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Abstract. We consider a general class of bulk-surface convective Cahn–
Hilliard systems with dynamic boundary conditions. In contrast to classi-
cal Neumann boundary conditions, the dynamic boundary conditions of
Cahn–Hilliard type allow for dynamic changes of the contact angle be-
tween the diffuse interface and the boundary, a convection-induced mo-
tion of the contact line as well as absorption of material by the boundary.
The coupling conditions for bulk and surface quantities involve parame-
ters K, L ∈ [0, ∞], whose choice declares whether these conditions are of
Dirichlet, Robin or Neumann type. We first prove the existence of a weak
solution to our model in the case K, L ∈ (0, ∞) by means of a Faedo–
Galerkin approach. For all other cases, the existence of a weak solution is
then shown by means of the asymptotic limits, where K and L are sent to
zero or to infinity, respectively. Eventually, we establish higher regularity
for the phase-fields, and we prove the uniqueness of weak solutions given
that the mobility functions are constant.
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1. Introduction

In recent times, the description of immiscible two-phase flows in a bounded
domain by diffuse-interface models has become very popular. This is especially
because those systems can usually be handled more easily in terms of math-
ematical analysis than their sharp-interface counterparts. In such models, the
location of the two fluids inside the container is represented by an order param-
eter, the so-called phase-field. The time evolution of this phase-field function
is often described by a convective Cahn–Hilliard equation. There, the velocity
field of the mixture enters via the material derivative of the phase-field. The
time evolution of the velocity field is usually described by a fluid equation,
e.g., the Navier–Stokes equation. Very frequently used Navier–Stokes–Cahn–
Hilliard models for two-phase flows are the Model H (see [25,27]), which covers
the case where both fluids have the same individual density, and the Abels–
Garcke–Grün model (AGG model) (see [1]), which is even capable of describing
the situation where both fluids have different (i.e., unmatched) densities.

For the Model H and the AGG model, the standard choice are homoge-
neous Neumann boundary conditions for the Cahn–Hilliard quantities (i.e., the
phase-field and the chemical potential) as well as a no-slip boundary condition
for the velocity field. However, these choices lead to some crucial limitations
of these models:

• The contact angle between the diffuse interface and the boundary of the
domain is fixed at ninety degrees at all times, which is unrealistic for
many real-world applications.

• The motion of the contact line, where the diffuse interface intersects the
boundary of the domain, is driven only by diffusion. This means that a
motion of the contact line caused by convection is not taken into account.
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• No transfer of material between the bulk and the boundary of the domain
is allowed. Therefore, any absorption of material by the boundary cannot
be described.

For a more detailed discussion of these issues, we refer the reader to [23].
To overcome these limitations, a new Navier–Stokes–Cahn–Hilliard model

with dynamic boundary conditions was derived in [23]. It can be regarded
as an extension of the AGG model and is capable of describing two-phase
flows with unmatched densities. In the case of matched densities, some first
analytic results (namely the existence of weak solution and their uniqueness
under certain additional assumptions) were presented in [23]. The case of un-
matched densities, however, is much more involved. This is mainly because in
the Navier–Stokes equation, the density function then depends on the phase-
field, and a further flux term related to the interfacial motion will appear. In
the case of unmatched densities, at least for certain parameter choices in the
dynamic boundary conditions, the existence of a weak solution to the model
introduced in [23] was shown in [17] by an implicit time discretization scheme.
A different strategy to prove the existence of weak solutions to the model pro-
posed in [23], in a unified framework for all parameter choices in the dynamic
boundary conditions, is to first analyze the underlying bulk-surface convective
Cahn–Hilliard subsystem separately. Using this information, a weak solution
to the full Navier–Stokes–Cahn–Hilliard system is then to be constructed by
means of a suitable fixed point argument.

This motivates us to investigate the following bulk-surface convective
Cahn–Hilliard system with dynamic boundary conditions:

∂tφ + div(φv) = div(mΩ(φ)∇μ) in Q, (1.1a)

μ = −εΔφ + ε−1F ′(φ) in Q, (1.1b)

∂tψ + divΓ(ψw) = divΓ(mΓ(ψ)∇Γθ) − βmΩ(φ)∂nμ on Σ, (1.1c)

θ = −εΓκΔΓψ + ε−1
Γ G′(ψ) + αε∂nφ on Σ, (1.1d){

εK∂nφ = αψ − φ if K ∈ [0,∞),
∂nφ = 0 if K = ∞ on Σ, (1.1e)

{
LmΩ(φ)∂nμ = βθ − μ if L ∈ [0,∞),
mΩ(φ)∂nμ = 0 if L = ∞ on Σ, (1.1f)

φ|t=0 = φ0 in Ω, (1.1g)

ψ|t=0 = ψ0 on Γ. (1.1h)

Here, Ω ⊂ R
d with d ∈ {2, 3} is a bounded domain with boundary Γ:=∂Ω,

T > 0 is a prescribed final time, and we set Q:=Ω × (0, T ) and Σ:=Γ × (0, T ).
The outward unit normal vector field on Γ is denoted by n. Moreover, ∇Γ, divΓ

and ΔΓ denote the surface gradient, the surface divergence, and the Laplace-
Beltrami operator on Γ, respectively.

The function φ : Q → R is the bulk phase-field. It is an order parameter,
which represents the distribution of the two immiscible materials within the
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domain Ω. Similarly, the surface phase-field ψ : Σ → R represents the distri-
bution of two materials on the surface. The functions F and G are double-well
potentials, which lead to the effect that φ(t) and ψ(t) will attain values close
to ±1 in most parts of Ω and Γ (which correspond to the pure phases of the
materials). In the remaining intermediate regions, which are called diffuse in-
terfaces, φ and ψ are expected to exhibit a continuous transition between the
values −1 and 1. The functions μ : Q → R and θ : Σ → R represent the
bulk chemical potential and the surface chemical potential, respectively. The
non-negative, scalar functions mΩ(φ) and mΓ(ψ) are called mobilities. They
depend on the phase-fields and describe where diffusion processes occur. More-
over, the functions v : Q → R

d and w : Σ → R
d are prescribed velocity fields

that correspond to the flow of the two materials in the bulk and on the surface,
respectively. In this paper, we always assume that v ·n = 0 on Σ. We point out
that in many cases (e.g., in the model derived in [23]), v and w are related by
the condition w = v|Σ on Σ. However, as this relation will not have any impact
on our mathematical analysis, we consider v and w as independent functions
to keep our model as general as possible. Furthermore, ε > 0 is a parameter
related to the thickness of the diffuse interface in the bulk, whereas εΓ > 0
corresponds to the width of the diffuse interface on the boundary. The param-
eter κ > 0 acts as a weight for the surface Dirichlet energy ψ �→ ∫

Γ
|∇Γψ|2 dΓ,

which has a smoothing effect on the phase separation at the boundary.
The time evolution of (φ, μ) is determined by the bulk convective Cahn–

Hilliard subsystem
(
(1.1a), (1.1b)

)
, whereas the evolution of (ψ, θ) is described

by the surface convective Cahn–Hilliard subsystem
(
(1.1c), (1.1d)

)
, which is

coupled to the bulk by expressions involving the normal derivatives ∂nφ and
∂nμ. The bulk and surface quantities are further coupled by the boundary
conditions (1.1e) and (1.1f), which depend on parameters K,L ∈ [0,∞] and
α, β ∈ R.

In (1.1e) and (1.1f), the parameters K,L ∈ [0,∞] are used to distinguish
different cases, each corresponding to a certain solution behaviour related to
a physical phenomenon. The case that has been studied most extensively in
the literature is K = 0. In this case, (1.1e) is to be interpreted as the Dirichlet
type boundary condition φ = αψ on Σ. This choice makes particular sense
along with α = 1, if the materials on the boundary are simply considered as
an extension of those in the bulk. Originally, the boundary condition (1.1f) was
introduced in the non-convective case (i.e., v ≡ 0 and w ≡ 0) in the following
literature:

• The choice L = 0 was proposed in [14] and [24]. Then, (1.1f) can be
restated as the Dirichlet condition μ = βθ on Σ, which means that the
chemical potentials μ and θ are always in a chemical equilibrium. In this
case, a rapid transfer of material between bulk and boundary can be
expected (see, e.g., [29]).

• The choice L = ∞ was introduced in [32]. In this case, (1.1f) is a ho-
mogeneous Neumann boundary condition on μ, which means that the
mass flux between bulk and surface is zero. Consequently, no transfer of
material between bulk and surface will occur.
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• The choice L ∈ (0,∞) was first used in [29] to interpolate between the
extreme cases L = 0 and L = ∞. In this case, a transfer of material
between bulk and surface will occur, and the number L−1 is related to
the rate of absorption of bulk material by the boundary (cf. [29]).

In the convective case (i.e., with non-trivial velocity fields v and w), the
boundary condition (1.1f) was also used in the Navier–Stokes–Cahn–Hilliard
model derived in [23] and in the Cahn–Hilliard–Brinkman model studied in
[12]. Furthermore, the model derivation in [23] shows that the parameter β
acts as a weight for the mass flux between bulk and surface. This means that
β can also be negative and therefore, we simply assume β ∈ R.

However, we also want to cover the case, where the materials on the
boundary are not the same as those in the bulk. For instance, this is the case
if the bulk materials are transformed at the boundary by a chemical reaction.
In this case, the surface phase-field might not be proportional to the trace
of the bulk phase-field, so the choice K = 0 would not be appropriate. In
our model, this is taken into account by the choice K ∈ (0,∞]. In the case
K = ∞, (1.1f) degenerates to a homogeneous Neumann boundary condition
for the phase-field. For most applications, this might not be the preferred
choice as it is known that such a Neumann boundary condition enforces the
diffuse interface to always intersect the boundary at a perfect angle of ninety
degrees. In fact, this is one of the aforementioned limitations we usually want to
overcome by the usage of dynamic boundary conditions. However, we include
the case K = ∞ for the sake of completeness. In the case K ∈ (0,∞), (1.1f) can
be regarded as a Robin type boundary condition. It is suitable to describe a
scenario, where ψ and the trace of φ are not proportional, but it still allows for
dynamical changes of the contact angle between the diffuse interface and the
boundary. In the context of bulk-surface Cahn–Hilliard equations, condition
(1.1f) with K ∈ (0,∞) was used in [28] (in the non-convective case) and in
[12] (in the convective case). In [28] and [12], it was further shown that the
limit K → 0 can be used to recover the boundary condition (1.1f) with K = 0.
Especially in the case that the materials on the boundary differ from those
in the bulk, the parameter α could be any real number (even with a negative
sign). Therefore, to keep the model as general as possible, we allow for α ∈ R.
However, for our mathematical analysis, we will need the additional relation
αβ |Ω| + |Γ| 	= 0. Of course, this is trivially satisfied if α and β have the same
sign.

We further want to point out that including the case K ∈ (0,∞) also helps
our mathematical analysis. This is because the existence of a weak solution
to (1.1) can be shown by a suitable Faedo–Galerkin scheme only in the cases,
where the boundary conditions are of the same type (i.e., K = L = 0, K =
L = ∞ or 0 < K,L < ∞), as otherwise, the spaces of admissible test functions
in the weak formulation do not match. In this paper, we will first construct a
weak solution of (1.1) in the case 0 < K,L < ∞. Then, we prove the existence
of a weak solution in the remaining cases by sending the parameters K and L
to zero or to infinity, respectively.
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Let us now discuss some important properties of our model. The system
(1.1) is associated with the total energy

EK(φ, ψ) =
∫

Ω

ε

2
|∇φ|2 + ε−1F (φ) dx +

∫
Γ

εΓκ

2
|∇Γψ|2 + ε−1

Γ G(ψ) dΓ

+ h(K)
∫

Γ

1
2

|αψ − φ|2 dΓ,

(1.2)

where the function

h(K):=

{
K−1, if K ∈ (0,∞),
0, if K ∈ {0,∞}

is used to distinguish the different cases corresponding to the choice of K.
Sufficiently regular solutions of the system (1.1) satisfy the mass conversation
law⎧⎪⎨
⎪⎩

β
∫
Ω

φ(t) dx +
∫
Γ

ψ(t) dΓ = β
∫
Ω

φ0 dx +
∫
Γ

ψ0 dΓ, if L ∈ [0,∞),

∫
Ω

φ(t) dx =
∫
Ω

φ0 dx and
∫
Γ

ψ(t) dΓ =
∫
Γ

ψ0 dΓ, if L = ∞
(1.3)

for all t ∈ [0, T ]. As mentioned above, this means that a transfer of material
between bulk and surface is allowed only in the cases L ∈ [0,∞). Moreover,
sufficiently regular solutions satisfy the energy identity

d
dt

EK(φ, ψ) =
∫

Ω

φv · ∇μ dx +
∫

Γ

ψw · ∇Γθ dΓ −
∫

Ω

mΩ(φ) |∇μ|2 dx

−
∫

Γ

mΓ(ψ) |∇Γθ|2 dΓ − h(L)
∫

Γ

(βθ − μ)2 dΓ
(1.4)

for all t ∈ [0, T ]. We point out that in the non-convective case (i.e., v = 0 and
w = 0), the right-hand side of (1.4) is clearly non-positive. This means that the
energy dissipates over the course of time and the terms on the right-hand side
of (1.4) can be interpreted as the dissipation rate. In this case, the system (1.1)
can be derived as an H−1 type gradient flow of the free energy EK subject
to the inner product (·, ·)L,β,∗ that will be introduced in Sect. 2, (P5) (cf. [29,
Remark 2.2] and [28, Section 3]). Moreover, if L = ∞, the system (1.1) can
also be derived by an energetic variational approach that combines the least
action principle and Onsager’s principle of maximum energy dissipation (cf.
[32, Section 2] and [28, Appendix]).

In the convective case (i.e., v and w are non-trivial), the energy identity
(1.4) does, in general, not imply dissipation of the energy. However, if the
velocity field is not just prescribed but determined by a Navier–Stokes equation
(cf. [23]) or a Brinkman/Stokes equation (cf. [12]), an energy dissipation law
for the corresponding total energy can be obtained.

A brief overview of related literature. In the non-convective case, we refer
to [6–8,13,19,20,37] for analytical results and to [2,3,26,33–35] for numerical
results on the Cahn–Hilliard equation with a dynamic boundary condition of
Cahn–Hilliard type. The nonlocal Cahn–Hilliard equation with a nonlocal dy-
namic boundary condition of Cahn–Hilliard type was proposed and analyzed
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in [31]. Results on the Cahn–Hilliard equation with dynamic boundary condi-
tions of second-order (e.g., of Allen–Cahn or Wentzell type) can be found, for
instance, in [4,5,9,18,21,38,39,42].

The convective Cahn–Hilliard equation with dynamic boundary condi-
tions was analyzed, for instance, in [10,11,22], and also in [15–17,23] as part
of a system in which the velocity field is described by an additional fluid equa-
tion.

For more information on the Cahn–Hilliard equation with classical ho-
mogeneous Neumann boundary conditions or dynamic boundary conditions,
we refer to the recent review paper [41] as well as the book [36].

Structure of this paper. In Sect. 2 we collect some notation, assumptions, pre-
liminaries and important tools. After introducing the notion of weak solutions
of (1.1), our main results are stated in Sect. 3. In Sect. 4, we construct a weak
solution in the case (K,L) ∈ (0,∞)2 via a Faedo–Galerkin approach. After-
wards, in Sect. 5, we investigate the asymptotic limits K → 0, K → ∞, L → 0
and L → ∞, which prove the existence of weak solutions of (1.1) in the limit
cases. In Sect. 6, under suitable additional assumptions, we establish higher
spatial regularity for the phase-fields in the context of weak solutions. In the
case of constant mobilities, we eventually prove the continuous dependence of
weak solutions on the velocity field and the initial data. In particular, this con-
tinuous dependence result directly entails the uniqueness of the weak solution.

