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ABSTRACT 9 

This paper presents a multi-member automatic structural modeling (MASM) method for high-thrust deviation monitoring of 10 

prefabricated cable domes. Point cloud data generated by three-dimensional (3D) laser scanning were segmented into structural 11 

modules to effectively reduce the method’s computational complexity. A multimember central shrinkage algorithm was 12 

developed for skeleton-point recognition. Subsequently, skeleton members were detected with sequentially identified joints, and 13 

the structural model of the cable dome was built. The MASM method was validated with respect to its 1) accuracy, ensuring a 14 

satisfactory signal-to-noise ratio, and 2) efficiency, ensuring competitive runtime. The use case of the cable-dome deviation 15 

monitoring was studied in detail. The proposed MASM method systematically evaluates prefabricated cable domes with multi-16 

section members. This study enables high-fidelity analysis using a structural digital twin for predicting future structural 17 

performance. 18 

Keywords: automatic structural modeling, cable dome structure, deviation monitoring, 3D laser scanning, structural digital twin 19 

1. Introduction 20 

Cable domes are long-span spatial structures used widely in stadiums [1], gymnasiums [1], and other large 21 

spaces. Cable-dome structures have long span, small weight, and aesthetic appearance, and feature continuously pre-22 

tensioned cables and discrete compressed struts [4]. The broad applications of these structures garnered substantial 23 

attention with respect to the safety of cable domes, from the design stage [5] to the maintenance stage [11]. The safety 24 

of a typical structure relies significantly on its global stability and structural stiffness, both of which are sensitive to 25 

geometric deviations. Geometric deviations can reduce the cable prestress, consequently affecting the structure’s 26 

structural stiffness. Furthermore, low structural stiffness compromises structural stability [13]. Thus, quantification 27 

and monitoring of geometric deviations are critical for ensuring the safety of cable domes and similar structures [14]. 28 

Zhang, A.L., Ma, H., Zhao, X., Zhang, Y.X., Wang, J., Su, M.N., (2024), “3D laser scanning for automated 

structural modeling and deviation monitoring of multi-section prefabricated cable domes”, Automation in 

Construction, 165: 105573. 
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Traditional techniques of deviation monitoring range from manual assessment and measurements of exploratory 29 

engineering positioning to total station techniques and measurements of member installation positioning [12]. These 30 

conventional inspection techniques face challenges such as low labor efficiency and scarcity of measurements owing 31 

to device-related constraints [15]. Therefore, substantial efforts have been made to develop better solutions for more 32 

efficient, thorough, and precise inspection. The development of digital-twin technology has provided new insight into 33 

this issue [17]. The digital-twin technology involves creating precise digital replicas of real-world entities and 34 

incorporating real-world data into models for various applications [21]. A digital twin of a structure contains accurate 35 

and thorough global geometric information about the corresponding structural entity and enables structure 36 

synchronization in the real world [22]. Subsequently, the geometry of a structural digital twin (SDT) can be compared 37 

with the building information modeling (BIM) model used in the initial design, to derive geometric deviations 38 

thoroughly, accurately, and locally [23].  39 

The accuracy of an SDT depends on both the input source for high-threshold data measurements and the software 40 

used for efficient processing of volume point clouds [24]. Regarding the measurement technology, three-dimensional 41 

(3D) laser scanning and unmanned aerial vehicles (UAVs) can provide potential solutions for the global measurement 42 

of structural entities [25]. UAVs are generally employed in large-scale cartographic surveys and live-action modeling, 43 

in which the accuracy requirement is relatively relaxed [26], whereas 3D laser scanning has been developed based 44 

on the laser triangulation technique, which has a high level of accuracy [27]. 3D laser scanning provides an accuracy 45 

of 1.2 mm out of 100 m [29] and covers areas of up to 1400 m at 12.2 million points per second [30]. However, when 46 

using 3D laser scanning, challenges arise in terms of efficient point-cloud post-processing [31]. Currently, there are 47 

commercial software packages for data processing, such as Bentley Descartes [32], Realworks [33], and Cyclone 48 

[34]. Using these software methods, the scan results can be registered and denoised. However, these methods are 49 

only partially automated and require manual interventions for refining [35]. Moreover, general modeling processes 50 

may not be able to directly extract specific and essential structural data for the structural modeling of SDTs [36].  51 

Therefore, substantial efforts have been made to develop structural modeling methods for preprocessed point 52 

clouds of structures [37]. Structural modeling methods require significant computational resources, owing to the large 53 

volume of point clouds [39]. However, the existing structural modeling methods are not applicable to complicated 54 

cable-dome structures. In general, structural modeling methods include member recognition and model reconstruction 55 

[40]. Although model reconstruction that re-aligns members is a well-developed process that requires minimal 56 

computational effort [37], member recognition of 3D point clouds of structures [41] remains a major challenge. 57 

Member recognition involves two steps: (a) skeleton recognition and (b) member segmentation [42].  58 
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• Skeleton recognition targets the simplification of structural point clouds that maintain the necessary geometric 59 

features of the members [43]. Rotational symmetry axis (ROSA) [44], Laplace contraction [45], and 60 

morphological image-based methods [46] have been used to identify the skeleton points of buildings and 61 

infrastructure. The ROSA method determines the normal vectors of point-cloud-formed surfaces, where the 62 

intersections of vector lines are considered as the skeleton of structural members [44]. This method is suitable 63 

for pipeline structures. The Laplace contraction approach utilizes Laplacian factors to contract the points to form 64 

the skeleton lines [47]. This is more feasible for tubular structures with the same cross-sections of members [39]. 65 

By contrast, morphological image-based methods utilize gray processing to determine crack locations that are 66 

more suitable for plane-crack recognition [48]. However, a typical cable-dome structure comprises various 67 

cross-sections of spatially connected members. The ROSA and Laplacian contraction methods fail to search for 68 

skeletons at the joints of multidirectional members. However, morphological image-based methods cannot 69 

support the spatial recognition of cable-dome members.  70 

• Member segmentation is then conducted on the skeleton points of the structures, where member skeletons are 71 

recognized by the structural entity [49]. General methods for member extraction include edge contraction [50] 72 

and region growth [51]. Edge contraction creates a matrix representing the connectivity of the members and 73 

searches for the skeleton points at nodes to identify the member skeletons [42]. Region growing calculates the 74 

angles formed between neighboring points and searches for node positions determined by thresholds to extract 75 

the member skeletons [39]. However, these methods are not suitable for spatial structures with multi-direction 76 

members with various cross-sections, in which the misalignment of members is frequent owing to fixed 77 

thresholds.  78 

In summary, better member-recognition methods for spatial cable-dome structures must be developed. The 79 

algorithms for both skeleton recognition and member extraction should accommodate multidirectional and multi-80 

section members in spatial cable-domes. Furthermore, efficient structural modeling methods should be developed to 81 

incorporate the member-recognition methods within specialized data structures. It would be advantageous to build 82 

SDTs and monitor geometric deviations to address safety concerns more accurately and efficiently. 83 

To address the above, the present study aimed to develop a more efficient and accurate multimember automatic 84 

structural modeling (MASM) method for reconstructing cable-dome structures. The key novelties of the proposed 85 

method include four processing stages: (a) point cloud data (PCD) module segmentation; (b) multimember central 86 

shrinkage for recognizing the skeleton points; (c) smart multimember recognition; and (d) structural model 87 
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reconstruction. The stages of the proposed approach are shown in Fig. 1. First, during the data-preparation step, the 88 

proposed module segmentation minimizes the computational effort for further processing. Second, the novel 89 

multimember central shrinkage method for the skeleton-point recognition algorithm adopts multi-layering and 90 

clustering to modulate point clouds according to the spatial point-cloud features. Central shrinkage is performed by 91 

finding the clusters’ centroids, which perfectly avoids over shrinkage owing to the changes in the member sections. 92 

Thus, the skeleton points for the structural entity are determined. Third, a novel smart multimember recognition 93 

algorithm, addressing the multi-section members of a cable dome, is developed. Smart member extraction of member 94 

recognition compares the skeletons to a standard model from the design where the skeleton members are recognized. 95 

With the proposed method, the accuracy of the member extraction is significantly higher, whereas the computational 96 

complexity is very small. Fourth, a cable dome is systematically reconstructed, during which the orientation and 97 

position of the skeleton members are calculated. The nodes of the members are then determined at the intersections 98 

of the projected lines from the skeleton members. Thus, the module of the cable-dome structure is reconstructed. The 99 

final step of the reconstruction is to assemble the segmented modules into a cable-dome entity. It should be noted 100 

that a new data structure is formed that includes member types, sectional dimensions, orientations, and positions of 101 

members, as well as the node coordinates. Consequently, the geometric deviations of a cable-dome entity can be 102 

efficiently computed by comparison with the initial design model. 103 

 

Fig. 1. Flowchart of the proposed MASM method. 
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This paper first presents an experimental model of a cable dome and the details of the PCD preparation process 104 

(Section 2). The theory and implementation of the proposed structural modeling method are described in Sections 3–105 

6. Section 7 discusses the accuracy and efficiency of the proposed structural model. The corresponding geometric 106 

deviation monitoring is presented as well. Finally, the conclusions of the study are listed. 107 

2. Data preparation 108 

This section introduces the experimental cable dome, laser scanning devices and procedures, and the 109 

preprocessing of the measured data. The structural formation and member geometry of the considered complex spatial 110 

structure are described in Section 2.1. The terrestrial laser scanning device and measurement scheme are detailed in 111 

Section 2.2. Section 2.3 mainly presents the preprocessing of the structural point-cloud measurements obtained using 112 

the 3D laser scanner.  113 

2.1. Structural information 114 

The experimental cable-dome model was a scaled-down ridge-tube cable dome with diagonal struts [4], as 115 

shown in Fig. 2. The scale-down factor was 1:10. The diameter and height of the cable dome were 10 m and 1 m, 116 

respectively. The cable dome was centrally symmetric and had 24 identical circumferential units. The structure 117 

consisted of three circles of ring-hoop cables and four loops of diagonal cables. It had center, ridge, and diagonal 118 

struts, with cross-sectional dimensions that varied with respect to the installation location. The dimensions of the 119 

ridge struts were Ф30×3, Ф30×3, Ф40×3, Ф40×3, corresponding to the first, second, third, and fourth loops. The 120 

dimensions of the diagonal struts were Ф25×3, Ф30×3, and Ф40×3, with respect to the first, second, and third circles. 121 
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Fig. 2. Structural form and member information. 

