
Industrial Robot Navigation System Using a
Torque Sensor

Systém navigace průmyslového robotu s využitím torque senzoru

Aswin Kumar Sekar

Diploma Thesis

Supervisor: Ing. Radim Hercík, Ph.D

Ostrava, 2024



Ref. no.VSB/23/126177

Diploma Thesis Assignment

Student: Aswin Kumar Sekar
Study Programme: N0714A150002 Control and Information Systems

Title: Industrial Robot Navigation System Using a Torque Sensor
Systém navigace průmyslového robotu s využitím torque senzoru

The thesis language: English

Description:

The thesis deals with the possibilities of navigating the arm of an industrial robot using a torque sensor so
that the arm can be navigated by simply guiding the hand. The aim of the thesis is to design and implement
software in PCL and an industrial robot to enable this.

1. Introduction to the industrial robot and torque sensor.
2. Analysis of the possibilities of navigating the arm of an industrial robot using a torque sensor.
3. Design of an industrial robot navigation system using a torque sensor.
4. Implementation of an industrial robot navigation system using a torque sensor.
5. Functional verification and testing.
6. Summary and conclusion.

References:

[1] GILCHRIST, Alasdair. Industry 4.0: the industrial internet of things. New York, NY: Springer Science
Business Media, [2016]. ISBN 978-1-4842-2046-7.
[2] COLESTOCK, Harry. Industrial Robotics: Selection, Design, and Maintenance. University of
Michogen: McGraw-Hill, 2005. ISBN 97-8007-144-052-3.
[3] Kuka: Operational documentation

Extent and terms of a thesis are specified in directions for its elaboration that are opened to the public on
the web sites of the faculty.

Supervisor: Ing. Radim Hercík, Ph.D.

Date of issue: 01.09.2023

Date of submission: 30.04.2024

Study programme guarantor: prof. Ing. Jiří Koziorek, Ph.D.

In IS EDISON assigned: 15.12.2023 13:43:44

email: studijni.fei@vsb.cz
www.fei.vsb.cz

17. listopadu 2172/15
708 00 Ostrava-Poruba
Czech Republic

IČ: 61989100
DIČ: CZ61989100

spojovatelka: +420 597 321 111
epodatelna: epodatelna@vsb.cz
ID datové schránky: d3kj88v



Abstrakt

Tato práce podrobně popisuje návrh, implementaci a testování nového navigačního systému pro
průmyslový robot KUKA KR4, rozšířeného o integraci snímače síly/kroutícího momentu (F/T).
Systém umožňuje intuitivní ručně řízenou navigaci ramene robota, což představuje významný po-
krok v technologii robotického řízení. Navigační systém zachycuje data o síle v reálném čase ze
senzoru F/T připojeného k PC přes Ethernet, což usnadňuje bezproblémový sběr a zpracování dat.
Zpracovaná data slouží k aktualizaci koncových souřadnic v proměnné v rámci pracovního prostoru
robota, která je řízena pomocí programu napsaného v Kuka Robot Language (KRL). To umožňuje
přesné, ruční ovládání pohybů robota, simuluje přirozenější interakci mezi lidmi a roboty a zvyšuje
použitelnost v různých průmyslových prostředích. Rozsáhlé testování ověřilo efektivitu a spolehli-
vost systému a prokázalo schopnost robota provádět složité navigační úkoly se zvýšenou přesností
a zkrácenou dobou nastavení. Tato úspěšná implementace nejen dokazuje proveditelnost použití
snímačů točivého momentu pro robotickou navigaci v reálném čase, ale také pokládá základy pro
budoucí inovace v technologiích interakce mezi robotem a člověkem a nabízí pohled na transformační
potenciál F/T snímačů v průmyslové robotice.

Klíčová slova

Navigace průmyslového robota; snímač síly točivého momentu; ruční vedení; KUKA robot

Abstract

This thesis details the design, implementation, and testing of a novel navigation system for the
KUKA KR4 industrial robot, enhanced by integrating a force/torque (F/T) sensor. The system
enables intuitive hand-guided navigation of the robot arm, representing a significant advancement
in robotic control technology. The navigation system captures real-time force data from the F/T
sensor connected to a PC via Ethernet, facilitating seamless data acquisition and processing. The
processed data is used to update end coordinates in a variable within the robot’s workspace, which
is controlled using a program written in Kuka Robot Language (KRL). This allows for precise,
manual control of the robot’s movements, simulating a more natural interaction between humans and
robots and increasing usability in various industrial settings. Extensive testing verified the system’s
effectiveness and reliability, demonstrating the robot’s ability to perform complex navigation tasks
with enhanced accuracy and reduced setup time. This successful implementation not only proves
the feasibility of using torque sensors for real-time robotic navigation but also lays the foundation for
future innovations in robot-human interaction technologies, offering insights into the transformative
potential of F/T sensors in industrial robotics.



Keywords

Industrial Robot Navigation; Force Torque Sensor; Hand guidance; KUKA robot



Acknowledgement

I would like to thank all those who helped me during the completion of this work. A special thank
you to Ing. Radim Hercík, Ph.D. and Bc. Adam Bátrla, whose assistance were particularly crucial.
I would also like to acknowledge the assistance provided by artificial intelligence tools, which were
useful in improving the clarity of writing.



Contents

List of symbols and abbreviations 7

List of Figures 8

List of Tables 9

1 Introduction 10

2 Analysis of the Navigation System for Industrial Robot 12

3 Designing of Navigation system 16
3.1 System architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 System Workflow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Software Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Implementation of Navigation System 29
4.1 Configuration of System Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Software development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 User-Interface Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Testing and Validation 44
5.1 Tests done . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 49

References 50

Appendices 52

A Code 52

6



List of symbols and abbreviations

KUKA – Keller und Knappich Augsburg
FT – Force-Torque
ROS – Robot Operating System
KSS – KUKA System Software
KRL – Kuka Robot Language
OEM – Original Equiment Manufacturer
UDP – User Datagram Protocol
UI – User Interface
L/A – Link/Activity
LED – Light-emitting diode
UART – (Universal Asynchronous Receiver/Transmitter
ATI – Array Technologies Incorporated.
RDT – Raw Data Transfer
OS – Operating System
IPv4 – Internet Protocol Version 4
HTTP – Hypertext Transfer Protocol

7



List of Figures

2.1 Degrees of freedom of force/torque control[9] . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Technical Concept of FTCtrl[10] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Block diagram of system proposed in the paper[11] . . . . . . . . . . . . . . . . . . . 14