2. Notation, assumptions and preliminaries

In this section, we introduce some notation, assumptions and preliminaries
that are supposed to hold throughout the remainder of this paper.

2.1. Notation

Let us first introduce some basic notation.
(N1) N denotes the set of natural numbers excluding zero, whereas N0 =

N ∪ {0}.
(N2) Let Ω ⊂ R

d with d ∈ {2, 3} be a bounded Lipschitz domain in R
d,

and let Γ:=∂Ω denote its boundary. For any s ≥ 0 and p ∈ [1,∞], the
Lebesgue and Sobolev spaces for functions mapping from Ω to R are
denoted as Lp(Ω) and W s,p(Ω). We write ‖ · ‖Lp(Ω) and ‖ · ‖W s,p(Ω) to
denote the standard norms on these spaces. In the case p = 2, we use
the notation Hs(Ω) = W s,2(Ω). In particular, H0(Ω) can be identified
with L2(Ω). The Lebesgue and Sobolev spaces on Γ are denoted by
Lp(Γ) and W s,p(Γ) along with the corresponding norms ‖ · ‖Lp(Γ) and
‖ · ‖W s,p(Γ), respectively. For vector-valued functions mapping from Ω
into R

d, we use the notation Lp(Ω), Ws,p(Ω) and Hs(Ω). The spaces
Lp(Γ), Ws,p(Γ) and Hs(Γ) are defined analogously. For any real numbers
s ≥ 0 and p ∈ [1,∞] and any Banach space X, the Bochner spaces of
functions mapping from an interval I into X are denoted by Lp(I;X)
and W s,p(I;X). Furthermore, for any interval I and any Banach space
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X, the space C(I;X) denotes the set of continuous functions mapping
from I to X.

(N3) For any Banach space X, its dual space is denoted by X ′. The cor-
responding duality pairing of elements φ ∈ X ′ and ζ ∈ X is denoted
by 〈φ, ζ〉X . If X is a Hilbert space, we write (·, ·)X to denote its inner
product.

(N4) For any bounded domain Ω ⊂ R
d (d ∈ N) with Lipschitz boundary Γ,

u ∈ H1(Ω)′ and v ∈ H1(Γ)′, we write

〈u〉Ω:=
1

|Ω| 〈u, 1〉H1(Ω), 〈v〉Γ:=
1

|Γ| 〈v, 1〉H1(Γ)

to denote the generalized means of u and v, respectively. Here, |Ω| de-
notes the d-dimensional Lebesgue measure of Ω, whereas |Γ| denotes the
(d − 1)-dimensional Hausdorff measure of Γ. If u ∈ L1(Ω) or v ∈ L1(Γ),
the generalized mean can be expressed as

〈u〉Ω =
1

|Ω|
∫

Ω

u dx, 〈v〉Γ =
1

|Γ|
∫

Γ

v dΓ,

respectively.
(N5) For any bounded domain Ω ⊂ R

d (d ∈ N) with Lipschitz boundary
Γ := ∂Ω, we introduce the space

L3
div(Ω):=

{
v ∈ L3(Ω) : div v = 0 in Ω, v · n = 0 on Γ

}
.

We point out that in the definition of L3
div(Ω), the relation div v = 0

in Ω has to be understood in the sense of distributions. This already
implies that v · n ∈ H−1/2(Γ), and therefore, the relation v · n = 0 on Γ
is well-defined.

2.2. Assumptions

We make the following general assumptions.

(A1) Ω is a non-empty, bounded Lipschitz domain in R
d with d ∈ {2, 3}, whose

boundary is denoted by Γ:=∂Ω. Moreover, T > 0 denotes an arbitrary
final time and for brevity, we use the notation

Q:=Ω × (0, T ), Σ:=Γ × (0, T ).

(A2) The constants in system (1.1) satisfy ε, εΓ, κ > 0, and α, β ∈ R with
αβ |Ω| + |Γ| 	= 0. (The latter condition is required to apply a certain
bulk-surface Poincaré inequality, see (P6).) Since the choice of εΓ, ε and κ
has no impact on the mathematical analysis, we will simply set (without
loss of generality) ε = εΓ = κ = 1 in the remainder of this paper.

(A3) The mobility functions mΩ : R → R and mΓ : R → R are bounded,
continuous and uniformly positive. This means that there exist constants
m∗

Ω,M∗
Ω,m∗

Γ,M∗
Γ > 0 such that

0 < m∗
Ω ≤ mΩ(s) ≤ M∗

Ω and 0 < m∗
Γ ≤ mΓ(s) ≤ M∗

Γ for all s ∈ R.
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(A4) The potentials F : R → [0,∞) and G : R → [0,∞) are continuously
differentiable and there exist exponents p and q satisfying

p ∈
{

[2,∞), if d = 2,

[2, 6], if d = 3,
and q ∈ [2,∞)

as well as constants cF ′ , cG′ ≥ 0 such that the first-order derivatives
satisfy the growth conditions

|F ′(s)| ≤ cF ′(1 + |s|p−1), (2.1)

|G′(s)| ≤ cG′(1 + |s|q−1) (2.2)

for all s ∈ R. These assumptions already imply the existence of constants
cF , cG ≥ 0 such that F and G satisfy the growth conditions

F (s) ≤ cF (1 + |s|p), (2.3)

G(s) ≤ cG(1 + |s|q) (2.4)

for all s ∈ R.
(A5) There exist constants aF , aG > 0 and bF , bG ≥ 0 such that the potentials

F and G introduced in (A4) satisfy

F (s) ≥ aF |s|2 − bF , (2.5)

G(s) ≥ aG |s|2 − bG (2.6)

for all s ∈ R.
(A6) The potentials F and G introduced in (A4) are twice continuously dif-

ferentiable, and there exist constants cF ′′ , cG′′ ≥ 0 such that the second-
order derivatives of F and G satisfy the growth conditions

|F ′′(s)| ≤ cF ′′(1 + |s|p−2), (2.7)

|G′′(s)| ≤ cG′′(1 + |s|q−2) (2.8)

for all s ∈ R. We point out that these assumptions already imply the
growth conditions (2.1)–(2.4) stated in (A4).

Remark 2.1. A standard choice for F and G is the polynomial double-well
potential

W : R → R, W (s) = 1
4 (s2 − 1)2.

It satisfies the assumptions (A4)–(A6) with p = q = 4. However, singular po-
tentials such as the logarithmic Flory–Huggins potential or the double-obstacle
potential are not admissible as they do not satisfy any polynomial growth con-
dition. Nevertheless, the investigation of system (1.1) with singular potentials
is an interesting topic for future research.
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2.3. Preliminaries

(P1) For any real numbers s ≥ 0 and p ∈ [1,∞], we set

Lp:=Lp(Ω) × Lp(Γ), and Hs:=Hs(Ω) × Hs(Γ),

provided that the boundary is sufficiently regular. As usual, we identify
L2 with H0. Note that Hs is a Hilbert space with respect to the inner
product(

(φ, ψ) , (ζ, ξ)
)
Hs := (φ, ζ)Hs(Ω) + (ψ, ξ)Hs(Γ) for all (φ, ψ) , (ζ, ξ) ∈ Hs

and its induced norm ‖·‖Hs := (·, ·)1/2
Hs . We recall that the duality pairing

can be expressed as

〈(φ, ψ) , (ζ, ξ)〉H1 = (φ, ζ)L2(Ω) + (ψ, ξ)L2(Γ)

if (φ, ψ) ∈ L2 and (ζ, ξ) ∈ H1.
(P2) Let L ∈ [0,∞] and β ∈ R. We introduce the closed linear subspace

Dβ :={(φ, ψ) ∈ H1 : φ = βψ a.e. on Γ} ⊂ H1

and define

H1
L,β :=

{
H1, if L ∈ (0,∞],
Dβ , if L = 0.

Endowed with the inner product (·, ·)H1
L,β

:= (·, ·)H1 and its induced

norm, the space H1
L,β is a Hilbert space. Moreover, we define the product

〈(φ, ψ) , (ζ, ξ)〉H1
L,β

:= (φ, ζ)L2(Ω) + (ψ, ξ)L2(Γ)

for all (φ, ψ) , (ζ, ξ) ∈ L2. By means of the Riesz representation theorem,
this product can be extended to a duality pairing on (H1

L,β)′ × H1
L,β ,

which will also be denoted as 〈·, ·〉H1
L,β

.
(P3) Let L ∈ [0,∞] and β ∈ R. We define the closed linear subspace

V1
L,β :=

{{(φ, ψ) ∈ H1
L,β : β |Ω| 〈φ〉Ω + |Γ| 〈ψ〉Γ = 0}, if L ∈ [0,∞),

{(φ, ψ) ∈ H1 : 〈φ〉Ω = 〈ψ〉Γ = 0}, if L = ∞.

Note that V1
L,β is a Hilbert space with respect to the inner product

(·, ·)H1 and its induced norm.
(P4) Let L ∈ [0,∞] and β ∈ R. We set

h(L):=

{
L−1, if L ∈ (0,∞),
0, if L ∈ {0,∞},

and we define a bilinear form on H1 × H1 by(
(φ, ψ) , (ζ, ξ)

)
L,β

:=
∫

Ω

∇φ · ∇ζ dx +
∫

Γ

∇Γψ · ∇Γξ dΓ

+ h(L)
∫

Γ

(βψ − φ)(βξ − ζ) dΓ
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for all (φ, ψ) , (ζ, ξ) ∈ H1. Moreover, we set

‖ (ψ, φ) ‖L,β :=
(
(φ, ψ) , (φ, ψ)

)1/2

L,β

for all (φ, ψ) ∈ H1. The bilinear form (·, ·)L,β defines an inner product on
V1

L,β , and ‖·‖L,β defines a norm on V1
L,β , that is equivalent to the norm ‖·

‖H1 (see [30, Corollary A.2]). Moreover, the space
(V1

L,β , (·, ·)L,β , ‖ · ‖L,β

)
is a Hilbert space.

(P5) For any L ∈ [0,∞] and β ∈ R, we define the space

V−1
L,β :=

{{(φ, ψ) ∈ (H1
L,β)′ : β |Ω| 〈φ〉Ω + |Γ| 〈ψ〉Γ = 0}, if L ∈ [0,∞),

{(φ, ψ) ∈ (H1)′ : 〈φ〉Ω = 〈ψ〉Γ = 0}, if L = ∞.

Using the Lax-Milgram theorem, one can show that for any (φ, ψ) ∈
V−1

L,β , there exists a unique weak solution SL,β(φ, ψ) =(SΩ
L,β(φ, ψ),SΓ

L,β(φ, ψ)
) ∈ V1

L,β to the following elliptic problem with
bulk-surface coupling:

−ΔSΩ
L,β = −φ in Ω, (2.9a)

−ΔΓSΓ
L,β + β∂nSΩ

L,β = −ψ on Γ, (2.9b)

L∂nSΩ
L,β = βSΓ

L,β − SΩ
L,β on Γ. (2.9c)

This means that SL,β(φ, ψ) satisfies the weak formulation(
SL,β(φ, ψ), (ζ, ξ)

)
L,β

= −〈(φ, ψ) , (ζ, ξ)〉H1
L,β

for all test functions (ξ, ζ) ∈ H1
L,β . Consequently, we have

‖SL,β(φ, ψ)‖H1 ≤ C‖ (φ, ψ) ‖(H1
L,β)′ (2.10)

for all (φ, ψ) ∈ V−1
L,β , for a constant C ≥ 0 depending only on Ω, L and

β. We can thus define the solution operator

SL,β : V−1
L,β → V1

L,β , (φ, ψ) �→ SL,β(φ, ψ) =
(SΩ

L,β(φ, ψ),SΓ
L,β(φ, ψ)

)
,

as well as an inner product and its induced norm on V−1
L,β by(

(φ, ψ) , (ζ, ξ)
)
L,β,∗:=

(SL,β(φ, ψ),SL,β(ζ, ξ)
)
L,β

,

‖ (φ, ψ) ‖L,β,∗:=
(
(φ, ψ) , (φ, ψ)

)1/2

L,β,∗,

for (φ, ψ) , (ζ, ξ) ∈ V−1
L,β . This norm is equivalent to the norm ‖ · ‖(H1

L,β)′

on V−1
L,β . For the case L ∈ (0,∞), we refer the reader to [30, Theorem

3.3 and Corollary 3.5] for a proof of these statements. In the other cases,
the results can be proven analogously.

(P6) We further recall the following bulk-surface Poincaré inequalitiy, which
has been established in [30, Lemma A.1]:
Let K ∈ [0,∞) and α, β ∈ R with αβ |Ω| + |Γ| 	= 0 be arbitrary. Then
there exists a constant CP > 0 depending only on K,α, β and Ω such
that

‖ (φ, ψ) ‖L2 ≤ CP ‖ (φ, ψ) ‖K,α (2.11)
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for all (φ, ψ) ∈ H1
K,α satisfying β |Ω| 〈φ〉Ω + |Γ| 〈ψ〉Γ = 0.

We conclude this section by presenting a simple inequality that will be
frequently used in our mathematical analysis.

Lemma 2.2. Let K ∈ [0,∞] and α ∈ R. Then, it holds

‖ (ζ, ξ) ‖2
L2 ≤ 2‖ (ζ, ξ) ‖(H1

K,α)′‖ (∇ζ,∇Γξ) ‖L2 + ‖ (ζ, ξ) ‖2
(H1

K,α)′ .

for all (ζ, ξ) ∈ H1
K,α.

Proof. Let (ζ, ξ) ∈ H1
K,α be arbitrary. Recalling the definition of H1

K,α

(see (P2)), we have

‖(ζ, ξ)‖H1
K,α

= ‖(ζ, ξ)‖H1 ≤ ‖(ζ, ξ)‖L2 + ‖(∇ζ,∇Γξ)‖L2 .

Using Young’s inequality, we deduce

‖ (ζ, ξ) ‖2
L2 = 〈(ζ, ξ) , (ζ, ξ)〉H1

K,α

≤ ‖ (ζ, ξ) ‖(H1
K,α)′‖ (ζ, ξ) ‖H1

K,α

≤ ‖ (ζ, ξ) ‖(H1
K,α)′‖ (ζ, ξ) ‖L2 + ‖ (ζ, ξ) ‖(H1

K,α)′‖ (∇ζ, ∇Γξ) ‖L2

≤ 1
2‖ (ζ, ξ) ‖2

L2 + 1
2‖ (ζ, ξ) ‖2

(H1
K,α)′ + ‖ (ζ, ξ) ‖(H1

K,α)′‖ (∇ζ, ∇Γξ) ‖L2 .

Hence, the claim directly follows. �

3. Main results

As mentioned in (A2), we set ε = εΓ = κ = 1. This does not mean any loss
of generality as the exact values of ε, εΓ and κ do not have any impact on
the mathematical analysis (as long as they are positive). By this choice, the
system (1.1) can be restated as follows:

∂tφ + div(φv) = div(mΩ(φ)∇μ) in Q, (3.1a)

μ = −Δφ + F ′(φ) in Q, (3.1b)

∂tψ + divΓ(ψw) = divΓ(mΓ(ψ)∇Γθ) − βmΩ(φ)∂nμ on Σ, (3.1c)

θ = −ΔΓψ + G′(ψ) + α∂nφ on Σ, (3.1d){
K∂nφ = αψ − φ if K ∈ [0,∞),
∂nφ = 0 if K = ∞ on Σ, (3.1e)

{
LmΩ(φ)∂nμ = βθ − μ if L ∈ [0,∞),
mΩ(φ)∂nμ = 0 if L = ∞ on Σ, (3.1f)

φ|t=0 = φ0 in Ω, (3.1g)

ψ|t=0 = ψ0 on Γ. (3.1h)
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The total energy associated with this system reads as

EK(φ, ψ) =
∫

Ω

1
2

|∇φ|2 + F (φ) dx +
∫

Γ

1
2

|∇Γψ|2 + G(ψ) dΓ

+ h(K)
∫

Γ

1
2

|αψ − φ|2 dΓ.