2.2. 3D laser scanning 122 

The structural PCD was obtained using a RIEGL laser-scanning system. This system encompassed a terrestrial 123 

laser scanner RIGEL-VZ1000 (Fig. 3) with PCD preprocessing software RiSCAN Pro. Scanning parameter 124 

Panorama40 mode was used for scanning. The measurement distance varied through the 2.5–1400 m range, covering 125 

360 ̇  horizontal measurements. The angular resolution was above 1.8 arcsec. Hence, the measurement accuracy 126 

reached 5 mm at 100 m [52]. 127 

A meticulous scanning scheme was prepared beforehand to ensure the precision and completeness of the data 128 

with minimal redundancy associated with the PCD processing (Fig. 3). Twelve scanning sites with positioning 129 

markers were predetermined and positioned clockwise. Two sites inside the structure were designated to capture the 130 

interior details of the members, that is, sites 4 and 9, and the remaining sites outside the structure were responsible 131 

for recording the overall exterior details [53]. 132 

The scanning time for each site was 180 s, the PCD volume was approximately 268 MB. The total scanning 133 

time was approximately 2160 s; the total data volume was approximately 3.13 GB. The exported data included the 134 

3D point clouds and RGB values, which were saved in the “rxp” format [52]. 135 

 

Fig. 3. RIGEL-VZ1000 scanner and corresponding scan locations. 

2.3. PCD preprocessing 136 

The exported PCD was processed using the RiSCAN Pro software designed for the RIGEL scanner [54]. The 137 

preprocessing included the registration of measurements at 12 sites and elimination of unwanted points and/or noise. 138 

Registration 139 
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Registration is a two-step process that is automatically realized in RiSCAN. The initial global registration was 140 

conducted on 12-site raw PCD sets that were roughly rotated and displaced by the location of the positioning markers. 141 

The initial registration took approximately 320 s, with an accuracy exceeding 3 mm, as shown in Table 1. Finer 142 

location registration was then conducted on adjacently measured PCD sets in the automatic iterative closest point 143 

registration mode. This finer registration took approximately 8 s, and the registration accuracy was within 0.5 mm 144 

(Table 1). The final registration accuracy satisfied the further processing requirements. The PCD volume after the 145 

registration was 560.42 MB. 146 

TABLE 1. 147 

PCD registration information. 148 

Stage Registration accuracy Registration time 

Initial global registration 3.874 s 319.2 s 

Fine local registration 0.2104 s 8.4 s 

Note: The RiSCAN interface provides both registration accuracy and time. 149 

Denoising 150 

Point cloud denoising was performed using the RiSCAN Pro software. Factors such as equipment precision, 151 

environmental conditions, and alignment can add significant noise to PCD, directly affecting the modeling accuracy. 152 

Statistical filtering was employed to remove noisy data, and the filtering intensity was adjusted by varying both the 153 

count of neighboring points and the standard deviation multiplier. The details are listed in Table 2. This procedure 154 

significantly reduced the amount of noise and missing data; residual noise was further addressed in the member-155 

recognition step (Fig. 4).  156 

TABLE 2.  157 

PCD denoising information. 158 

Parameter setting Data volume Time 

Number of neighboring points 6 Pre-denoising 
15689612 points

（560.42 MB） 
28.43 s 

Standard deviation multiplier 1.00 Post-denoising 
12661192 points

（443.03 MB） 

The preprocessed PCD of the entire experimental cable contained more than 12 million points; the corresponding 159 

data size was 443.03 MB. The RGB values of the PCD were not required. The PCD coordinates were stored in the 160 

“pts” format. 161 
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Fig. 4. PCD after denoising. 

3. PCD module segmentation 162 

Preprocessed PCD has a large volume, making is inconvenient for structural modeling. A typical cable dome is 163 

symmetrical and can be divided into identical modules. The number of modules would depend on the computational 164 

efficiency requirements, where one module should contain at least one unit of the structure. The commercial software 165 

CloudCompare satisfied these segmentation requirements. 166 

 

Fig. 5. Module segmentation. 

The experimental cable dome contained 24 structural units uniformly segmented into eight modules, as shown 167 

in Fig. 5. The highest point, 𝑃𝑡𝑜𝑝, which is generally at the top of the center strut, was the origin (0,0,0). The axis 168 

aligned with 𝑃𝑡𝑜𝑝  and perpendicular to the X-Y plane was the Z-axis. A segmentation plane was generated 169 

perpendicular to the X-Y plane at 45° increments towards the X-Z plane. Thus, four segmentation planes were 170 

generated, i.e., 𝑆𝑓𝑖, 𝑖 ∈ [1,4], and eight modules were obtained. The overall module-segmentation process took 171 

approximately 160 s. The module contained approximately 1.4 million points with a maximum volume reaching 59 172 

MB. The data corresponding to the segmented modules were later stored in the form of a KD-tree, which is a k-173 
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dimensional binary tree for efficient PCD storage and searching. The segmentation ensured no loss of information, 174 

guaranteeing the entity of structural data. In addition, the PCDs of the ridge struts were confined to the individual 175 

modules, eliminating redundancy. However, the data format remained “pts” and only the 3D coordinates of the points 176 

were recorded. 177 

4. Multi-member central shrinkage for recognition of skeleton points 178 

Multi-member central shrinkage for recognition of skeleton points is the first step in member recognition; the 179 

objective is to simplify the bulky PCD to the skeleton points of members with various cross-sections. The requirement 180 

on the multi-member central shrinkage for recognition of skeleton points was to precisely maintain spatial geometric 181 

features. The recognition started with multi-PCD layering, in which PCD layers with various member segments were 182 

obtained, as described in Section 4.1. Next, PCD clustering was performed for segmentation of different members in 183 

different PCD layers, as described in Section 4.2. The skeleton points of the structural modules were then obtained 184 

using the central shrinkage algorithm, as described in Section 4.3.  185 

4.1 Multi-PCD layering 186 

Layering seeks to divide the member PCD into multiple segments 𝐿𝑖, as shown in Fig. 6. The division is based 187 

on the predetermined radius Δ𝑟𝑠 from center 𝑃𝑡𝑜𝑝 to the end of the module. Considering the spatial geometric features, 188 

the PCD layering algorithm comprised two preservation steps. In the first layering step, the ridge struts were 189 

processed, and the PCD was searched using polar coordinates. In the second step of layering, the remaining cables 190 

and diagonal struts were considered, and the PCD segments were searched along the Z-axis in the Cartesian 191 

coordinate system. 192 

 

Fig. 6. Multi-PCD layering. 

Ridge-strut Layering 193 

The ridge struts were spatially and circumferentially distributed outward by diffusion from the top of the center 194 

strut. The total length 𝑅𝑅𝑆 (Fig. 7(a)) between peak 𝑃𝑡𝑜𝑝 and farthest point 𝑃𝑓𝑎𝑟 was first calculated according to Eq. 195 
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(1). The number of layers 𝑁𝑅𝑆 was predetermined according to the volume of the module PCD, using the procedure 196 

described in Section 4.3. A searching radius increment, ∆𝑟𝑠
𝑅𝑆, was calculated using Eq. (2), assuming uniformity. 197 

𝑅𝑅𝑆 = √(𝑥𝑏 − 𝑥𝑡)
2 + (𝑦𝑏 − 𝑦𝑡)

2 + (𝑧𝑏 − 𝑧𝑡)
2 = √𝑥𝑏

2 + 𝑦𝑏
2 + 𝑧𝑏

2 (1) 

∆𝑟𝑠
𝑅𝑆 = 𝑅𝑅𝑆 𝑁𝑅𝑆⁄  (2) 

In the above, the superscript 𝑅𝑆 refers to the ridge strut; (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) and (𝑥𝑏 , 𝑦𝑏 , 𝑧𝑏) are the coordinates of 𝑃𝑡𝑜𝑝 and 198 

𝑃𝑓𝑎𝑟, respectively. The coordinates of 𝑃𝑡𝑜𝑝 were (0,0,0). 199 

The ridge-strut PCD was layered under a polar coordinate system, where the points of the layers were searched 200 

for under radius 𝑟𝑃
𝑅𝑆. The value of 𝑟𝑃

𝑅𝑆 was computed using Eq. (3), which captured the distance between layered 201 

points 𝑃 and 𝑃𝑡𝑜𝑝. It was assumed that points within a specific range of radii, as determined by Eq. (4), belonged to 202 

the same layer 𝑳𝒏
𝑹𝑺, with 𝑛 representing the 𝑛𝑡ℎ layer out of 𝑁𝑅𝑆 layers. The lower and upper bounds, 𝑅𝑛−1

𝑅𝑆  and 𝑅𝑛
𝑅𝑆, 203 

of 𝐿𝑛
𝑅𝑆 were calculated according to Eq. (5). The layer-searching procedure continued to the ridge struts until reaching 204 

the farthest point 𝑃𝑓𝑎𝑟. 205 

𝑟𝑃
𝑅𝑆 = √(𝑥𝑃)

2 + (𝑦𝑃)
2 + (𝑧𝑃)

2 (3) 

𝑳𝒏
𝑹𝑺 = {𝑃|𝑅𝑛−1

𝑅𝑆 < 𝑟𝑃
𝑅𝑆 < 𝑅𝑛

𝑅𝑆}, 𝑛 ∈ [1, 𝑁𝑅𝑆] (4) 

{
𝑅𝑛−1
𝑅𝑆 = (𝑛 − 1) ∙ 𝛥𝑟𝑠

𝑅𝑆

𝑅𝑛
𝑅𝑆 = 𝑛 ∙ 𝛥𝑟𝑠

𝑅𝑆 , 𝑛 ∈ [1, 𝑁𝑅𝑆] (5) 

In the above, 𝑟𝑃
𝑅𝑆 represents the distance of point 𝑃 from 𝑃𝑡𝑜𝑝, whereas (𝑥𝑃 , 𝑦𝑃 , 𝑧𝑃) represent the coordinates of point 206 

𝑃. 207 

  

(a) Layering for ridge struts (b) Layering for diagonal struts 

Fig. 7. Multi-PCD layering. 