3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 System Workflow Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Kuka KR3 Agilus [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Kuka KR C4 controller[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.5 KUKA Smartpad HMI[14] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.6 Force Torque Sensor[16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Sensor fixed to the robot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 Python logo[18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.9 C3 Bridge logo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Robot’s Network Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Network Configuration in Laptop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Network Configuration of Sensor in Laptop . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 External Control System(Laptop) with UI . . . . . . . . . . . . . . . . . . . . . . . . 32
4.5 Navigating to the files in WorkVisual . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Config file with the variable required . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.7 KRL code view in KUKA Work Visual . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.8 KRL code view in KUKA SmartPad HMI . . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Robot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10 UI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1 Robot Start-Up Success . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Sensor LED indicator showing start-up success . . . . . . . . . . . . . . . . . . . . . 45
5.3 Robot position displaying in Smartpad . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8



List of Tables

3.1 EtherNET L/A LED[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Sensor status LED[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Diag LED[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 RDT Commands[17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.1 Effects of Parameter Adjustments on Robotic Performance . . . . . . . . . . . . . . . 48

9



Chapter 1

Introduction

The utilization of industrial robots across the globe has been consistently escalating each year[1].
Industrial robots have significantly evolved over the past decades, becoming central to modern
manufacturing processes due to their efficiency and precision. And here are various navigation
methods in robot, and hand-guidance in robotics is one such method, where the operators directly
interact with a robot to teach it tasks or guide its movements. This thesis explores the development
of an innovative hand-guidance system using a torque sensor to provide a cost-effective and accessible
solution for industrial applications.

There are various algorithms for hand-guidance systems that exists, but they need significant
investment or cost-effective method needs complex integration therefore limiting their accessibility
particularly for small enterprises or academic purposes. There is a need for an alternative that
leverages existing hardware and open-source software to provide a more scalable and economically
viable solution

The aim of this thesis is to design and implement a hand-guidance system for the KUKA
Industrial robot that utilizes a Force Torque sensor and innovative control algorithm that can run
in Laptop/PC. The specific goals include:

• Developing a software interface that connects a Laptop to the robot’s C3 bridge, enabling
real-time robot manipulation and control.

• Implementing control algorithms to facilitate intuitive robot teaching and operation through
hand guidance.

• Evaluating the system against key performance metrics including cost-efficiency, integration
ease, and user friendliness.

This thesis is intended to provide a viable alternative to high-cost robotic solutions, potentially
lowering automation barriers. The use of open-source software and standard hardware aims to

10



democratize access to sophisticated robotic control technologies. This thesis lays the groundwork
for a detailed exploration into developing a new hand-guidance system for industrial robots.

11



Chapter 2

Analysis of the Navigation System for In-
dustrial Robot

In this chapter we explore the current state of the art in hand-guidance systems for industrial robots,
highlighting technological advances, existing challenges, and potential areas for improvement. The
analysis is focused on understanding the technologies and methods which are traditionally used and
to identify gaps that the current research aims to fill.

Hand-guidance technology has evolved significantly from the time of its creation. It was devel-
oped for enhancing the manual control and programming ease, as guiding the robot to a position
with hand is simple and fast compared to moving using other control methods. And the Hand-
guidance method depends on the force applied and moves to that direction. For this purpose of
developing efficient force guidance systems, numerous studies investigate various control methods
and sensors. Many modern collaborative systems employ force/torque (F/T) sensors, positioned
either in the robot’s joints or as external feedback sensors on the end-effector. Alternatively, some
systems measure the electrical currents in the motors of the robot to derive force feedback[2].

Sensors integrated into the joints are commonly used in commercially available lightweight col-
laborative robots. This configuration, as opposed to sensor placement at the robot’s end-effector,
enhances sensitivity and expands the area within which collisions can be detected. A notable exam-
ple of research utilizing this approach is found in the study by Abu-Dakka et al. (2015)[3]. In their
work, the researchers equipped the KUKA LWR IV collaborative robot with a 3D vision system
and implemented a learning by demonstration algorithm to address the challenges of online pro-
gramming for peg-in-hole tasks. They also assessed the system’s performance with and without the
learning by demonstration algorithm[3]. It’s important to note that they did not include traditional
teach pendant methods in their comparative analysis.

Some manufacturers charge extra for the ability to integrate torque sensors into robot joints,
and the payload capacity of robots on the market now isn’t that large. On the other hand, adding
a force/torque (F/T) sensor to the end-effector allows for the implementation of force guidance and

12



offers a flexible approach. Any industrial robot having a real-time communication connection can
use this technique to update its position in response to outside signals[4].

Numerous recent studies have examined force guidance systems utilizing external sensors, which
are not initially supplied by the robot manufacturers. The studies from some papers were primarily
focus on creating specialized hardware and suggesting new strategies for control and programming.
These studies The majority of the control algorithms discussed in these publications are adaptations
of established methods such as gravity compensation, virtual tool control, or admittance control.
[5][6][7][8].

The solution provided by the robot manufacturer KUKA is the KUKA.ForceTorqueControl
system package. With its precise control over the forces and torques delivered throughout various
activities, the KUKA.ForceTorqueControl 3.0 improves robotic capabilities. This system’s capacity
to modify robot movements in response to real-time feedback from process torques and forces
makes it suitable for handling complicated production processes. With features like distortion-free
positioning and dynamic velocity adjustments along the programmed path, it guarantees compliance
with force requirements independent of variations in workpiece size and location. Its capacity
to apply force consistently throughout bonding, assembling, roll hemming, and surface finishing
procedures like grinding and polishing is critical to its operation[9].

Figure 2.1: Degrees of freedom of force/torque control[9]

In the research by Jonas Loske and Rolf Biesenbach, discussion of enhancement of industrial
robots with force-torque sensor. It provides a guide for integrating the force torque sensor into
the control system of KUKA robot. This paper outlines the necessary software and hardware
modifications required for integrating the KUKA.ForceTorqueControl package with the robot[10].

13



Figure 2.2: Technical Concept of FTCtrl[10]

In the paper titled "Hand Guiding a Virtual Robot Using a Force Sensor," Radovan Gregor,
Andrej Babinec, František Duchoň, and Michal Dobiš explore an innovative approach to robot
control. Their study introduces a system that can achieve hand guidance movement in robot with
the use of the open-source Robot Operating Sysem(ROS). This method uses real-time processing of
sensor data to dynamically adjust the robot’s trajectory. This study increase the accessibility and
flexibility of robotic programming. Although it was not completely successful, this highlights the
cost-effective method and potential for more intuitive human-robot collaboration[11].