We now introduce the notion of a weak solution to system (3.1).

Definition 3.1. (Weak solutions of system (3.1) for K,L ∈ [0,∞]) Suppose
that assumptions (A1)–(A4) hold. Let K,L ∈ [0,∞], let (φ0, ψ0) ∈ H1

K,α be
arbitrary initial data and let v ∈ L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ))
be given velocity fields. The quadruplet (φ, ψ, μ, θ) is called a weak solution of
the system (3.1) on [0, T ] if the following properties hold:

(i) The functions φ, ψ, μ and θ have the following regularity:

(φ, ψ) ∈ C([0, T ];L2) ∩ H1(0, T ; (H1
L,β)′) ∩ L∞(0, T ;H1

K,α), (3.2a)

(μ, θ) ∈ L2(0, T,H1
L,β). (3.2b)

(ii) The functions φ and ψ satisfy the initial conditions

φ|t=0 = φ0 a.e. in Ω, and ψ|t=0 = ψ0 a.e. on Γ. (3.3)

(iii) The functions φ, ψ, μ and θ satisfy the weak formulation

〈(∂tφ, ∂tψ) , (ζ, ξ)〉H1
L,β

−
∫

Ω

φv · ∇ζ dx −
∫

Γ

ψw · ∇Γξ dΓ

= −
∫

Ω

mΩ(φ)∇μ · ∇ζ dx −
∫

Γ

mΓ(ψ)∇Γθ · ∇Γξ dΓ (3.4a)

− h(L)
∫

Γ

(βθ − μ)(βξ − ζ) dΓ,∫
Ω

μ η dx +
∫

Γ

θ ϑ dΓ

=
∫

Ω

∇φ · ∇η + F ′(φ)η dx +
∫

Γ

∇Γψ · ∇Γϑ + G′(ψ)ϑ dΓ

+ h(K)
∫

Γ

(αψ − φ)(αϑ − η) dΓ, (3.4b)

a.e. on [0, T ] for all (ζ, ξ) ∈ H1
L,β , (η, ϑ) ∈ H1

K,α.
(iv) The functions φ and ψ satisfy the mass conservation law{

β
∫
Ω

φ(t) dx +
∫
Γ

ψ(t) dΓ = β
∫
Ω

φ0 dx +
∫
Γ

ψ0 dΓ, if L ∈ [0,∞),∫
Ω

φ(t) dx =
∫
Ω

φ0 dx and
∫
Γ

ψ(t) dΓ =
∫
Γ

ψ0 dΓ, if L = ∞ (3.5)

for all t ∈ [0, T ].
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(v) The functions φ, ψ, μ and θ satisfy the energy inequality

EK(φ(t), ψ(t)) +
∫ t

0

∫
Ω

mΩ(φ) |∇μ|2 dx ds

+
∫ t

0

∫
Γ

mΓ(ψ) |∇Γθ|2 dΓ ds + �(L)
∫ t

0

∫
Γ

(βθ − μ)2 dΓ ds

−
∫ t

0

∫
Ω

φv · ∇μ dx ds −
∫ t

0

∫
Γ

ψw · ∇Γθ dΓ ds

≤ EK(φ0, ψ0)

(3.6)

for all t ∈ [0, T ].

Now, we are ready to formulate the main results of this paper. The first
main result provides the existence of a weak solution to system (3.1) in all
cases (K,L) ∈ [0,∞]2.

Theorem 3.2. (Existence of weak solutions of (3.1)) Suppose that the assump-
tions (A1)–(A4) hold. Let K,L ∈ [0,∞], let (φ0, ψ0) ∈ H1

K,α be arbitrary
initial data, and let v ∈ L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ)) be given
velocity fields. In the case K ∈ {0,∞}, we further assume that (A5) holds.
Then, there exists a weak solution (φ, ψ, μ, θ) of the system (3.1) in the sense
of Definition 3.1, which has the additional regularity

(μ, θ) ∈ L4(0, T ;L2) if K ∈ (0,∞]. (3.7)

Let us now assume that (A6) holds, that the domain Ω is of class Ck for
k ∈ {2, 3}, and in the case d = 3, we further assume that (A4) holds with
p ≤ 4. Then, we additionally have

(φ, ψ) ∈ L4(0, T ;H2) if K ∈ (0,∞], (3.8)

(φ, ψ) ∈ L2(0, T ;Hk) for k = 2, 3, (3.9)

(φ, ψ) ∈ C([0, T ];H1) if (K,L) ∈ [0,∞] × (0,∞] and k = 3 (3.10)

and the equations

μ = −Δφ + F ′(φ) a.e. in Q,

θ = −ΔΓψ + G′(ψ) + α∂nφ a.e. on Σ,{
K∂nφ = αψ − φ if K ∈ [0,∞),
∂nφ = 0 if K = ∞ a.e. on Σ

are fulfilled in the strong sense.

Remark 3.3. The continuity property (3.10) also holds in the case K = L = 0
provided that α 	= 0, β 	= 0 and the potentials F and G satisfy the compati-
bility condition

F (αs) = αβG(s) for all s ∈ R.

In that case, we have (F ′(φ), G′(ψ)) ∈ H1
0,β = Dβ , which allows us to use

Proposition A.1 similarly as in Sect. 6.1.
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Proof of Theorem 3.2. The existence of a weak solution in the sense of Defi-
nition 3.1 is established in

• Theorem 4.1 if (K,L) ∈ (0,∞) × (0,∞),
• Theorem 5.2 if (K,L) ∈ {0} × (0,∞),
• Theorem 5.4 if (K,L) ∈ {∞} × (0,∞),
• Theorem 5.6 if (K,L) ∈ [0,∞] × {0},
• Theorem 5.8 if (K,L) ∈ [0,∞] × {∞}.

Moreover, in the case K ∈ (0,∞], the additional regularity (3.7) follows from
the corresponding aforementioned theorems. All remaining results are shown
in Theorem 6.1. �

Remark 3.4. We point out that Theorem 5.2, Theorem 5.4, Theorem 5.6 and
Theorem 5.8 are not only useful to prove Theorem 3.2, but also provide further
valuable insights about the asymptotic limits K → 0, K → ∞, L → 0 and
L → ∞, respectively, on the level of weak solutions.

Our second main result shows continuous dependence of weak solutions
on the velocity field and the initial data in the case of constant mobilities. As
a direct consequence, this entails uniqueness of the weak solution.

Theorem 3.5. (Continuous dependence and uniqueness) Suppose that the as-
sumptions (A1)–(A4) hold, and that the mobility functions mΩ and mΓ are
constant. If d = 3, we additionally assume that (A4) holds with p < 6. Let
K,L ∈ [0,∞], let

(
φ1

0, ψ
1
0

)
and

(
φ2

0, ψ
2
0

) ∈ H1
K,α be two pairs of initial data,

which satisfy (
φ1

0 − φ2
0, ψ

1
0 − ψ2

0

) ∈ V−1
L,β (3.11)

and let v1,v2 ∈ L2(0, T ;L3
div(Ω)) and w1,w2 ∈ L2(0, T ;L3(Γ)) be given

velocity fields. Suppose that (φ1, ψ1, μ1, θ1) and (φ2, ψ2, μ2, θ2) are weak so-
lutions in the sense of Definition 3.1 corresponding to (φ1

0, ψ
1
0 ,v1,w1) and

(φ2
0, ψ

2
0 ,v2,w2), respectively. Then, the continuous dependence estimate∥∥(
φ1(t) − φ2(t), ψ1(t) − ψ2(t)

)∥∥2

L,β,∗

≤ ∥∥(
φ1

0 − φ2
0, ψ

1
0 − ψ2

0

)∥∥2

L,β,∗ exp
(

C

∫ t

0

F(τ) dτ

)

+
∫ t

0

∥∥(
v1(s) − v2(s),w1(s) − w2(s)

)∥∥2

L3 exp
(

C

∫ t

s

F(τ) dτ

)
ds

(3.12)

holds for almost all t ∈ [0, T ], where F :=‖ (v1,w1) ‖2
L3 and the constant C > 0

depends only on Ω, the parameters of the system and the initial data.
In particular, if (φ1

0, ψ
1
0) = (φ2

0, ψ
2
0) a.e. in Ω × Γ, v1 = v2 a.e. in Q and

w1 = w2 a.e. on Σ, estimate (3.12) ensures uniqueness of the corresponding
weak solution.

The proof of Theorem 3.5 will be presented in Sect. 6.2.
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4. Existence of weak solutions in the case K,L ∈ (0,∞)

Theorem 4.1. Suppose that the assumptions (A1)–(A4) hold. Let (φ0, ψ0) ∈
H1 be arbitrary initial data, v ∈ L2(0, T ;L3

div(Ω)), w ∈ L2(0, T ;L3(Γ)) and
K,L ∈ (0,∞). Then there exists a weak solution of the system (3.1) in the
sense of Definition 3.1 which further satisfies (μ, θ) ∈ L4(0, T ;L2).

Proof. Step 1: Discretization via a Faedo–Galerkin scheme. It is well known
that the problems

{−Δζ = λΩζ, in Ω,
∂nζ = 0, on Γ, − ΔΓξ = λΓξ on Γ,

have countable many eigenvalues, which can be written as increasing sequences
{λj

Ω}j∈N and {λj
Γ}j∈N, respectively. The associated eigenfunctions {ζj}j∈N ⊂

H1(Ω) and {ξj}j∈N ⊂ H1(Γ) form an orthonormal Schauder basis of L2(Ω)
and L2(Γ), respectively. In particular, we fix the eigenfunctions associated to
the first eigenvalues λ1

Ω = λ1
Γ = 0 as ζ1 ≡ |Ω|−1/2 and ξ1 ≡ |Γ|−1/2. Moreover,

the eigenfunctions {ζj}j∈N and {ξj}j∈N also form an orthogonal Schauder basis
of H1(Ω) and H1(Γ), respectively.

For any m ∈ N, we introduce the finite-dimensional subspaces

Am = span{ζ1, . . . , ζm} ⊂ H1(Ω), Bm = span{ξ1, . . . , ξm} ⊂ H1(Γ),

along with the orthogonal L2(Ω)-projection PAm
, and the orthogonal L2(Γ)-

projection PBm
. In particular, there exist constants CΩ, CΓ > 0 depending only

on Ω and Γ, respectively, such that for all ζ ∈ H1(Ω) and ξ ∈ H1(Γ),

‖PAm
ζ‖H1(Ω) ≤ CΩ‖ζ‖H1(Ω) and ‖PBm

ξ‖H1(Γ) ≤ CΓ‖ξ‖H1(Γ).

For any m ∈ N, and t ∈ [0, T ], we make the ansatz

φm(t):=
m∑

j=1

am
j (t) ζj a.e. in Ω, ψm(t):=

m∑
j=1

bm
j (t) ξj a.e. on Γ, (4.1a)

μm(t):=
m∑

j=1

cm
j (t) ζj a.e. in Ω, θm(t):=

m∑
j=1

dm
j (t) ξj a.e. on Γ. (4.1b)

Here, the scalar, time-dependent coefficients am
j , bm

j , cm
j , dm

j , j = 1, . . . , m are
assumed to be continuously differentiable functions that are not yet deter-
mined. They need to be designed in a way such that the discretized weak
formulation
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〈(∂tφm, ∂tψm) , (ζ, ξ)〉H1 −
∫

Ω

φmv · ∇ζ dx −
∫

Γ

ψmw · ∇Γξ dΓ

= −
∫

Ω

mΩ(φm)∇μm · ∇ζ dx −
∫

Γ

mΓ(ψm)∇Γθm · ∇Γξ dΓ

− L−1

∫
Γ

(βθm − μm)(βξ − ζ) dΓ, (4.2a)∫
Ω

μm ζ dx +
∫

Γ

θm ξ dΓ

=
∫

Ω

∇φm · ∇ζ + F ′(φm)ζ dx +
∫

Γ

∇Γψm · ∇Γξ + G′(ψm)ξ dΓ

+ K−1

∫
Γ

(αψm − φm)(αξ − ζ) dΓ, (4.2b)

holds on [0, T ] for all (ζ, ξ) ∈ Am×Bm, supplemented with the initial conditions

φm(0) = PAm
(φ0) a.e. in Ω, ψm(0) = PBm

(ψ0) a.e. on Γ. (4.3)

Now, consider the corresponding coefficient vectors am:=(am
1 , . . . , am

m),
bm:=(bm

1 , . . . , bm
m), cm:=(cm

1 , . . . , cm
m) and dm:=(dm

1 , . . . , dm
m). Testing (4.2a)

with (ζ1, ξ1) , . . . , (ζm, ξm), we conclude that (am,bm)� is determined by a
system of 2m ordinary differential equations, whose right-hand side depends
continuously on am,bm, cm and dm. In view of (4.3), this system is subject to
the initial conditions

[am]j(0) = am
j (0) = (φ0, ζj) , for all j ∈ {1, . . . , m},

[bm]j(0) = bm
j (0) = (ψ0, ξj) , for all j ∈ {1, . . . , m}.

Moreover, testing (4.2b) with (ζ1, ξ1), . . . , (ζm, ξm), we infer that (cm,dm)� is
explicitly given by a system of 2m algebraic equations, whose right-hand side
depends continuously on am and bm. Thus, replacing (cm,dm)� in the right-
hand side of the aforementioned ODE system by this algebraic description, we
obtain a closed 2m-dimensional ODE system for (am,bm)�, whose right-hand
side depends continuously on (am,bm)�. We can thus apply the Cauchy–Peano
theorem to obtain a local solution (am,bm)� : [0, T ∗

m) ∩ [0, T ] → R
2m with

T ∗
m > 0 to the corresponding initial value problem. Without loss of generality,

we assume that T ∗
m ≤ T and that (am,bm)� is non-extendable, i.e., T ∗

m is
chosen as large as possible. Now, we can reconstruct (cm,dm)� : [0, T ∗

m) →
R

2m by the aforementioned 2m-dimensional system of algebraic equations. In
view of (4.1), we thus have shown the existence of functions

(φm, ψm) ∈ C1([0, T ∗
m);H1), (μm, θm) ∈ C1([0, T ∗

m);H1)

solving (4.2) on the time interval [0, T ∗
m) subject to the initial conditions (4.3).

Step 2: Uniform estimates. We establish suitable estimates for each approxi-
mate solution (φm, ψm, μm, θm), which are uniform with respect to the index
m. In particular, let Tm < T ∗

m be arbitrary. In the following, let C denote
a generic non-negative constant depending only on the initial data and the
constants introduced in (A3)–(A4) including the final time T , but not on m
or Tm.
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Testing (4.2a) with (μm, θm), (4.2b) with − (∂tφm, ∂tψm), adding the
resulting equations, and integrating with respect to time from 0 to t, we derive
the discrete energy identity

EK(φm(t), ψm(t)) +

∫ t

0

∫
Ω

mΩ(φm) |∇μm|2 dx ds +

∫ t

0

∫
Γ

mΓ(ψm) |∇Γθm|2 dΓ ds

+ L−1

∫ t

0

∫
Γ

(βθm − μm)2 dΓ ds

= EK(φm(0), ψm(0)) +

∫ t

0

∫
Ω

φmv · ∇μm dx ds +

∫ t

0

∫
Γ

ψmw · ∇Γθm dΓ ds

(4.4)

for all t ∈ [0, Tm]. Now, due to the growth conditions on F,G (see (A4)),
the Sobolev embeddings H1(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ Lq(Γ), the trace
embedding H1(Ω) ↪→ L2(Γ), and the properties of the projections PAm

and
PBm

, we use the initial conditions to infer

EK(φm(0), ψm(0))

≤ 1

2
‖∇PAm

(φ0)‖2
L2(Ω) +

1

2
‖∇ΓPBm

(ψ0)‖2
L2(Γ) + cF

(
|Ω| + ‖PAm

(φ0)‖p
Lp(Ω)

)
+ cG

(
|Γ| + ‖PBm

(ψ0)‖q
Lq(Γ)

)
+

1

2K

(
|α| ‖PBm

(ψ0)‖L2(Γ) + ‖PAm
(φ0)‖L2(Γ)

)2

≤ C‖ (φ0, ψ0) ‖2
H1 + C

(
1 + ‖φ0‖p

H1(Ω)

)
+ C

(
1 + ‖ψ0‖q

H1(Γ)

)
.