Diagonal-strut Layering 208 
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Diagonal struts were arranged vertically in the structure. The diagonal-strut PCD was obtained by considering 209 

the Cartesian coordinate system, where the layer points were searched under heights from the Z-axis projected points 210 

to the center 𝑃𝑡𝑜𝑝 of the diagonal struts (Fig. 7(b)). The total height, 𝐻𝐷𝑆, corresponding to the height between peak 211 

𝑃𝑡𝑜𝑝 and lowest projected point 𝑃𝑙𝑜𝑤, was calculated using Eq. (6). The height-search increment Δℎ𝑠
𝐷𝑆 was calculated 212 

using Eq. (7).  213 

𝐻𝐷𝑆 = |𝑧𝑙 − 𝑧𝑡| = |𝑧𝑙| (6) 

𝛥ℎ𝑠
𝐷𝑆 = 𝐻𝐷𝑆 𝑁𝐷𝑆⁄  (7) 

In the above, 𝑧𝑙 is the z coordinate of 𝑃𝑙𝑜𝑤, and the superscript 𝐷𝑆 denotes the diagonal strut. 214 

Similar to the ridge-strut layering, the diagonal-strut PCD was layered according to the height ℎ𝑃
𝐷𝑆. The height 215 

ℎ𝑃
𝐷𝑆, as the projected distance between points 𝑃 and 𝑃𝑡𝑜𝑝, was calculated according to Eq. (8). The points of the 216 

diagonal struts within a specific range of heights belong to the same layer 𝑳𝒏
𝑫𝑺, where 𝑛 represents the 𝑛𝑡ℎ layer out 217 

of 𝑁𝐷𝑆  layers for the ridge struts (Eq. (9)). The lower and upper bounds, 𝐻𝑛−1
𝐷𝑆  and 𝐻𝑛

𝐷𝑆, of 𝐿𝑛
𝐷𝑆 were calculated 218 

according to Eq. (10). The search for layers continued to ridge struts until reaching the lowest point 𝑃𝑙𝑜𝑤.  219 

𝑳𝒏
𝑫𝑺 = {𝑃|𝐻𝑛−1

𝐷𝑆 < ℎ𝑃
𝐷𝑆 < 𝐻𝑛

𝐷𝑆}, 𝑛 ∈ [1, 𝑁𝐷𝑆] (9) 

ℎ𝑃
𝐷𝑆 = |𝑧𝑃 − 𝑧𝑡| = |𝑧𝑃| (8) 

{
𝐻𝑛−1
𝐷𝑆 = (𝑛 − 1) ∙ 𝛥ℎ𝑠

𝐷𝑆

𝐻𝑛
𝐷𝑆 = 𝑛 ∙ 𝛥ℎ𝑠

𝐷𝑆 , 𝑛 ∈ [1, 𝑁𝐷𝑆] (10) 

In the above, ℎ𝑃
𝐷𝑆 represents the projected distance to 𝑃𝑡𝑜𝑝 of point 𝑃, and 𝑧𝑃 represents the z-coordinate of point 𝑃. 220 

Based on the above theory, a multi-PCD layering algorithm was implemented in MATLAB, as shown in 221 

Algorithm 1. 222 

Algorithm 1: PCD layering 

Input: all points, the total number of layers 𝑁𝑅𝑆 and 𝑁𝐷𝑆 

Output: layers 𝑳𝑹𝑺 and 𝑳𝑫𝑺 

points_RS= points_DS = points 

𝑃𝑡𝑜𝑝= the peak point in points 

𝑃𝑓𝑎𝑟= the farthest point from 𝑃𝑡𝑜𝑝 in points 

𝑃𝑙𝑜𝑤= the lowest point in points 

𝑅𝑅𝑆= Distance (𝑃𝑡𝑜𝑝, 𝑃𝑓𝑎𝑟) 

∆𝑟𝑠
𝑅𝑆 = 𝑅𝑅𝑆 𝑁𝑅𝑆⁄  

𝐻𝐷𝑆= Projected distance in z-direction (𝑃𝑡𝑜𝑝, 𝑃𝑙𝑜𝑤) 

Δℎ𝑠
𝐷𝑆 = 𝐻𝐷𝑆 𝑁𝐷𝑆⁄  

         𝑳𝒏
𝑹𝑺 = ∅, 𝑛 ∈ [1, 𝑁𝑅𝑆] 

         𝑳𝒏
𝑫𝑺 = ∅, 𝑛 ∈ [1, 𝐻𝐷𝑆] 

While (size(points_RS,1)~=0) 

P = the first point in points_RS 
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𝑟𝑃
𝑅𝑆= Distance (P, 𝑃𝑡𝑜𝑝) 

Calculate the integer multiple 𝑚 of 𝑟𝑃
𝑅𝑆 to ∆𝑟𝑠

𝑅𝑆 

Add P into 𝑳𝒎
𝑹𝑺 

Delete P from points_RS 

end 

While (size(points_DS,1)~=0) 

P = the first point in points_DS 

ℎ𝑃
𝐷𝑆= Projected distance in z-direction (P, 𝑃𝑡𝑜𝑝) 

Calculate the integer multiple 𝑚 of ℎ𝑃
𝐷𝑆 to Δℎ𝑠

𝐷𝑆 

Add P into 𝑳𝒎
𝑫𝑺 

Delete P from points_DS 

end 

Determination of Parameters 223 

The multilayering algorithm has two parameters, 𝑁𝐷𝑆 and 𝑁𝑅𝑆, which must be determined in addition to the 224 

PCD module. The value of 𝑁𝐷𝑆 corresponds to the number of diagonal-strut layers, whereas 𝑁𝑅𝑆 corresponds to the 225 

number of ridge-strut layers, as mentioned previously. The ratio of 𝑁𝑅𝑆 to 𝑁𝐷𝑆 should align with the dimensions of 226 

the structure. The height-to-span ratio of an individual module was approximately 1:5, indicating that the 227 

corresponding ratio of 𝑁𝐷𝑆 to 𝑁𝑅𝑆 was 1:5, as shown in Eq. (11). 228 

𝑁𝑅𝑆 = 5𝑁𝐷𝑆 (11) 

The next step was to determine the value of 𝑁𝐷𝑆 that affected the search for the skeleton points. A skeleton point 229 

generally requires at least 4000 points/layer density of the PCD for the proper reconstruction of module members. 230 

This indicated that 𝑁𝐷𝑆 should be at least 50, with higher values corresponding to more advantageous outcomes. 231 

However, increasing 𝑁𝐷𝑆  increases the computational complexity of the layering process. The value of 𝑁𝐷𝑆 232 

therefore was set to the minimum value of 50. Thus, the value of 𝑁𝑅𝑆 was 250.  233 

4.2. Clustering of PCD layers 234 

The layering points were further clustered, and noise points were eliminated using density-based spatial 235 

clustering of applications with noise (DBSCAN) algorithm [55]. The DBSCAN algorithm defines points in a defined 236 

circular window as cluster 𝑵𝑲 , where the density of the points in a cluster is assumed to be uniform (Fig. 8). 237 

Subsequently, a uniform cluster can be later shrunk into skeleton points. The densities of the cluster points were used 238 

to filter the PCD noise. The clusters formed by the structural members exhibited a high density of points. In contrast, 239 

the clusters polluted with noise exhibited a low density of points.  240 
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Fig. 8. Clustering of PCD layers. 

The clustering process was conducted from the nearest layer to the farthest layer, considering the distances to 241 

𝑃𝑡𝑜𝑝 as shown in Algorithm 2. In layer 𝐿𝑖, the clustering first sorted the points by distance to 𝑃𝑡𝑜𝑝, from smallest to 242 

largest. Thus, point 𝑃𝑖
𝐾, nearest to 𝑃𝑡𝑜𝑝 , was selected as the starting point, with 𝑖 representing the layer order and 𝐾 243 

representing the cluster order in 𝐿𝑖. The distance 𝑑(𝑃𝑖
𝐾 , 𝑃𝑖

𝐽
), between points 𝑃𝑖

𝐾 and any other point 𝑃𝑖
𝐽
, was then 244 

calculated according to Eq. (12). The search radius, 𝑟𝑁𝐸, was 1.5 × the maximum diameter of struts that all cross-245 

sectional PCD of members covered. Cluster 𝑵𝒊
𝑲 was formed by points at distances 𝑑(𝑃𝑖

𝐾 , 𝑃𝑖
𝐽
) within the search radius 246 

𝑟𝑁𝐸, as captured by Eq. (13), and thereafter, the search continued to the remaining PCD in 𝐿𝑖 where new point 𝑃𝑖
𝐾+1, 247 

nearest to 𝑃𝑡𝑜𝑝, was selected, and new cluster 𝑵𝒊
𝑲+𝟏 was formed. The procedure was stopped when all the layers were 248 

searched. 249 

𝑑(𝑃𝑖
𝐾 , 𝑃𝑖

𝐽) = √(𝑥𝑖
𝐾 − 𝑥𝑖

𝐽)
2
+ (𝑦𝑖

𝐾 − 𝑦𝑖
𝐽)
2
+ (𝑧𝑖

𝐾 − 𝑧𝑖
𝐽)
2
, 𝐽, 𝐾 ∈ [1,𝑀𝐾] (12) 

𝑵𝒊
𝐾 = {𝑃𝑖

𝐽|𝑑(𝑃𝑖
𝐾 , 𝑃𝑖

𝐽) ≤ 𝑟𝑁𝐸} (13) 

In the above, (𝑥𝑖
𝐾 , 𝑦𝑖

𝐾 , 𝑧𝑖
𝐾) and (𝑥𝑖

𝐽, 𝑦𝑖
𝐽, 𝑧𝑖

𝐽
) represent the coordinates of points 𝑃𝐾 and 𝑃𝐽, whereas 𝑀𝐾 denotes the 250 

overall number of PCDs in layer 𝐿𝑖. 251 

The overall number 𝑀𝐷 of clusters was then considered, where the threshold value 𝑀𝑡ℎ𝑟 was  𝑀𝐾/60, according 252 

to Eq. (14). For 𝑀𝐷 < 𝑀𝑡ℎ𝑟, the points in 𝑵𝒊
𝐾 were considered noise points 𝑾 and were directly deleted. Otherwise, 253 

the points were considered valid member points and a PCD cluster 𝑫𝒊
𝑲 was formed for further analysis. The search 254 

was repeated until the nearest new 𝑃𝐾 in the layer was found, excluding points in 𝑵𝒊
𝐾 from the previous search. 255 
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{
𝑾 = 𝑵𝒊

𝐾 𝑀𝐷 < 𝑀𝑡ℎ

𝑫𝒊
𝑲 = 𝑵𝒊

𝐾 𝑀𝐷 > 𝑀𝑡ℎ

 (14) 

Based on the above theory, the clustering of PCD layers was implemented using MATLAB, as shown in Algorithm 256 

2. 257 

Algorithm 2: Clustering of PCD layers 

Input: all points in 𝑳𝒊, the threshold number 𝑀𝑡ℎ𝑟, the search radius 𝑟𝑁𝐸  

Output: the cluster 𝑫𝒄𝒍𝒖𝒔 

While (size (𝑳𝒊,1)~=0) 

𝑃𝐾  = the first point in 𝑳𝒊 

 𝑵𝒌(𝑃
𝐾) = ∅ 

Find out Distance from point 𝑃𝐾  to each of the surrounding points 𝑃𝐽, 𝐽 ∈ [1, size (𝑳𝒊, 1)] 

for i = 1: size(𝑳𝒊, 1) 

if Distance (𝑃𝐾 , 𝑃𝐽)< 𝑟𝑁𝐸  

Add 𝑃𝐽 into 𝑵𝒌(𝑃
𝐾) 

end 

end 

if the number in 𝑵𝒌(𝑃
𝐾) > 𝑀𝑡ℎ𝑟 

𝑵𝒌(𝑃
𝐾) is considered as 𝑫𝒄𝒍𝒖𝒔 

else 

𝑵𝒌(𝑃
𝐾) is considered as noise point 

end 

Delete 𝑃𝐾  from 𝑳𝑹𝑺 

end 

Using PCD layering and clustering, the PCD clusters of members with different orientations were extracted 258 

uniformly and efficiently. 259 

4.3. Central shrinkage for PCD clusters 260 

The skeleton points were determined by centrally shrinking the PCD member clusters 𝑫𝒊
𝒌, as described in detail 261 

in this section. As shown in Fig. 9, the differently colored points represent the corresponding PCD member clusters 262 

𝑫𝒊
𝒌. Red points represent the target skeleton points. 263 
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Fig. 9. Central shrinkage of PCD clusters 𝑫𝒊
𝑲. 