Figure 2.3: Block diagram of system proposed in the paper[11]

14



After conducting a comprehensive analysis of various navigation methods in industrial robots, es-
pecially different algorithms for hand-guidance method,an innovative approach has been developed.
In this approach, I have incorporated the use of a external control system which can send informa-
tion to the robot and the robot’s own software inherent handle the movement functionalities. This
solution is cost effective compared to the purchase of KUKA.ForceTorqueControl package. Also this
solution would be better than the cost-effective method mentioned in as it does not necessitate the
installation of a alternate robot operating software, and it can make use of features offered by the
robot’s native software.This strategy aligns with the objectives of optimizing operational efficiency
and reducing costs in robotic control systems, making it a valuable addition to the discourse in
this thesis. The designing and implementation of the proposed system would be discussed in the
upcoming chapters.

15



Chapter 3

Designing of Navigation system

The need for a robust hand-guidance system is paramount in applications requiring high precision
and adaptability. The design of a new hand-guidance system for the Industrial robot is described in
this chapter, with a focus on integrating current technologies like C3 bridge, python and KRL(Kuka
Robot Language) for implementation. The highlight of this solution is that, it seamlessly integrates
with the existing Kuka System Software(KSS), therby eliminating the need for the purchase of
KUKA.ForceTorqueControl package. Also, utilizing the existing KSS, the system retains all the
functionality and benefits of the OEM (Original Equipment Manufacturer)software.

3.1 System architecture

The proposed architecture for the navigation system is focused on integration of advance technologies
which allows for the refinement of the robot movement based on the external forces and torque sensed
during operation and controlled by a external system. The architecture consists of three critical
components:

1. External Control System (Laptop)

2. Industrial Robot (KUKA robot)

3. Force/Torque Sensor

16



Figure 3.1: Block diagram

External Control System

In charge of gathering and analyzing sensory input, the External Control System is the center of the
architecture. By directly interacting with the Kuka Robot and Force-Torque sensor, it functions as
a central processing unit. The force values in the x, y, and z axes that are transmitted by the F/T
sensor must be interpreted by this system in order to be converted into useful information. This
converted value that is the distance to be moved is sent to the robot.

Industrial Robot

The Industrial Robot which in our case is the KUKA KR3 Agilus robot is equipped with F/T
sensor which is attached to its end effector. The robot communication with the external control
system and receives the continues updates of the distance to be moved which is then processed by
the robot’s proprietary programming language KRL and the robot moves.

F/T Sensor

The sensor is a crucial part of this system which detects multi-axial forces and torques that the
robot encounters. The sensor’s data output provides real-time feedback on the external force acting
on the robot which is required for the navigation. This sensor data is transferred to the External
Control system via UDP protocol.

17



3.2 System Workflow Diagram

The navigation system’s design incorporates a User Interface(UI) displayed on the external Control
system which has three buttons: Start, Stop and Close each representing different states of the
system. The Navigation program starts working when the Start Button is pressed. The navigation
program starts with the data collection from the F/T sensor. This sensor data is critical for
determining the robot’s movement coordinates or travel distance.

Upon acquiring the data, it is processed using certain algorithms to convert the force data
acquired from sensor to a actionable coordinates or travel distance for the robot to move. As the
data is received by the robot, it travels the distance obtained and continues to move as long as
it receives updates from the external system. The external system keeps send the data as long as
there is force applied on the sensor. This ongoing loop of feedback and action facilitates real-time
adjustments to the robot’s trajectory, ensuring precise navigation.

The process continues seamlessly until the Stop button is pressed. Only when the stop button
is pressed, the navigation program halts and stops the transmission of data to the robot, effectively
pausing its movement. To resume the navigation of the robot with hand guidance, pressing the
Start buton again restarts the program and allows the robot to continue its movement.

The UI remains accessible throughout the process and exits only when the close button is
pressed. This design is simple yet effective in management and operation within the navigation
system, providing clear user control and robust system responsiveness.

18



Figure 3.2: System Workflow Diagram

19



3.3 Hardware Components

The KUKA KR3 Agilus robot and the Schunk Force Torque Sensor are essential hardware compo-
nents required to execute our suggested approach and provide accurate operational feedback. The
KUKA KR C4 controller facilitates control and command functions. It is enhanced with a Smart-
Pad HMI, which improves the user interface. In addition, a laptop or personal computer is needed
for programming and computing duties. Ethernet cables are used to maintain connectivity between
these components. Python is needed for scripting features, KRL (KUKA Robot Language) is needed
for direct robotic programming, and C3Bridge is needed to connect different control systems and
architectures.

3.3.1 Robot

The Industrial robot used for designing this navigation system is KUKA KR3 AGILUS robot. Its an
lightweight agile robot. The newest robot in the KR AGILUS small robot series allows automation
in cells as small as 600 x 600 mm. But because it is even smaller than the larger models in the KR
AGILUS series, it is the perfect answer for small cell concepts like those needed in the 3C market
(computers, communications, and consumer electronics). The KR 3 AGILUS is inexpensive, low
maintenance, and extremely dependable because of its clever design. It is perfect for satisfying
the demands of many industries, especially the electronics sector, which is one of the biggest and
fastest-growing areas for automation with a payload capacity of 3 kg and a reach of 540 mm. In
their payload categories, the KR AGILUS robots’ performance is unparalleled. The robots also
include an integrated energy supply system, high speed, short cycle duration, and six axes. They
are capable of carrying out odd jobs in any installation configuration. All KR AGILUS models
are operated with the service-proven KR C4 compact or KR C4 smallsize-2, the universal control
technology for all KUKA robot models. The KR 3 AGILUS is very dependable, reasonably priced,
and requires little upkeep. Reliable technology, sturdy components, and proven KUKA quality offer
the best output and highest availability, which translates into a maximum return on investment
and a low total cost of ownership [12].

20



Figure 3.3: Kuka KR3 Agilus [12]

3.3.2 Kuka KR C4 controller

Pioneering both today’s and tomorrow’s automation is the KR C4 controller. It lowers integration,
upkeep, and service expenses. In addition, the systems’ long-term flexibility and efficiency are
raised because of open, shared industry standards. The KR C4 software architecture combines
safety control, motion control (like KUKA.ForceTorqueControl), PLC control, and robot control.
Infrastructure and a database are shared by all controllers. As a result, automation is now and in
the future both more powerful and simpler[13].

Figure 3.4: Kuka KR C4 controller[14]

21



3.3.3 Smartpad HMI

The KUKA smartPAD teach pendant was made to make even the most difficult operating duties
simple to learn. Even for inexperienced users, it is simple to use and may be distributed globally.
All KUKA robots running on KSS and Sunrise.OS can be operated in the desired language using
the KUKA smartPAD. The KUKA smartPAD is hot-pluggable and can thus be connected and
disconnected at any time. The context-sensitive interface of the KUKA smartPAD only displays
the options relevant at the moment of operation. Thanks to the intuitive operator guidance, less
experienced and expert users alike can work quickly and efficiently with a minimum of training[15].

