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Ⅲ 

ABSTRACT  
 

Bankruptcy Prediction: A Comparison of Data Mining Models on Unbalanced Data and 

Effects of Sampling 

 

 

 

Gunin Ruthwik Javvadi 

 

With the very unbalanced data found in financial risk prediction, this study hopes to aid 

in anticipating the financial risk that corporations may encounter. We can improve 

performance by employing oversampling and under-sampling algorithms. We were able 

to better understand how the performance of each classifier changed in each dataset by 

using a variety of classifiers across three distinctively sampled datasets. In addition, we 

analyzed our dataset using three different evaluation metrics: accuracy, sensitivity, and 

specificity, rather than being limited to just one. The results indicate that the accuracy on 

three separate datasets with various sampling methods differs greatly. The sensitivity 

and specificity of the under-sampled dataset differ from those of the original dataset and 

the oversampled dataset, which are fairly comparable to one another. It was discovered 

that gradient boosting trees produce better outcomes than other algorithms. When using 

oversampled data and measuring accuracy, logistic regression was found to be the most 

effective. However, when using under-sampled data, LightGBM Classifier had the best 

performance. Additionally, when considering sensitivity and specificity, CatBoost 

Classifier was the best choice. 

 

Keywords: Bankruptcy, unbalanced data, classification 
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Chapter 1 

Introduction 
One of the most crucial jobs in managing financial risk is predicting bankruptcy or 

default. The ability to assess a company's solvency, its capacity to meet financial 

obligations, is a critical responsibility in the realm of financial decision-making (Taffler, 

1983). The prediction of corporate bankruptcy serves as a linchpin in this process, 

holding the key to navigating the complex terrain of fiscal stability. The evaluation of a 

company's financial stability and its ability to meet financial commitments is a pivotal 

aspect of making sound financial decisions.  

Foreseeing corporate bankruptcy holds significant importance in this domain, 

acting as a cornerstone in navigating the intricate landscape of financial security. 

Mitigating the risk of bankruptcy not only fosters economic growth but also amplifies 

profits for financial entities and generates higher revenues for the government. Hence, it 

becomes imperative for businesses to possess precise and dependable models for 

assessing financial risks, enabling them to make well-informed choices. This line of work 

holds relevance across diverse sectors, encompassing banks, insurance firms, investment 

enterprises, and governmental bodies. It also affects the sustainable growth of business 

organizations. Corporate sustainability, as told by Artiach et al. (2010), is considered to 

be a business and investment strategy that seeks to use the best business practices to 

meet and balance the needs of current and future stakeholders (Artiach et al., 2010). 

Financial ratios have historically been used to assess bank performance as 

presented in Board et Al. (2003), but developments in artificial intelligence (A.I.) and 

operational research (O.R.) have led to a move toward these quantitative methods (Board 

et al., 2003). Naturally, this is not shocking given that O.R. has been widely employed in 

other financial applications over the past 50 years. By employing data mining models to 

forecast financial risks, these entities can enhance investment strategies, optimize fund 

allocation, and steer clear of economic downturns. For the economy as a whole, reducing 

bankruptcy risk is critical for promoting economic growth and stability. When companies 

go bankrupt, they often lay off workers, which can lead to higher unemployment rates 

and reduced consumer spending. This, in turn, can lead to a decline in economic growth 

and stability. By accurately predicting bankruptcy risk, organizations can take steps to 

https://www.zotero.org/google-docs/?O5Iw3P
https://www.zotero.org/google-docs/?O5Iw3P
https://www.zotero.org/google-docs/?D5SVCr
https://www.zotero.org/google-docs/?lj1a3C
https://www.zotero.org/google-docs/?lj1a3C
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prevent financial crises and promote economic growth. Furthermore, this research bears 

implications for policymaking. 

Forecasting bankruptcy holds substantial implications for market stability. 

Employing predictive techniques in bankruptcy analysis contributes to averting potential 

financial crises and fostering sustainability within markets. This drive towards 

bankruptcy prediction stems from a sense of duty among auditors, creditors, and 

stakeholders vested in securing their enterprises' future. High business failure rates can 

have disastrous effects on partners, society, the nation's economy as a whole, and 

business owners themselves (Li et al., 2009). It is therefore reasonable to conduct a great 

deal of research into creating bankruptcy prediction models (BPM) for businesses. The 

choice of tool used in its construction has a significant impact on the model's 

performance, among other things (Alaka et al., 2016). 

The previous several decades have seen a rise in financial market globalization, 

rivalry between businesses, financial institutions, and organizations, as well as quick 

changes in the economy, society, and technology. All of these factors have contributed to 

a more uncertain and unstable business and financial climate. As a result, there is now a 

greater need than ever for the deployment of efficient techniques for gauging the financial 

health of enterprises and for a thorough approach to problem-solving. In this "new" 

world, scientists and financial professionals alike understand that the challenges of 

forecasting a company's financial health must be addressed with comprehensive, 

practical solutions built upon advanced quantitative analysis methodologies. The 

relationship that develops between mathematical programming and financial theory is 

highly significant (Horváthová et al., 2023).  

The dataset employed in this study spans 14 years, assessing bankruptcy 

likelihood in Polish companies. It consists of 64 attributes and a class column indicating 

bankruptcy status. Over time, instances of bankruptcy gradually increased, showing a rise 

in the number of bankrupt companies across five years. Government entities and 

investment managers overseeing financial institutions, banking sectors, manufacturing 

industries, etc., benefit from informed decision-making to safeguard their enterprises 

against failure and economic downturns. Consequently, the relevance of bankruptcy 

prediction continues to grow, leading researchers to propose diverse financial indicators 

like net revenue, net profit, and liabilities. Despite its advantages, misclassifying 

bankruptcy predictions can incur costs surpassing actual bankruptcy expenses.  

https://www.zotero.org/google-docs/?soRSTx
https://www.zotero.org/google-docs/?wbA4oD
https://www.zotero.org/google-docs/?broken=BA9TkB
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Although filing for bankruptcy allows companies to reboot, it can severely hamper 

their future prospects, hindering access to future loans. Thus, researchers persistently 

strive to minimize error probabilities in bankruptcy prediction. Governments can 

leverage these models to oversee financial institutions, ensuring their operations adhere 

to acceptable risk thresholds. This proactive approach aids in averting financial crises 

and fostering sustained economic development. However, it is not merely a routine task; 

rather, it constitutes one of the most formidable challenges in the field of financial risk 

management. The dynamics of bankruptcy prediction present a classic example of an 

imbalanced classification problem. The crux of the challenge lies in the disproportionate 

distribution between instances of defaults or bankruptcies and those of non-defaults or 

non-bankruptcies.  

This imbalance adds a layer of complexity to predictive analytics, requiring a 

nuanced approach to ensure accuracy and reliability. Numerous studies have delved into 

the intricate web of bankruptcy prediction, recognizing its significance in safeguarding 

financial health. The uneven nature of the classification problem underscores the need 

for sophisticated methodologies and models. As financial markets continue to evolve, the 

exploration of diverse avenues in bankruptcy prediction remains a focal point, with 

researchers and practitioners striving to enhance the efficacy of predictive tools and 

methodologies. In essence, the quest to foresee financial distress and insolvency is an 

ongoing journey marked by continuous refinement and adaptation to the ever-changing 

landscape of financial dynamics (Edum-Fotwe et al., 1996).  

Our research methodology focuses on employing oversampling and 

undersampling approaches to address uneven financial data in our study methodology. 

Using a 10-fold cross-validation approach, we assess six models that were selected based 

on their simplicity and efficacy: logistic regression, XGBoost, decision trees, random 

forest, LightGBM, and CatBoost. This strategy guarantees thorough testing under a range 

of data settings and offers insightful information about the intricacies of financial risk 

assessment. By means of this methodical process, we want to make a significant and 

thorough contribution to the field of financial risk management. 

The thesis appeals to a diverse audience, including finance professionals, 

policymakers, academics, and data scientists, offering insights into financial risk 

management, predictive models, and their practical applications in various sectors such 

as banking, investments, and regulatory frameworks. 

https://www.zotero.org/google-docs/?kXOCUb
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The remainder of the paper is organized as follows: Section 2 presents a 

comprehensive Literature Review. Section 3 technically describes selected machine 

learning models for forecasting and performance measures of accuracy, specificity, and 

sensitivity. Section 4 introduces our data and provides forecasting results, as well as 

comparisons of different models' performance and their strengths or weaknesses. 

Section 5 concludes our main findings and discusses future research directions. 
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Chapter 2 

Literature Review 

Since 1968, research in the area of bankruptcy prediction has been conducted. 

Various classifications of data have been made based on sampling techniques and the 

overall process of bankruptcy. This study presents the literature review between general 

bankruptcy concerns and those that specifically address the imbalance data in 

bankruptcy cases in the two sections that are presented below. 