(4.5)

To obtain a suitable bound on the energy and the integral terms on the left-
hand side of (4.4), we have to deal with the convective terms appearing on
the right-hand side. To this end, we start by deriving for all t ∈ [0, Tm] the
estimate∫ t

0

∫
Ω

φmv · ∇μm dx ds +
∫ t

0

∫
Γ

ψmw · ∇Γμm dΓ ds

≤
∫ t

0

‖φm‖L6(Ω)‖v‖L3(Ω)‖∇μm‖L2(Ω) + ‖ψm‖L6(Γ)‖w‖L3(Γ)‖∇Γθm‖L2(Γ) ds

≤ m∗
Ω

2

∫ t

0

‖∇μm‖2
L2(Ω) ds +

m∗
Γ

2

∫ t

0

‖∇Γθm‖2
L2(Γ) ds

+ C

∫ t

0

‖v‖2
L3(Ω)‖φm‖2

H1(Ω) + ‖w‖2
L3(Γ)‖ψm‖2

H1(Γ) ds

≤ m∗
Ω

2

∫ t

0

‖∇μm‖2
L2(Ω) ds +

m∗
Γ

2

∫ t

0

‖∇Γθm‖2
L2(Γ) ds

+ C

∫ t

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
‖ (φm, ψm) ‖2

H1 ds, (4.6)

using again the embeddings H1(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ L6(Γ). Recalling
that F,G ≥ 0, and that the mobility functions mΩ and mΓ are uniformly
positive (see (A3)), we infer from (4.5) and (4.6) that



NoDEA Well-posedness of a bulk-surface Cahn–Hilliard system Page 19 of 48    82 

1
2
‖ (φm, ψm) ‖2

K,α +
m∗

Ω

2

∫ t

0

∫
Ω

|∇μm|2 dx ds +
m∗

Γ

2

∫ t

0

∫
Γ

|∇Γθm|2 dΓ ds

+ L−1

∫ t

0

∫
Γ

(βθm − μm)2 dΓ ds

≤ C + C

∫ t

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
‖ (φm, ψm) ‖2

H1 ds

≤ C + C

∫ t

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
‖ (φm, ψm) ‖2

K,α ds

(4.7)

for all t ∈ [0, Tm]. Here, the last inequality follows from the bulk-surface
Poincaré inequality (P6), which usage is justified by the following reasoning.
First, testing (4.2a) with (β, 1) yields the discrete mass conservation law

β

∫
Ω

φm(t) dx +
∫

Γ

ψm(t) dΓ = β

∫
Ω

φ0 dx +
∫

Γ

ψ0 dΓ (4.8)

for all t ∈ [0, Tm], where we used that

β |Ω| 〈PAm
(φ0)〉Ω + |Γ| 〈PBm

(ψ0)〉Γ =
(
(PAm

(φ0), PBm
(ψ0)) , (β, 1)

)
L2

=
(
(φ0, ψ0) , (β, 1)

)
L2 = β |Ω| 〈φ0〉Ω + |Γ| 〈ψ0〉Γ.

Hence, considering

c:=
β |Ω| 〈φ0〉Ω + |Γ| 〈ψ0〉Γ

β2 |Ω| + |Γ| ,

and invoking (4.8), we infer

β |Ω| 〈φm(t) − βc〉Ω + |Γ| 〈ψm(t) − c〉Γ = 0 for all t ∈ [0, Tm].

This allows us to use the bulk-surface Poincaré inequality (P6), which yields

‖ (φm, ψm) ‖L2 ≤ ‖ (φm − βc, ψm − c) ‖L2 + ‖ (βc, c) ‖L2

≤ CP ‖ (φm, ψm) ‖K,α + C.
(4.9)

Thus, using Gronwall’s lemma, we conclude from (4.7) that

‖ (φm(t), ψm(t)) ‖2
K,α ≤ C exp

(
C

∫ t

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
ds

)

≤ C exp

(
C

∫ T

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
ds

)

for all t ∈ [0, Tm]. We thus readily deduce that

‖ (φm, ψm) ‖2
L∞(0,Tm;H1) + K−1‖αψm − φm‖2

L∞(0,Tm;L2(Γ)) ≤ C. (4.10)

In view of (4.7), this additionally entails

‖ (∇μm,∇Γθm) ‖2
L2(0,Tm;L2) + L−1‖βθm − μm‖2

L2(0,Tm;L2(Γ)) ≤ C. (4.11)

Next, we derive a uniform estimate for (μm, θm) in the full H1 norm. To this
end, let (ζ∗, ξ∗) ∈ H1 and consider (ζ, ξ) := (PAm

(ζ∗), PBm
(ξ∗)). By the growth
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conditions (2.1) and (2.2) from (A4), the Sobolev embeddings H1(Ω) ↪→ L6(Ω)
and H1(Γ) ↪→ L2q(Γ), and the trace theorem H1(Ω) ↪→ L2(Γ), we have
∣∣〈(μm, θm) ,

(
ζ∗, ξ∗)〉H1

∣∣ = |〈(μm, θm) , (ζ, ξ)〉H1 |
≤ ‖∇φm‖L2(Ω)‖∇ζ‖L2(Ω) + ‖F ′(φm)‖L6/5(Ω)‖ζ‖L6(Ω)

+ ‖∇Γψm‖L2(Γ)‖∇Γξ‖L2(Γ) + ‖G′(ψm)‖L2(Γ)‖ξ‖L2(Γ)

+ K−1‖αψm − φm‖L2(Γ)‖αζ − ξ‖L2(Γ)

≤ C
(
1 + ‖φm‖H1(Ω) + ‖φm‖5

L6(Ω)

)
‖ζ‖H1(Ω)

+ C
(
1 + ‖ψm‖H1(Γ) + ‖ψm‖q

L2q(Γ)

)
‖ξ‖H1(Γ)

≤ C
(
1 + ‖φm‖5

H1(Ω) + ‖ψm‖q
H1(Γ)

)
‖ (

ζ∗, ξ∗) ‖H1

(4.12)

on [0, Tm]. Taking the supremum over all (ζ∗, ξ∗) ∈ H1 with ‖ (ζ∗, ξ∗) ‖H1 ≤ 1,
and exploiting (4.10), we conclude that

‖ (μm, θm) ‖L∞(0,Tm;(H1)′) ≤ C. (4.13)

Now, due to Lemma 2.2, we have

‖ (μm, θm) ‖2
L2 ≤ 2‖ (μm, θm) ‖(H1)′‖ (∇μm,∇Γθm) ‖L2 + ‖ (μm, θm) ‖2

(H1)′

(4.14)

on [0, Tm]. Utilizing (4.11) and (4.13), we deduce from (4.14) that

‖ (μm, θm) ‖L4(0,Tm;L2) ≤ C. (4.15)

In view of (4.11) we additionally infer

‖ (μm, θm) ‖L2(0,Tm;H1) ≤ C. (4.16)

Lastly, we derive a uniform estimate of the time derivatives. Therefore, we
consider again (ζ, ξ) := (PAm

(ζ∗), PBm
(ξ∗)) for an arbitrary (ζ∗, ξ∗) ∈ H1. Re-

calling that the mobility functions mΩ and mΓ are bounded (see (A3)), we use
Hölder’s inequality as well as the continuous embeddings H1(Ω) ↪→ L6(Ω) and
H1(Γ) ↪→ L6(Γ) to infer that

|〈(∂tφm, ∂tψm) , (ζ∗, ξ∗)〉H1 |
= |〈(∂tφm, ∂tψm) , (ζ, ξ)〉H1 |
≤ ‖φm‖H1(Ω)‖v‖L3(Ω)‖ζ‖H1(Ω) + C‖μm‖H1(Ω)‖ζ‖H1(Ω)

+ ‖ψm‖H1(Γ)‖w‖L3(Γ)‖ξ‖H1(Γ) + C‖θm‖H1(Γ)‖ξ‖H1(Γ)

+ L−1‖βθm − μm‖L2(Γ)‖βξ − ζ‖L2(Γ)

on [0, Tm]. Hence, after taking the supremum over all (ζ∗, ξ∗) ∈ H1 satisfying
‖ (ζ∗, ξ∗) ‖H1 ≤ 1, taking the square of the resulting inequality and integrating
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in time over [0, Tm], we deduce that

‖ (∂tφm, ∂tψm) ‖2
L2(0,Tm;(H1)′)

≤ C‖φm‖2
L∞(0,Tm;H1(Ω))‖v‖2

L2(0,Tm;L3(Ω))

+ C‖ψm‖2
L∞(0,Tm;H1(Γ))‖w‖2

L2(0,Tm;L3(Γ))

+ C‖ (∇μm,∇Γθm) ‖2
L2(0,Tm;L2)

+ C‖βθm − μm‖2
L2(0,Tm;L2(Γ)).

Exploiting the uniform estimates (4.10) and (4.16) we conclude

‖ (∂tφm, ∂tψm) ‖L2(0,Tm;(H1)′) ≤ C. (4.17)

Step 3: Extension of the approximate solution onto [0, T ]. Using the definition
of the approximate solution (4.1) and the uniform estimate (4.10), we obtain
for any Tm ∈ [0, T ∗

m), all t ∈ [0, Tm] and j ∈ {1, . . . , m}

∣∣am
j (t)

∣∣ +
∣∣bm

j (t)
∣∣ =

∣∣∣(φm(t), ζj)L2(Ω)

∣∣∣ +
∣∣∣(ψm(t), ξj)L2(Γ)

∣∣∣
≤ ‖φm‖L∞(0,Tm;L2(Ω)) + ‖ψm‖L∞(0,Tm;L2(Γ)) ≤ C.

This shows that the solution (am,bm)� is bounded on the time interval [0, T ∗
m)

by a constant that is independent of m and T ∗
m. Hence, by classical ODE

theory, this allows us to extend the solution beyond the time T ∗
m. However, as

(am,bm)� was assumed to be non-extendable, this is a contradiction. We thus
infer that the solution (am,bm)� actually exists on [0, T ]. Since the coefficients
(cm,dm)� can be reconstructed from (am,bm)�, we further conclude that
the coefficients (cm,dm)� also exist on [0, T ]. This automatically entails that
the approximate solution (φm, ψm, μm, θm) exists on [0, T ] and satisfies the
discretized weak formulation (4.2) on [0, T ] for all m ∈ N. Additionally, as the
particular choice of Tm did not play any role in the derivation of the uniform
estimates established in Step 2, we infer that the estimates (4.10), (4.11),
(4.15), (4.16) and (4.17) remain true after replacing Tm with T . In summary,
we conclude that for each m ∈ N, the approximate solution (φm, ψm, μm, θm)
satisfies the uniform estimate

‖ (∂tφm, ∂tψm) ‖L2(0,T ;(H1)′) + ‖ (φm, ψm) ‖L∞(0,T ;H1)

+ ‖αψm − φm‖L∞(0,T ;L2(Γ)) + ‖ (μm, θm) ‖L2(0,T ;H1) + ‖ (μm, θm) ‖L4(0,T ;L2)

+ ‖βθm − μm‖L2(0,T ;L2(Γ)) ≤ C.

(4.18)

Step 4: Convergence to a weak solution. In view of the uniform estimate
(4.18), the Banach–Alaoglu theorem and the Aubin–Lions–Simon lemma imply
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the existence of functions φ, ψ, μ and θ such that

(∂tφm, ∂tψm) → (∂tφ, ∂tψ) weakly in L2(0, T ; (H1)′), (4.19)

(φm, ψm) → (φ, ψ) weakly-star in L∞(0, T ;H1),

strongly in C([0, T ];Hs) for all s ∈ [0, 1),
(4.20)

(μm, θm) → (μ, θ) weakly in L4(0, T ;L2) ∩ L2(0, T ;H1),
(4.21)

βθm − μm → βθ − μ weakly in L2(0, T ;L2(Γ)), k (4.22)

αψm − φm → αψ − φ weakly-star in L∞(0, T ;L2(Γ)), (4.23)

as m → ∞, along a non-relabeled subsequence. From these convergences, we
readily obtain the desired regularities (3.2a)–(3.2b) of the functions φ, ψ, μ and
θ. Hence, Definition (i) is fulfilled.

Using Sobolev’s embedding theorem, we infer from (4.20) that

φm → φ strongly in C([0, T ];Lr(Ω)) for all r ∈ [2, 6), and a.e. in Q,
(4.24)

ψm → ψ strongly in C([0, T ];Lr(Γ)) for all r ∈ [2,∞), and a.e. on Σ,
(4.25)

as m → ∞, after another subsequence extraction. Further, by the trace theo-
rem, (4.20) additionally implies that

αψm − φm → αψ − φ strongly in C([0, T ];L2(Γ)) (4.26)

as m → ∞, after another subsequence extraction. Moreover, due to the growth
conditions on F ′ from (A4), the uniform estimate (4.10) and the Sobolev em-
bedding H1(Ω) ↪→ L6(Ω), we deduce that F ′(φm) is bounded in L6/5(Q)
uniformly in m ∈ N. Hence, there exists a function f ∈ L6/5(Q) such that
F ′(φm) → f weakly in L6/5(Q) as m → ∞. Considering that F ′(φm) → F ′(φ)
a.e. in Q as m → ∞ due to (4.24), we infer from a convergence principle based
on Egorov’s theorem that F ′(φ) = f . We thus conclude that

F ′(φm) → F ′(φ) weakly in L6/5(Q) and a.e. in Q (4.27)

as m → ∞. Recalling the growth conditions on G and G′ (see (A4)), the con-
vergence in (4.25) in combination with Lebesgue’s general convergence theorem
yields

G(ψm) → G(ψ) strongly in L1(Σ), and a.e. on Σ, (4.28)

G′(ψm) → G′(ψ) strongly in L2(Σ), and a.e. on Σ, (4.29)

as m → ∞. Furthermore, by means of Lebesgue’s dominated convergence
theorem, it follows from (4.24), (4.25) and (A3) that

mΩ(φm) → mΩ(φ) strongly in Lr(Q), and a.e. in Q, (4.30)

mΓ(ψm) → mΓ(ψ) strongly in Lr(Σ), and a.e. on Σ, (4.31)
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for all r ∈ [2,∞), as m → ∞. Moreover, as the mobility functions mΩ and mΓ

are bounded (see (A3)), we use Lebesgue’s general convergence theorem along
with the weak-strong convergence principle to find that√

mΩ(φm)∇μm →
√

mΩ(φ)∇μ weakly in L2(Q), (4.32)√
mΓ(ψm)∇Γθm →

√
mΓ(ψ)∇Γθ weakly in L2(Σ), (4.33)

mΩ(φm)∇μm → mΩ(φ)∇μ weakly in L2(Q), (4.34)

mΓ(ψm)∇Γθm → mΓ(ψ)∇Γθ weakly in L2(Σ), (4.35)

as m → ∞. Lastly, exploiting the convergences (4.21), (4.24) and (4.25), and
using again the weak-strong convergence principle, we infer

φm v · ∇μm → φv · ∇μ strongly in L1(Q), and a.e. in Q, (4.36)

ψm w · ∇Γθm → ψw · ∇Γθ strongly in L1(Σ), and a.e. on Σ, (4.37)

as m → ∞.
We now multiply both equations of the discretized weak formulation (4.2)

with an arbitrary test function σ ∈ C∞
c ([0, T ]) and integrate in time from 0

to T . Using the convergences (4.19)–(4.37) established above, we may pass to
the limit m → ∞ to infer that∫ T

0

〈(∂tφ, ∂tψ) , (ζj , ξj)〉H1 σ dt −
∫ T

0

∫
Ω

φv · ∇ζj σ dx dt

−
∫ T

0

∫
Γ

ψw · ∇Γξj σ dΓ dt

= −
∫ T

0

∫
Ω

mΩ(φ)∇μ · ∇ζj σ dx dt −
∫ T

0

∫
Γ

mΓ(ψ)∇Γθ · ∇Γξj σ dΓ dt

(4.38a)

− L−1

∫ T

0

∫
Γ

(βθ − μ)(βξj − ζj)σ dΓ dt,

∫ T

0

∫
Ω

μ ζj σ dx dt +
∫ T

0

∫
Γ

θ ξj σ dΓ dt

=
∫ T

0

∫
Ω

∇φ · ∇ζj σ + F ′(φ)ζj σ dx dt +
∫ T

0

∫
Γ

∇Γψ · ∇Γξj σ

+ G′(ψ)ξj σ dΓ dt

+ K−1

∫ T

0

∫
Γ

(αψ − φ)(αξj − ζj)σ dΓ dt, (4.38b)

hold for all j ∈ N and all test functions σ ∈ C∞
c ([0, T ]). Since span{(ζj , ξj) :

j ∈ N} is dense in H1, this proves that the quadruplet (φ, ψ, μ, θ) satisfies the
weak formulation (3.4) for all test functions (ζ, ξ) ∈ H1. We thus conclude
that Definition (iii) is fulfilled.