Figure 3.5: KUKA Smartpad HMI[14]

3.3.4 Force Torque Sensor

The Schunk force/torque sensor offers a highly efficient and precise solution for industrial automation
needs. This sensor’s small form size and integrated electronics maximize space utilization and
simplify the setup procedure. With its two measurement ranges accessible through a web-based
interface, it is particularly useful for scenarios requiring flexible calibration capabilities. This allows
for adaptation to a wide range of operating needs[16].

22



Figure 3.6: Force Torque Sensor[16]

Via a direct plug-and-work software module, the sensor guarantees compatibility with robotic
systems like KUKA and Universal Robots, enabling smooth integration into current infrastructures.
Because of improved production techniques, the sensor is still economically feasible even with its
high level of precision. Its sturdy design supports a high overload capacity and resilience against
damage from temporary overloads means that it is made to last.

Improved user interaction is provided via an on-board LED display, which provides instanta-
neous visual feedback on the state of the sensor without requiring direct interface with the control
system.The Ethernet Axia sensor consists 3 LED for Link/Activity (L/A), Diagnostic (DIAG), and
Status. These LED has 3 colors- off, red, green[17].

LED Color Status Description
Off No power or connec-

tion activity
Connection/activity is not detected.

Green Link/Activity Remains green for five seconds after every con-
nection activity.

Table 3.1: EtherNET L/A LED[17]

23



LED Color Status Description
Off No power supply The sensor is not supplied with power.
Green Normal operation The electronics of the sensor are working and

can communicate.
Yellow Detection range ex-

ceeded
The forces and torques applied to the sensor ex-
ceed the permitted ranges. Reduce load or use
larger calibration.

Red (flashing at 1
Hz)

Calibration error The sensor does not refer to a calibration range
or has a checksum error.

Red (flashing at 10
Hz)

Communication er-
ror

The sensor is not able to transmit data via the
communication protocol.

Red Status code error Information about the error record.

Table 3.2: Sensor status LED[17]

LED color Status Description
Flashes green Before operation Defined by the communication/protocol stan-

dard.
Green Ready for operation No errors were found.
Red Error Indicates an error reported by the internal elec-

tronic components. In addition, the LED re-
mains red for five seconds after a UART error.

Table 3.3: Diag LED[17]

Strong connectivity is provided by a very flexible shielded cable with an M8 or M12 connec-
tor. This cable guarantees consistent power supply and signal transmission while protecting against
mechanical and electrical interferences. Additionally, the sensor offers a flexible and dependable per-
formance in challenging industrial environments by supporting Ethernet or EtherCAT connections
on its control line.

The Ethernet Axia sensor offers the following features:

• Calibrated force/torque data

• Bias functionality

• Programmable low-pass filtering with cut-off frequency

• Tool transformation

• Thresholding

24



• LED indicator for Link/Activity (L/A), Diagnostic (DIAG), and Status

• Compatible with the ATI Net F/T sensor UDP interface and Java demo application

• Compatible with parts of the ATI Net F/T web interface

UDP Interface Using RDT

The Axia Ethernet system is capable of transmitting data at a maximum frequency of 7912 Hz
via UDP over Ethernet. This rapid data transmission technique is known as Raw Data Transfer
(RDT). An RDT packet includes various types of data such as forces, torques, and status codes
from the Ethernet Axia.

Command Code Command Purpose Response
0x0000 Stop Stop sending RDT packets over

UDP.
None

0x0001 Start single block Start sending RDT packets over
UDP to the requestor, single blocks
only, regardless of the RDT buffer
size setting. Use the Count field to
send a specific number of packets, 0
= unlimited.

RDT record(s).

0x0002 Start multiblock Start sending RDT packets over
UDP to the requestor, how many
RDT packets are blocked depends
on the RDT buffer size setting. Use
the Count field to send a specific
number of packets, 0 = unlimited.

RDT record(s).

0x0042 Bias Set Software Bias. None

Table 3.4: RDT Commands[17]

25



Figure 3.7: Sensor fixed to the robot

3.4 Software Part

This section describes the software tools and platforms used to develop and implement the hand-
guidance navigation system, emphasizing their configuration, functionality, and the roles they play
in the overall system.

3.4.1 Python

Python is used because of its powerful libraries and frameworks, which effectively enable complicated
data processing and system control tasks. Its broad ecosystem and its simplicity in integrating with
different hardware interfaces make it the perfect option for our project.

26



Figure 3.8: Python logo[18]

In our solution, python is the most critical part. The entire control algorithm is written in python
which is used in all aspects of our system. Major tasks such as acquiring data from force torque
sensor, communication with the robot, making real-time calculations are performed in python. The
language’s versatility allows the development of a responsive and flexible control system that can
adapt to the dynamic requirements of hand-guidance navigation.

3.4.2 C3 Bridge

The C3 Bridge acts as a middleware that facilitates communication between high-level sofware
application and low-level robot control mechanisms. It is useful for translating the commands from
Laptop to a format that the robot’s control unit can understand

As control algorithm is developed using python in Laptop. So for the integration of the control
algorithm with the robot, C3 bridge is essential. In our implementation, the robot variables needs
to be updated using which the robot moves and the variables are updated using the commands and
format provided by the C3 bridge which translated it to a robot understandable format.

Figure 3.9: C3 Bridge logo

3.4.3 KUKA WorkVisual

KUKA WorkVisual is a software package that is used for configuring, programming and visualizing
KUKA robots and their components. It provides a unified environment for all stages of development
from hardware configuration to programming and maintenance.

WorkVisual is used in our project to configure the robot and develop KRL program. The
movement program written in KRL is responsible for using the updated variable from external
control system to move the robo and WorkVisual is used for writing that program. It allows for
visualization of robot’s workspace, setting up initial parameters etc.

27



3.4.4 Operating System

The operating systems involved in our project include Windows on the laptop and KUKA System
Software(KSS) on the robot controller.

• Windows: The external control system that is the Laptop used in our implementation of the
navigation system runs on Windows OS. It provides a familiar and versatile environment for
developing the control software by offering broad support for development tools like python,
KUKA WorkVisual.

• KSS(KUKA System Software): KSS is the KUKA robot’s operating system, which is designed
specifically for robot management and operation. It handles all aspects of robot behavior
including motion control, safety and communication with peripheral devices.

28



Chapter 4

Implementation of Navigation System

4.1 Configuration of System Components

Before implementing this solution we need to have certain configurations that needs to done in the
robot and sensor side.