The point densities of the member clusters were similar. Thus, centroids were obtained by averaging the 264 

coordinates of the points in a cluster, as shown in Eq. (15). The shrinking window was applied sequentially through 265 

the PCD member cluster 𝑫𝒊
𝒌 to recognize the skeleton point 𝑃𝑠𝑘𝑒𝑙 for each PCD cluster. The obtained skeleton points 266 

were aligned, yielding the skeleton-point model 𝑺𝒔𝒎. The ridge- and diagonal-strut skeleton points are shown in 267 

orange and blue, respectively. Sparse points were observed on the cables, as discussed in Section 5. 268 

{
  
 

  
 𝑥𝑠𝑚 =

1

𝑀𝐷
∑ 𝑥𝑡

𝑀𝐷

1

𝑦𝑠𝑚 =
1

𝑀𝐷
∑ 𝑦𝑡

𝑀𝐷

1

𝑧𝑠𝑚 =
1

𝑀𝐷
∑ 𝑧𝑡

𝑀𝐷

1

, 𝑡 ∈ [1,𝑀𝐷] (15) 

In the above, (𝑥𝑠𝑚, 𝑦𝑠𝑚, 𝑧𝑠𝑚) are the coordinates of point 𝑃𝑠𝑚, (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡) are the coordinates of a point in a PCD 269 

member cluster 𝑫𝒊
𝒌, and 𝑀𝐷 is the number of points in the PCD cluster. 270 

Compared with the original PCD, the data volume after the skeleton-point recognition method was effectively 271 

reduced to 0.37% of the original volume. Most importantly, the key geometric features of all the members were 272 

preserved. Further development was conducted to automatically recognize members from skeleton models.  273 

5. Smart multi-member recognition  274 

The skeleton model obtained in the previous section maintained geometric integrity with spatial features. 275 

Therefore, automatic multi-member recognition was conducted to efficiently obtain the geometric information of 276 

structural members for structural model construction. Recognition was performed in two steps: the formation of a 277 

standard skeleton model and automatic multimember recognition, as described in Sections 5.1 and 5.2, respectively. 278 

5.1. Formation of a standard skeleton model 279 

A standard skeleton model, developed from the design structure using MATLAB, was required as a reference 280 

for multi-member recognition. The design structure was first segmented into the corresponding modules. The 281 

standard node information and node adjacency matrix (INAM) of the design module were identified, as shown in 282 

Figs. 10(a) and 10(b), respectively. 283 
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(a) Standard node information. (b) The improved node adjacency matrix. 

Fig. 10. Standard skeleton model. 

The standard node information includes both the node ID number and corresponding coordinates of the design 284 

module. By contrast, the node adjacency matrix captures the connectivity between the nodes of the design modules. 285 

The pivot rows and columns represent the node ID. The other entries in the matrix represent the member IDs that 286 

connect the corresponding nodes.  287 

The INAM is a symmetric and hollow matrix; that is, all diagonal elements are zero, indicating that nodes are 288 

not self-connected. A standard skeleton model, 𝑺𝒔𝒕  was formed based on the INAM design. The members and 289 

connections were assumed to be perfect (without defects). Interpolation was conducted among the nodes, to form the 290 

skeleton points of the members. The density of 𝑺𝒔𝒕 was 200 points/member, as estimated from the number of member 291 

skeleton points in 𝑺𝒔𝒎. The 𝑺𝒔𝒕 data contained both the member IDs and spatial coordinates, which were used as 292 

references for member recognition in the following section. 293 

5.2. Automatic multi-member recognition from skeleton points 294 

An automatic multi-member recognition algorithm was developed using an iterative closest point (ICP) method, 295 

in which the surface formed by the skeleton model 𝑺𝒔𝒎 was compared with that of the standard model 𝑺𝒔𝒕. The errors 296 

between the geometric features of the two surfaces were minimized such that a transform matrix, including rotations 297 

and displacements, for 𝑺𝒔𝒕 was obtained. Subsequently, 𝑺𝒔𝒕 was registered. The recognition of the members of 𝑺𝒔𝒎 298 

was performed automatically based on the spatial position of the members of 𝑺𝒔𝒕. 299 



17 

 

 

Fig. 11. Registration of skeleton models 𝑺𝒔𝒕 and 𝑺𝒔𝒎. 

Registration 300 

The sets 𝑺𝒔𝒕  and 𝑺𝒔𝒎  were first sorted using KD-Tree algorithms for efficient computation. A K-nearest 301 

neighbor search was implemented, where comparison pairs of points between 𝑺𝒔𝒎 and 𝑺𝒔𝒕 were formed, (𝑃𝑠𝑚, 𝑄𝑠𝑡), 302 

as shown in Fig. 11. The K-nearest neighbor method used the Euclidean distance as the target function in Eq. (16), 303 

to optimize the data registration of 𝑺𝒔𝒕, that is, the rotation matrix 𝑹𝑹𝑬𝑮 and translation vector �⃗�𝑹𝑬𝑮. The rotation 304 

matrix 𝑹𝑹𝑬𝑮 was a 3 × 3 matrix, with three angles 𝛼, 𝛽, 𝛾 rotating around the 𝑋, 𝑌, 𝑍 axes, as captured by Eq. (17). 305 

The translation vector  �⃗�𝑹𝑬𝑮 was a 3 × 1 vector with three displacements, 𝑡𝑥 , 𝑡𝑦, 𝑡𝑧 along the 𝑋, 𝑌, 𝑍 axes from the 306 

origin, as captured by Eq. (18). The optimization was repeated approximately 50 times and the registration error was 307 

constrained to within 0.2 mm. The computation time was constrained to within 0.2 s. Finally, points 𝑄𝑠𝑡 in 𝑺𝒔𝒕 were 308 

adjusted to the coordinate system of 𝑺𝒔𝒎 by rotation and translation, according to Eq. (19). 309 

𝐸(𝑹𝑹𝑬𝑮, �⃗�𝑹𝑬𝑮) = argmin‖𝑺𝒔𝒎 − 𝑺𝑠𝑡‖2 = argmin ∑ [𝑃𝑠𝑚 − (𝑹𝑹𝑬𝑮 ∙ 𝑄𝑠𝑡 + �⃗�𝑹𝑬𝑮)]
2

𝑀𝑠𝑘𝑒𝑙

𝑖=1

 (16) 
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𝑹𝑹𝑬𝑮 = [

1 0 0
0 𝑐𝑜𝑠(𝛼) − 𝑠𝑖𝑛(𝛼)

0 𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼)
] [

𝑐𝑜𝑠(𝛽) 0 𝑠𝑖𝑛(𝛽)
0 1 0

− 𝑠𝑖𝑛(𝛽) 0 𝑐𝑜𝑠(𝛽)
] [
𝑐𝑜𝑠(𝛾) −𝑠𝑖𝑛(𝛾) 0

𝑠𝑖𝑛(𝛾) 𝑐𝑜𝑠(𝛾) 0
0 0 1

] (17) 

�⃗�𝑹𝑬𝑮 = [𝑡𝑥 𝑡𝑦 𝑡𝑧] (18) 

𝑄𝑟𝑒𝑔 = 𝑹𝑹𝑬𝑮 ∙ 𝑄𝑠𝑚 + �⃗�𝑹𝑬𝑮 (19) 

In the above, 𝑀𝑠𝑘𝑒𝑙 denotes the number of skeleton points in 𝑺𝒔𝒎, 𝑄𝑟𝑒𝑔 represents a registered point in 𝑺𝒔𝒕, and 𝒔𝒎 310 

represents the skeleton model. 311 

Recognition 312 

Recognition was performed after the registration completed, as shown in Fig. 11. The members of the two nodes 313 

in 𝑺𝒔𝒕 were determined in advance. As shown in Fig. 11, skeleton point 𝑃𝑠𝑚 in 𝑺𝒔𝒎 was first paired with the nearest 314 

point  𝑄1
𝑟𝑒𝑔

 in 𝑺𝒔𝒕  (𝑃𝑠𝑚, 𝑄1
𝑟𝑒𝑔
) . Two additional points, 𝑄2

𝑟𝑒𝑔
 and 𝑄3

𝑟𝑒𝑔
 adjacent to point 𝑄1

𝑟𝑒𝑔
in 𝑺𝒔𝒕  were then 315 

extracted from the set. If the two points were marked with the same member IDs, the skeleton point 𝑃𝑠𝑚  was 316 

considered a member point with the corresponding member ID. However, if one of the points (𝑄2
𝑟𝑒𝑔

 or 𝑄3
𝑟𝑒𝑔

) was 317 

found to be the skeleton point of another member, the skeleton point was considered to be the point near connection 318 

𝑃𝑐𝑜𝑛, and was deleted thereafter. 319 

Algorithm 3: Automatic multi-member recognition from skeleton points 

Input: all skeleton points in 𝑺𝒔𝒎, all skeleton points 𝑺𝒔𝒕, where skeleton-point information in 𝑺𝒔𝒕 includes 3D coordinates 

and the number of the member to which it belongs. 

Output: the members skeleton points 𝑺𝒌
𝒎𝒆𝒎 

𝑺𝒌
𝒎𝒆𝒎=∅, 𝑘 ∈ [1, Number of members] 

While (size (𝑺𝒔𝒎,1)~=0) 

𝑃𝑠𝑚 = the first point in 𝑺𝒔𝒎 

Find out the three nearest points 𝑄1
𝑟𝑒𝑔

− 𝑄3
𝑟𝑒𝑔

 in 𝑺𝒔𝒕 corresponding to 𝑃𝑠𝑚; the corresponding member 

number of 𝑄1
𝑟𝑒𝑔

− 𝑄3
𝑟𝑒𝑔

 are 𝑀1
𝑟𝑒𝑔

−𝑀3
𝑟𝑒𝑔

 

if 𝑀1
𝑟𝑒𝑔

=𝑀2
𝑟𝑒𝑔

=𝑀3
𝑟𝑒𝑔

=𝑘 

Add 𝑃𝑠𝑚 into 𝑺𝒌
𝒎𝒆𝒎 

else 

consider 𝑃𝑠𝑚 as the skeletal point around the nodes 

end 

Delete 𝑃𝑠𝑚 from 𝑺𝒔𝒎 

end 

This step was performed using MATLAB. The resulting member skeleton points 𝑺𝒌
𝒎𝒆𝒎 were stored in the matrix 320 

format in preparation for subsequent member reconstruction. The data volume was approximately 150 KB. 321 

6. Reconstruction of the structural model 322 

Member recognition yielded the skeleton points of members 𝑺𝒌
𝒎𝒆𝒎 that were used to reconstruct the cable-dome 323 

model. The first step was to determine the position and orientation of the members for fitting member nodes, as 324 
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described in Section 6.1. The nodes connecting the members were obtained from a projection-reprojection member, 325 

as described in Section 6.2. The entire cable-dome model was then reconstructed sequentially, as described in Section 326 

6.3. This processing stage was accomplished using MATLAB, in which the data format was inherited from the 327 

previous step. 328 

6.1. Determination of position and orientation 329 

The skeleton points of the recognized members were scattered in a structured space that was first linearly 330 

aligned, as shown in Fig. 12. The initial bending defects of a member do not affect the overall performance of the 331 

structural entity [57]. Therefore, it was assumed that member skeleton 𝑺𝒌
𝒎𝒆𝒎 could be fitted by straight line 𝒍𝒌

𝒎𝒆𝒎 in 332 

space (Eq. (20)). Line 𝒍𝒌
𝒎𝒆𝒎 mainly comprised spatial position, 𝑷𝒌

𝒎𝒆𝒎, and direction vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎 with ∆𝑘 a linear 333 

parameter determining the corresponding member’s length. The calculations of position 𝑷𝒌
𝒎𝒆𝒎 and direction vector 334 

�⃗⃗⃗�𝒌
𝒎𝒆𝒎 are discussed below. 335 

 
 

(a) Ridge struts. (b) Diagonal struts. 