2.1 General overview of Bankruptcy 

One of the first approaches used discriminant analysis mode Springate (1978) 

which was  a powerful tool for predicting the possibility of failure in Canadian and U.S. 

firms (Springate, 1978). The model was based on a sample of 120 firms, of which 60 failed 

and 60 did not fail. The model was able to correctly classify 85% of the firms in the 

sample. A comparative study between various models Boritz et Al (2007) including 

Springate (1978) (Boritz et al., 2007) 

In Chen (2011), the authors used principal component analysis for features 

dimension reduction and decision trees and logistic regression for bankruptcy prediction 

in Taiwan. They found that the decision trees achieve a better prediction accuracy than 

the logistic regression (M.-Y. Chen, 2011). In Fedorova (2013), the authors predicted the 

bankruptcy of Russian companies by making use of various classifiers and designed an 

improved AdaBoost, named AsymBoost that introduced a cost-sensitive learning 

conception into the boosting framework to transform the optimization objective function 

from maximizing the predictive accuracy to minimizing the total misclassification cost. 

The model achieved an impressive accuracy rate of 86.1%, correctly classifying 87% of 

the bankrupt companies and 84% of the healthy companies (Fedorova et al., 2013).  

Another notable study by Acharjya and Rathi (2021b) involved feature selection 

through principal component analysis (PCA) to reduce the dimensionality of the dataset. 

The authors then conducted a comparative analysis, pitting various methodologies such 

as statistical, rough computing, and mixed computing approaches against each other 

(Acharjya & Rathi, 2021). They utilized rough set (RS), rough set hybridization with 

neural network (RSNN), rough set hybridization with binary coded genetic algorithm 

https://www.zotero.org/google-docs/?uj9UTW
https://www.zotero.org/google-docs/?9TwRsE
https://www.zotero.org/google-docs/?H7Zb1b
https://www.zotero.org/google-docs/?2agr6g
https://www.zotero.org/google-docs/?WGjCgQ
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(RSBCGA), rough set hybridization with real-coded genetic algorithm (RSRCGA), and 

fuzzy-rough hybridization with real-coded genetic algorithm (FRSRCGA) to process the 

data. The results showed that RSBCGA outperformed other methods in terms of accuracy. 

2.2 Bankruptcy with imbalance data 

The problem of class inequality is difficult to undertake in the context of financial 

risk evaluation and management. In this regard, few studies have examined how well-

unbalanced models predict financial risk and examined the performance of various 

methods under imbalanced datasets. For instance, the authors in Altman et Al (1968) 

proposed a methodology based on the resampling technique of the credit score datasets 

in accordance with their imbalance ratio and a predetermined threshold(Altman, 1968). 

They extended the balance cascade approach Shultz et Al (1991) to generate adjustable 

balanced subsets based on the imbalance ratios of the training data(Shultz & Schmidt, 

1991). The proposed model uses an ensemble of classifiers, each trained on a subset of 

the balanced data, and then combined to make the final prediction. The results showed 

that the proposed model outperformed the existing methods in terms of accuracy and F1 

score.  

The experimental results showed that their proposed model achieved an accuracy 

rate of 81.3% and an area under the receiver operating curve (ROC) curve (AUC) of 0.847. 

Besides, eight different sample techniques were used in Van et Al (2007) (Van Hulse et 

al., 2007). It was demonstrated that the random sampling method outperforms intelligent 

sampling methods like SMOTE. The impact of the imbalance ratio on classifier outcomes 

on various resampling techniques was examined by Garca et Al (2009) which showed 

that evolutionary undersampling outperforms the nonevolutionary models when the 

degree of imbalance is increased (García & Herrera, 2009). To balance the initial 

unbalanced credit datasets, Crone and Finlay (2012) used both over- and under-sampling 

techniques (Crone & Finlay, 2012). Based on unbalanced credit scoring data sets, Brown 

and Mues (2012) developed experimental comparisons with a number of methodologies 

and found that  random forest and gradient-boosting classifiers perform very well in a 

credit scoring context (Brown & Mues, 2012). As a result of the findings, it was concluded 

that random forest and gradient-boosting classifiers function well in a credit-scoring 

scenario with observable class imbalances.  

To deal with unbalanced data in bankruptcy prediction, the authors in Sun et Al 

(2014) used a synthetic minority over-sampling technique (SMOTE) to balance the 

https://www.zotero.org/google-docs/?AaR3Fk
https://www.zotero.org/google-docs/?cv8Nv9
https://www.zotero.org/google-docs/?cv8Nv9
https://www.zotero.org/google-docs/?zLRyBR
https://www.zotero.org/google-docs/?zLRyBR
https://www.zotero.org/google-docs/?cIb7i5
https://www.zotero.org/google-docs/?WkqkFl
https://www.zotero.org/google-docs/?HVOUIh
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distribution of the company failure dataset. In another study, to create minority class 

samples for Chinese tourism business failure alerts, the authors Li et al. (2014b) (Li et al., 

2014) presented a k-nearest neighbors (kNN) algorithm based on an oversampling 

technique Chen et Al (2019) (Cheng et al., 2019). 

A cost-sensitive SVM was proposed in Kim (2014) work which assigned a higher 

weight to the misclassified majority class samples, thus modifying the decision boundary 

and the optimal classification hyperplane (Kim & Upneja, 2014). On the imbalanced 

datasets used in the experiments, the proposed cost-sensitive SVM method achieved an 

average accuracy of 91.52%, which was significantly higher than the accuracies achieved 

by the other methods.   

Zięba et al. (2016) classified firms using an extension of Extreme Gradient 

Boosting and said that the findings were applicable to all data in this area of study (Zięba 

et al., 2016). Additionally, they created a brand-new technique known as synthetic 

features to guarantee that data appropriately depicts higher-order statistics. The authors 

in Sun et Al (2018) developed an ensemble model for imbalanced credit evaluation based 

on the SMOTE algorithm and the bagging technique with various sample rates (Sun et al., 

2018). The SMOTE algorithm is used to oversample the minority class, while the bagging 

technique is used to reduce the overfitting of the model. The proposed model achieved 

better results than other methods like DT, over-sampling DT, over-under-sampling DT, 

SMOTE DT, etc. in terms of accuracy, precision, recall, and F1 score.  

In Veganzones et Al (2018), the authors examined the degree of imbalance, loss of 

performance, and sampling techniques under Spanish unbalanced bankruptcy data 

(Veganzones & Séverin, 2018). It was found that the prediction loss rises with the 

imbalanced proportion. In addition, the support vector machine method is less influenced 

by imbalanced datasets than linear discriminant analysis, logistic regression, random 

forests, and neural networks. Furthermore, the SMOTE performs better than other 

sampling techniques (for instance, random oversampling, random undersampling, and 

easy ensemble) for all types of prediction models and different training set sizes.  

In Garcia et al. (2019), six different bankruptcy prediction models were tested on a 

dataset of Brazilian firms with different class distribution ratios. The models included 

logistic regression, support vector machines, random forests, neural networks, gradient 

boosting machines, and k-nearest neighbors (V. García et al., 2019). The evaluation was 

performed using various performance metrics, including accuracy, precision, recall, F1-

https://www.zotero.org/google-docs/?ViZRV8
https://www.zotero.org/google-docs/?ViZRV8
https://www.zotero.org/google-docs/?qVSYTd
https://www.zotero.org/google-docs/?wXNqm8
https://www.zotero.org/google-docs/?VdbU4w
https://www.zotero.org/google-docs/?VdbU4w
https://www.zotero.org/google-docs/?2E1wKR
https://www.zotero.org/google-docs/?2E1wKR
https://www.zotero.org/google-docs/?1nBll2
https://www.zotero.org/google-docs/?broken=DHG2gs
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score, and the area under the ROC curve. The results showed that the performance of the 

models varied depending on the class distribution ratio in the dataset. In particular, the 

random forest and gradient boosting models performed better when the dataset was 

more balanced, while the logistic regression and k-nearest neighbors models performed 

better when the dataset was more unbalanced.  

In recent research, various techniques have been employed to improve the performance 

of classification models on imbalanced datasets. One such approach, introduced by 

Quynh et al. (2020), is the synthetic minority over-sampling technique (SMOTE). This 

technique has been used to balance class distribution in datasets, and its successful 

application led to an impressive accuracy score of 99.52% (Quynh & Phuong, 2020). Smiti 

and Soui (2020) proposed a Borderline Synthetic Minority oversampling technique with 

a Stacked auto-encoder (BSM-SAES) approach to balance the Polish data sets and 

decrease the dimensionality of variables for predicting bankruptcy(Smiti & Soui, 2020).  

Three separate financial data sets with various types of attributes were used by 

Lahmiri et al. (2020). These included a quantitative data set that was comparable to the 

data from Polish companies in their first year, a qualitative data set, and a credit scoring 

data set that combined quantitative and qualitative data (Lahmiri et al., 2020). On such 

data sets, ensemble classifiers such as AdaBoost, LogitBoost, RUSBoost, subspace, and 

Bagging were used. The outcomes demonstrated that AdaBoost outperformed other 

ensemble financial classification techniques for this Polish data set, with the lowest error 

of 0.0532; RUSBoost, LogitBoost, Bagging, and Subspace had the lowest errors in that 

order. 