4.1.1 Robot setup

The robot needs to be connected to the Laptop via Ethernet. To enable the communication between
Laptop and Robot via Ethernet, the robot needs to have C3 Bridge installed. Once it’s done, the
robot’s network configuration needs to be noted. The network configuration in Laptop should be
configured to connect with the robot. Modify the Internet Protocol Version 4(IPv4) settings of the
Ethernet Properties to match the IP address and DNS of the robot.

Figure 4.1: Robot’s Network Configuration

29



Figure 4.2: Network Configuration in Laptop

30



4.1.2 Sensor Setup

The sensor is to be mounted on the robot’s end effector. The sensor is equipped with two cables:
one for power supply and the other for communication via an Ethernet connection. In our proposed
system, the sensor’s communication cable is linked to a laptop. It is imperative to adjust the
Internet Protocol Version 4 (IPv4) settings within the sensor’s Ethernet properties. Specifically,
the IP address and DNS settings must be configured. These parameters should be recorded for
integration into the control algorithm, facilitating communication with the sensor.

Figure 4.3: Network Configuration of Sensor in Laptop

4.2 Software development

The system operates across dual platforms. The robot’s movements are controlled through a pro-
gram written in KUKA Robot Language (KRL). This movement program receives updates on the
required coordinates from a laptop, which processes the incoming sensor data into actionable move-
ment coordinates for the robot.

4.2.1 Control Algorithm in Laptop

Upon initiation of the program, the user interface (UI) is activated. The control sequence begins
when the ’Start’ button within the UI is engaged. This action establishes connectivity between the

31



laptop and both the robot and the sensor. Subsequent to the establishment of these connections, a
loop starts and the sensor data is captured using the UDP (User Datagram Protocol).

Figure 4.4: External Control System(Laptop) with UI

Sensor Package

A package with a Python class "FT_SENSOR" was developed for establishing and managing the
communication of sensor with the laptop. This communication is executed with the combination of
HTTP requests and UDP streaming, leveraging the sensor’s API to fetch and stream data efficiently.

The sensor’s configurations and parameters required for operation are fetched via HTTP requests
to the sensor’s API endpoint(’netftapi2.xml’). The python class initializes by configuring a UDP
socket and binds it to an available port on the laptop, setting the groundwork for data streaming.
The parameters that are obtained include raw force data, raw torque data, conversion factor for the
raw sensor outputs, bias settings, maximum range of sensor readings. The major functions within
the class handle specific communication aspects:

The ’read_device_settings’ method fetches current settings of the sensor by parsing the XML
response.

Code of the read_data_settings method

.

def read_device_settings(self):

soup=self._read_netftapi2()

device_status = int(soup.find(’runstat’).text,16)

32



if soup.find(’scfgfu’).text != ’N’:

raise Exception(’ATI Net F/T must use MKS units’)

if soup.find(’scfgtu’).text != ’Nm’:

raise Exception(’ATI Net F/T must use MKS units’)

if soup.find(’comrdte’).text != "Enabled":

raise Exception(’ATI Net F/T must have RDT enabled’)

cfgcpf=float(soup.find(’cfgcpf’).text)

cfgcpt=float(soup.find(’cfgcpt’).text)

def _to_array(s):

return np.fromstring(soup.find(s).text, dtype=np.float64, sep=’;’ )

conv=np.asarray([cfgcpt, cfgcpt, cfgcpt, cfgcpf, cfgcpf, cfgcpf], dtype=np.float64)

maxrange=_to_array(’cfgmr’)

bias=np.divide(_to_array(’setbias’), conv)

ft1=_to_array(’runft’)

ft=np.divide(np.append(ft1[3:6],ft1[0:3]), conv)

ipaddress=soup.find(’netip’).text

rdt_rate=int(soup.find(’comrdtrate’).text)

return NET_FT_device_settings(ft, conv, maxrange, bias, ipaddress, rdt_rate, device_status)

The ’set_tare_from_ft’ and ’clear_tare’ methods manage the sensor’s tare adjustment, which is
crucial for resetting the sensor’s zero point to account for any pre-existing forces or biases. The
’start_streaming’ and ’stop_streaming’ methods are the most critical methods which manage the
starting and stopping of the the data streaming via UDP.

Code

def start_streaming(self):

sample_count=10*self.device_settings.rdt_rate

dat=struct.pack(’>HHI’,0x1234, 0x0002, sample_count)

self.socket.sendto(dat, (self.host, 49152))

self._streaming=True

self._last_streaming_command_time=time.time()

def stop_streaming(self):

dat=struct.pack(’>HHI’,0x1234, 0x0000, 0)

33



self.socket.sendto(dat, (self.host, 49152))

self._streaming=False

self._last_streaming_command_time=time.time()

The try_read_ft_streaming method in Python manages data streaming from a networked de-
vice, specifically checking and maintaining a live data stream. It listens for incoming data packets
on a UDP socket using a non-blocking select.select call. If a packet is received, it is unpacked and
processed to extract and scale force and torque measurements, adjusting for calibration. If no valid
data is received after multiple attempts or exceptions, it returns an indication of failure.

Code for reading sensor data

def try_read_ft_streaming(self, timeout=0):

#Re-up the streaming if running out of packets

if (time.time() - self._last_streaming_command_time) > 5:

if (self._streaming):

self.start_streaming()

s=self.socket

s_list=[s]

buf=None

timeout1=timeout

drop_count=0

while(True):

res=select.select(s_list, [], s_list, timeout1)

if len(res[0]) == 0 and len(res[2])==0:

break

try:

(buf, addr)=s.recvfrom(1024)

except:

return False, None, 0

if (drop_count > 100):

break

timeout1=0

drop_count+=1

if (buf is None):

return False, None, 0

34



rdt_sequence, ft_sequence, status, Fx, Fy, Fz, Tx, Ty, Tz \

=struct.unpack(’>IIIiiiiii’, buf)

ft=np.divide(np.asarray([Tx, Ty, Tz, Fx, Fy, Fz]), \

self.device_settings.conv)-self.tare

return True, ft, status, rdt_sequence

A specialized sensor package is employed for communication with sensor, which can tare the
sensor value, pack and unpack the data, etc. From this unpackaged data, the essential components,
namely the forces along the x, y, and z axes (Fx, Fy, Fz), are extracted. To mitigate potential
disruptions or errors resulting from packet loss, a method of averaging the data packets is imple-
mented. Importantly, the quantity of packets averaged is configurable, allowing for adaptive data
fidelity.

