was least followed by Ehler’s fusion. 

Table 2   Results of pan sharpening evaluation

Pan-sharpening methods MSE RMSE PSNR CCspatial CCspectral UIQI ERGAS

HPF resolution merge (with edge enhancement) 104.56 9.99 46.43 0.93 0.71 0.64 1.15
HPF resolution merge (without edge enhancement) 103.78 9.96 46.46 0.97 0.73 0.71 1.15
Modified I H S (7,5,4) 148.8 12.10 44.64 -0.19 0.94 0.59 1.62
Ehler's fusion (NN) 114.63 10.54 45.91 0.72 0.84 0.59 1.31
Ehler's fusion (CC) 111.82 10.40 46.03 0.85 0.79 0.59 1.31
Wavelet resolution merge 109.70 10.27 46.17 0.56 0.76 0.64 1.17
HCS (with edge enhancement) (NN) 111.72 10.33 46.14 0.89 0.63 0.74 1.14
HCS (with edge enhancement) (CC) 110.51 10.26 46.22 0.96 0.66 0.75 1.14
HCS (without edge enhancement) (NN) 109.04 10.19 46.27 0.86 0.71 0.75 1.14
HCS (without edge enhancement) (CC) 106.02 10.04 46.31 0.95 0.75 0.77 1.13
Principal component 135.54 11.56 45.03 0.57 0.74 0.54 2.01
Brovey transform 266.60 16.32 41.97 0.77 0.78 0.07 13.37
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This signifies the efficiency of MIHS and Ehler’s fusion to 
preserve the spectral information of the MSS bands as it 
approximates the spectral information. Similar studies done 
by Yuhendra et al. (2012) and Ghosh and Joshi (2013) on 
WV-2 pan-sharpening, got the least RMSE in Ehler’s fusion 
and the highest spectral correlation in MIHS.

Among the techniques applied, HPF resolution merge 
(without edge enhancement) gave the highest spatial cor-
relation with the original PI as HPF resolution merge 
extrapolates the edge information. Ghosh and Joshi (2013) 
concluded similar results where HPF gave a correlation coef-
ficient of 0.97. In the present study, HCS and HPF gave 
comparable PSNR values of 46.46 and 46.31 respectively. 
The higher the PSNR value better the fusion result. Yuhen-
dra et al. (2012) found Ehler’s fusion to be the best while 
Ghosh and Joshi (2013) found that HCS gave better results 

than HPF. The different pan-sharpening techniques may give 
different kinds of results, even if the datasets are the same 
(Ghosh & Joshi, 2013; Yuhendra et al., 2012). Hence, it can 
be concluded that the quality of pan-sharpened images might 
depend on the nature of the earth’s surface. In the present 
study, HPF gave the best result compared to other methods 
adopted in this study.

Image Segmentation

The HPF resolution merge image from WV-2, which exhib-
ited the best results, was used for image segmentation. 
Multi-resolution segmentation was performed to group 
pixels into homogeneous areas forming distinct objects or 
segments (Fig. 4). The D-value for a scale factor of 20 was 
0.32, and for scale factors 19 and 21, it was 0.41 and 0.34 

Fig. 3   Results of pan-sharpening. a HPF (with edge enhancement), b 
HPF (without edge enhancement), c MIHS, d Ehler fusion (NN), e 
Ehler fusion (CC), f Wavelet-PCA, g HCS (with edge enhancement 
–NN), h HCS (with edge enhancement –CC), i HCS (without edge 

enhancement –NN), j HCS (without edge enhancement –CC), k prin-
cipal component, l Brovey transform. CC represents the cubic convo-
lution interpolation method while NN is nearest neighbor
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respectively. These values were comparable to the results 
obtained in similar studies conducted by Karna et al. (2015) 
and Baral (2011) in Nepalese forests, where D-values of 0.33 
(Karna et al., 2015) and 0.47 (Baral, 2011) were reported. 
To assess segmentation accuracy, a comparison was made 
between manually delineated reference polygons and seg-
mented polygons on a one-to-one basis. Out of 115 reference 
polygons, 83 extracted polygons matched exactly (Fig. 5). 
Consequently, the study achieved a segmentation accuracy 
of 72.17%.