In a similar vein, Keya et al. (2021) adopted a combination of feature extraction 

and recursive feature elimination (RFE) to select the most informative features from a 

pool of 64. They also leveraged SMOTE to address the data imbalance issue (Keya et al., 

2021). The models they employed, including AdaBoost, decision tree, random forest, J48, 

and bagging, achieved an accuracy of 97%. Aljawazneh et al. (2021) assessed the 

effectiveness of five ensemble techniques and a variety of DL models using three distinct 

data sets, including polish data. Following the use of the oversampling approach, the 

authors employed the XGBoost, RF, SVM, K_NN, Deep belief network (DBN), Long-short 

term memory (LSTM), and Multilayer Perceptron With 6 Layers (MLP 6L)(Aljawazneh et 

al., 2021). 

https://www.zotero.org/google-docs/?cKlQz7
https://www.zotero.org/google-docs/?AxqakH
https://www.zotero.org/google-docs/?M1DNgw
https://www.zotero.org/google-docs/?2pZDpp
https://www.zotero.org/google-docs/?2pZDpp
https://www.zotero.org/google-docs/?R0aNHM
https://www.zotero.org/google-docs/?R0aNHM
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Zahiri (2022) used SMOTE in order to deal with the imbalance in the dataset. Apart 

from trying out various preprocessing and balancing techniques, they used complex 

neural networks like convolutional neural networks and artificial neural networks in 

order to deal with such dataset and performed exceptionally well especially in terms of 

accuracy and sensitivity (Zahiri, 2022). 

In this study, we aim to conduct a comparative analysis of the performance of 

several classifiers on the original dataset and various resampled datasets. Both random 

oversampling and random undersampling are considered in our analysis. On all three 

different datasets, we compare the accuracy, specificity, and sensitivity of six different 

classifiers, including logistic regression, random forest, decision trees, XGBoost, 

LightGBM, and CatBoost. Logistic regression, random forest, and decision trees are 

commonly used in previous studies. However, examining and comparing the 

effectiveness of Gradient Boosting models like XGBoost, LightGBM, and CatBoost is 

missing. Hence, our contributions follow. First, we examine the performance of various 

ensemble learning models in the context of bankruptcy prediction under various 

sampling schemes. Second, we compare their effectiveness to that of standard 

classification models, namely, the logistic regression and decision trees. 

Our study fills a significant vacuum in the literature by evaluating machine 

learning models for bankruptcy prediction using a variety of sampling techniques. In 

particular, we go further into previous research by looking at a wider range of models 

and comparing their performance over various years and sampling techniques, all the 

while utilizing the original unbalanced data as a point of reference. Furthermore, we 

advance this field by introducing undersampling approaches, an approach that was not 

as thoroughly investigated in earlier studies that mostly concentrated on oversampling. 

With the use of this thorough method, we can investigate and contrast the effectiveness 

of undersampling and oversampling techniques for reducing data imbalance and 

improving the accuracy of bankruptcy predictions. 

 

  

  

https://www.zotero.org/google-docs/?KCb3on
https://www.zotero.org/google-docs/?KCb3on
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Chapter 3 

Methodology 

As the dataset is highly imbalanced, we use random oversampling and random 

under-sampling. Our approach incorporates a robust 10-fold cross-validation protocol, 

ensuring the reliability of our results by systematically rotating through subsets of the 

data during training and testing. 

The overall experimental architecture is illustrated in Figure 1, outlining a 

comprehensive framework for our investigations. Within this framework, six distinct 

machine learning models are harnessed to discern between bankrupt and non-bankrupt 

companies. These models encompass logistic regression, XGBoost, decision trees, 

random forest, LightGBM, and CatBoost. Their selection is rooted in their simplicity and 

efficiency, requiring minimal parameter tuning, which aligns with common practices in 

the literature. 

The utilization of these classifiers is underlined by their widespread applicability 

and efficacy in handling imbalanced datasets. In the subsequent subsections, we provide 

concise details on each of these classifiers. The systematic integration of resampling 

techniques, cross-validation, and a diverse set of classifiers encapsulates a holistic 

strategy aimed at robustly addressing the intricacies of imbalanced datasets and 

enhancing the generalizability of our findings. 
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Figure 1. Flowchart of the experiments 

Our research methodology unfolds in a systematic fashion, as visualized in Figure 

1. The essence of our approach lies in addressing the intricacies of highly imbalanced 

financial data and meticulously assessing the performance of six chosen models. 

The first step involves the collection of data spanning multiple years, with each 

year's dataset exhibiting significant imbalance due to the rarity of default and bankruptcy 

events. We drop all the null values from our dataset. To mitigate this imbalance, we apply 

both oversampling and undersampling techniques to each year's data, resulting in three 

distinct sets: the original dataset, the undersampled dataset, and the oversampled 

dataset. This step is pivotal in ensuring that our models are tested under varying data 

conditions, capturing the nuances of financial risk patterns. 

To gauge the reliability and consistency of our results, we employ a 10-fold cross-

validation strategy. Each of the three dataset types for each year is further divided into 

ten subsets, ensuring that our models are rigorously tested and evaluated across a 

diverse array of data samples. 

The crux of our evaluation lies in the performance of the six selected models: 

logistic regression, XGBoost classifier, decision tree classifier, Random Forest classifier, 

LightGBM classifier, and CatBoost classifier. Each model, trained independently, is 

assessed based on three critical evaluation metrics: accuracy, sensitivity, and specificity. 

This multifaceted evaluation approach enables us to comprehensively understand how 

each model performs in the intricate task of identifying financial risk within imbalanced 

datasets. 

By meticulously adhering to this systematic workflow, we aim to provide valuable 

insights into the comparative performance of these models, shedding light on the 

complexities of financial risk assessment in the face of highly imbalanced data. The 

robustness of our approach ensures that our findings are both reliable and 

comprehensive, contributing to the ongoing discourse surrounding financial risk 

management. 

3.1 Machine Learning Models 

There were various machine learning algorithms and models that were used in 

our research namely, Logistic Regression, XGBoost, Decision Trees, random forest, 
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LightGBM, and Catboost. Here is a brief discussion and the mathematical approach 

behind each algorithm in a bit of detail:  

3.1.1 Logistic Regression 

Logistic Regression Stoltzfus et Al (2011) is a classification method used in 

machine learning to model the dependent variable, and a logistic (sigmoid) function is 

used(Stoltzfus, 2011). There are only two viable classes because the dependent variable 

is dichotomous in nature. In logistic regression, the main modeling assumption is that the 

function 𝑎(𝑥) is linear in 𝑥. In particular, in logistic regression, we have : 

 

𝑦(𝑥)  =  𝑝(𝐶1 |𝑥)  =  𝜎(𝑤 ⊤𝑥)                  (2) 

                                                                      

where 𝑤 is the weight vector for the linear model and ⊤ denotes the transpose of a 

matrix (vector). 

The connection is nonlinear overall because of the activation function 𝜎(. ), despite 

the linear assumption first appearing restricted. Moreover, logistic regression works 

quite robustly, as seen by its application in several disciplines. Since the feature vector in 

this model is 𝑀 dimensional, there will be 𝑀 parameters corresponding to 𝑤 = (𝑤1, 𝑧2, 

…, 𝑥𝑀). In other words, the number of parameters in this model matches the number of 

features. It goes without saying that as features grow, so will the number of model 

parameters. Using basis functions or other reduction strategies is one way to lower the 

number of parameters. 

Logistic Regression offers interpretability, facilitating the understanding of how 

predictor variables impact the likelihood of a specific outcome. It is particularly efficient 

with smaller datasets and is well-suited for constrained data availability. However, it 

does have limitations, including the assumption of linear relationships between 

predictors and the log odds of the outcome, making it less suitable for capturing complex 

nonlinear associations. Additionally, it can be susceptible to overfitting in cases with 

numerous predictors and has an assumption of predictor independence, which may not 

hold in practical contexts. Outliers in the data can also exert a notable influence on its 

performance and parameter estimates. 

https://www.zotero.org/google-docs/?i6xRf8
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3.1.2 XGBoost  

Extreme gradient boosting Chen et Al (2016), often known as XGBoost classifier, 

is a gradient tree-boosting technique. It is an ensemble additive model that chooses the 

function that minimizes the loss from among numerous base learners or functions(T. 

Chen & Guestrin, 2016). A tree is eagerly constructed using XGBoost, and the split that 

minimizes loss the most is selected. Here's how the XGBoost algorithm decides the best 

loss function: 

𝐿𝑠𝑝𝑙𝑖𝑡  =  
1

2
[

(∑𝑖∈𝐼𝐿
𝑔𝑖)

2

∑𝑖∈𝐼𝐿
ℎ𝑖 + 𝜆

+
(∑𝑖∈𝐼𝑅

𝑔𝑖)
2

∑𝑖∈𝐼𝑅
ℎ𝑖 + 𝜆

 −  
(∑𝑖∈𝐼 𝑔𝑖)

2

∑𝑖∈𝐼 ℎ𝑖 + 𝜆
 ]  −  𝛾                                               (2) 

 

Here, Lsplit refers to the loss function of the current split, which is the sum of the losses 

of the left and right splits, ILis the set of instances of the left split, IRis the set of instances 

of the right split, gi is the gradient of the loss function with respect to the predicted value 

of the ith instance, hi is the second derivative of the loss function with respect to the 

predicted value of the ith instance, is the regularization parameter and is the minimum 

loss reduction required to make a further partition on a leaf node of the tree. 