Code for data packets averaging:

packet_count = Parameters.packet_group# packets to be averaged for force calculation

accumulated_fx = accumulated_fy = accumulated_fz = 0.0

sensor.start_streaming()

for _ in range(packet_count):

success, ft_streaming, sequence = sensor.read_ft_streaming(timeout=1)

if success:

_, _, _, fx, fy, fz = ft_streaming

accumulated_fx += fx

accumulated_fy += fy

accumulated_fz += fz

else:

logger.info("No data Received")

if packet_count > 0: #

avg_fx = accumulated_fx / packet_count

avg_fy = accumulated_fy / packet_count

avg_fz = accumulated_fz / packet_count

else:

logger.error("set packet count value greater than zero")

35



avg_fx = avg_fy = avg_fz = 0.0

Subsequent to data averaging, the resultant metrics that is the average force along x (avg fx), y (avg
fy), and z (avg fz) are computed. To differentiate between incidental contact and deliberate force
intended to direct the robot, a modifiable force threshold is established. Crossing this threshold
with any of the force readings (X, Y, or Z) triggers the conversion of these force values into relative
distances for robot movement.

Code for force threshold:

# Determine if movement is needed based on force threshold

if avg_fx>force_threshold or avg_fx<(-1*force_threshold):

x_force = True

else:

x_force=False

if avg_fy>force_threshold or avg_fy<(-1*force_threshold):

y_force = True

else:

y_force=False

if avg_fz>force_threshold or avg_fz<(-1*force_threshold):

z_force = True

else:

z_force=False

if x_force or y_force or z_force:

#robot movement program here

else:

robot_stop_move()

logger.info(f"threshold not crossed")

This conversion process directly maps the sensor’s force values to corresponding robot axes. For
instance, applying force along the positive x-axis of the sensor correlates to movement along the
positive y-axis of the robot. These force values are further adjusted by an impedance factor, which
calibrates the magnitude of the robot’s step response to each unit of force applied.

Code for mapping sensor axis to robot axis:

if x_force or y_force or z_force:

36



logger.info(f"robot is moving")

x_move = impedance_factor*avg_fy

y_move = impedance_factor*avg_fx

z_move = -1*impedance_factor*avg_fz

Finally, the computed relative distances are relayed to the robot by updating a predefined vari-
able, utilizing the write function from the KUKALIB package, which interfaces with the C3Bridge.
This ensures that the robot moves according to the specified parameters, effectively responding to
the dynamic inputs provided by the sensor data.

Code for updating variable in robot workspace:

rel_move_distance = np.array([x_move, y_move, z_move, 0.0, 0.0, 0.0], dtype="float")

robot.client.write("C3BI_CONT", ’{X ’ + str(rel_move_distance[0]) +

’, Y ’ + str(rel_move_distance[1]) +

’, Z ’ + str(rel_move_distance[2]) + ’}’)

4.2.2 KRL Programming

KUKA Robot Language(KRL) is the primary programming language that is used for controlling
KUKA robots. It is the proprietary language specifically tailored for robotic applications, which
enables precise control of robot motions, operations and interactions with peripheral devices. The
KRL code for this solution is designed to implement a basic continuous motion control for the
KUKA robot based on the dynamic variable updates received from the external System.

The code contain various core aspects of KRL programming such as the motion commands, data
handling and loop structures. The KRL program can be modified in KUKA WorkVisual Software or
directly from the SmartPAD. In the KRL explorer there are various folders and for our solutions, we
use two folders, Program and System. The KRL code is written in ’test_move.src’ under Program
folder and variables are declared in ’config.dat’ file in system folder.

37



Figure 4.5: Navigating to the files in WorkVisual

Figure 4.6: Config file with the variable required

38



Code for Initialization and Access Control:

&ACCESS RVO

DEF test_move()

These line specifies the level of access required to execute the program and defines a new function
test_move which encapsulates the robotic operations

Code For Basic Configuration:

BAS(#INITMOV, 0)

PTP $AXIS_ACT

In this part of the code, the first line initializes the motion settings of the robot, setting them to a
defined baseline configuration and the second line directs the robot to move the position defined by
the variable which typically represents the current axis position.

Code For Environmental Setup:

$BASE = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

$TOOL = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

The base and tool coordinate frames of the robot to the origin are set in this part.

Code For Continuous Motion Implementation:

MOVE_CONT = {X 0.0, Y 0.0, Z 0.0}

PTP TEST_START

LOOP

CONTINUE

PTP_REL MOVE_CONT C_PTP

ENDLOOP

This part is important section of the code which handles the movement. First it initializes the
movement vector with no displacement. Then the robot moves to the starting position designated
by the variable ’TEST_START’. After it reaches the starting position, a loop starts executing the
enclosed instruction which is to move the robot based on relative point-to-point motion command,
where the variable ’MOVE_CONT’ is continuously updated from the laptop based on the force
applied on the sensor. The ’C_PTP’ configuration constant enables the continues point to point
movement so that the robot movement looks smooth rather than stopping at each point it reaches.

39



Figure 4.7: KRL code view in KUKA Work Visual

Figure 4.8: KRL code view in KUKA SmartPad HMI

40



The entire code demonstrates a practical application of networked robotics, where the robot
can perform tasks based on the real-time data inputs which enhances its autonomy and flexibility
in industrial settings. In this case, this code needs to run in automatic mode first and once the
program in the Laptop is running, the robot starts moving based on the interaction in UI and force
applied for the movement.

Another critical part is that, the robot needs to be set in automatic mode before running the
program. the KRL program needs to be run in the automatic mode, so that the loop runs. The
figure 4.9 highlights the part for changing to automatic mode. The key which is shown using yellow
arrow should be turned to settings mode and the red arrow shows which mode it needs to be set
for the program to be run.

Figure 4.9: Robot modes

4.3 User-Interface Development

The Design and implementation of the UI for our robot navigation system is a simple yet effective
structure. The three main control buttons on the user interface (UI), which was created with the
help of the Tkinter toolkit in Python, are Start, Stop, and Close. Each of these buttons has a
specific purpose in controlling how the robot operates.

The "Robot Navigation System" interface is designed with a simple look that puts an emphasis
on clarity and use. Fullscreen mode is an optional feature of the UI main window that improves
visibility in industrial settings. The control buttons are arranged in a specific frame using a grid
pattern to guarantee precise positioning. Using the Tkinter ttk, each button has been styled with
considerable padding and an enlarged font for ease of Use.

41



Figure 4.10: UI

4.3.1 Control Elements

There are three buttons present in the UI

Start Button

This button the initiates the robot movement program. When this is pressed, the data acquisition
from sensor, then data processing to convert force data to the relative distance and writing it to
the robot variable happens in a loop.

Stop Button

This button stops the robot movement as it stops the data acquisition,data processing and writing
functions and updates the final relative distance to 0, so that the robot stops and not continues
moving

Close Button

This button’s purpose is to exit the UI. For operational safety, this button triggers a verification
process for checking if stop button has been pressed before closing the UI, cautioning to stop any
active robot movements. Once its done, the UI is closed.