Fig. 12. Member skeleton points. 

𝒍𝒌
𝒎𝒆𝒎 = 𝑷𝒌

𝒎𝒆𝒎 + �⃗⃗⃗�𝒌
𝒎𝒆𝒎 ∙ ∆𝑘, 𝑘 ∈ [1, Number of members] (20) 

In the above, mem indicates either a ridge or diagonal strut. 𝑷𝒌
𝒎𝒆𝒎 represents the spatial position of skeleton member 336 

𝒍𝒌
𝒎𝒆𝒎, whereas �⃗⃗⃗�𝒌

𝒎𝒆𝒎 is the direction vector of line 𝒍𝒌
𝒎𝒆𝒎. The parameter ∆𝑘 represents the distance parameter for the 337 

linear interpolation, Δ𝑘 ∈ [−
|𝒍𝒌
𝒎𝒆𝒎|

2
,
|𝒍𝒌
𝒎𝒆𝒎|

2
], and |𝒍𝒌

𝒎𝒆𝒎| is the length of the corresponding member.  338 

Position of a skeleton member 339 

Position 𝑷𝒌
𝒎𝒆𝒎 was defined as the centroid of skeleton member 𝑺𝒌

𝒎𝒆𝒎. It should be noted that the point density 340 

of a skeleton member was uniform following the previous processing. Therefore, the centroid coordinates were 341 

simply the average of the skeleton member points in a member, as expressed by Eq. (21).  342 
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𝑷𝒌
𝒎𝒆𝒎:

{
 
 
 

 
 
 �̅�𝑘

𝑚𝑒𝑚 =
1

𝑀𝑘
𝑚𝑒𝑚∑ 𝑥𝑘,𝑡

𝑚𝑒𝑚
𝑀𝑘
𝑚𝑒𝑚

𝑖=1

�̅�𝑘
𝑚𝑒𝑚 =

1

𝑀𝑘
𝑚𝑒𝑚∑ 𝑦𝑘,𝑡

𝑚𝑒𝑚
𝑀𝑘
𝑚𝑒𝑚

𝑖=1

�̅�𝑘
𝑚𝑒𝑚 =

1

𝑀𝑘
𝑚𝑒𝑚∑ 𝑧𝑘,𝑡

𝑚𝑒𝑚
𝑀𝑘
𝑚𝑒𝑚

𝑖=1

, 𝑡 ∈ [1,𝑀𝑘
𝑚𝑒𝑚]  (21) 

In the above, (�̅�𝑘
𝑚𝑒𝑚, �̅�𝑘

𝑚𝑒𝑚, 𝑧�̅�
𝑚𝑒𝑚) and (𝑥𝑘,𝑡

𝑚𝑒𝑚, 𝑦𝑘,𝑡
𝑚𝑒𝑚, 𝑧𝑘,𝑡

𝑚𝑒𝑚) are the coordinates of the centroid and points of 343 

skeleton member 𝑺𝒌
𝒎𝒆𝒎, respectively. The skeleton member 𝑺𝒌

𝒎𝒆𝒎 comprised the total number 𝑀𝑘
𝑚𝑒𝑚 of skeleton 344 

points. 345 

Orientation of skeleton member 𝑺𝒌
𝒎𝒆𝒎 346 

The spatial direction vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎, of line 𝒍𝒌

𝒎𝒆𝒎, was determined using the singular value decomposition (SVD) 347 

method. The set 𝑺𝒌
𝒎𝒆𝒎  was first normalized to improve the fit accuracy [56]. The values of 𝜎𝑘

𝑥 , 𝜎𝑘
𝑦

, 𝜎𝑘
𝑧 , were 348 

calculated as the base point of the normalization in Eq. (22). The coordinates of the skeleton points in a member were 349 

then sequentially normalized using Eq. (23). Thus, a normalized member skeleton, �̂�𝒌
𝒎𝒆𝒎, was obtained for further 350 

analysis. 351 

{
 
 
 
 

 
 
 
 
𝜎𝑘
𝑥 = √

∑ (𝑥𝑘,𝑡
𝑚𝑒𝑚 − �̅�𝑘

𝑚𝑒𝑚)
2𝑀𝑘

𝑚𝑒𝑚

1

𝑀𝑘
𝑚𝑒𝑚

𝜎𝑘
𝑦
= √

∑ (𝑦𝑘,𝑡
𝑚𝑒𝑚 − �̅�𝑘

𝑚𝑒𝑚)
2𝑀𝑘

𝑚𝑒𝑚

1

𝑀𝑘
𝑚𝑒𝑚

𝜎𝑘
𝑧 = √

∑ (𝑧𝑘,𝑡
𝑚𝑒𝑚 − �̅�𝑘

𝑚𝑒𝑚)
2𝑀𝑘

𝑚𝑒𝑚

1

𝑀𝑘
𝑚𝑒𝑚

 (22) 

�̂�𝒌
𝒎𝒆𝒎 {

𝒙𝒌,𝒕
𝒎𝒆𝒎 = (𝑥𝑘,𝑡

𝑚𝑒𝑚 − �̅�𝑘
𝑚𝑒𝑚)/𝜎𝑘

𝑥

𝒙𝒌,𝒕
𝒎𝒆𝒎 = (𝑦𝑘,𝑡

𝑚𝑒𝑚 − �̅�𝑘
𝑚𝑒𝑚)/𝜎𝑘

𝑦

𝒙𝒌,𝒕
𝒎𝒆𝒎 = (𝑧𝑘,𝑡

𝑚𝑒𝑚 − 𝑧�̅�
𝑚𝑒𝑚)/𝜎𝑘

𝑧

 (23) 

In the above, (𝑥𝑘,𝑡
𝑚𝑒𝑚, �̂�𝑘,𝑡

𝑚𝑒𝑚, �̂�𝑘,𝑡
𝑚𝑒𝑚 ) are the coordinates of a point in �̂�𝒌

𝒎𝒆𝒎. 352 

The normalized skeleton member set, �̂�𝒌
𝒎𝒆𝒎, was assumed factorizable by left singular matrix 𝐔, singular values 353 

matrix ∑, and right singular matrix 𝑽, as shown in Eq. (24). The vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎 was then operated by �̂�𝒌

𝒎𝒆𝒎𝑻 ∙ �̂�𝒌
𝒎𝒆𝒎 354 

that provided a symmetric property. The �̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎 product was expanded as shown in Eq. (25). The pivot unit 355 

vector �⃗⃗⃗�𝟏  of 𝑽  represents the major direction of the aligned points, and is denoted as �⃗⃗⃗�𝒌
𝒎𝒆𝒎 . Based on the 356 

orthogonality, both sides of Eq. (25) were simultaneously multiplied by �⃗⃗⃗�𝒌
𝒎𝒆𝒎, yielding Eq. (26). The right-hand side 357 

of the equation was shifted to the left-hand side, as shown in Eq. (27). The determinant of �̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎 − 𝜆1 ∙ 𝑰 358 

was then solved where the largest eigenvalue 𝜆1 corresponding to the unit vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎 was found (Eq. (28)). The 359 

result 𝜆1 was substituted into Eq. (27), yielding vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎.  360 
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Because the vector �⃗⃗⃗�𝒌
𝒎𝒆𝒎 was a non-zero vector, 𝜆1 was obtained by solving the determinant that allowed to 361 

solve for �⃗⃗⃗�𝒌
𝒎𝒆𝒎 in Eq. (28). 362 

�̂�𝒌
𝒎𝒆𝒎

𝑀𝑘
𝑚𝑒𝑚×3

= 𝐔𝑀𝑘
𝑚𝑒𝑚×𝑀𝑘

𝑚𝑒𝑚 ∙ ∑𝑀𝑘
𝑚𝑒𝑚×3 ∙ 𝑽

𝑻
3×3 (24) 

�̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎 = 𝑽 ∙ 𝚺𝟐 ∙ 𝑽𝑻 = [

�⃗⃗⃗�𝟏
�⃗⃗⃗�𝟐
�⃗⃗⃗�𝟑

] [

𝜆1 𝟎 𝟎
𝟎 𝜆2 𝟎
𝟎 𝟎 𝜆3

] [�⃗⃗⃗�𝟏 �⃗⃗⃗�𝟐 �⃗⃗⃗�𝟑] (25) 

(�̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎) ∙ �⃗⃗⃗�𝒌
𝒎𝒆𝒎

= [

�⃗⃗⃗�𝟏
�⃗⃗⃗�𝟐
�⃗⃗⃗�𝟑

] [

𝜆1 𝟎 𝟎
𝟎 𝜆2 𝟎
𝟎 𝟎 𝜆3

] [
𝟏
𝟎
𝟎
] = 𝜆1 ∙ �⃗⃗⃗�𝒌

𝒎𝒆𝒎
 (26) 

(�̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎 − 𝜆1 ∙ 𝑰) ∙ �⃗⃗⃗�𝒌
𝒎𝒆𝒎

= �⃗⃗⃗� (27) 

|�̂�𝒌
𝒎𝒆𝒎𝑻 ∙ �̂�𝒌

𝒎𝒆𝒎 − 𝜆1 ∙ 𝑰| = 0 (28) 

Position 𝑷𝒌
𝒎𝒆𝒎  and orientation �⃗⃗⃗�𝒌

𝒎𝒆𝒎  were found. The fit line 𝒍𝒌
𝒎𝒆𝒎  was then interpolated using the linear 363 

parameter in Eq. (20) for the skeleton members. The nodes of the skeleton structural cable dome were then determined 364 

based on the member lines, as described below. 365 

6.2. Determination of nodes 366 

The structural modeling of a cable dome requires reconstructed multi-section members connected by joints. 367 

Considering that joints are represented by nodal points in a general structural analysis, it was assumed that the joints 368 

of a cable dome in structural modeling could be simplified as nodes. However, the nodes could not be determined 369 

directly from the intersection of the member lines, because these lines did not spatially intersect (Fig. 13). Instead, an 370 

intersection was observed when these spatial lines were projected onto a common plane. A projection-reflection 371 

method for finding a node was proposed. The 𝑥 and 𝑦 coordinates nodes were determined from the intersection of 372 

the projected lines. The 𝑧-coordinates of the nodes were determined using the reprojection method. 373 

 

Fig. 13. The intersection of member lines. 