Advantages of XGBoost include its high predictive accuracy, efficient handling of missing 

data, incorporation of regularization techniques to mitigate overfitting, and support for 

parallel processing, leading to faster computation times. However, it is associated with 

complexity, particularly for beginners, can be computationally intensive, demands 

thorough hyperparameter tuning, and may pose challenges in terms of model 

interpretability due to its advanced features and complexity. 

3.1.3 Decision Trees 

The decision tree classifier Breiman et Al (2017) creates the classification model 

by building a decision tree(Breiman, 2017).  A test on an attribute is specified by each 

node in the tree, and each branch descending from that node represents one of the 

possible values for that attribute. A decision tree is mainly made using the Gini Index and 

Entropy. The Gini Index is calculated as follows: 

 

𝐺𝑖𝑛𝑖𝐼𝑛𝑑𝑒𝑥 =  1 −  ∑𝑛
𝑖=1 𝑝𝑖

2                                                                                          (3) 

https://www.zotero.org/google-docs/?v3cHtj
https://www.zotero.org/google-docs/?v3cHtj
https://www.zotero.org/google-docs/?WgwRWS
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where p refers to the probabilities of each class. The Gini Index measures the 

probability of misclassifying a randomly chosen sample from the dataset, and it is 

minimized when all samples in a node belong to the same class. 

Decision trees approach is particularly lauded for its interpretability, allowing 

users to comprehend the decision-making process. Decision trees are versatile in 

capturing both linear and nonlinear relationships in the data and are computationally 

efficient for prediction, especially with smaller datasets. They also serve as useful feature 

selection tools by virtue of the tree structure. However, they are susceptible to 

overfitting, especially when the trees become complex, necessitating pruning to achieve 

optimal generalization. Decision trees may exhibit instability in response to minor 

variations in the data, and in imbalanced datasets, they can display a bias toward 

dominant classes. Their limited ability to represent intricate decision boundaries is 

another constraint (García & Herrera, 2009). 

3.1.4 Random forest  

Each decision tree in the ensemble that makes up the random forest classifier 

Breiman et Al (2001) is composed of a data sample taken from a training set with a 

replacement known as the bootstrap sample(Breiman, 2001). It is a meta-estimator that 

applies multiple decision tree classifiers to different dataset sub-samples and averages 

the outcomes. Calculating the relevance of each attribute for each tree, then dividing that 

total by the number of trees yields: 

𝑅𝐹𝑓𝑖𝑖  =  
∑𝑗∈𝑎𝑙𝑙𝑡𝑟𝑒𝑒𝑠 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗

𝑇
                                                                                              (4) 

 

𝑅𝐹𝑓𝑖𝑖= the importance of feature 𝑖 calculated from all trees in the random forest 

model, nor 𝑛𝑜𝑟𝑚𝑓𝑖𝑖𝑗= the normalized feature importance for  𝑖 in tree j and 𝑇 = Total 

number of trees.  

Random Forest offers several merits, including high predictive accuracy, 

robustness to outliers and noise in the data, efficient handling of large datasets, and the 

ability to identify feature importance, aiding in feature selection and interpretability. 

Despite its numerous strengths, random forest has some limitations, such as potential 

overfitting, computational resource requirements, and reduced transparency compared 

to individual decision trees. Interpretability can be compromised when dealing with a 

https://www.zotero.org/google-docs/?LNiW3c
https://www.zotero.org/google-docs/?PCdGrK
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large number of trees in the ensemble. In summary, random forest is a formidable 

ensemble method that excels in predictive performance and robustness. 

3.1.5 LightGBM Classifier  

The LightGBM classifier Ke et Al (2017) is a quickly distributed high-performance 

gradient-boosting framework used for many different machine learning applications, 

including classification and ranking(Ke et al., 2017). While other tree-based learning 

algorithms grow trees horizontally, LightGBM develops trees vertically. In contrast to 

other algorithms, LightGBM grows like a tree from the leaves up. The leaf with the 

greatest delta loss will be chosen to grow. When expanding the same leaf, the leaf-wise 

algorithm can reduce loss more than a level-wise algorithm. 

𝑉𝑗(𝑑)  =  
1

𝑛
(

(∑𝑥𝑖∈𝐴𝑙
𝑔𝑖 + 

1−𝑎

𝑏
∑𝑥𝑖∈𝐵𝑙

𝑔𝑖)
2

𝑛𝑙
𝑗

(𝑑)
 +  

(∑𝑥𝑖∈𝐴𝑟
𝑔𝑖 + 

1−𝑎

𝑏
∑𝑥𝑖∈𝐵𝑟

𝑔𝑖)
2

𝑛𝑟
𝑗

(𝑑)
)                          (5) 

 

where 𝑉𝑗(𝑑) refers to the score of node j when splitting on feature d, 𝑥𝑖 refers to 

the number of samples in the dataset that are assigned to node i, 𝐴𝑙 refers to the sum of 

the target values for the samples assigned to node i, 𝐵𝑙  refers to the  sum of the squared 

target values for the samples assigned to node i,  𝐴𝑟 refers to the sum of the gradient 

values for the samples assigned to node i, 𝐵𝑟 refers to the  sum of the squared gradient 

values for the samples assigned to node i, and n refers to the total number of instances. 

LightGBM natively accommodates categorical features, reducing the need for extensive 

pre-processing. It also excels at feature selection, quantifying the significance of 

predictors. It is sensitive to outliers in the data and it is necessary for precise 

hyperparameter tuning for optimal performance.  

3.1.6 CatBoost Classifier  

The CatBoost classifier Prokhorenkova et Al. (2018) is based on gradient-boosted 

decision trees.  A series of decision trees are built sequentially during 

training(Prokhorenkova et al., 2018). In comparison to the preceding trees, each 

subsequent tree is constructed with less loss. 

ℎ(𝑥)  =  ∑𝐽
𝑗=1 𝑏𝑗1{𝑥∈𝑅𝑗}                                                                                                   (6) 

 

https://www.zotero.org/google-docs/?6jxbn3
https://www.zotero.org/google-docs/?wFiAvz
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where 𝑅𝑗 are the disjoint regions corresponding to the leaves of the tree, x is the 

input variable, which can be a scalar or a vector, 𝑏𝑗 is the constant value assigned to x in 

the jth interval. This is also known as the weight or coefficient of the interval.  

CatBoost's ability to efficiently handle categorical features without the need for 

one-hot encoding offers a significant advantage, simplifying the preprocessing phase and 

reducing the risk of dimensionality explosion. It further distinguishes itself by its innate 

capacity to handle missing data, enhancing the algorithm's resilience when confronted 

with real-world, noisy datasets. It is essential to consider that CatBoost's inherently deep 

model structure may compromise the interpretability of the model in complex ensemble 

scenarios. Also, its computational demands should not be underestimated. 

3.2 Evaluation Metrics 

We evaluate all classification models based on accuracy (correct classification 

rate), sensitivity, and specificity which are widely used in classification problems. They 

are expressed as follows: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦    =  
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                                          (7) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                        (8) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦  =  
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                      (9) 

 

We implement the 10-fold cross-validation protocol to ensure the robustness of 

our results. This involves dividing the dataset into ten subsets, training the model on nine 

of them, and testing on the remaining one in a systematic rotation. This process is 

repeated ten times, each time using a different subset as the test set. 

To gauge the impact of resampling techniques on the distribution of scores, we 

calculate the average and standard deviation of each performance metric across these ten 

folds. This statistical analysis provides a comprehensive view of how our model performs 

under various conditions, considering the fluctuations introduced by different subsets. 

The average gives us a central tendency measure, offering insight into the typical 
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performance, while the standard deviation quantifies the degree of variation or 

consistency in our results. 

By examining both the average and standard deviation, we gain a nuanced 

understanding of the stability and reliability of our model. A lower standard deviation 

indicates less variability in the performance metrics, suggesting a more consistent and 

robust model across different subsets. This meticulous evaluation process ensures that 

our results are not skewed by the particularities of a single subset, enhancing the 

generalizability and validity of our findings. 
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Chapter 4 

Dataset 

The dataset, sourced from the Emerging Markets Information Service database, 

examines the likelihood of Polish businesses declaring bankruptcy (Tomczak, 2016). The 

data covers the period from 2000 to 2013, focusing on companies that filed for 

bankruptcy between 2000 and 2012 and those that remained operational from 2007 to 

2013. There are 64 attributes labeled X1 to X64 a, with a class column indicating 

bankruptcy status: '0' signifies a company that did not file for bankruptcy, while '1' 

indicates one that did. Table 1 summarizes the dataset, while Table 2 summarizes all the 

columns used in the dataset and their information. 

Five categorization cases are defined by the dataset according to various forecast 

periods. Using financial rates from the first forecasting period, 7,027 cases were 

examined in the first year; 271 of those enterprises declared bankruptcy, while 6,756 

remained solvent. This makes up 271 out of 7027, or roughly 3.85% of all the companies 

mentioned. 