42



4.3.2 Multithreading Implementation

In the architecture of our user interface (UI) for controlling robotic operations, concurrency is
utilized to enhance responsiveness and efficiency. The system is structured to operate with two
principal threads that separate UI management from backend processes.

UI Thread

This thread is dedicated solely to the UI, whose primary function is to monitor and respond to
button presses. The separation of the UI into its own thread is implemented to prevent the graphical
interface becoming unresponsive when heavy processing tasks occur. This allows for a smooth and
responsive UI and user experience, which allows seamless start, stop, close operations

Data Handling Thread

Concurrently, another thread is tasked with the critical functions of data acquisition, processing
and writing. This handles all the interactions with the sensor , robot and all the computational
tasks as needed. By isolating these data-intensive operations from UI thread, the program can run
efficiently in the background without interfering with user’s ability to control the robot.

43



Chapter 5

Testing and Validation

5.1 Tests done

Functional testing of the Industrial robot navigation system was performed to verify that the system
functions correctly to its defined specifications and requirements. The tests performed and their
outcomes are mentioned below.

5.1.1 System Initialization test

The purpose of this test is to ensure that the robotic system and all components initialize correctly
and are ready for operation.

Power up Procedures:

1. Action:Power on all the components such as KUKA robot, F/T sensor and the control com-
puter.

2. Expected Outcome: All the devices were on without any errors. The indicator lights in sensor,
KUKA Smartpad should confirm that the hardware components are active.

3. Observed Outcome: The indicator lights in the sensor and KUKA Smartpad confirmed that
the hardware components are active without any errors.

44



Figure 5.1: Robot Start-Up Success

Figure 5.2: Sensor LED indicator showing start-up success

45



Communication Test

1. Action: Launch the python scripts used for communication and ensure connection of the
laptop with the robot and sensor is established.

2. Expected Outcome: Connection success message for both the robot and sensor should be
printed in the Output terminal. Variable updating command in python should change the
value in robot Workspace.

3. Observed Outcome: The scripts ran as expected and the Connection success messages were
printed. Also, the variable was updated in the robot workspace from python.

5.1.2 Movement Execution test

This test ensures that the robot moves to the exact position

1. Action: Sending the command to the robot to update the variable ’TEST_MOVE’ with the
values I send and the robot moves to that position

2. Expected Outcome: Checking the coordinates which is updated to the variable is the final
position of the robot(noted from Smartpad) after it moves based on the variable updated

3. Observed Outcome: The robot moves perfectly to the coordinates which was updated to the
variable ’TEST_MOVE’.

Figure 5.3: Robot position displaying in Smartpad

5.1.3 Threshold filtering test

This tests ensure if the threshold filter work correctly and ignores the accidental touches or slight
disturbances.

46



1. Action: Run the program, set different threshold values and then apply forces below and
above the threshold.

2. Expected Outcome: The Robot moves after it crosses the threshold and doesn’t move for the
value less than the threshold

3. Observed Outcome: The system behaved as expected without any errors.

5.1.4 Parameters adjustment test

This test determine how changes in system parameters such as robot speed, impedance factor,
number of packets average, force threshold affect the performance and behaviour of the robotic
navigation system. This helps in optimizing the performance of the robotic navigation system.

Robot Speed Adjustment

• Objective: The primary objective of adjusting the speed of the robot was to evaluate the
impact on the system’s reaction time and stopping precision.

• Observations: It was observed that increasing robot’s speed increases the system’s reaction
speed. This also enhanced the stopping precision, indication the system can handle high
speeds without compromising on the accuracy.

Packet Count Adjustment

• Objective: The objective of this adjustment was to evaluate the influence on the smoothness
and accuracy of robot’s movements.

• Observations:It was observed that increasing the packet count which affects the number of
averaging packets was found to decrease the movement accuracy. This indicates a trade-off
between data smoothness and responsiveness of the navigation system. Higher packet count
averaging may cause delay in processing which might cause this issue as movements are based
on real-time sensor inputs.

Impedance Factor Adjustment

• Objective: The objective of this adjustment is to evaluate the influence on the robot’s move-
ment precision and speed.

• Observations: Decreasing the impedance factor resulted in greater movement precision and
accuracy but reduced the robot’s speed.

47



Force Threshold Adjustment

• Objective: The objective of this adjustment is to evaluate the influence on the robot’s move-
ment.

• Observations: Increasing the Force threshold makes the required force for the robot to move
increases. So to navigate the robot, more force is required, when the threshold is low, even
slight touch moves the robot

Parameter Adjusted Adjustment Description Observed Effect

Robot Speed Increased speed
Increased reaction speed and im-
proved stop precision

Packet Count
Higher number of packets av-
eraged

Decreased movement accuracy

Impedance Factor Decreased factor
Increased movement precision and
accuracy, decreased speed

Force Threshold Increased threshold
Requires greater force to initiate
movement

Table 5.1: Effects of Parameter Adjustments on Robotic Performance

5.2 Limitations

One of the inherent Limitations in our system is due to the usage of Python as primary programming
language because it has Global Interpreter Lock(GIL) which restrict the execution of multiple
threads in parallel. This affects in scenario where multi-threads would enhance the performance
by parallelizing data processing tasks. To mitigate the effects of GIL on our system, we can use
multi-processing instead of multi-threading, thereby bypassing GIL and enhancing the processing
capabilities. Also, optimizing the data processing algorithm can reduce required computational
resource and can achieve high efficiency within the single-threaded limitation imposed b the GIL.

Another such issue if the communication protocol which we used in our solution that is UDP
which is known for packet loss. In this current solution, averaging of data packets was done to
ignore packet loss. Similarly different algorithm can be implemented to handle packet loss based on
the requirement.

48



Chapter 6

Conclusion

This thesis presented the design, implementation, and testing of a novel hand-guidance system for
industrial robots using a torque sensor, with the primary objective of developing a cost-effective
and accessible alternative to existing systems like KUKA’s ForceTorqueControl. The system uti-
lized open-source software and standard hardware, and was successfully designed to integrate a
standard force/torque sensor with a KUKA robot through a custom-developed software interface
using Python and KRL. The emphasis was on simplicity, usability, and efficiency. The implementa-
tion detailed the configuration of hardware components and the development of software to handle
real-time data streaming and robot control, with the integration of the C3 bridge playing a crucial
role in facilitating robust communication between the Laptop and the robot.