Since the approximate solutions (φm, ψm) satisfy the discrete mass con-
servation law (see (4.8)) for all m ∈ N, we can use the convergence (4.20)
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to deduce that (φ, ψ) satisfies the mass conservation law (3.5) as well. Thus,
Definition (iv) is fulfilled.

Concerning the initial conditions, we infer from (4.3), due to the conver-
gence properties of the projections, that

(φm(0), ψm(0)) → (φ0, ψ0) strongly in L2

as m → ∞. Additionally, the convergences (4.24) and (4.25) yield

(φm(0), ψm(0)) → (φ(0), ψ(0)) strongly in L2

as m → ∞. We deduce that φ(0) = φ0 a.e. in Ω and ψ(0) = ψ0 a.e. on Γ. This
proves that Definition (ii) is fulfilled.

To verify the energy inequality (3.6), we consider an arbitrary non-
negative test function σ ∈ C∞

c (0, T ). Multiplying (4.4) with σ and integrating
in time from 0 to T yields∫ T

0

EK(φm(t), ψm(t))σ(t) dt

+
∫ T

0

∫ t

0

∫
Ω

(
mΩ(φm) |∇μm|2 − φmv · ∇μm

)
σ(t) dx ds dt

+
∫ T

0

∫ t

0

∫
Γ

(
mΓ(ψm) |∇Γθm|2 − ψmw · ∇Γθm

)
σ(t) dΓ ds dt

+ L−1

∫ T

0

∫ t

0

∫
Γ

(βθm − μm)2σ(t) dΓ ds dt

=
∫ T

0

EK(φm(0), ψm(0))σ(t) dt.

(4.39)

As m → ∞, we infer from (4.28) that∫ T

0

(∫
Γ

G(ψm) dΓ
)

σ(t) dt →
∫ T

0

(∫
Γ

G(ψ) dΓ
)

σ(t) dt. (4.40)

Additionally, using (4.24) and (A4), Fatou’s lemma implies∫ T

0

(∫
Ω

F (φ) dx

)
σ(t) dt ≤ lim inf

m→∞

∫ T

0

(∫
Ω

F (φm) dx

)
σ(t) dt. (4.41)

Moreover, from the strong convergence in (4.26) we obtain∫ T

0

(∫
Γ

|αψm − φm|2 dΓ
)

σ(t) dt →
∫ T

0

(∫
Γ

|αψ − φ|2 dΓ
)

σ(t) dt, (4.42)

as m → ∞. Lastly, in view of (4.20) and the weak lower semicontinuity of
norms, we have∫ T

0

(
1
2
‖∇φ‖2

L2(Ω) +
1
2
‖∇Γψ‖2

L2(Γ)

)
σ(t) dt

≤ lim inf
m→∞

∫ T

0

(
1
2
‖∇φm‖2

L2(Ω) +
1
2
‖∇Γψm‖2

L2(Γ)

)
σ(t) dt.

(4.43)
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Combining (4.40)–(4.43) yields∫ T

0

EK(φ(t), ψ(t))σ(t) dt ≤ lim inf
m→∞

∫ T

0

EK(φm(t), ψm(t))σ(t) dt. (4.44)

As a consequence of (4.32), (4.33) and the weak lower semicontinuity of norms
with respect to the weak convergence, another application of Fatou’s lemma
entails that∫ T

0

∫ t

0

∫
Ω

mΩ(φ) |∇μ|2 σ(t) dx ds dt +

∫ T

0

∫ t

0

∫
Γ

mΓ(ψ) |∇Γθ|2 σ(t) dΓ ds dt

≤ lim inf
m→∞

[∫ T

0

∫ t

0

∫
Ω

mΩ(φm) |∇μm|2 σ(t) dx ds dt

+

∫ T

0

∫ t

0

∫
Γ

mΓ(ψm) |∇Γθm|2 σ(t) dΓ ds dt

]
.

(4.45)

Further, due to the convergences (4.36) and (4.37), we find that∫ T

0

∫ t

0

∫
Ω

φmv · ∇μm σ(t) dx ds dt +
∫ T

0

∫ t

0

∫
Γ

ψmw · ∇Γθm σ(t) dΓ ds dt

−→
∫ T

0

∫ t

0

∫
Ω

φv · ∇μ σ(t) dx ds dt +
∫ T

0

∫ t

0

∫
Γ

ψw · ∇Γθ σ(t) dΓ ds dt

(4.46)

as m → ∞. Additionally, as convex and continuous functionals are weakly
lower semicontinuous, we conclude from (4.22) that∫ T

0

∫ t

0

∫
Γ

(βθ − μ)2 σ(t) dΓ ds dt ≤ lim inf
m→∞

∫ T

0

∫ t

0

∫
Γ

(βθm − μm)2 σ(t) dΓ ds dt.

(4.47)

Lastly, recalling the growth conditions on F and G (see (A4)), we use the
initial conditions (4.3) as well as the convergence properties of the projections
PAm

and PBm
together with Lebesgue’s general convergence theorem to infer

that

lim
m→∞ EK(φm(0), ψm(0)) = EK(φ0, ψ0). (4.48)

Collecting (4.45)–(4.48) finally yields

EK(φ(t), ψ(t)) +
∫ t

0

∫
Ω

mΩ(φ) |∇μ|2 dx ds +
∫ t

0

∫
Γ

mΓ(ψ) |∇Γθ|2 dΓ ds

−
∫ t

0

∫
Ω

φv · ∇μ dx ds −
∫ t

0

∫
Γ

ψw · ∇Γθ dΓ ds

+ L−1

∫ t

0

∫
Γ

(βθ − μ)2 dΓ ds

≤ EK(φ0, ψ0)
(4.49)
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for almost every t ∈ [0, T ]. To prove that (4.49) holds for every t ∈ [0, T ], first
note that all integral terms in (4.49) depend continuously on time. Further-
more, due to (φ, ψ) ∈ C([0, T ];L2), we deduce that the following functions

t �→ ‖∇φ(t)‖2
L2(Ω), t �→ ‖∇Γψ(t)‖2

L2(Γ),

t �→
∫

Ω

F (φ(t)) dx, t �→
∫

Γ

G(ψ(t)) dΓ

are lower semicontinuous on [0, T ]. For the first two functions, this is a conse-
quence of the lower semicontinuity of the respective norms, while for the last
two functions, it follows from Fatou’s lemma. This already entails that the
weak solution (φ, ψ, μ, θ) satisfies the energy inequality for all times t ∈ [0, T ].
Thus, Definition (v) is fulfilled.

We have therefore shown that the quadruplet (φ, ψ, μ, θ) is a weak solu-
tion of system (3.1) in the sense of Definition 3.1. �

Remark 4.2. This proof should work similarly in the cases K = L = 0 and K =
L = ∞. In the first case, one uses a Faedo–Galerkin scheme as in [23] based
on eigenfunctions of a suitable bulk-surface elliptic problem with Dirichlet
type coupling condition (cf. [30, Theorem 3.3]). In the second case, the bulk-
surface Cahn–Hilliard equation (3.1) reduces to two, uncoupled Cahn–Hilliard
equations, one in Ω and one on Γ. Therefore, a Faedo–Galerkin basis as in the
above proof can be used. Also note that, while we do not have the bulk-surface
Poincaré inequality at our disposal anymore, we can use the standard Poincaré
inequality for functions with vanishing mean, since the approximate solutions
satisfy the mass conservation law (3.5) for L = ∞.

5. Asymptotic limits and existence of weak solutions to the
limit models

In this section, we investigate the asymptotic limits K → 0 and K → ∞, and
L → 0 and L → ∞ of the system (3.1).

Remark 5.1. In this section, we will need the additional assumption (A5) when
approaching the limit cases K ∈ {0,∞}. This is because the constant in the
bulk-surface Poincaré inequality (P6) depends on K in some way, but we do not
know this dependence explicitly. In particular, it is unclear how this constant
behaves if we send K to zero or infinity, respectively. Therefore, we cannot rely
on this Poincaré inequality to obtain suitable uniform bounds, but instead, we
use (A5) to directly obtain uniform bounds from the energy functional.

5.1. The limit K → 0 and the existence of a weak solution if (K,L) ∈
{0} × (0,∞)

Theorem 5.2. (Asymptotic limit K → 0) Suppose that the assumptions (A1)–
(A5) hold, let (φ0, ψ0) ∈ Dα be arbitrary initial data, L ∈ (0,∞), v ∈
L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ)). For any K ∈ (0,∞), let
(φK , ψK , μK , θK) denote a weak solution of the system (3.1) in the sense
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of Definition 3.1 with initial data (φ0, ψ0). Then, there exists a quadruplet
(φ∗, ψ∗, μ∗, θ∗) with φ∗ = αψ∗ a.e. on Σ such that

(∂tφK , ∂tψK) → (∂tφ∗, ∂tψ∗) weakly in L2(0, T ; (H1)′),

(φK , ψK) → (φ∗, ψ∗) weakly-star in L∞(0, T ;H1),

strongly in C([0, T ];Hs) for all s ∈ [0, 1),

(μK , θK) → (μ∗, θ∗) weakly in L2(0, T ;H1),

αψK − φK → 0 strongly in L∞(0, T, L2(Γ)),

as K → 0, up to subsequence extraction, with

‖αψK − φK‖L∞(0,T ;L2(Γ)) ≤ C
√

K, (5.1)

and the limit (φ∗, ψ∗, μ∗, θ∗) is a weak solution to the system (3.1) in the sense
of Definition 3.1 with K = 0.

Remark 5.3. (a) As the right-hand side in (5.1) tends to zero as K → 0, this
explains why the Dirichlet type boundary condition φ∗ = αψ∗ a.e. on Σ
appears in the limit model corresponding to K = 0.

(b) The result of Theorem 5.2 remains valid if we replace the initial data
(φ0, ψ0) ∈ Dα by a sequence (φ0,K , ψ0,K) ∈ H1 satisfying

EK(φ0,K , ψ0,K) → E0(φ0, ψ0) as K → 0

for some pair (φ0, ψ0) ∈ H1 (see also [28, Theorem 2.3]). In this case, one
can show that φ0 = αψ0 a.e. on Γ, and that (φ∗, ψ∗) is a weak solution
corresponding to the initial data (φ0, ψ0).

Proof of Theorem 5.2. We consider an arbitrary sequence (Km)m∈N ⊂ (0,∞)
such that Km → 0 as m → ∞ and a corresponding sequence of weak solutions
(φKm

, ψKm
, μKm

, θKm
) to the initial data (φ0, ψ0). In this proof, we use the

letter C to denote generic positive constants independent of Km and m. In
order to prove suitable uniform estimates, we make use of the energy inequality
and the additional growth assumptions made on F and G (see (A5)). Let now
m ∈ N be arbitrary. First, note that φ0 = αψ0 a.e. on Γ directly implies

EKm
(φ0, ψ0) = E0(φ0, ψ0) ≤ C. (5.2)

Next, due to the growth condition (A5), we find that

1
2

∫
Ω

|∇φKm
|2 dx +

∫
Ω

F (φKm
) dx +

1
2

∫
Γ

|∇ΓψKm
|2 dΓ +

∫
Γ

G(ψKm
) dΓ

≥ 1
2

∫
Ω

|∇φKm
|2 dx + aF

∫
Ω

|φKm
|2 dx − bF |Ω|

+
1
2

∫
Γ

|∇ΓψKm
|2 dΓ + aG

∫
Γ

|ψKm
|2 dΓ − bG |Γ|

≥ c‖ (φKm
, ψKm

) ‖2
H1 − bF |Ω| − bG |Γ| ,
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where c = min{ 1
2 , aF , aG}. Then, using the energy inequality (3.6), and bound-

ing the convective terms as in (4.6), we deduce that

c‖ (φKm
, ψKm

) ‖2
H1 +

1

2
K−1

m

∫
Γ

|αψKm
− φKm

|2 dΓ +
m∗

Ω

2

∫ t

0

∫
Ω

|∇μKm
|2 dx ds

+
m∗

Γ

2

∫ t

0

∫
Γ

|∇ΓθKm
|2 dΓ ds + L−1

∫ t

0

∫
Γ

(βθKm
− μKm

)2 dΓ ds

≤ C + C

∫ t

0

(
‖v‖2

L3(Ω) + ‖w‖2
L3(Γ)

)
‖ (φKm

, ψKm
) ‖2

H1 ds

a.e. on [0, T ]. Thus, using Gronwall’s lemma, we readily infer that

‖ (φKm
, ψKm

) ‖L∞(0,T ;H1) + K−1/2
m ‖αψKm

− φKm
‖L∞(0,T ;L2(Γ))

+ ‖ (∇μKm
,∇ΓθKm

) ‖L2(0,T ;L2) + ‖βθKm
− μKm

‖L2(0,T ;L2(Γ)) ≤ C.
(5.3)

This already entails (5.1). We now test the weak formulation (3.4b) for
(μKm

, θKm
) with (η, ϑ) ∈ Dα. As η = αϑ a.e. on Γ, the corresponding boundary

term involving Km vanishes. Therefore, arguing as in the proof of Theorem 3.2,
we deduce

‖ (μKm
, θKm

) ‖L∞(0,T ;D′
α) ≤ C. (5.4)

Now, using Lemma 2.2, we find that

‖ (μKm
, θKm

) ‖2
L2 ≤ 2‖ (μKm

, θKm
) ‖D′

α
‖ (∇μKm

, ∇ΓθKm
) ‖L2 + ‖ (μKm

, θKm
) ‖2

D′
α
.