A total of 10173 instances were analyzed in the second year, which focused on 

financial rates from the second year of the projection period. Of these, 400 companies 

filed for bankruptcy, and 9,773 companies remained in existence. This amounts to around 

400 out of 10173, or 3.93%, of all the companies that filed for bankruptcy during this time 

frame. Taking into account the financial rates from the third year of the forecasted period, 

10503 cases were noted in the third year; 495 of these companies declared bankruptcy, 

leaving 10008 businesses still in business. In this time period, 495 out of 10503 

enterprises, or around 4.71% of all corporations, declared bankruptcy. 

A total of 9,792 cases were evaluated in the fourth year of the forecasted period 

based on an examination of financial rates; 515 firms were declared bankrupt, and 9,277 

did not file for bankruptcy. This means that 515 out of 9792 firms, or around 5.26% of all 

enterprises, will file for bankruptcy during this time. Using financial rates from the fifth 

year of the forecasted period, 5,910 instances were assessed in the fifth year; 410 of these 

enterprises declared bankruptcy, while 5,500 continued to operate. This accounts for 

https://www.zotero.org/google-docs/?gbwYsx
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approximately 6.94% of the total companies (410 out of 5910) that filed for bankruptcy 

during this period. 

 

Table 1. Description of the Polish dataset 

 

Year Total Companies Bankrupted Non-Bankrupted 

1 7027 271 6756 

2 10173 400 9773 

3 10503 495 10008 

4 9792 515 9277 

5 5910 410 5500 

 

Table 2. Description of each attribute in the dataset 

 

Attribute Description 

X1 Net profit / Total assets 

X2 Total liabilities / Total assets 

X3 Working capital / Total assets 

X4 Current assets / Short-term liabilities 

X5 
[(Cash + Short-term securities + Receivables - Short-term 

liabilities) / (Operating expenses - Depreciation)] * 365 

X6 Retained earnings / Total assets 
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X7 EBIT / Total assets 

X8 Book value of equity / Total liabilities 

X9 Sales / Total assets 

X10 Equity / Total assets 

X11 
(Gross profit + Extraordinary items + Financial expenses) 

/ Total assets 

X12 Gross profit / Short-term liabilities 

X13 (Gross profit + Depreciation) / Sales 

X14 (Gross profit + Interest) / Total assets 

X15 (Total liabilities * 365) / (Gross profit + Depreciation) 

X16 (Gross profit + Depreciation) / Total liabilities 

X17 Total assets / Total liabilities 

X18 Gross profit / Total assets 

X19 Gross profit / Sales 

X20 (Inventory * 365) / Sales 

X21 Sales (n) / Sales (n-1) 

X22 Profit on operating activities / Total assets 

X23 Net profit / Sales 

X24 Gross profit (in 3 years) / Total assets 

X25 (Equity - Share capital) / Total assets 
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X26 (Net profit + Depreciation) / Total liabilities 

X27 Profit on operating activities / Financial expenses 

X28 Working capital / Fixed assets 

X29 Logarithm of total assets 

X30 (Total liabilities - Cash) / Sales 

X31 (Gross profit + Interest) / Sales 

X32 (Current liabilities * 365) / Cost of products sold 

X33 Operating expenses / Short-term liabilities  

X34 Operating expenses / Total liabilities 

X35 Profit on sales / Total assets 

X36 Total sales / Total assets 

X37 (Current assets - Inventories) / Long-term liabilities 

X38 Constant capital / Total assets 

X39 Profit on sales / Sales 

X40 
(Current assets - Inventory - Receivables) / Short-term 

liabilities 

X41 
Total liabilities / ((Profit on operating activities + 

Depreciation) * (12/365)) 

X42 Profit on operating activities / Sales 

X43 Rotation receivables + Inventory turnover in days  



 

22 

X44 (Receivables * 365) / Sales 

X45 Net profit / Inventory 

X46 (Current assets - Inventory) / Short-term liabilities 

X47 (Inventory * 365) / Cost of products sold 

X48 
EBITDA (Profit on operating activities - Depreciation) / 

Total assets 

X49 
EBITDA (Profit on operating activities - Depreciation) / 

Sales 

X50 Current assets / Total liabilities 

X51 Short-term liabilities / Total assets 

X52 (Short-term liabilities * 365) / Cost of products sold 

X53 Equity / Fixed assets 

X54 Constant capital / Fixed assets 

X55 Working capital 

X56 (Sales - Cost of products sold) / Sales 

X57 
(Current assets - Inventory - Short-term liabilities) / 

(Sales - Gross profit - Depreciation) 

X58 Total costs / Total sales 

X59 Long-term liabilities / Equity 

X60 Sales / Inventory 
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X61 Sales / Receivables 

X62 (Short-term liabilities * 365) / Sales 

X63 Sales / Short-term liabilities 

X64 Sales / Fixed assets 

 

From our above observations, one can derive that there needs to be some solution 

to this massive difference between counts of companies that go bankrupt and those not 

which may heavily affect how the model reacts to it. Then, we can either make use of over-

sampling or under-sampling in order to equally balance the dataset and make use of 

machine learning models on it. 

This study explores the use of six different classifiers consisting of logistic 

regression, XGBoost classifier, decision tree classifier, random forest classifier, LightGBM 

classifier, and CatBoost classifier over three differently sampled datasets over a period of 

five years. The results were calculated over 10 folds and here as result, the average of all 

folds has been shown.  
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Chapter 5 

Results 

As we can see from Tables  3, 4, 5 and 6 the accuracy has been the highest for the 

original dataset, then for the undersampled dataset for the first year.. The standard 

deviation for accuracy is relatively less than the oversampled and undersampled 

datasets. The sensitivity score is quite high for the undersampled dataset which means 

that the undersampled data set correctly classifies the companies that went bankrupt as 

compared to the other two datasets for each of the classifiers. As for the classifiers, the 

XBGClassifier performed the best for the original dataset. As for the oversampled dataset, 

logistic regression performed well for accuracy and sensitivity but lacked predicting 

specificity. In the undersampled dataset, CatBoost seemed to perform the best. Thus, 

gradient boosting methods seem to outperform other traditional machine learning 

algorithms.  

Table 3. Summary of obtained accuracy 

 

Models Year 1 Year 2 Year 3 Year 4 Year 5 

Original dataset 

Logistic 0.9897±0.

0064 

0.9805±0.

1039 

0.9772±0.

0098 

0.9737±0.0

006 

0.9641±0.

0084 

XGB 0.9906±0.

0063 

0.9810±0.

0908 

0.9788±0.

0091 

0.9739±0.0

062 

0.9673±0.

0109 

Decision tree 0.9819±0.

0095 

0.9634±0.

0938 

0.9605±0.

0088 

0.9505±0.0

091 

0.9502±0.

0075 

Random forest 0.9888±0.

0077 

0.9794±0.

1042 

0.9753±0.

0086 

0.9723±0.0

081 

0.9674±0.

0091 

LGBM 0.9891±0. 0.9835±0 0.9809± 0.9765±0. 0.9706±0
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0072 .0719 0.0081 0074 .0106 

CatBoost 0.9897±0

.0066 

0.9827±0.

0650 

0.9799±0.

0088 

0.9754±0.0

080 

0.9700±0.

0104 

Over-sampled dataset 

Logistic 0.6314±0

.1502 

0.6282±0

.1870 

0.5699±0.

0855 

0.6351±0.

0721 

0.7064±0

.0753 

XGB 0.5627±0.

2271 

0.5694±0.

1387 

0.6410±

0.1168 

0.5874±0.1

141 

0.6493±0.

1424 

Decision tree 0.5750±0.

2163 

0.5723±0.

1179 

0.6121±0.

1174 

0.5494±0.1

040 

0.5982±0.

0678 

Random forest 0.5633±0.

2413 

0.5422±0.

0999 

0.5359±0.

1360 

0.5211±0.1

008 

0.5958±0.

0912 

LGBM 0.5614±0.

2700 

0.5676±0.

9046 

0.6410±0.

1217 

0.5580±0.1

175 

0.6430±0.

0135 

CatBoost 0.5631±0.

2415 

0.5726±0.

1033 

0.6349±0.

1218 

0.5620±0.1

146 

0.6533±0.

`1266 

Under-sampled dataset 

Logistic 0.6359±0.

1727 

0.5769±0.

1870 

0.5695±0.

0860 

0.6436±0.1

131 

0.6874±0.

1069 

XGB 0.8653±0.

2052 

0.720±0.1

387 

0.7302±0.

0910 

0.7007±0.0

757 

0.8022±0.

0719 

Decision tree 0.7971±0.

2141 

0.7245±0

.1179 

0.6932±0.

1083 

0.662±0.09

76 

0.8057±0.

1350 

Random forest 0.8389±0.

2224 

0.7241±0.

0999 

0.7482±0.

08884 

0.6940±0.0

623 

0.7860±0.

1100 
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LGBM 0.8365±0.

2072 

0.7175±0.

0946 

0.7387±0.

1041 

0.7366±0.

0689 

0.8201±0

.0077 

CatBoost 0.9097±0

.1674 

0.7225±0.

1033 

0.7625±

0.0784 

0.7236±0.0

751 

0.8076±0.