The nodes were categorized into three types based on the connection relationship of the lines: 1) a two-member 374 

node (TMN) refers to a node that connects two members, 2) a multi-member node (MMN) refers to a node that 375 
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connects multiple members, and 3) a single-member node (SMN) refers to a node that connects multiple members, 376 

as shown in Fig. 14. 377 

 

Fig. 14. Classification of nodes. 

Two-member nodes (TMNs): 378 

A TMN, 𝑃𝑇𝑀𝑁 , connected two member lines, denoted by 𝒍𝒂 and 𝒍𝒃, respectively. 𝒍𝒂 and 𝒍𝒃 were represented 379 

mathematically by Eq. (27a) and Eq. (27b), where the coefficients were obtained as explained in the previous section. 380 

The two lines were first projected onto the 𝑍 = 0 plane, �̅�𝒂,𝑿𝒀 and �̅�𝒃,𝑿𝒀 (Eq. (28a) and Eq. (28b)). It was assumed 381 

that the two projected lines intersected (Eq. (29)). Thus, the linear parameter Δ𝑎 = Δ𝑏 = Δ
𝑁𝐼𝐷 was derived, as shown 382 

in Eq. (30).  383 

𝒍𝒂 = 𝑷𝒂
𝒎𝒆𝒎 + �⃗⃗⃗�𝒂

𝒎𝒆𝒎 ∙ ∆𝑎= [

�̅�𝑎
𝑚𝑒𝑚

�̅�𝑎
𝑚𝑒𝑚

�̅�𝑎
𝑚𝑒𝑚

] + �⃗⃗⃗�𝒂
𝒎𝒆𝒎 ∙ ∆𝑎 (27a) 

𝒍𝒃 = 𝑷𝒃
𝒎𝒆𝒎 + �⃗⃗⃗�𝒃

𝒎𝒆𝒎 ∙ ∆𝑏= [

�̅�𝑏
𝑚𝑒𝑚

�̅�𝑏
𝑚𝑒𝑚

�̅�𝑏
𝑚𝑒𝑚

] + �⃗⃗⃗�𝒃
𝒎𝒆𝒎 ∙ ∆𝑏 (27b) 

�̅�𝒂,𝑿𝒀 = �̅�𝒂
𝒎𝒆𝒎

+ �⃗⃗�𝒂
𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑎= [

�̅�𝑎
𝑚𝑒𝑚

�̅�𝑎
𝑚𝑒𝑚] + �⃗⃗�𝒂

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑎 (28a) 

�̅�𝒃,𝑿𝒀 = �̅�𝒃
𝒎𝒆𝒎

+ �⃗⃗�𝒃
𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑏= [

�̅�𝑏
𝑚𝑒𝑚

�̅�𝑏
𝑚𝑒𝑚] + �⃗⃗�𝒃

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑏 (28b) 

�̅�𝒂,𝑿𝒀 = �̅�𝒃,𝑿𝒀 (29a) 

[
�̅�𝑎
𝑚𝑒𝑚

�̅�𝑎
𝑚𝑒𝑚] + �⃗⃗⃗�𝒂

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑎= [
�̅�𝑏
𝑚𝑒𝑚

�̅�𝑏
𝑚𝑒𝑚] + �⃗⃗⃗�𝒃

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ ∙ ∆𝑏 (29b) 

∆𝑁𝐼𝐷=
�̅�𝑎
𝑚𝑒𝑚 − �̅�𝑏

𝑚𝑒𝑚

�⃗⃗⃗�𝒃
𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ − �⃗⃗⃗�𝒂

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅
 (30) 
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In the above, ∆𝑎, ∆𝑏, and ∆𝑁𝐼𝐷 represent the linear parameters of the two lines and node, respectively. NID represents 384 

the node ID, as described in the INAM of a structural module. 385 

The intersection coordinates 𝑃𝑇𝑀𝑁 were calculated as follows: The values of 𝑥𝑎𝑏 and 𝑦𝑎𝑏 were calculated using 386 

Eqns. (31) and (32), whereas the value of the linear parameter, ∆𝑁𝐼𝐷, was obtained from Eq. (30) . The dimensional 387 

differences between the two members were assumed negligible. Therefore, 𝑧𝑎𝑏 was obtained by averaging the 𝑧 388 

values corresponding to 𝑙𝑎 and 𝑙𝑏. 389 

𝑥𝑎𝑏 = �̅�𝑎
𝑚𝑒𝑚 + �⃗⃗⃗�𝒂

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 (31) 

𝑦𝑎𝑏 = �̅�𝑎
𝑚𝑒𝑚 + �⃗⃗⃗�𝒂

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 (32) 

𝑧𝑎𝑏 =
1

2
∑𝑧𝑖 , 𝑖 = 𝑎 or 𝑏 

where 𝑧𝑎 = 𝑧�̅�
𝑚𝑒𝑚 + �⃗⃗⃗�𝒂

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 , 𝑧𝑏 = 𝑧�̅�
𝑚𝑒𝑚 + �⃗⃗⃗�𝒃

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 

(33) 

Multi-member nodes (MMNs): 390 

For the MMN, the node coordinate-fitting process resembles that of the TMN. The members connected by the 391 

node were grouped two by two, with a total of 𝑀𝑁𝐼𝐷 = 𝑀𝑐𝑜𝑛 ∙ (𝑀𝑐𝑜𝑛 + 1)/2 groups, with 𝑀𝑐𝑜𝑛 representing the 392 

number of members. The coordinates of 𝑃1–𝑃𝑀𝑁𝐼𝐷  of the groups were obtained by solving them using the projection-393 

reflection method. For example, 𝑃1 connected two member lines 𝒍𝒊 and 𝒍𝒋. The coordinates 𝑥𝑖𝑗, 𝑦𝑖𝑗 , 𝑧𝑖𝑗  of 𝑃1 were 394 

found by solving for the linear parameter ∆𝑁𝐼𝐷 (Eqns. (34a–34d)). The final coordinates were the centers of 𝑃1–395 

𝑃𝑀𝑁𝐼𝐷 , obtained using Eq. (35). 396 

∆𝑁𝐼𝐷=
�̅�𝑖
𝑚𝑒𝑚 − �̅�𝑗

𝑚𝑒𝑚

�⃗⃗⃗�𝒋
𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅ − �⃗⃗⃗�𝒊

𝒎𝒆𝒎̅̅ ̅̅ ̅̅ ̅
 (34a) 

𝑥𝑖𝑗 = �̅�𝑖
𝑚𝑒𝑚 + �⃗⃗⃗�𝒊

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 (34b) 

𝑦𝑖𝑗 = �̅�𝑖
𝑚𝑒𝑚 + �⃗⃗⃗�𝒊

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 (34c) 

𝑧𝑖𝑗 =
1

2
∑𝑧𝑘 , 𝑘 = 𝑖 or 𝑗 

where 𝑧𝑖 = 𝑧�̅�
𝑚𝑒𝑚 + �⃗⃗⃗�𝒊

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷, 𝑧𝑗 = 𝑧�̅�
𝑚𝑒𝑚 + �⃗⃗⃗�𝒋

𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 

(34d) 

𝑥𝑀 =
1

𝑀𝑁𝐼𝐷
∑ 𝑥𝑖

𝑀𝑁𝐼𝐷

1

𝑦𝑀 =
1

𝑀𝑁𝐼𝐷
∑ 𝑦𝑖

𝑀𝑁𝐼𝐷

1

𝑧𝑀 =
1

𝑀𝑁𝐼𝐷
∑ 𝑧𝑖

𝑀𝑁𝐼𝐷

1

, 𝑖 ∈ [1,𝑀𝑁𝐼𝐷] (35) 

In the above, (𝑥𝑀 , 𝑦𝑀 , 𝑧𝑀) and (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) are the coordinates of the final intersection and the intersection obtained in 397 

a group, respectively. The parameter 𝑀 represents the member IDs intersected by the node. 398 
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Single-member nodes (SMNs): 399 

The SMN is typically located at the edge of the structural module. The calculation of the SMN is generally 400 

performed after those of the other nodes. Therefore, the positions of the connecting members and nodes adjacent to 401 

the SMN were used to extrapolate the SMN coordinates using Eq. (36). 402 

[

𝑥𝑆
𝑦𝑆
𝑧𝑆
] = [

�̅�𝑠
𝑚𝑒𝑚

�̅�𝑠
𝑚𝑒𝑚

𝑧�̅�
𝑚𝑒𝑚

] + �⃗⃗⃗�𝒔
𝒎𝒆𝒎 ∙ ∆𝑁𝐼𝐷 , ∆𝑁𝐼𝐷=

�̅�𝑠
𝑚𝑒𝑚 − 𝑥𝑀
�⃗⃗⃗�𝒔
𝒎𝒆𝒎

 (36) 

In the above, 𝑥𝑆, 𝑦𝑆 , 𝑧𝑆 are the coordinates of  𝑃𝑠 . [�̅�𝑠
𝑚𝑒𝑚, �̅�𝑠

𝑚𝑒𝑚, 𝑧�̅�
𝑚𝑒𝑚]  and �⃗⃗⃗�𝒔

𝒎𝒆𝒎 are the central points and 403 

directional vectors of the line intersecting the node, respectively. The parameter 𝑆  represents the line ID. The 404 

parameter 𝑥𝑀 represents the x coordinate of the node at the other end of the line. 405 

6.3. Reconstruction of a cable dome 406 

The reconstruction of the cable dome was initiated by sorting the data structures of the modules (Table 3). The 407 

IDs of the skeleton members and connecting nodes followed those of the standard model 𝑺𝒔𝒕 from the INAM in Fig. 408 

10(b). Nodes i and j indicate the coordinates of the nodes of the corresponding members that were later used in the 409 

module assembly. The class, cross-section, and length of the columns can be later used in structural modeling and 410 

future applications. 411 

Table 3 412 

The data structure of the module model. 413 

Member ID Nodes IDa 

Node i (m) Node j (m) 

Classb Cross-sectionc (mm) Length (mm) 
𝒙 𝒚 𝒛 𝒙 𝒚 𝒛 

1 1/2 0 0 0 1.1880 0.1583 -0.1826 L Φ30×3  1212.3 

2 1/3 0 0 0 1.1435 0.4822 -0.1954 L Φ30×3  1256.3 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
11 6/9 2.3580 0.6161 -0.4089 3.6593 0.4399 -0.6574 L Φ40×3  1336.5 

12 6/10 2.3580 0.6161 -0.4089 3.4254 1.3631 -0.6439 L Φ40×3  1323.8 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
35 9/24 3.6593 0.4399 -0.6574 3.5571 0.9164 -1.4542 L Φ40×3  934.0 

36 10/24 3.4254 1.3631 -0.6439 3.5571 0.9164 -1.4542 L Φ40×3 934.5 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 
60 24/25 3.5571 0.9164 -1.4542 3.0587 1.7491 -1.4277 C Φ12 970.4 

61 25/26 3.0587 1.7491 -1.4277 2.4837 2.5106 -1.4473 C Φ12 954.2 

a: Node ID represents the global Node ID at the two ends of the members: node a/node b. 414 

b: The member form consists of straight lines (L) and curves (C) dictating the respective member-modeling methods. 415 

c: The cross-section of struts are traffic circles, with the dimension of Φ radius of the outer circle × tube thickness. The cross-416 

sections of the cables are circles with dimensions of the radius of the circle. 417 

As the previous processing was conducted on the segmented modules sequentially, the processed modules were 418 

assembled where the edge nodes of the modules were registered, as shown in Fig. 15. The assembly was done in two 419 

stages: 1) a coarse global assembly and 2) a fine local assembly. The coarse assembly simply registered Node 1 of 420 
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all the structural modules together. However, other edge nodes may not coincide with each other because of the 421 

manual module segmentation. The shared nodes, for example, Node 16 in Module 1 and Node 19 in Module 8, were 422 

combined by averaging the coordinates of the pairs of nodes. This was performed on individual modules until the 423 

cable-dome skeleton model was obtained. 424 

 

Fig. 15. Coarse global assembly and fine local assembly. 