In combination with (5.3) and (5.4), this yields

‖ (μKm
, θKm

) ‖L2(0,T ;H1) ≤ C. (5.5)

Lastly, proceeding similarly as in the derivation of (4.17) in the proof of The-
orem 3.2, it follows from the weak formulation (3.4a) and estimate (5.3) that

‖ (∂tφKm
, ∂tψKm

) ‖L2(0,T ;(H1)′) ≤ C. (5.6)

In summary, combining (5.3), (5.5) and (5.6), we have thus shown that

‖ (∂tφKm
, ∂tψKm

) ‖L2(0,T ;(H1)′) + ‖ (φKm
, ψKm

) ‖L∞(0,T ;H1)

+ ‖ (μKm
, θKm

) ‖L2(0,T ;H1) + ‖βθKm
− μKm

‖L2(0,T ;L2(Γ)) ≤ C.
(5.7)

Using the Banach–Alaoglu theorem and the Aubin–Lions–Simon lemma, we
deduce the existence of functions (φ∗, ψ∗, μ∗, θ∗) such that

(∂tφKm
, ∂tψKm

) → (∂tφ∗, ∂tψ∗) weakly in L2(0, T ; (H1)′), (5.8)

(φKm
, ψKm

) → (φ∗, ψ∗) weakly-star in L∞(0, T ; H1),

strongly in C([0, T ]; Hs) for all s ∈ [0, 1),
(5.9)

(μKm
, θKm

) → (μ∗, θ∗) weakly in L2(0, T ; H1), (5.10)

as m → ∞, along a non-relabeled subsequence. Additionally, due to (5.9) and
the trace theorem, we infer

αψKm
− φKm

→ αψ∗ − φ∗ strongly in C([0, T ];L2(Γ)) (5.11)

as m → ∞, which, in combination with (5.3), already entails φ∗ = αψ∗ a.e. on
Σ, i.e., (φ∗(t), ψ∗(t)) ∈ Dα for almost all t ∈ [0, T ]. It is then clear that from
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the convergence properties (5.8)–(5.10) the quadruplet (φ∗, ψ∗, μ∗, θ∗) has the
desired regularity as stated in Definition (i).
Further, due to (5.9), we infer that

(φKm
(0), ψKm

(0)) → (φ∗(0), ψ∗(0)) strongly in L2 (5.12)

as m → ∞, and therefore φ∗(0) = φ0 a.e. in Ω and ψ∗(0) = ψ0 a.e. on Γ. Thus,
Definition (ii) is fulfilled.

Regarding the weak formulation, we consider (ζ, ξ) ∈ H1 and (η, ϑ) ∈ Dα

as test functions, multiply the resulting equations with σ ∈ C∞
c ([0, T ]) and

integrate in time from 0 to T . We obtain

∫ T

0

〈(∂tφKm
, ∂tψKm

) , (ζ, ξ)〉H1 σ dt

−
∫ T

0

∫
Ω

φKm
v · ∇ζ σ dx dt −

∫ T

0

∫
Γ

ψKm
w · ∇Γξ σ dΓ dt

= −
∫ T

0

∫
Ω

mΩ(φKm
)∇μKm

· ∇ζ σ dx dt

−
∫ T

0

∫
Γ

mΓ(ψKm
)∇ΓθKm

· ∇Γξ σ dΓ dt

− L−1

∫ T

0

∫
Γ

(βθKm
− μKm

)(βξ − ζ)σ dΓ dt,

(5.13a)

∫ T

0

∫
Ω

μKm
η σ dx dt +

∫ T

0

∫
Γ

θKm
ϑ σ dΓ dt

=
∫ T

0

∫
Ω

∇φKm
· ∇η σ + F ′(φKm

)η σ dx dt

+
∫ T

0

∫
Γ

∇ΓψKm
· ∇Γϑ σ + G′(ψKm

)ϑ σ dΓ dt.

(5.13b)

Proceeding similarly as in the proof of Theorem 3.2, the convergences (5.8)–
(5.10) allow us to pass to the limit m → ∞, and deduce that (φ∗, ψ∗, μ∗, θ∗)
satisfies the desired weak formulation (3.4). Thus, Definition (iii) is fulfilled.

The mass conservation law follows by passing to the limit m → ∞ in the
mass conservation law for (φKm

, ψKm
). Alternatively, one can test the weak

formulation (3.4a) with (β, 1) ∈ H1, integrate with respect to time from 0 to
t, and employ the fundamental theorem of calculus to infer (3.5). We conclude
that Definition (iv) is satisfied.

As the boundary term involving Km in the energy is non-negative, we
note that

E0(φKm
(t), ψKm

(t)) ≤ EKm
(φKm

(t), ψKm
(t)) (5.14)



   82 Page 30 of 48 P. Knopf and J. Stange NoDEA

for all t ∈ [0, T ], and thus∫ T

0

E0(φ∗(t), ψ∗(t))σ(t) dt ≤ lim inf
m→∞

∫ T

0

E0(φKm
(t), ψKm

(t))σ(t) dt

≤ lim inf
m→∞

∫ T

0

EKm
(φKm

(t), ψKm
(t))σ(t) dt

(5.15)

for all non-negative test functions σ ∈ C∞
c (0, T ). Here, the first inequality

follows by proceeding similarly as in the proof of Theorem 3.2. We now use
the energy inequality (3.6) written for (φKm

, ψKm
, μKm

, θKm
) to further bound

the right-hand side of (5.15). Using lower semicontinuity arguments (similar
to those in the proof of Theorem 3.2), and recalling (5.2), passing to the limit
m → ∞ leads to the corresponding energy inequality for (φ∗, ψ∗, μ∗, θ∗).
This proves that the quadruplet (φ∗, ψ∗, μ∗, θ∗) is a weak solution of (3.1) in
the sense of Definition 3.1 with K = 0. �

5.2. The limit K → ∞ and the existence of a weak solution if (K,L) ∈
{∞} × (0,∞)

Theorem 5.4. (Asymptotic limit K → ∞) Suppose that the assumptions
(A1)–(A5) hold, let (φ0, ψ0) ∈ H1 be arbitrary initial data, L ∈ (0,∞),
v ∈ L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ)). For any K ∈ (0,∞), let
(φK , ψK , μK , θK) denote a weak solution of the system (3.1) in the sense
of Definition 3.1 with initial data (φ0, ψ0). Then, there exists a quadruplet
(φ∗, ψ∗, μ∗, θ∗) such that(

∂tφ
K , ∂tψ

K) → (
∂tφ

∗, ∂tψ
∗)

weakly in L2(0, T ; (H1)′),(
φK , ψK) → (

φ∗, ψ∗)
weakly-star in L∞(0, T ; H1),

strongly in C([0, T ]; Hs) for all s ∈ [0, 1),(
μK , θK) → (

μ∗, θ∗)
weakly in L4(0, T ; L2) ∩ L2(0, T ; H1),

1

K

(
αψK − φK) → 0 strongly in L∞(0, T, L2(Γ)),

as K → ∞, up to subsequence extraction, with

1
K

‖αψK − φK‖L∞(0,T ;L2(Γ)) ≤ C√
K

, (5.16)

and the limit (φ∗, ψ∗, μ∗, θ∗) is a weak solution to the system (3.1) in the
sense of Definition 3.1 with K = ∞, which additionally satisfies (μ∗, θ∗) ∈
L4(0, T ;L2).

Remark 5.5. Suppose that for any K ∈ (0,∞), the phase-field φK is suffi-
ciently regular such that the boundary condition (3.1e) holds in the strong
sense, that is

K∂nφK = αψK − φK a.e. on Σ.

This is actually fulfilled under additional assumptions on the regularity of Γ
and the parameter p (if d = 3), see Theorem 6.1. Then, estimate (5.16) can be
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reformulated as

‖∂nφK‖L2(Σ) ≤ C√
K

.

As the right-hand side of this inequality tends to zero as K → ∞, this ex-
plains why the homogeneous Neumann boundary condition ∂nφ∗ = 0 a.e. on
Σ appears in the limit model corresponding to K = ∞.

Proof of Theorem 5.4. We consider an arbitrary sequence (Km)m∈N ⊂ (0,∞)
such that Km → ∞ as m → ∞. Without loss of generality, we assume that
Km ∈ [1,∞) for all m ∈ N. For any m ∈ N, let (φKm , ψKm , μKm , θKm) denote
a weak solution of the system (3.1) in the sense of Definition 3.1 with initial
data (φ0, ψ0) corresponding to the parameter Km. In this proof, we use the
letter C to denote generic positive constants independent of Km and m. Let
now m ∈ N be arbitrary.

As we have seen in the proof of Theorem 3.2 (see 4.5), the initial energy
satisfies

EKm
(φKm(0), ψKm(0)) ≤ C(1 + K−1

m ) ≤ C (5.17)

since Km ≥ 1 for all m ∈ N. This allows us to use the same argumentation as
in the proof of Theorem 5.2, and we infer

‖ (
φKm , ψKm

) ‖L∞(0,T ;H1) + K−1/2
m ‖αψKm − φKm‖L∞(0,T ;L2(Γ))

+ ‖ (∇μKm ,∇ΓθKm
) ‖L2(0,T ;L2) + ‖βθKm − μKm‖L2(0,T ;L2(Γ)) ≤ C.

(5.18)

This already implies (5.16). We now test the weak formulation (3.4b) with
(ζ, ξ) ∈ H1. Using again that Km ≥ 1, we find that

‖ (
μKm , θKm

) ‖L∞(0,T ;(H1)′) ≤ C. (5.19)

This estimate allows us to apply Lemma 2.2, and using (5.18) and (5.19), we
conclude

‖ (
μKm , θKm

) ‖L4(0,T ;L2) ≤ C. (5.20)

In combination with (5.18) we thus deduce

‖ (
μKm , θKm

) ‖L2(0,T ;H1) ≤ C. (5.21)

Lastly, exploiting (5.18), we conclude from the weak formulation (3.4a) by a
comparison argument that

‖ (
∂tφ

Km , ∂tψ
Km

) ‖L2(0,T ;(H1)′) ≤ C. (5.22)

In summary, combining (5.18) and (5.20)–(5.22), we thus have shown that

‖ (
∂tφ

Km , ∂tψ
Km

) ‖L2(0,T ;(H1)′) + ‖ (
φKm , ψKm

) ‖L∞(0,T ;H1)

+ ‖ (
μKm , θKm

) ‖L4(0,T ;L2) + ‖ (
μKm , θKm

) ‖L2(0,T ;H1) ≤ C.
(5.23)
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In view of the uniform estimate (5.23), the Banach–Alaoglu theorem and the
Aubin–Lions–Simon lemma imply the existence of functions (φ∗, ψ∗, μ∗, θ∗)
such that

(
∂tφ

Km , ∂tψ
Km

) → (
∂tφ

∗
, ∂tψ

∗)
weakly in L

2
(0, T ; (H1

)
′
), (5.24)(

φ
Km , ψ

Km
) → (

φ
∗
, ψ

∗)
weakly-star in L

∞
(0, T ; H1

),

strongly in C([0, T ]; Hs
) for all s ∈ [0, 1), (5.25)(

μ
Km , θ

Km
) → (

μ
∗
, θ

∗)
weakly in L

4
(0, T ; L2

) ∩ L
2
(0, T ; H1

), (5.26)

as m → ∞, along a non-relabeled subsequence. Additionally, thanks to (5.18)
and the trace theorem, we infer

1
Km

(αψKm − φKm) → 0 strongly in L∞(0, T ;L2(Γ)) (5.27)

as m → ∞. We readily deduce that Definition (i) is satisfied.
Using the Sobolev embedding Hs ↪→ L2 for s ∈ (0, 1) along with (5.25),

we find that

(
φKm(0), ψKm(0)

) → (φ∗(0), ψ∗(0)) strongly in L2, (5.28)

as m → ∞. In view of the initial conditions satisfied by (φKm , ψKm), we deduce
that Definition (ii) is fulfilled.

As in the proof of Theorem 5.2, the convergences (5.24)–(5.27) are suffi-
cient to pass to the limit in the weak formulations (3.4) associated with Km

to conclude that the limit (φ∗, ψ∗, μ∗, θ∗) fulfils the weak formulation (3.4)
associated with K = ∞. Thus, we infer that Definition (iii) is satisfied.

The mass conservation law as stated in Definition (iv) also follows with
the same reasoning as in the proof of Theorem 5.2.

For the energy inequality, note that for all non-negative σ ∈ C∞
c (0, T ),

we have

∫ T

0

E∞(φ∗(t), ψ∗(t))σ(t) dt ≤ lim inf
m→∞

∫ T

0

E∞(φKm(t), ψKm(t))σ(t) dt

≤ lim inf
m→∞

∫ T

0

EKm
(φKm(t), ψKm(t))σ(t) dt.

(5.29)

The first inequality follows the same argumentation that we already have seen
before, whereas the second inequality is due to (5.27). We finish the proof by
mimicking the proof of the energy inequality in Theorem 3.2, which is based
on the convergence results (5.24)–(5.26) and the assumptions (A3)–(A4).

We thus have shown that the quadruplet (φ∗, ψ∗, μ∗, θ∗) is a weak solution
to the system (3.1) in the sense of Definition 3.1 for K = ∞. �
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5.3. The limit L → 0 and the existence of a weak solution if (K,L) ∈
[0,∞] × {0}

In this section, we investigate the asymptotic limits L → 0 and L → ∞ of the
system (3.1) for fixed K ∈ [0,∞].

Theorem 5.6. (Asymptotic limit L → 0) Suppose that the assumptions (A1)–
(A4) hold, let (φ0, ψ0) ∈ H1

K,α be arbitrary initial data for K ∈ [0,∞], v ∈
L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ)). In the case K ∈ {0,∞}, we further
assume that (A5) holds. For any L ∈ (0,∞), let (φL, ψL, μL, θL) denote a
weak solution of the system (3.1) in the sense of Definition 3.1 with initial
data (φ0, ψ0). Then, there exists a quadruplet (φ∗, ψ∗, μ∗, θ∗) with μ∗ = βθ∗
a.e. on Σ such that

(∂tφL, ∂tψL) → (∂tφ∗, ∂tψ∗) weakly in L2(0, T ;D′
β),

(φL, ψL) → (φ∗, ψ∗) weakly-star in L∞(0, T ;H1
K,α),

strongly in C([0, T ];Hs) for all s ∈ [0, 1),

(μL, θL) → (μ∗, θ∗) weakly in L2(0, T ;H1),

weakly in L4(0, T ;L2) if K ∈ (0,∞],

βθL − μL → 0 strongly in L2(0, T ;L2(Γ)),

as L → 0, up to subsequence extraction, with

‖βθL − μL‖L2(Σ) ≤ C
√

L, (5.30)

and the quadruplet (φ∗, ψ∗, μ∗, θ∗) is a weak solution to the system (3.1) in
the sense of Definition 3.1 with L = 0, which additionally satisfies (μ∗, θ∗) ∈
L4(0, T ;L2) in the case K ∈ (0,∞].

Remark 5.7. As the right-hand side in (5.30) tends to zero as L → 0, this
explains why the Dirichlet type boundary condition μ∗ = βθ∗ a.e. on Σ appears
in the limit model corresponding to L = 0.

Proof of Theorem 5.6. We consider an arbitrary sequence (Lm)m∈N ⊂ (0,∞)
such that Lm → ∞ as m → ∞ and a corresponding weak solution
(φLm

, ψLm
, θLm

, μLm
) to the system (3.1) in the sense of Definition 3.1 to

the initial data (φ0, ψ0). In this proof, we denote by C arbitrary positive con-
stants independent of Lm and m, which may change their value from line to
line. Let now m ∈ N be arbitrary.

If K ∈ [0,∞), we conclude from the energy inequality (3.6) that

‖ (φLm
, ψLm

) ‖L∞(0,T ;H1) + h(K)1/2‖αψLm
− φLm

‖L2(0,T ;L2(Γ))

+ ‖ (∇μLm
,∇ΓθLm

) ‖L2(0,T ;L2) + L−1/2
m ‖βθLm

− μLm
‖L2(0,T ;L2(Γ)) ≤ C.