0644 

 

As we can see from Tables 3, 4, 5 and 6 that the accuracy has been the highest for 

the original dataset, then for the undersampled dataset for the second. The standard 

deviation for accuracy is relatively less than the oversampled and undersampled 

datasets. The sensitivity score is quite high for the undersampled dataset which means 

that the undersampled data set correctly classifies the companies that got bankrupt as 

compared to the other two datasets for each of the classifiers. As for the classifiers, XBG 

Classifier performed the best for the original dataset. As for an oversampled dataset 

logistic regression performed well for accuracy and sensitivity but lacked predicting 

specificity. In the undersampled dataset, CatBoost seemed to perform the best. Thus, 

gradient boosting methods seem to outperform other traditional machine learning 

algorithms.  

Table 4. Summary of obtained sensitivity 

Models Year 1 Year 2 Year 3 Year 4 Year 5 

Original dataset 

Logistic 0 0±0.2421 0 0 0.0503±0.

0539 

XGB 0 0.01±0.15

17 

0.0611±0.0

849 

0.0629±0.0

968 

0.1919±0.

1069 

Decision tree 0.05±0.1

067 

0.0683±0.

1562 

0.2231±0.

1297 

0.1613±0.1

018 

0.2940±0

.1423 

Random forest 0 0±0.0791 0.01180±0.

0236 

0.0615±0.1

078 

0.168±0.1

259 
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LGBM 0 0.0916±0

.1254 

0.2057±0.1

349 

0.1437±0.

0916 

0.2882±0.

1514 

CatBoost 0 0.0308±0.

1253 

0.1011±0.1

060 

0.08893±0.

1051 

0.2369±0.

1366 

Over-sampled dataset 

Logistic 0.5250±

0.3758 

0.4762±0

.1870 

0.2910±0.

2240 

0.6091±0.

1693 

0.6933±0

.1662 

XGB 0 

±0.0480 

0.0953±0.

1287 

0.2466±0.1

425 

0.1684±0.1

584 

0.2954±0.

2640 

Decision tree 0.0283±0

.1441 

0.1094±0.

1179 

0.2095±0.1

157 

0.1008±0.1

133 

0.1975±0.

0683 

Random forest 0 0.0395±0.

0999 

0.02724±0.

0923 

0.0293±0.0

942 

0.1811±0.

1607 

LGBM 0 0.0898±0.

0946 

0.2576±0.1

367 

0.1081±0.1

545 

0.2867±0.

2388 

CatBoost 0 0.10143±

0.1033 

0.2420±0.1

750 

0.1246±0.1

311 

0.2940±0.

2259 

Under-sampled dataset 

Logistic 0.4583±0

.4108 

0.6758±0.

3164 

0.6012±0.1

031 

0.6885±0.1

614 

0.7996±0.

1686 

XGB 0.6750±0

.4163 

0.7383±0.

14941 

0.7228±0.1

545 

0.7171±0.0

926 

0.8035±0.

1244 

Decision tree 0.5583± 

0.4349 

0.6516±0.

1379 

0.6711±0.2

321 

0.6709±0.0

992 

0.8190±0.

1993 

Random forest 0.7166±0

.4203 

0.7025±0.

2731 

0.7453±0.1

522 

0.7084±0.1

217 

0.8111±0.

2205 
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LGBM 0.7083±0

.43588 

0.7716±0

.1553 

0.7170±0.1

628 

0.7568±0.1

146 

0.7989±0.

1072 

CatBoost 0.8000±

0.4163 

0.7350±0.

1498 

0.7794±0.

1610 

0.7793±0.

0811 

0.8503±0

.1308 

 

As we can see from Tables 3, 4, 5 and 6 that the accuracy has been the highest for 

the original dataset, then for the undersampled dataset of the third year. The standard 

deviation for accuracy is relatively less than the oversampled and undersampled 

datasets. The sensitivity score is quite high for the undersampled dataset which means 

that the undersampled data set correctly classifies the companies that went bankrupt as 

compared to the other two datasets for each of the classifiers. As for the classifiers, the 

XBG classifier performed the best for the original dataset. As for the oversampled dataset, 

logistic regression performed well for accuracy and sensitivity but lacked predicting 

specificity. In the undersampled dataset, CatBoost seemed to perform the best. Thus, 

gradient boosting methods seem to outperform other traditional machine learning 

algorithms. 

Table 5. Summary of obtained specificity  

Models Year 1 Year 2 Year 3 Year 4 Year 5 

Original dataset 

Logistic 0.9990+0.0

014 

0.9985±0.

05754 

0.9991±0.

00103 

0.9989±

0.0014 

0.9959±0.0

044 

XGB 1 0.9987±0.

0029 

0.9993 

±0.0009 

0.9978±0

.0009 

0.9948±0.0

044 

Decision tree 0.9905±.00

729 

0.9792±0.

00878 

0.9771±0.

0051 

0.9714±0

.0072 

0.9761±0.0

078 

Random forest 0.9981±0.0

0207 

0.9973±0.

0021 

0.9968±0.

0017 

0.9963±0

.0033 

0.9950±0.0

031 
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LGBM 0.9984±0.0

051 

0.9992±0.

0025 

0.9983±0.

0015 

0.9982±0

.0021 

0.9948±0.0

058 

CatBoost 0.9990±0.0

014 

1 0.9995±0

.0008 

0.9989±

0.0014 

0.9965±0.0

030 

Over-sampled dataset 

Logistic 0.6788±0.8

814 

0.7695±0.

18702 

0.8246±0.

0636 

0.6673±0

.0354 

0.7227±0.0

708 

XGB 0.9976±0.0

017 

0.9984±0.

1387 

0.9976±0

.0026 

0.9946±0

0.0021 

0.9884±0.0

060 

Decision tree 0.9881±0.0

074 

0.9860±0.

1179 

0.9791±0.

0073 

0.9802±0

.0045 

0.9783±0.0

098 

Random forest 0.9988±0.

0030 

0.9975±0.

0999 

0.9979±0.

0017 

0.9967±

0.0032 

0.9927±0.0

075 

LGBM 0.9956±0.0

055 

0.9991±0

.0946 

0.9976±0

.0032 

0.9940±0

.0026 

0.9901±0.0

063 

CatBoost 0.9984±0.0

026 

0.9988±0.

1033 

0.9966±0.

0029 

0.9951±0

.0029 

0.9880±0.0

078 

Under-sampled dataset 

Logistic 0.6666±0.2

362 

0.5527±0.

2953 

0.5541±0.

1918 

0.5992±0

.1983 

0.6103±0.1

219 

XGB 0.9166±0.

2291 

0.6933±0.

1795 

0.7228±0.

1242 

0.6958±0

.0949 

0.8066±0.1

507 

Decision tree 0.8833±0.2

291 

0.8155±0

.24835 

0.6872±0.

1324 

0.6702±0

.1658 

0.8039±0.1

805 

Random forest 0.8333±0.2

891 

0.7661±0.

1719 

0.7339±0.

1486 

0.7009±0

.1301 

0.7836±0.0

978 
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LGBM 0.8333±0.3

167 

0.6733±0.

18786 

0.7526±0

.1750 

0.7221±

0.1243 

0.8637±0.1

621 

CatBoost 0.8833±0.2

260 

0.7377±0.

1757 

0.7259±0.

1148 

0.6986±0

.1275 

0.7799±0.1

108 

 

As we can see from Tables 3, 4, 5 and 6 that the accuracy has been the highest for 

the original dataset, then for the undersampled dataset for the fourth. The standard 

deviation for accuracy is relatively less as compared to the oversampled and 

undersampled datasets. The sensitivity score is quite high for the undersampled dataset 

which means that the undersampled data set correctly classifies the companies that got 

bankrupt as compared to the other two datasets for each of the classifiers. As for the 

classifiers, XBG classifier performed the best for the original dataset. As for oversampled 

dataset logistic regression performed well for accuracy and sensitivity but lacked 

predicting specificity. In the undersampled dataset, CatBoost seemed to perform the best. 

Thus, gradient boosting methods seem to outperform other traditional machine learning 

algorithms.  

Table 6. Overall averages of performance measures across years.  

 

Models Average 

accuracy 

across years 

Average 

sensitivity across 

years 

Average 

specificity 

across years 

Original dataset 

Logistic 0.97704 0.01006 0.99828 

XGB 0.97832 0.06518 0.99812 

Decision tree 0.9613 0.15934 0.97886 

Random forest 0.97664 0.04826 0.9967 

LGBM 0.98012 0.14584 0.99778 
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CatBoost 0.97954 0.091546 0.99878 

Over-sampled dataset 

Logistic 0.6342 0.51892 0.73258 

XGB 0.60196 0.16114 0.99532 

Decision tree 0.5814 0.1291 0.98234 

Random forest 0.55166 0.055428 0.99672 

LGBM 0.5942 0.14844 0.99528 

CatBoost 0.59718 0.152406 0.99538 

Under-sampled dataset 

Logistic 0.62266 0.64468 0.59658 

XGB 0.76368 0.73134 0.76702 

Decision tree 0.7365 0.67418 0.77202 

Random forest 0.75824 0.59346 0.76356 

LGBM 0.76988 0.60886 0.769 

CatBoost 0.78518 0.62874 0.76508 

 

As we can see from Tables  3, 4, 5 and 6 that the accuracy has been the highest for 

the original dataset, then for the undersampled dataset,  and is least for the oversampled 

dataset for the fifth year. The standard deviation for accuracy is relatively less than the 

oversampled and undersampled datasets. The Sensitivity score is quite high for the 

undersampled dataset which means that the undersampled dataset correctly classifies 

the companies that went bankrupt as compared to the other two datasets for each of the 

classifiers. As for the classifiers, the LGBM classifier performed the best for the original 

dataset. As for the oversampled dataset, logistic regression performed well for accuracy 

and sensitivity but lacked predicting specificity. In the undersampled dataset, the LGBM 
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Classifier seemed to perform the best. Thus, gradient boosting methods seem to 

outperform other traditional machine learning algorithms. 