The reconstructed structural model is shown in Fig. 16. The ridge struts, diagonal struts, diagonal cables, and 425 

ring-loop cables are colored green, blue, orange, and yellow, respectively, according to the structured data. Evidently, 426 

the structural model captures the actual geometric features of the cable-dome structure. The structured data of the 427 

structural model can be easily used for further development of numerical simulations or building information 428 

modeling (BIM) design. 429 

 
Fig. 16. The cable-dome structure model. 

7. Discussion 430 

This section first validates the proposed MASM method in terms of the processing accuracy and computational 431 

efficiency; this is done in Section 7.1. In Section 7.2, the applications of the method to structural deviation inspection 432 

and monitoring are demonstrated in detail. The novel aspects of the proposed MASM method are discussed in detail 433 

in Section 7.3. Section 7.4 discusses the limitations of the proposed method that require future development. 434 
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7.1. Validation of the MASM method 435 

The MASM method was validated in terms of both the reconstruction accuracy and computational efficiency, 436 

which are technical concerns in general structural modeling that uses laser measurements. 437 

Accuracy validation 438 

Accuracy validation amounted to evaluating differences between the nodes of the MASM method-based model 439 

and those of the “ground truth” model, because nodes are important for structural analysis [58]. In addition, a true 440 

reference model was manually built according to the preprocessed PCD cable dome, as shown in Fig. 17, using the 441 

commercial software Geomagic Wrap [59]. First, the members’ PCDs were manually and visually recognized and 442 

then segmented from member to member. The segmented PCD members were sequentially fitted with the 443 

corresponding 3D shapes, using the RANSAC function in the software. The centerlines of the members were then 444 

plotted, the intersections of which were defined as reference nodes. Thus, the integrity of the reference nodes 445 

constituted the true reference model. Constructing the true reference model required substantial manual work and 446 

was time-consuming. The modeling was primarily used to validate the accuracy of the MASM method-based model. 447 

 

Fig. 17.  Reference point extraction.  

Accuracy validation then started by comparing the nodes of the MASM method-based model to those of the 448 

reference model (Eq. (37)). The fit error 𝛿𝑀𝐴𝑆𝑀  was defined as the 2-norm distance between 𝑃𝑀𝐴𝑆𝑀  and 𝑃𝑟𝑒𝑓 , 449 

corresponding to the nodes of the MASM method-based model and the reference model, respectively.  450 

𝛿𝑀𝐴𝑆𝑀 = ‖𝑃𝑟𝑒𝑓 − 𝑃𝑀𝐴𝑆𝑀‖2 =
√(𝑥𝑟𝑒𝑓 − 𝑥𝑀𝐴𝑆𝑀)

2
+ (𝑦𝑟𝑒𝑓 − 𝑦𝑀𝐴𝑆𝑀)

2
+ (𝑧𝑟𝑒𝑓 − 𝑧𝑀𝐴𝑆𝑀)

2
 (37) 

In the above,  𝛿𝑀𝐴𝑆𝑀  represents the fit error of 𝑃𝑀𝐴𝑆𝑀 . (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓 , 𝑧𝑟𝑒𝑓)  and (𝑥𝑀𝐴𝑆𝑀 , 𝑦𝑀𝐴𝑆𝑀 , 𝑧𝑀𝐴𝑆𝑀)  are the 451 

coordinates of 𝑃𝑟𝑒𝑓 and 𝑃𝑀𝐴𝑆𝑀, respectively. 452 
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The fit errors of the nodes were statistically analyzed, and the results are shown in Fig. 18. The histogram shows 453 

the distribution of the fit errors. The probability density function (PDF) followed a Gaussian distribution with a mean 454 

of 1.384 mm and standard deviation of 0.39 mm. The 95% confidence interval (CI) was [1.227, 1.534]. Considering 455 

the span of the cable dome, the accuracy of the MASM method-based model varied within 0.02%. According to the 456 

technical specifications for space-frame structures [60], a typical constructional deviation is in the 35–185 mm range, 457 

which is 10 times greater than the fit errors in the present study. The signal-to-noise ratio (SNR) was sufficiently high, 458 

such that the errors did not impact the monitoring and analysis of constructional deviations[61]. Thus, the accuracy 459 

of the MASM method was satisfactory.  460 

 

Fig. 18. Node-fitting errors. 

Efficiency validation 461 

The proposed MASM method targets the automatic structural modeling of a multimember-section cable dome 462 

based on the PCD laser measurements. Unfortunately, none of these structural modeling methods are applicable to 463 

cable-dome structures. Reference to efficiency validation allows to select the most updated structural modeling 464 

method for steel structures with comparable computational complexity [39]. Runtime tests were conducted for both 465 

structural modeling methods to demonstrate the computational efficiency of the proposed MASM method. The 466 

runtime tests were performed on a personal computer equipped with an AMD Ryzen7 5800H @3.20GHz processor. 467 

The runtimes of the structural modeling methods were recorded using the tic-toc function in MATLAB (Table 4).  468 

PCD structural modeling generally includes two stages: 1) skeleton extraction and 2) model reconstruction. 469 

However, the proposed MASM method implemented the module segmentation of the cable-dome PCD according to 470 

the features of the structural configuration in advance. Module segmentation divided the cable-dome PCD into eight 471 

structural modules, which took approximately 160.45 s. The skeleton extraction took approximately 3.28 s for the 472 

structural module and approximately 21.18 s for the total 8 pieces of modules. The reconstruction stage took 473 
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approximately 4.63 s for the module and 37.97 s for the entity. The total runtime was 221.95 s for data containing 474 

approximately 12,661,192 points. 475 

The reference BIM reconstruction method (BRM) processed steel structures with a volume of approximately 476 

22,213,417 points. It utilized Laplacian-based central skeleton contraction and the rolling sphere algorithm to extract 477 

the skeleton of the model, which took approximately 25,342.69 s. The reconstruction of the 3D model required 478 

approximately 3,589 s to achieve the entire structural model. 479 

TABLE 4 480 

SDT modeling time. 481 

Methods Stages Time 

MASMa 

S1: Module segmentation 160.45 s 

S2: Skeleton extraction Module Entity 

Multi-member central shrinkage for skeleton-point 

recognition 

2.87 s 18.75 s 

Smart multi-member recognition 0.41 s 2.43 s 

Subtotal of S2 3.28 s 21.18 s 

S3: Reconstruction of structural model Module Entity 

Determinations of positions, orientations, and nodes 4.63 s 37.97 s 

Reconstruction of a cable dome 2.35 s 

Subtotal of S3 40.32 s 

Total 221.95 s 

BRMb[39] 

S1: Skeleton extraction  

Laplacian-based central skeleton contraction 18342.58 s 

Central axis candidate extraction 5891.21 s 

Central axis refinement 948.78 s 

Regional growing-based central axis segmentation 160.12 s 

Subtotal of S1 25,342.69 s 

S2: Reconstruction of structural model  

PCD segmentation 356.15 s 

Central axis curve estimation 2873.21 s 

3D modeling 359.67 s 
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Subtotal of S2 3,589.03 s 

Total 28931.72 s 

MASM v.s. BRMd (%) 0.14% 

Notes: a. MASM represents the automatic structural modeling method. 482 

b. BRM represents the BIM reconstruction method. 483 

d. Comparison of the runtimes of the two methods was performed using the same amount of data. 𝑅𝑎𝑡𝑖𝑜 =484 

(𝑇𝑖𝑚𝑒 𝑜𝑓 𝑀𝐴𝑆𝑀/𝑇𝑖𝑚𝑒 𝑜𝑓 𝐵𝑅𝑀) × 100%. 485 

It was observed that the runtimes associated with the extraction of members were 2.43 s and 160.12 s, 486 

respectively, for the MASM and BRM methods. The runtimes associated with the reconstructions of structural models 487 

were 2.35 s and 359.67 s, for the MASM and BRM methods, respectively. Although the MASM method featured an 488 

additional module-segmentation stage, this additional step greatly improved the computational efficiency of the latter 489 

two stages. Consequently, the total performance time of the MASM method was only 0.14% that of the BRM method. 490 

Thus, the efficiency of the MASM method was demonstrated. 491 

7.2. Application to deviation monitoring 492 

Currently, construction deviation monitoring is considered the most important aspect of any structural project. 493 

Structural modeling using 3D laser measured PCD provides better access to deviation monitoring than manual or 494 

local measurements. The previous sections described an analysis-ready cable-dome model with structured data. The 495 

cable-dome model was aligned with the design model using the center struts of the two structural models. The 496 

deviations can be determined from the distances between the node pairs, using Eq. (38). 497 

𝐷𝑁𝐼𝐷 = ‖𝑃𝑑𝑒𝑠𝑖𝑔𝑛 − 𝑃𝑀𝐴𝑆𝑀‖2 =
√(𝑥𝑑𝑒𝑠𝑖𝑔𝑛 − 𝑥𝑀𝐴𝑆𝑀)

2
+ (𝑦𝑑𝑒𝑠𝑖𝑔𝑛 − 𝑦𝑀𝐴𝑆𝑀)

2
+ (𝑧𝑑𝑒𝑠𝑖𝑔𝑛 − 𝑧𝑀𝐴𝑆𝑀)

2
 (38) 

In the above, 𝑃𝑑𝑒𝑠𝑖𝑔𝑛  and 𝑃𝑀𝐴𝑆𝑀  are the nodes from the design model and those fitted using the SDT modeling 498 

method, respectively. 𝐷𝑁𝐼𝐷  represents the deviation at a node from 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 . (𝑥𝑑𝑒𝑠𝑖𝑔𝑛, 𝑥𝑑𝑒𝑠𝑖𝑔𝑛, 𝑥𝑑𝑒𝑠𝑖𝑔𝑛)  and 499 

(𝑥𝑀𝐴𝑆𝑀 , 𝑥𝑀𝐴𝑆𝑀, 𝑥𝑀𝐴𝑆𝑀) are the coordinates of 𝑃𝑑𝑒𝑠𝑖𝑔𝑛 and 𝑃𝑀𝐴𝑆𝑀, respectively. 500 

The comparison results are presented in Fig. 19. The upper cable dome is a design model in which the nodes are 501 

colored in orange. The lower cable dome is the MASM cable-dome model, in which the nodes are colored in red. 502 

Differences between red and orange nodes are shown in the bottom mesh plot. The maximum deviation was 33.2 mm 503 

and the average was approximately 21.7 mm. This was attributed to the deviation of the actual construction from the 504 

ideal state, in which the lift to the ridge struts through tensioning was affected by the stiffness of the members. 505 
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Fig. 19. Deviation of nodes. 