(5.31)

If K = ∞, we do not have the bulk-surface Poincaré inequality at our disposal.
Instead, we have to argue as in the proof of Theorem 5.2 and make use of the
additional assumption (A5) to obtain the estimate (5.31). In particular, (5.31)
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yields (5.30). Arguing as in the proof of Theorem 3.2, we additionally infer
that

‖ (μLm
, θLm

) ‖L∞(0,T ;(H1
K,α)′) ≤ C. (5.32)

If K ∈ (0,∞], we may use Lemma 2.2 and further obtain

‖ (μLm
, θLm

) ‖L4(0,T ;L2) ≤ C, (5.33)

which in combination with (5.31) yields

‖ (μLm
, θLm

) ‖L2(0,T ;H1) ≤ C. (5.34)

In the case K = 0, we argue analogously as in the proof of Theorem 5.2 to
deduce that

‖ (μLm
, θLm

) ‖L2(0;T ;L2) ≤ C, (5.35)

from which we obtain (5.34) as well.
For the time derivatives, we again proceed similarly as in the proof of

Theorem 3.2 but choose the test function space Dβ instead of H1. We then
obtain due to the weak formulation (3.4a) and the uniform bound (5.31) that

‖ (∂tφLm
, ∂tψLm

) ‖L2(0,T ;D′
β) ≤ C. (5.36)

In view of the uniform estimates (5.31), (5.33), (5.34) and (5.36), the Banach–
Alaoglu theorem and the Aubin–Lions–Simon lemma imply the existence of
functions φ∗, ψ∗, μ∗ and θ∗ such that

(∂tφLm
, ∂tψLm

) → (∂tφ∗, ∂tψ∗) weakly in L2(0, T ; D′
β), (5.37)

(φLm
, ψLm

) → (φ∗, ψ∗) weakly-star in L∞(0, T ; H1
K,α),

strongly in C([0, T ]; Hs) for all s ∈ [0, 1),
(5.38)

(μLm
, θLm

) → (μ∗, θ∗) weakly in L2(0, T ; H1),

weakly in L4(0, T ; L2) if K ∈ (0, ∞],
(5.39)

βθLm
− μLm

→ βθ∗ − μ∗ weakly in L2(0, T ; L2(Γ)), (5.40)

as m → ∞, along a non-relabeled subsequence. Furthermore, we conclude from
(5.31) that

‖βθLm
− μLm

‖L2(Σ) ≤ C
√

Lm → 0, (5.41)

as m → ∞. In combination with (5.40) we infer that μ∗ = βθ∗ a.e. on
Σ due to the uniqueness of the limit. Proceeding similarly as in the case
K → 0 (see the proof of Theorem 5.2), we eventually show that the quadru-
plet (φ∗, ψ∗, μ∗, θ∗) is a weak solution of the system (3.1) in the sense of
Definition 3.1 for L = 0. �
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5.4. The limit L → ∞ and the existence of a weak solution if (K,L) ∈
[0,∞] × {∞}

Theorem 5.8. (Asymptotic limit L → ∞) Suppose that the assumptions (A1)–
(A4) hold, let (φ0, ψ0) ∈ H1

K,α be arbitrary initial data for K ∈ [0,∞], v ∈
L2(0, T ;L3

div(Ω)) and w ∈ L2(0, T ;L3(Γ)). In the case K ∈ {0,∞}, we further
assume that (A5) holds. For any L ∈ (0,∞), let (φL, ψL, μL, θL) denote a
weak solution to the system (3.1) in the sense of Definition 3.1 with initial
data (φ0, ψ0). Then there exists a quadruplet (φ∗, ψ∗, μ∗, θ∗) such that(

∂tφ
L, ∂tψ

L
) → (∂tφ

∗, ∂tψ
∗) weakly in L2(0, T ; (H1)′),(

φL, ψL
) → (φ∗, ψ∗) weakly-star in L∞(0, T ;H1

K,α),

strongly in C([0, T ];Hs) for all s ∈ [0, 1),(
μL, θL

) → (μ∗, θ∗) weakly in L2(0, T ;H1),

weakly in L4(0, T ;L2) if K ∈ (0,∞],
1
L

(
βθL − μL

) → 0 strongly in L2(0, T ;L2(Γ)),

as L → ∞, up to subsequence extraction, with

1
L

‖βθL − μL‖L2(Σ) ≤ C√
L

, (5.42)

and the quadruplet (φ∗, ψ∗, μ∗, θ∗) is a weak solution to the system (3.1) in
the sense of Definition 3.1 for L = ∞, which additionally satisfies (μ∗, θ∗) ∈
L4(0, T ;L2) in the case K ∈ (0,∞].

Remark 5.9. Assuming that for any L ∈ (0,∞), the chemical potential μL is
sufficiently regular such that the boundary condition (3.1f) holds in the strong
sense, that is

LmΩ(φL)∂nμL = βθL − μL a.e. on Σ,

estimate (5.42) can be reformulated as

‖∂nμL‖L2(Σ) ≤ C√
L

.

As the right-hand side of this inequality tends to zero as L → ∞, this ex-
plains why the homogeneous Neumann boundary condition ∂nμ∗ = 0 a.e. on
Σ appears in the limit model corresponding to L = ∞.

Proof of Theorem 5.8. We consider an arbitrary sequence (Lm) ⊂ (0,∞)
such that Lm → ∞ as m → ∞ and a corresponding weak solution
(φLm , ψLm , θLm , μLm) to (3.1) in the sense of Definition 3.1 to the initial data
(φ0, ψ0). Since Lm → ∞ as m → ∞, we can assume without loss of generality
that Lm ∈ [1,∞) for all m ∈ N. In this proof, we use the letter C to denote
generic positive constants independent of Lm and m, which may change their
value from line to line. Let now m ∈ N be arbitrary.
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Using the same argumentation as in the proof of Theorem 5.6, we infer

‖ (
φLm , ψLm

) ‖L∞(0,T ;H1) + h(K)1/2‖αψLm − φLm‖L∞(0,T ;L2(Γ))

+ ‖ (∇μLm ,∇ΓθLm
) ‖L2(0,T ;L2) + L−1/2

m ‖βθLm − μLm‖L2(0,T ;L2(Γ)) ≤ C.

(5.43)

In particular, (5.43) already entails (5.42). If K ∈ (0,∞], we again derive the
estimate

‖ (
μLm , θLm

) ‖L4(0,T ;L2) ≤ C, (5.44)

while in the case K = 0, we merely obtain

‖ (
μLm , θLm

) ‖L2(0,T ;L2) ≤ C. (5.45)

In both cases, we thus get

‖ (
μLm , θLm

) ‖L2(0,T ;H1) ≤ C. (5.46)

For the time derivatives, we proceed similarly as in the proof of Theorem 3.2
and obtain due to the weak formulation (3.4a) and the uniform bounds (5.43)
that

‖ (
∂tφ

Lm , ∂tψ
Lm

) ‖L2(0,T ;(H1)′) ≤ C

(
1 +

1√
Lm

)
≤ C. (5.47)

Here we additionally used Lm ≥ 1 for all m ∈ N. In view of the uniform
estimates (5.43), (5.44)–(5.46) and (5.47), the Banach–Alaoglu theorem and
the Aubin–Lions–Simon lemma imply the existence of functions φ∗, ψ∗, μ∗ and
θ∗ such that(

∂tφ
Lm , ∂tψ

Lm

)
→ (

∂tφ
∗
, ∂tψ

∗)
weakly in L

2
(0, T ; (H1

)
′
), (5.48)(

φ
Lm , ψ

Lm

)
→ (

φ
∗
, ψ

∗)
weakly-star in L

∞
(0, T ; H1

K,α),

strongly in C([0, T ]; Hs
) for all s ∈ [0, 1), (5.49)(

μ
Lm , θ

Lm

)
→ (

μ
∗
, θ

∗)
weakly in L

2
(0, T ; H1

),

weakly in L
4
(0, T ; L2

) if K ∈ (0, ∞], (5.50)

as m → ∞, along a non-relabeled subsequence. Due to (5.43), we additionally
have

1
Lm

‖βθLm − μLm‖L2(Σ) ≤ C√
Lm

→ 0 (5.51)

as m → ∞. Arguing further as in the case K → ∞ (see the proof of The-
orem 5.4), we eventually show that the quadruplet (φ∗, ψ∗, μ∗, θ∗) satisfies
Definition (i)–(iii) and (v). For the mass conservation law, simply note that
the weak formulations for φ∗ and ψ∗, as well as the test functions, are not
coupled, which allows us to use ζ ≡ 1 and ξ ≡ 1 as test functions, respectively.
Integrating the resulting equations in time from 0 to t, and employing the
fundamental theorem of calculus, we infer
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∫
Ω

φ∗(t) dx =
∫

Ω

φ0 dx and
∫

Γ

ψ∗(t) dΓ =
∫

Γ

ψ0 dΓ

for all t ∈ [0, T ], which shows that (φ∗, ψ∗, μ∗, θ∗) is a solution of the system
(3.1) in the sense of Definition 3.1 for L = ∞. �

We conclude this section with the following remark.

Remark 5.10. If the uniqueness of the respective limiting models is known
(e.g. if the mobility functions are constant, cf. Theorem 3.5), we even obtain
convergence of the full sequence (not only a subsequence) in Theorem 5.2, The-
orem 5.4, Theorem 5.6 and Theorem 5.8, respectively, by means of a standard
subsequence argument.

6. Higher regularity, continuous dependence and uniqueness

In this section, we present the results on higher regularity for the phase-fields
as well as the continuous dependence and uniqueness of weak solutions to the
system (3.1) as stated in Theorem 3.2 and Theorem 3.5, respectively.

6.1. Higher spatial regularity for the phase-fields

Theorem 6.1. (Higher regularity) Suppose that the assumptions (A1)–(A6)
hold, and let K,L ∈ [0,∞], (φ0, ψ0) ∈ H1

K,α, v ∈ L2(0, T ;L3
div(Ω)) and w ∈

L2(0, T ;L3(Γ)). Suppose that the domain Ω is of class Ck for k ∈ {2, 3}, and
in the case d = 3, we further assume that (A4) holds with p ≤ 4. Then, if
a weak solution (φ, ψ, μ, θ) of the system (3.1) in the sense of Definition 3.1
exists, it additionally satisfies

(φ, ψ) ∈ L4(0, T ;H2) if K ∈ (0,∞], (6.1)

(φ, ψ) ∈ L2(0, T ;Hk) for k ∈ {2, 3}, (6.2)

(φ, ψ) ∈ C([0, T ];H1) if (K,L) ∈ [0,∞] × (0,∞] and k = 3
(6.3)

as well as

μ = −Δφ + F ′(φ) a.e. in Q, (6.4)

θ = −ΔΓψ + G′(ψ) + α∂nφ a.e. on Σ, (6.5){
K∂nφ = αψ − φ if K ∈ [0,∞),
∂nφ = 0 if K = ∞ a.e. on Σ. (6.6)
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Proof. Let (φ, ψ, μ, θ) be a weak solution to the system (3.1) in the sense of
Definition 3.1. We infer from the weak formulation (3.4b) that∫

Ω

∇φ(t) · ∇η dx +
∫

Γ

∇Γψ(t) · ∇Γϑ dΓ + h(K)
∫

Γ

(αψ(t) − φ(t))(αϑ − η) dΓ

=
∫

Ω

(
μ(t) − F ′(φ(t))

)
η dx +

∫
Γ

(
θ(t) − G′(ψ(t))

)
ϑ dΓ

(6.7)

for almost all t ∈ [0, T ] and all (η, ϑ) ∈ H1
K,α. If K ∈ [0,∞), this means that

the pair (φ(t), ψ(t)) is a weak solution of the bulk-surface elliptic problem

−Δφ(t) = f(t) in Ω,

−ΔΓψ(t) + α∂nφ(t) = g(t) on Γ,

K∂nφ(t) = αψ(t) − φ(t) on Γ,

for almost all t ∈ [0, T ], in the sense of [30, Definition 3.1], where

f(t) = μ(t) − F ′(φ(t)), and g(t) = θ(t) − G′(ψ(t)).

If K = ∞, we may choose (η, 0) ∈ H1 and (0, ϑ) ∈ H1 as test functions in (6.7),
respectively. This yields that φ(t) is a weak solution to the Poisson-Neumann
problem

−Δφ(t) = f(t) in Ω, (6.8a)

∂nφ(t) = 0 on Γ (6.8b)

for almost all t ∈ [0, T ], whereas ψ(t) is a weak solution to the elliptic problem

−ΔΓψ(t) = g(t) onΓ (6.9)

for almost all t ∈ [0, T ].
Recalling that p ≤ 4, we use the growth conditions on F ′ and G′

(see (A4)), the Sobolev embeddings H1(Ω) ↪→ L6(Ω) and H1(Γ) ↪→ L2(q−1)(Γ)
and the fact that (φ, ψ) ∈ L∞(0, T ;H1

K,α) to derive the estimate

‖F ′(φ(t))‖L2(Ω) ≤ C + C‖φ(t)‖p−1
L2(p−1)(Ω)

≤ C, (6.10)

as well as

‖G′(ψ(t))‖L2(Γ) ≤ C + C‖ψ(t)‖q−1
L2(q−1)(Γ)

≤ C, (6.11)

for almost all t ∈ [0, T ]. In particular, the estimates (6.10) and (6.11) imply
(f(t), g(t)) ∈ L2 with

‖f(t)‖L2(Ω) ≤ C + ‖μ(t)‖L2(Ω), (6.12)

‖g(t)‖L2(Γ) ≤ C + ‖θ(t)‖L2(Γ), (6.13)

for almost all t ∈ [0, T ].
We first consider the case k = 2. In the case K ∈ [0,∞), we deduce

from regularity theory for elliptic problems with bulk-surface coupling (see
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[30, Theorem 3.3]) that (φ(t), ψ(t)) ∈ H2 with

‖ (φ(t), ψ(t)) ‖2
H2 ≤ C‖ (f(t), g(t)) ‖2

L2

≤ C
(
‖μ(t)‖2

L2(Ω) + ‖θ(t)‖2
L2(Γ) + ‖F ′(φ(t))‖2

L2(Ω) + ‖G′(ψ(t))‖2
L2(Γ)

)
≤ C + C‖μ(t)‖2

L2(Ω) + C‖θ(t)‖2
L2(Γ)

for almost all t ∈ [0, T ]. Integrating this inequality in time from 0 to T , we
use the regularity of (μ, θ) to infer that (φ, ψ) ∈ L2(0, T ;H2). In the case
K ∈ (0,∞), we even obtain (φ, ψ) ∈ L4(0, T ;H2) since (μ, θ) ∈ L4(0, T ;L2).
If K = ∞, we may choose (η, ϑ) = (1, 0) ∈ H1 as a test function (6.7), which
yields ∫

Ω

f(t) dx =
∫

Ω

μ(t) − F ′(φ(t)) dx = 0

for almost all t ∈ [0, T ]. This allows us to use regularity theory for Poisson’s
equations with homogeneous Neumann boundary condition (see, e.g. [40, s.5,
Proposition 7.7]) to infer that φ(t) ∈ H2(Ω) with

‖φ(t)‖H2(Ω) ≤ C‖f(t)‖L2(Ω) + C‖φ(t)‖H1(Ω)

for almost all t ∈ [0, T ]. In combination with (6.12) we deduce that

‖φ(t)‖H2(Ω) ≤ C + C‖μ(t)‖L2(Ω) (6.14)

for almost all t ∈ [0, T ]. Next, due to (6.13), we can apply regularity theory for
elliptic equations on submanifolds (see, e.g., [40, s.5, Theorem 1.3]) for (6.9)
and infer that ψ(t) ∈ H2(Γ) with

‖ψ(t)‖H2(Γ) ≤ C‖g(t)‖L2(Γ) + C‖ψ(t)‖H1(Γ) ≤ C + C‖θ(t)‖L2(Γ) (6.15)

for almost all t ∈ [0, T ]. Squaring the equations (6.14) and (6.15) and in-
tegrating in time over [0, T ] yields (φ, ψ) ∈ L2(0, T ;H2) which proves the
assertion in the case K = ∞. Additionally, as (μ, θ) ∈ L4(0, T ;L2), we obtain
(φ, ψ) ∈ L4(0, T ;H2).