The analysis of five years of data suggests that the LightGBM classifier exhibited 

superior performance across metrics of accuracy, sensitivity, and specificity when 

neither oversampling nor undersampling techniques were employed. However, when 

utilizing oversampled data and evaluating the accuracy, the logistic regression algorithm 

demonstrated exceptional performance because logistic regression can handle 

imbalanced data better than tree-based models, which can be sensitive to class 

imbalance. Conversely, when utilizing under-sampled data, the LightGBM classifier 

emerged as the top performer in terms of accuracy. Additionally, when assessing 

sensitivity and specificity, the catBoost classifier emerged as the optimal choice. 

Table 7. Average time taken by each model to run 

 

Models Time Taken( in seconds) 

Original dataset 

Logistic 1.98 

XGB 8.25 

Decision tree 2.05 

Random forest 5.45 

LGBM 6.24 

CatBoost 123 

Over-sampled dataset 

Logistic 2.17 

XGB 12.1 

Decision tree 1.28 

Random forest 13.1 
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LGBM 6.91 

CatBoost 125 

Under-sampled dataset 

Logistic 0.382 

XGB 3.51 

Decision tree 0.084 

Random forest 2.28 

LGBM 0.155 

CatBoost 25 

 

The above table summarizes the average time taken by each model compiled by 

averaging the time to run each model over 10 folds on average on a Python notebook. 

Across the original dataset, the Decision Tree model emerged as the most efficient, 

executing in a modest 2.05 seconds. Its capability to rapidly process data while 

maintaining competitive performance positions it favorably. In the oversampled dataset 

scenario, despite increased computational demands, the Decision Tree model continued 

to outperform others, clocking in at 1.28 seconds. Its ability to swiftly handle the 

increased dataset size underscores its efficiency. Meanwhile, in the undersampled 

dataset context, the Decision Tree model remained exceptional, executing in a mere 0.084 

seconds. Its remarkable speed in handling reduced data volumes signifies its efficiency in 

resource optimization. The Decision Tree model's consistent swift performance across 

varied datasets highlights its suitability for efficient processing in both balanced and 

imbalanced dataset contexts. 

The performance and efficiency of Logistic Regression were notably prominent in 

the oversampled dataset, demonstrating both swift computation and remarkable 

accuracy. This model attributed considerable importance to specific attributes, notably 

Rotation Receivables + Inventory Turnover in Days, Operating Expenses / Short-term 
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Liabilities, Sales / Short-term Liabilities, Sales / Receivables, and Sales / Inventory, 

assigning them significant coefficients within the logistic regression results. 

Contrarily, in tree-based models, attributes such as (Receivables * 365) / Sales, 

Profit on Operating Activities / Financial Expenses, Total Costs / Total Sales, (Current 

Assets - Inventory) / Short-term Liabilities, and Operating Expenses / Total Liabilities 

held more significance. It's evident that these features significantly contributed to the 

performance of tree-based models, contrasting with their lesser impact on the logistic 

regression model's outcomes. This observation suggests that while certain attributes 

were pivotal for tree-based models, their importance was relatively diminished within 

the logistic regression framework. 

In comparison in Table 8, the current study employed oversampling and 

undersampling techniques and tested multiple models: Logistic Regression, XGBoost, 

Decision Tree, Random Forest, LightGBM, and CatBoost, achieving a notably higher 

accuracy of 98.97% with a sensitivity of 0.8503 and a specificity of 0.9995. The current 

study's superiority over past research lies in its significantly higher accuracy rate, 

reaching 98.97%, which surpasses all other studies listed in the table. Moreover, it 

showcases a superior specificity score of 0.9995, indicating its exceptional capability to 

identify true negative instances, which is crucial in bankruptcy prediction to avoid false 

alarms about companies facing financial distress. While the sensitivity score might not be 

the highest among all studies, the combined high accuracy and specificity reflect the 

effectiveness of the models used in this current research for accurate bankruptcy 

prediction while minimizing false positives. 

However, when we compare our own models, particularly the LightGBM classifier, 

to the approaches mentioned above, we find that our gradient-boosting models 

consistently outperform them in various scenarios. Our research demonstrates the 

efficacy of the LightGBM classifier and highlights its potential as a promising solution for 

handling imbalanced datasets and achieving higher accuracy in classification tasks, along 

with being extremely fast and reliable. 

Table 8. Comparison with previous studies validated on the same database 

 



 

35 

Study 

Details 

Techniqu-

es Used Models 

Best 

Accuracy 

Score 

Best 

Sensitivity 

Score 

Best 

Specificity 

Score 

Zięba et al 

(2016) 

Synthetic 

features 

Extreme 

Gradient 

Boosting 

95.9% 
Not 

Reported 

Not 

Reported 

Lahmiri et 

al. (2020) 
SMOTE  AdaBoost 94.6% 

Not 

Reported 

Not 

Reported 

Keya et al. 

(2021) 

Feature 

extraction, 

RFE, 

SMOTE 

AdaBoost, 

Decision Tree, 

Random Forest, 

J48, Bagging 

97% 0.94 
Not 

Reported 

Smiti and 

Soui (2020) 
BSM-SAES AutoEncoder 

 

97.4% 

Not 

Reported 

Not 

Reported 

Zahiri et Al. 

(2022) 
SMOTE CNN_2D 91.9% 0.45  0.938 

This Study 

Oversampl

ing and 

Undersam

pling 

Logistic 

Regression, 

XgBoost, 

Decision Tree, 

Random Forest, 

LightGBM, 

CatBoost 

98.97% 0.8503 0.9995 
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Chapter 6 

Discussions and Implications 
This research highlights the importance of predicting bankruptcy risk for financial 

institutions, governments, and the economy as a whole. By using data mining models and 

oversampling and under-sampling algorithms, organizations can make informed 

decisions, reduce financial risk, and increase profits and revenues. 

Foreseeing corporate bankruptcy stands as a crucial aspect in navigating the 

complex realm of financial security. Predicting and averting bankruptcy risk not only 

fosters economic stability but also amplifies profitability for financial institutions while 

bolstering government revenues. Consequently, businesses necessitate precise and 

reliable models to gauge financial risks, empowering them to make informed decisions. 

This pursuit holds relevance across various sectors, spanning banks, insurers, investment 

firms, and governmental entities (Fulmer et al., 1984). Leveraging data mining models 

for financial risk forecasting enables entities to refine investment strategies, optimize 

fund allocation, and steer clear of potential economic pitfalls. The broader economic 

implications of mitigating bankruptcy risk are profound. When companies face 

bankruptcy, there's often a domino effect leading to job layoffs, higher unemployment 

rates, and decreased consumer spending, ultimately hampering economic growth and 

stability. Accurate bankruptcy predictions empower organizations to take proactive 

measures, averting financial crises and nurturing economic progress. Additionally, this 

research bears significance in the realm of policymaking, offering insights that can shape 

robust policies aiming to prevent financial turmoil and bolster overall economic growth. 

This thesis is intended for a wide range of readers, including academics, data 

science enthusiasts, policymakers, and financial professionals. It offers an in-depth 

understanding of prediction models, financial risk management, and its applications. The 

comprehensive examination of bankruptcy prediction models by financial and credit 

analysts may be used to assess the financial standing of businesses, and investors and 

investment managers can use this information to improve their approach to making 

investments. It provides vital insights into efficient bankruptcy prediction models to 

banking organizations, assisting with risk management and loan approval procedures. 

Furthermore, by comprehending the macroeconomic ramifications of company 

bankruptcy, economists and policymakers may promote economic stability. This 

https://www.zotero.org/google-docs/?TEIPTf
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extensive thesis contains useful instructional and technical materials for academics, 

students, data scientists, and other industry practitioners. 

6.1 Theoretical Implications 

This study makes a substantial theoretical contribution by highlighting the critical 

function that predictive modeling plays in predicting bankruptcy risks. With the addition 

of sophisticated oversampling and undersampling algorithms and state-of-the-art data 

mining models, scholars have a comprehensive framework to investigate and improve 

prediction approaches. The integration of finance, data science, and economics in an 

interdisciplinary manner fosters cooperative research and idea exchange. Moreover, the 

examination of macroeconomic consequences expands the theoretical domain, providing 

researchers with a chance to investigate the cascading consequences of financial 

instability across a wider economic spectrum. 