7.3. Novel aspects of the MASM method  506 

Structural modeling methods for laser-based PCD generally involve two major steps: 1) skeleton extraction and 507 

2) structural reconstruction. However, traditional structural modeling methods generally have high computational 508 

complexity, owing to the large volume of the PCD data associated with a structural entity. The cable-dome structure 509 

in this study was formed using identical structural units. Therefore, the large amount of the PCD data associated with 510 

the cable dome can be segmented into small PCD modules, as in Stage 1 of the MASM method. Module segmentation 511 

is simple, and can be implemented in most commercial software. However, segmentation applies to most steel 512 

structures with identical structural units, which effectively decreases the computation complexity associated with 513 

further processing, as listed in Table 4. 514 

The novel aspect of the MASM method is not module segmentation but the development of skeleton-processing 515 

algorithms for cable domes with various cross-section members. The benefits of the developed algorithms for various-516 

section cable domes were demonstrated by comparing with existing popular methods.  517 

Comparison of Skeleton-point Recognition Methods 518 

Skeleton-point recognition is a key step in which the central points of the members are recognized from 519 

volumetric PCDs. The MASM method proposes a novel algorithm called multimember central shrinkage for 520 

skeleton-point recognition, to denoise and extract skeleton points from unstructured multi-sectional cable-dome 521 

PCDs. This algorithm processes a layered PCD, in which the centroids of the clusters are identified sequentially. 522 

Thus, the centroids of the clusters are considered as skeleton points, as described in Section 4.3. 523 
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By contrast, general skeleton-point recognition uses a Laplacian-based skeleton contraction method [45]. The 524 

Laplacian matrix comprises the neighborhood of the target point based on the distance relationship. The eigenvalues 525 

of the Laplacian matrix are obtained from eigen-decomposition, where the small and large eigenvalues are separated 526 

into two groups. Points with small eigenvalues are considered contraction points and discarded. Conversely, points 527 

with large eigenvalues are considered attraction points and are retained. The procedure is repeated until the error is 528 

minimized.  529 

The two algorithms for skeleton-point recognition were applied to cable-dome module PCDs, and the superiority 530 

of the proposed multi-member central shrinkage algorithm was validated. The Laplacian-based skeleton-contraction 531 

algorithm performed poorly in the corner regions, as shown in Fig. 20(a). This discrepancy arose from the variation 532 

in the cross-sectional dimensions of the members, where the Laplacian-based skeleton-contraction method allowed 533 

only uniform contractions. The proposed multi-member central shrinkage method performed well, and the algorithm 534 

was implicitly adapted to geometric variations (Fig. 20(b)). 535 

 

(a) Skeleton points from Laplacian-based contraction method. 

 

(b) Results of multi-member central shrinkage for skeleton-point recognition method. 

Fig. 20. Comparison of skeleton-point recognition methods. 

The computational times and accuracies are compared in detail in Table 5. The Laplacian-based skeleton 536 

contraction required longer time than the multi-member central shrinkage method, with 90.34 s against 2.87 s per 537 

structural module. The accuracy, noise, and distortion of the skeleton points were statistically analyzed. These results 538 

demonstrate that the noise ratios for Laplacian-based skeleton contraction and multi-member central shrinkage for 539 
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skeleton-point recognition methods were similar, at 1.74% and 1.55%, respectively. However, the distortion of the 540 

Laplacian-based skeleton-contraction method was much larger than that of the multi-member central shrinkage 541 

method for skeleton-point recognition (11.74% vs. 3.16%). 542 

Thus, the proposed multi-member central shrinkage method for skeleton-point recognition is more effective than 543 

existing methods, when processing cable domes with members of various cross-sections. 544 

TABLE 5 545 

Comparison of skeleton-extraction methods. 546 

Method Timea 

Shrinkage accuracy 

Noise point Percentageb Distortion point Percentagec 

Multi-member central shrinkage for 

skeleton-point recognition 

20.05 s 65 1.74% 118 3.16% 

Laplacian-based skeleton 

contraction 

90.33 s 332 1.55% 2514 11.74% 

Notes: Module 1 PCD were used for both methods in the comparison process. 547 

b: Comparison of the number of noise-related skeleton points with the total number of skeleton points. Percentage =548 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑖𝑠𝑒 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 /𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠) × 100%. 549 

c: Comparison of the number of distortion-related skeleton points with the total number of skeleton points. Percentage =550 

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 distortion 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠 /𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑘𝑒𝑙𝑒𝑡𝑜𝑛 𝑝𝑜𝑖𝑛𝑡𝑠) × 100%. 551 

Comparison of Member-recognition Methods 552 

Member recognition is another important step in the skeleton-extraction process, in which members are 553 

automatically recognized for future reconstruction. The MASM method uses a novel smart multi-member recognition 554 

algorithm that automatically recognizes multi-section members composed of skeleton points according to a standard 555 

model. The algorithm was compared to a general member-recognition algorithm, the region-growing method [51]. 556 

The region-growing method applies a test to the curvatures and angles of a random point and its neighbors in the 557 

structural module. Thresholds are set for the curvatures and angles. Points within the boundaries defined by the 558 

thresholds are assumed to belong to a member. The procedure is iterated until all points are processed.  559 

Similar to the Laplacian-based skeleton-contraction algorithm, the region-growing method did not perform well 560 

on cable domes with various section members, with respect to the automatic recognition of members (Fig. 21). The 561 

fixed threshold was not adequate for dealing with intersections of multiple members. 562 
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Fig. 21. Comparison of member-recognition methods. 

The computational times and accuracies of the two algorithms were compared and are summarized in Table 6. 563 

For the region-growing method, most members were not fully recognized. The correctness of the recognition was 564 

low, with only four out of the 39 members perfectly recognized. However, the smart multi-member recognition 565 

method yielded satisfactory results. The false positive rate was 7.69%. The runtimes of the two methods were also 566 

compared. Taken together, the results suggest that the smart multi-member recognition method was more efficient 567 

than the existing region-growing method. 568 

TABLE 6 569 

Comparison of member-recognition methods. 570 

Methods Timea 

Recognition error 

Wrong Members Percentageb 

Smart multi-member recognition 0.41s 3 7.69% 

Region growing 2.57s 35 89.74% 

Notes: Module 1 PCD were used for both methods in the comparison process. 571 

b: Comparison of the wrong members with the members’ number. Percentage = (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 wro𝑛𝑔 𝑚𝑒𝑚𝑏𝑒𝑟𝑠 /𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓572 

 𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑏𝑒𝑟𝑠) × 100%. 573 

The proposed MASM method not only encapsulates key algorithms for processing but also provides a systematic 574 

automatic cable-dome structural modeling approach that integrates processing algorithms adapted to cable-dome 575 

structures. The novel aspects of the algorithm and methods, and the potential benefits for applications, were validated. 576 

7.4. Limitations of the MASM method 577 

The proposed MASM method is applicable to cable-dome structural modeling with volumetrically measured 578 

PCD. Although this method is novel and has important advantages, it is limited by several factors, as discussed below. 579 
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The accuracy of the MASM method is affected by the measurement quality. Multi-member central shrinkage 580 

requires a uniform PCD density for a single member. In other words, the algorithm performs sub-optimally when 581 

missing points occur in the members. We note that PCD repair is always required during the data preparation stage, 582 

implying the need for additional manual effort. 583 

Module segmentation was conducted manually, and structural configurations and manual tuning had substantial 584 

effects. Module segmentation requires the structural PCD to exhibit a repetitive formation of identical structural units, 585 

such as a ring-symmetric cable dome. Manual experience determines the number of segmentations required for a 586 

structural entity. Proper segmentation is advantageous for better processing efficiency. The number of module 587 

segmentations should be optimized. 588 

Conversely, the MASM method utilizes CloudCompare and MATLAB software to reconstruct the cable-dome 589 

model. The capacity of the specific computational platform is another concern. The PCD size reaches 4 × 108 points, 590 

equivalent to a 9 GB storage volume for CloudCompare. The MASM algorithm is constrained by MATLAB 591 

resources, and this can be assessed using the WHOS function, which estimates the amount of data stored during the 592 

analysis. By testing, the maximum storage capacity of MATLAB was determined as 2.88 × 1014; consequently, the 593 

maximum PCD could reach 1012. In addition, owing to the dimensionless calculation procedure, this method has no 594 

constraints on the size of the structural members. 595 

The final factor is the accuracy of the MASM method. This study demonstrated that the accuracy of the MASM 596 

method reached 1/ 4,334.63 of the structural span. This indicates that the MASM method does not accommodate 597 

highly geometry-sensitive monitoring of targets. This method is also not suitable for member-level inspection, where 598 

the accuracy is generally within 1 mm [61].  599 

8. Conclusions 600 

A high-fidelity structural model of the cable-dome structure was developed using the proposed MASM method 601 

based on 3D laser scanning. The as-measured cable-dome model was used to efficiently and accurately monitor the 602 

entire structural deviation. The conclusions are as follows: 603 

1. The MASM method applies module segmentation to a cable-dome PCD entity based on the geometric features 604 

of the structural configuration. The additional processing stage reduces the computational complexity more 605 

efficiently than direct processing associated with the general method. 606 

2. The MASM method uses two novel algorithms to automatically extract the skeleton and recognize members; 607 

these algorithms are the multi-member central shrinkage for skeleton-point recognition and smart multi-608 
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member recognition. The proposed algorithm can accommodate cable domes with various cross-sectional 609 

members. The accuracy and efficiency were validated by comparisons with popular algorithms.  610 

3. The MASM method is a systematic structural modeling method that is applicable to general symmetric cable 611 

domes with various types and dimensions of members. The reconstruction of the cable-dome model is 612 

elaborated from members to modules and eventually to the entity. The accuracy and efficiency of the MASM 613 

method were validated. 614 

4. The limitations of the MASM method were discussed in detail. Module segmentation was constrained by 615 

manual operations and structural configurations. The best measurement accuracy was 0.45 mm, heavily 616 

depending on the PCD density. It was articulated that the computational capacity of the MASM method is 617 

constrained by the software used. 618 

This study proposed a technique for reconstructing a structural model from a large volume of PCD. 619 

Reconstructed structural models are likely to enable automatic deviation monitoring. In future studies, the established 620 

model will be considered for the SDT establishment and structural performance predictions, where numerical 621 

simulations will involve high-fidelity SDT models. 622 
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