Let us now consider the case k = 3. Since p ≤ 4, we use Hölder’s inequality
and the Sobolev embedding H1(Ω) ↪→ L6(Ω) to derive the estimate

‖F ′′(φ(t))∇φ(t)‖L2(Ω) ≤ C‖∇φ(t)‖L2(Ω) + C‖ |φ(t)|4 ∇φ(t)‖L2(Ω)

≤ C‖∇φ(t)‖L2(Ω) + C‖φ(t)‖2
L6(Ω)‖∇φ(t)‖L6(Ω)

≤ C + C‖φ(t)‖H2(Ω).

for almost all t ∈ [0, T ]. In combination with (6.10) this yields

‖F ′(φ(t))‖H1(Ω) ≤ ‖F ′(φ(t))‖L2(Ω) + ‖F ′′(φ(t))∇φ(t)‖L2(Ω) ≤ C + C‖φ(t)‖H2(Ω)

(6.16)

for almost all t ∈ [0, T ]. Proceeding similarly, we derive the estimate

‖G′′(ψ(t))∇Γψ(t)‖L2(Γ) ≤ C + C‖ψ(t)‖H2(Γ),

which leads to

‖G′(ψ(t))‖H1(Γ) ≤ C + C‖ψ(t)‖H2(Γ) (6.17)
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for almost all t ∈ [0, T ]. We thus obtain (f(t), g(t)) ∈ H1. If K ∈ [0,∞) we may
use again regularity theory for elliptic problems with bulk-surface coupling (see
[30, Theorem 3.3]) to infer (φ(t), ψ(t)) ∈ H3 with

‖ (φ(t), ψ(t)) ‖2
H3 ≤ C‖ (f(t), g(t)) ‖2

H1

≤ C‖μ(t)‖2
H1(Ω) + C‖θ(t)‖2

H1(Γ) + C‖F ′(φ(t))‖2
H1(Ω)

+ C‖G′(ψ(t))‖2
H1(Γ)

≤ C + C‖μ(t)‖2
H1(Ω) + C‖θ(t)‖2

H1(Γ) + C‖φ(t)‖2
H2(Ω)

+ C‖ψ(t)‖2
H2(Γ)

for almost all t ∈ [0, T ]. Integrating this inequality in time over [0, T ] yields
(φ, ψ) ∈ L2(0, T ;H3).
If K = ∞, the result can be established analogously to the case k = 2 as the
regularity results cited above hold true for any integer k ≥ 0. We again find
that

‖ (φ(t), ψ(t)) ‖H3 ≤ C‖ (f(t), g(t)) ‖H1

for almost all t ∈ [0, T ], where the right-hand side is bounded due to (6.16)
and (6.17).

This means that (6.1) and (6.2) are established. If (K,L) ∈ [0,∞]×(0,∞]
and k = 3, the additional continuity property (6.3) follows from Proposi-
tion A.1. Therefore, the proof is complete. �

Remark 6.2. In the other cases, where the boundary conditions involving K
and L are of the same type (i.e., K = L = 0 or K = L = ∞), it should also be
possible to obtain the regularities (6.1) and (6.2) even for d = 3 and p ∈ (4, 6).
This is because in these cases, the system (1.1) can be discretized by a Faedo–
Galerkin scheme (cf. Remark 4.2) and therefore, the higher order regularity
estimates can be performed on the level of the approximate solutions. In the
case K = L = 0, we refer the reader to the proof of [23, Theorem 3.3], where
this line of argument is carried out in detail.

6.2. Continuous dependence and uniqueness

Proof of Theorem 3.5. As the functions mΩ and mΓ are constant, we assume,
without loss of generality, that mΩ ≡ 1 and mΓ ≡ 1. In the following, we
use the letter C to denote generic positive constants depending only on Ω, the
parameters of the system (3.1), and the initial data and the prescribed velocity
field.

We consider two weak solutions (φ1, ψ1, μ1, θ1) and (φ2, ψ2, μ2, θ2) cor-
responding to the initial data

(
φ1

0, ψ
1
0

)
,
(
φ2

0, ψ
2
0

) ∈ H1
K,α, the bulk veloc-

ity fields v1,v2 ∈ L2(0, T ;L3
div(Ω)) and the surface velocity fields w1,w2 ∈

L2(0, T ;L3(Γ)), respectively, and set

(φ, ψ, μ, θ,v,w):=(φ2 − φ1, ψ2 − ψ1, μ2 − μ1, θ2 − θ1,v2 − v1,w2 − w1).
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Then, due to their respective weak formulations (3.4), the quadruplet
(φ, ψ, μ, θ) satisfies

〈(∂tφ, ∂tψ) , (ζ, ξ)〉H1
L,β

−
∫
Ω

φ2v · ∇ζ dx −
∫
Ω

φv1 · ∇ζ dx

−
∫
Γ

ψ2w · ∇Γξ dΓ −
∫
Γ

ψw 1 · ∇Γξ dΓ (6.18a)

= −
∫
Ω

∇μ · ∇ζ dx −
∫
Γ

∇Γθ · ∇Γξ dΓ − h(L)

∫
Γ

(βθ − μ)(βξ − ζ) dΓ,

(6.18b)∫
Ω

μ η dx +

∫
Γ

θ ϑ dΓ −
∫
Ω

[
F ′(φ2) − F ′(φ1)

]
η dx −

∫
Γ

[
G′(ψ2) − G′(ψ1)

]
ϑ dΓ

(6.18c)

=

∫
Ω

∇φ · ∇η dx +

∫
Γ

∇Γψ · ∇Γϑ dΓ + h(K)

∫
Γ

(αψ − φ)(αϑ − η) dΓ,

(6.18d)

a.e. on [0, T ] for all (ζ, ξ) ∈ H1
L,β and (η, ϑ) ∈ H1

K,α. Now, due to (3.11), we
have

β |Ω| 〈φ〉Ω + |Γ| 〈ψ〉Γ = 0 a.e. on [0, T ].

This shows that the pair (φ(t), ψ(t)) is an admissible right-hand side in the
elliptic problem with bulk-surface coupling (2.9) for almost all t ∈ [0, T ]. Fur-
ther, testing the weak formulation (6.18a) with (ζ, ξ) = (β, 1) ∈ H1

L,β , we infer
that

β |Ω| 〈∂tφ〉Ω + |Γ| 〈∂tψ〉Γ = 0 a.e. on [0, T ].

Hence, the pair (∂tφ(t), ∂tψ(t)) is an admissible right-hand side in (2.9) for
almost all t ∈ [0, T ] as well. Due to the linearity of the operator SL,β , we
deduce that ∂tSL,β(φ, ψ) = SL,β(∂tφ, ∂tψ) in H1

L,β for almost all [0, T ]. Thus,
choosing (ζ, ξ) = SL,β(φ, ψ) ∈ H1

L,β in (6.18a), we derive the identity

d
dt

1
2
‖ (φ, ψ) ‖2

L,β,∗ =
d
dt

1
2
‖SL,β(φ, ψ)‖2

L,β

= (SL,β(∂tφ, ∂tψ),SL,β(φ, ψ))L,β

= −〈(∂tφ, ∂tψ) ,SL,β(φ, ψ)〉H1
L,β

=
(
(μ, θ) ,SL,β(φ, ψ)

)
L,β

(6.19)

− (
(φ2v + φv1, ψ2w + ψw1) ,

(∇SΩ
L,β(φ, ψ),∇ΓSΓ

L,β(φ, ψ)
) )

L2

= −(
(μ, θ) , (φ, ψ)

)
L2

− (
(φ2v + φv1, ψ2w + ψw1) ,

(∇SΩ
L,β(φ, ψ),∇ΓSΓ

L,β(φ, ψ)
) )

L2
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a.e. on [0, T ]. Here, the second term on the right-hand side can be bounded by(
(φ2v + φv1, ψ2w + ψw1) ,

(∇SΩ
L,β(φ, ψ),∇ΓSΓ

L,β(φ, ψ)
) )

L2

≤ ‖ (φ2v + φv1, ψ2w + ψw1) ‖L2‖ (∇SΩ
L,β(φ, ψ),∇ΓSΓ

L,β(φ, ψ)
) ‖L2

≤
(
‖ (φ2v, ψ2w) ‖L2 + ‖ (φv1, ψw1) ‖L2

)
‖SL,β(φ, ψ)‖L,β

≤
(
C‖ (v,w) ‖L3 + ‖ (φ, ψ) ‖L6‖ (v1,w1) ‖L3

)
‖ (φ, ψ) ‖L,β,∗

(6.20)

a.e. on [0, T ].
Using Young’s inequality in combination with the Sobolev embedding

H1 ↪→ L6 and the Poincaré inequality, we obtain

‖ (φ, ψ) ‖L6‖ (v1,w1) ‖L3‖ (φ, ψ) ‖L,β,∗

≤ ε‖ (φ, ψ) ‖2
K,α + Cε‖ (v1,w1) ‖2

L3‖ (φ, ψ) ‖2
L,β,∗

(6.21)

a.e. on [0, T ] for all ε > 0 and a constant Cε. Another application of Young’s
inequality yields

C‖ (v,w) ‖L3‖ (φ, ψ) ‖L,β,∗ ≤ 1
2
‖ (v,w) ‖2

L3 + C‖ (φ, ψ) ‖2
L,β,∗ (6.22)

a.e. on [0, T ]. Plugging (6.21) and (6.22) back into (6.20), we infer(
(φ2v + φv1, ψ2w + ψw1) ,

(∇SΩ
L,β(φ, ψ),∇ΓSΓ

L,β(φ, ψ)
) )

L2

≤ 1
2
‖ (v,w) ‖2

L3 + ε‖ (φ, ψ) ‖2
K,α + C‖ (v1,w1) ‖2

L3‖ (φ, ψ) ‖2
L,β,∗

(6.23)

a.e. on [0, T ]. For the first term on the right-hand side of (6.19) we find

−(
(μ, θ) , (φ, ψ)

)
L2 = −‖ (φ, ψ) ‖2

K,α −
∫

Ω

[F ′(φ2) − F ′(φ1)]φ dx

−
∫

Γ

[G′(ψ2) − G′(ψ1)]ψ dΓ
(6.24)

a.e. on [0, T ]. Now, exploiting the growth condition on F ′′ (see (A4)) with p < 6
and using the fundamental theorem of calculus as well as Hölder’s inequality,
we compute∣∣∣∣

∫
Ω

[F ′(φ2) − F ′(φ1)]φ dx

∣∣∣∣ =
∣∣∣∣
∫

Ω

∫ 1

0

F ′′(τφ2 + (1 − τ)φ1

)
dτ(φ2 − φ1)φ dx

∣∣∣∣
≤ C

∫
Ω

(
1 + |φ1|p−2 + |φ2|p−2

)
|φ|2 dx

≤ C
(
1 + ‖φ1‖p−2

L6(Ω) + ‖φ2‖p−2
L6(Ω)

)‖φ‖2
L12/(8−p)(Ω) ≤ C‖φ‖2

L12/(8−p)(Ω)

(6.25)

a.e. on [0, T ]. Recalling H1(Γ) ↪→ Lq(Γ), we analogously infer∣∣∣∣
∫

Γ

[G′(ψ2) − G′(ψ1)]ψ dΓ
∣∣∣∣ ≤ C‖ψ‖2

L12/(8−p)(Γ) (6.26)
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a.e. on [0, T ]. Combining (6.25)–(6.26) yields∣∣∣∣
∫

Ω

[F ′(φ2) − F ′(φ1)]φ dx

∣∣∣∣ +
∣∣∣∣
∫

Γ

[G′(ψ2) − G′(ψ1)]ψ dΓ
∣∣∣∣ ≤ C‖ (φ, ψ) ‖2

L12/(8−p)

a.e. on [0, T ]. Next, recalling again that p < 6, which entails the compact
embedding H1 ↪→ L12/(8−p), we deduce with Ehrling’s lemma that

‖ (φ, ψ) ‖2
L12/(8−p) ≤ ε‖ (φ, ψ) ‖2

K,α + Cε‖ (φ, ψ) ‖2
L,β,∗.

Therefore,

d

dt

1

2
‖ (φ, ψ) ‖2

L,β,∗ + (1 − Cε)‖ (φ, ψ) ‖2
K,α ≤ 1

2
‖ (v ,w ) ‖2

L3 + CF‖ (φ, ψ) ‖2
L,β,∗

a.e. on [0, T ], where F :=‖ (v1,w1) ‖2
L3 . Choosing ε > 0 sufficiently small, we

conclude

d
dt

1
2
‖ (φ, ψ) ‖2

L,β,∗ ≤ 1
2
‖ (v,w) ‖2

L3 + CF‖ (φ, ψ) ‖2
L,β,∗.

As F ∈ L1(0, T ), Gronwall’s lemma directly implies

‖ (φ(t), ψ(t)) ‖2
L,β,∗ ≤ ‖ (φ(0), ψ(0)) ‖2

L,β,∗ exp
(

C

∫ t

0

F(τ) dτ

)

+
∫ t

0

‖ (v(s),w(s)) ‖2
L3 exp

(
C

∫ t

s

F(τ) dτ

)
ds

for almost all t ∈ [0, T ], which proves (3.12). As a consequence, if (φ1
0, ψ

1
0) =

(φ2
0, ψ

2
0) a.e. in Ω×Γ, v1 = v2 a.e. in Q and w1 = w2 a.e. on Σ, the uniqueness

of the corresponding weak solution immediately follows. Thus, the proof is
complete. �
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Appendix: Some calculus for bulk-surface function spaces

Proposition A.1. Let Ω ⊂ R
d with d ∈ {2, 3} be a non-empty, bounded do-

main with Lipschitz boundary Γ:=∂Ω. Moreover, let T > 0, K,L ∈ [0,∞] and
α, β ∈ R be arbitrary. Let (u, v) ∈ C([0, T ];L2) ∩ L2(0, T ;H3) with
(−Δu,−ΔΓv + α∂nu) ∈ H1

L,β and{
K∂nu = αv − u if K ∈ [0,∞),
∂nu = 0 if K = ∞ a.e. on Σ. (A.1)

We further suppose that their weak time derivative satisfies (∂tu, ∂tv) ∈
L2(0, T ; (H1

L,β)′). Then, the continuity property (u, v) ∈ C([0, T ];H1) holds,
the mapping

t �→ ‖ (u(t), v(t)) ‖2
K,α

is absolutely continuous on [0, T ], and the chain rule formula

d
dt

‖ (u(t), v(t)) ‖2
K,α = 2

〈
(∂tu, ∂tv) (t), (−Δu,−ΔΓv + α∂nu) (t)

〉
H1

L,β
(A.2)

holds for almost all t ∈ [0, T ].

Proof of Proposition A.1.. In the cases (K,L) ∈ [0,∞) × {∞}, a proof was
already given in [12, Proposition A.1.(b)]. There, the claim was established by
approximating the occurring functions by a sequence of time-mollified func-
tions, and eventually passing to the limit. For all other choices of (K,L), the
proof can be carried out analogously. �
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