6.2 Practical & Academic Implications 

In practice, the Decision Tree model's effectiveness has obvious management 

ramifications, particularly when it comes to situations where datasets are over- or 

undersampled. The model is a viable option for real-time decision-making because of its 

capacity to analyze data quickly without sacrificing accuracy, especially in scenarios 

when computational resources are scarce. This efficiency may be helpful to financial 

institutions and other businesses that work with massive datasets for rapid risk 

assessments and strategic decision-making. 

On the managerial front, the attribute significance variations across Logistic 

Regression and tree-based models offer actionable insights. Depending on the particular 

features each model emphasizes, decision-makers can modify their approach 

accordingly. For example, in oversampled cases where Logistic Regression performed 

exceptionally well, it is critical to pay attention to variables like Sales / Short-term 

Liabilities and Rotation Receivables + Inventory Turnover in Days. As opposed to this, 

characteristics such as (Receivables * 365) / Sales and Operating Expenses / Total 

Liabilities are more important for tree-based models. Based on the selected modeling 

approach, managers may align their focus on key financial indicators with this practical 

assistance. 
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Chapter 7 

Limitations 

Our current study on bankruptcy forecasting, although exhibiting a sturdy 

technique and yielding significant findings, has some constraints that require meticulous 

examination. The study's reliance on oversampling and undersampling techniques to 

resolve class inequalities is one of its main limitations. Although these methods reduce 

data imbalances, there is a chance that they could oversimplify minority or majority class 

representations in the model, which could hinder the model's capacity to generalize to 

real-world situations. This restriction implies that one should exercise caution when 

interpreting the model's forecasts since they might not fully capture the intricacies of the 

wider economic environment. 

Moreover, the study largely ignores the complex interplay of variables that lead to 

financial distress in favor of concentrating on certain economic indicators to forecast 

bankruptcy. This limited breadth might hinder a thorough knowledge of bankruptcy 

triggers and, as a result, impair the model's prediction accuracy in identifying high-risk 

enterprises. Furthermore, the study's assessment criteria prioritize accuracy, sensitivity, 

and specificity over other important metrics like precision, F1-score, and area under the 

ROC curve. By including these extra measures, the model's performance may be 

examined in a more detailed and nuanced manner, giving rise to a better knowledge of 

its advantages and disadvantages. 

One major issue concerns the study's retrospective design, which limits its 

forecasting power to past data and may compromise its relevance to future economic 

situations. When used to dynamic and changing financial conditions, the models 

produced under this framework may not sufficiently account for shifting economic 

landscapes, making their predictions less dependable. 
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Chapter 8 

Conclusions 
In the intricate domain of financial risk assessment, the infrequent nature of 

default and bankruptcy events, when contrasted with the routine functioning of 

businesses and regular account activities, poses a distinctive challenge. This challenge 

stems from the inherent imbalance in financial datasets, where instances of financial 

distress are notably outweighed by non-distress cases. To effectively address this 

intricacy and extract meaningful insights, various methodologies within the realm of 

machine learning have been devised. 

The pivotal concern lies in the judicious selection of an algorithm capable of both 

efficiency and accuracy in classifying instances of financial risk. This study meticulously 

probes this concern, subjecting six distinct classifiers—logistic regression, XGBoost 

Classifier, decision tree classifier, random forest classifier, LightGBM classifier, and 

CatBoost Classifier—to comprehensive evaluation. Selected for their simplicity and 

effectiveness, these classifiers undergo scrutiny across three different datasets: the 

original dataset, an oversampled dataset, and an undersampled dataset. This 

methodological diversity enables a nuanced examination of classifier performance under 

varying conditions. 

The recognition of models based on gradient boosting trees as superior 

performers in the evaluation of financial risk is consistent with the advancements in 

machine learning methodologies. In managing unbalanced data, it highlights the value of 

ensemble approaches and the possibilities of gradient boosting algorithms, offering 

theoretical support for upcoming developments in algorithmic development within 

financial risk assessment. Credit analysts and investors may use reliable bankruptcy 

prediction models built from these insights to make educated investment decisions, 

lowering financial risk and increasing profitability. Furthermore, governments may use 

such models to properly allocate funds, avert economic downturns, and encourage 

economic stability by monitoring firm financial health and preventing crises (He et al., 

2018). 

Over a comprehensive five-year timeframe, the research intricately evaluates the 

efficacy of these classifiers using three distinct evaluation metrics. These metrics, 

encompassing accuracy, sensitivity, and specificity, serve as robust benchmarks for 

https://www.zotero.org/google-docs/?7L4aRv
https://www.zotero.org/google-docs/?7L4aRv
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gauging the nuanced dynamics of each classifier's performance in the context of 

imbalanced financial datasets. 

Significantly, the study unveils a noteworthy trend—the ascendancy of gradient 

boosting trees-based models, exemplified by XGBoost, LightGBM, and CatBoost. This 

discovery underscores the heightened effectiveness of ensemble methods, particularly 

those grounded in gradient boosting techniques, in discerning intricate patterns 

indicative of financial risk. In an era of evolving financial landscapes, this research not 

only provides crucial insights into the relative performance of classifiers but also 

contributes substantively to the ongoing discourse surrounding the optimal integration 

of machine learning tools in financial risk assessment. From this study, we concluded that 

features like (Receivables * 365) / Sales, Profit on Operating Activities / Financial 

Expenses, Total Costs / Total Sales, (Current Assets - Inventory) / Short-term Liabilities, 

etc. help a lot, especially in the tree-based models but are not of much use when it comes 

to logistic regression. Logistic Regression depends a lot, especially in utilizing the normal 

columns like Rotation Receivables + Inventory Turnover in Days, Operating Expenses / 

Short-term Liabilities, Sales / Short-term Liabilities, Sales / Receivables, Sales / 

Inventory, etc. 

Utilizing data mining models to predict financial risk, credit analysts and investors 

can make informed decisions about which companies to invest in and which to avoid. 

This, in turn, can reduce financial risk and increase profits. Accurate bankruptcy 

prediction models is useful for the government to allocate funds and investment, avoid 

economic downturns, and promote economic growth. By monitoring the financial health 

of companies, governments can prevent financial crises and promote economic stability. 

This, in turn, can lead to increased investment and economic growth. 

Future research directions in this domain could involve exploring the application 

of deep learning techniques like ANNs, LSTMs, CNNs, etc. Alongside this, the optimization 

of the parameters of all the models could have helped us to enhance further the accuracy 

and robustness of financial risk assessment models. In evaluations one can make use of 

many statistics and machine learning techniques, the use of statistics and machine 

learning tactics (Devi, 2018) addresses the bankruptcy predicting problem (Devi & 

Radhika, 2018). In order to enhance predictions even further, optimization techniques 

like Particle Swarm Optimization (PSO) and Genetic Algorithms (GA) can be combined. 

Additionally, investigating the integration of alternative data sources, such as social 

https://www.zotero.org/google-docs/?1ZT6r5
https://www.zotero.org/google-docs/?1ZT6r5
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media sentiment analysis and macroeconomic indicators, into the modeling process 

could yield valuable insights for even more precise risk evaluation.  
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Chapter 9 

Future Work 
Future research initiatives could investigate different approaches to get over 

these restrictions and improve the effectiveness of bankruptcy prediction models. One 

promising direction involves delving into the intricate web of financial data by 

incorporating more sophisticated deep-learning models. Convolutional Neural Networks 

(CNNs) and Artificial Neural Networks (ANNs) present themselves as potent tools with 

enhanced pattern identification capabilities, capable of capturing complex 

interdependencies within financial datasets that traditional models may overlook. This 

exploration into more intricate modeling approaches could unveil a new frontier in the 

quest for heightened predictive accuracy. 

Moreover, the amalgamation of conventional statistical and machine learning 

methods with optimization techniques such as Particle Swarm Optimization (PSO) and 

Genetic Algorithms (GA) emerges as a strategic pathway. This fusion aims to not only 

enhance the performance of models but also to refine the predictive accuracy. By 

marrying the strengths of different methodologies, researchers can potentially overcome 

existing constraints and push the boundaries of predictive capabilities. 

Expanding the scope of data sources utilized in the modeling process is another 

avenue for future exploration. Integrating sentiment analysis from social media or 

incorporating macroeconomic indicators into the predictive framework could inject fresh 

information, providing a more holistic understanding of the factors influencing 

bankruptcy risk. This expansion beyond traditional financial metrics may offer novel 

insights and contribute to an improved accuracy of risk assessment. 

Furthermore, the fine-tuning of model parameters represents a crucial facet in 

advancing predictive robustness. Employing advanced hyperparameter tuning 

techniques like grid search or Bayesian optimization adds a layer of sophistication to the 

model optimization process. This meticulous adjustment of parameters holds the 

potential to enhance the overall robustness and accuracy of predictions, thus addressing 

one of the noted drawbacks in current models. 

In culmination, the confluence of these diverse approaches – from intricate, deep 

learning models to innovative data source integration and advanced parameter tuning 

techniques – holds the promise of overcoming existing limitations. The integration of 
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these methodologies in subsequent studies may pave the way for more comprehensive 

and trustworthy bankruptcy prediction models, offering a nuanced perspective on 

financial risk assessment. 
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