Object‑Based Image Classification

The objects obtained through multi-resolution segmenta-
tion were categorized based on the spectral properties of the 
pan-sharpened HPF resolution merge image. The classifica-
tion parameters utilized included the normalized difference 

vegetation index (NDVI) and the mean of NIR1. These 
objects were classified into four distinct categories: trees, 
Lantana, non-forest areas, and shadows. Given the gregari-
ous growth of sal in the area and the dominance of sal in the 
top canopy, the classification was performed at a broader 
level and species-specific identification was not carried out. 
The classification results for a portion of the study area are 
illustrated in Fig. 6. To assess classification accuracy, sam-
ples were collected for all defined classes. An impressive 
overall accuracy of 84.82% was achieved. This high accu-
racy can be attributed to the distinct separability of the four 
classes from each other.

Regression Model and Validation

A non-linear regression model was developed to examine the 
correlation between CPA and carbon content in sal. Non-lin-
ear regression was chosen over a simple linear model based 
on the R2 values. The regression analysis was conducted 
using 37 field observations, resulting in a correlation coeffi-
cient of 0.78 for the CPA-carbon relationship. The graphical 
representation of the non-linear regression between CPA and 
carbon is depicted in Fig. 7. The regression equation derived 
from the model for the relationship between CPA and carbon 
content in sal is as follows:

The model was validated using 21 observations, where 
predicted carbon values were compared to calculated car-
bon values. The R2 value for the model was found to be 
0.87, indicating that the predicted carbon values accounted 
for 87% of the variation observed in the calculated carbon 
values obtained from field measurements.

(5)
Carbon stock = 0.0328(CPA)

2 + 0.5507(CPA) + 251.28

Fig. 4   Multi-resolution image segmentation

Fig. 5   Reference polygons (red) versus automatic segmentation (green) (color figure online)
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Carbon Stock Mapping

The validated non-linear regression model was applied to 
estimate the carbon content within the study area. The study 
area contained an estimated 108 MgC ha−1, resulting in a total 
estimated carbon stock of 3.81 Tg for the entire area. The dis-
tribution of carbon stock within the area is illustrated in Fig. 8, 
revealing that the majority of trees had less than 500 kg of 
carbon per tree, with only a few trees surpassing 2000 kg in 
carbon content.

Conclusions

This study emphasized the effectiveness of VHRS imagery 
in quantifying and mapping individual tree carbon stocks. 
The RS-based approach for assessing tree carbon stocks 
offers significant advantages over traditional methods. It not 
only provides spatial information but also enables the assess-
ment and monitoring of carbon stocks at the individual tree 
level. The rise in the availability of VHRS imagery, such as 
WV-2, has led to the development of improved techniques 
like OBIA for extracting features such as CPA. The research 
findings underscored a substantial relationship between CPA 
and the carbon stock of sal trees in the northwest Himalayan 
foothills of India. Moreover, the study shed light on the car-
bon stored by individual trees of one of India's significant 
tree species. Hence, the integration of VHRS imagery with 
OBIA proves indispensable for the accurate assessment and 
monitoring of tree carbon stocks.

Large-scale forest carbon maps play a pivotal role in 
initiatives like Reducing Emissions from Deforestation 
and Forest Degradation (REDD+). Forest managers can 
enhance their carbon credits through the meticulous mon-
itoring of forest carbon stocks. However, the study has 
certain limitations. Accurate delineation of CPA is crucial 
for estimating the carbon stock of individual trees using 
OBIA. In densely packed canopies, accurate segmentation 
of CPA becomes challenging, affecting both the classifica-
tion accuracy and carbon stock assessment. Additionally, 
this approach allows mapping only the carbon stock of 
top canopy tree species. Co-dominant or suppressed trees 

Fig. 6   VHRS image and its object-based image classification

Fig. 7   Regression between crown projection area (CPA) and carbon
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remain invisible in the imagery and, therefore, cannot be 
mapped. Developing local allometric equations is essen-
tial for improving the assessment of field biomass and 
carbon. Furthermore, the integration of airborne LiDAR 
data could have provided a more precise estimation of car-
bon stock by incorporating height information alongside 
VHRS imagery.
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