The testing of the system under various operational conditions showed the system’s reliability
and precision in navigating the robot arm using hand-guidance, with performance metrics con-
firming its suitability for industrial applications and noting improvements over some proprietary
systems. This research contributes to the field of industrial robotics by offering a viable alternative
to proprietary hand-guidance systems, potentially lowering the cost and easy implementation for
those looking to integrate advanced robotic technologies and providing insights into the integration
of open-source software with industrial robotics. This expands customization and cost reduction
possibilities and sets a framework for future developments in robotic hand-guidance systems, partic-
ularly in using standard components and non-proprietary software solutions. The developed system
supports the operational needs of different settings and offers scalability and adaptability to differ-
ent environments, reducing dependence on expensive proprietary solutions and fostering innovation
and technological advancement in the field. Although the system meets many of the intended goals,
several challenges were encountered, such as handling multiple communications at the same time,
and it demands continuous improvements to manage unusual operational scenarios. Further re-
search and development are recommended to enhance the interface, expand sensor capabilities, and
conduct scalability tests to ensure the system can be adapted to larger or more complex robotic
systems.

49



References

1. INTERNATIONAL FEDERATION OF ROBOTICS. World Robotics 2023 Report. September
2023. Available also from: https://ifr.org/ifr-press-releases/news/world-robotics-

2023-report-asia-ahead-of-europe-and-the-americas.

2. GERAVAND, Milad; FLACCO, Fabrizio; DE LUCA, Alessandro. Human-robot physical in-
teraction and collaboration using an industrial robot with a closed control architecture. In:
2013 IEEE international conference on robotics and Automation. IEEE, 2013, pp. 4000–4007.

3. ABU-DAKKA, Fares J; NEMEC, Bojan; KRAMBERGER, Aljaž; BUCH, Anders Glent; KRÜGER,
Norbert; UDE, Ales. Solving peg-in-hole tasks by human demonstration and exception strate-
gies. Industrial Robot: An International Journal. 2014, vol. 41, no. 6, pp. 575–584.

4. GRUNINGER, Rolf; KUS, Elzbieta; HUPPI, Richard. Market study on adaptive robots for
flexible manufacturing systems. In: 2009 IEEE International Conference on Mechatronics.
IEEE, 2009, pp. 1–7.

5. BASCETTA, Luca; FERRETTI, Gianni; MAGNANI, Gianantonio; ROCCO, Paolo. Walk-
through programming for robotic manipulators based on admittance control. Robotica. 2013,
vol. 31, no. 7, pp. 1143–1153.

6. KUHN, Stefan; GECKS, Thorsten; HENRICH, Dominik. Velocity control for safe robot guid-
ance based on fused vision and force/torque data. In: 2006 IEEE International Conference on
Multisensor Fusion and Integration for Intelligent Systems. IEEE, 2006, pp. 485–492.

7. MASSA, Daniele; CALLEGARI, Massimo; CRISTALLI, Cristina. Manual guidance for in-
dustrial robot programming. Industrial Robot: An International Journal. 2015, vol. 42, no. 5,
pp. 457–465.

8. NORBERTO PIRES, J; VEIGA, Germano; ARAÚJO, Ricardo. Programming-by-demonstration
in the coworker scenario for SMEs. Industrial Robot: An International Journal. 2009, vol. 36,
no. 1, pp. 73–83.

9. KUKA ROBOTER GMBH. KUKA.ForceTorqueControl 3.0. Augsburg, Germany: KUKA Roboter
GmbH, 2013-02. Version: KST ForceTorqueControl 3.0 V2 en (PDF).

50

https://ifr.org/ifr-press-releases/news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas
https://ifr.org/ifr-press-releases/news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas


10. LOSKE, Jonas; BIESENBACH, Rolf. Force-torque sensor integration in industrial robot con-
trol. In: 15th International Workshop on Research and Education in Mechatronics (REM).
2014. Available from doi: 10.1109/REM.2014.6920241.

11. GREGOR, Radovan; BABINEC, Andrej; DUCHOŇ, František; DOBIŠ, Michal. Hand guiding
a virtual robot using a force sensor. acta mechanica et automatica. 2021, vol. 15, no. 3, pp. 177–
186.

12. KUKA. The New KR 3 AGILUS [https://www.kuka.com/cs-cz/firma/tisk/novinky/

2016/07/the-new-kr-3-agilus]. 2016-07.

13. KUKA. KR C4: Compact Controller for Increased Efficiency and Flexibility. 2023. Available
also from: https://www.kuka.com/en-de/products/robot-systems/robot-controllers/

kr%C2%A0c4.

14. THAI WELDING. KUKA Robots: KR AGILUS. 2023. Available also from: http://www.

thaiwelding.com/th/kuka-robots/kr-agilus.

15. KUKA. SmartPAD: Intuitive Robot Operation. 2023. Available also from: https://www.kuka.

com/en-au/products/robotics-systems/robot-controllers/smartpad. Accessed: 2023-
04-28.

16. SCHUNK. FT-AXIA Force/torque sensor. 2024. Available also from: https://schunk.com/

cz/cs/automatizace/silove/momentove-senzory/ft-axia/c/PGR_3907.

17. KG, SCHUNK GmbH & Co. FTN-AXIA Commissioning Instructions. Germany: SCHUNK
GmbH & Co. KG, 2022-11. Version 05.00. Available: https://www.schunk.com.

18. PYTHON SOFTWARE FOUNDATION. Python Community Logos. 2023. Available also from:
https://www.python.org/community/logos/.

51

https://doi.org/10.1109/REM.2014.6920241
https://www.kuka.com/cs-cz/firma/tisk/novinky/2016/07/the-new-kr-3-agilus
https://www.kuka.com/cs-cz/firma/tisk/novinky/2016/07/the-new-kr-3-agilus
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kr%C2%A0c4
https://www.kuka.com/en-de/products/robot-systems/robot-controllers/kr%C2%A0c4
http://www.thaiwelding.com/th/kuka-robots/kr-agilus
http://www.thaiwelding.com/th/kuka-robots/kr-agilus
https://www.kuka.com/en-au/products/robotics-systems/robot-controllers/smartpad
https://www.kuka.com/en-au/products/robotics-systems/robot-controllers/smartpad
https://schunk.com/cz/cs/automatizace/silove/momentove-senzory/ft-axia/c/PGR_3907
https://schunk.com/cz/cs/automatizace/silove/momentove-senzory/ft-axia/c/PGR_3907
https://www.schunk.com
https://www.python.org/community/logos/


Appendix A

Code

UI.py

import tkinter as tk

from tkinter import ttk

from tkinter import messagebox

from tkinter import PhotoImage

import move_relative

def close_window():

move_relative.stop_script()

if messagebox.askyesno("Close", "Are you sure you want to close?\n\nNote:

Press stop before closing*"):

root.quit()

# Set up the UI

root = tk.Tk()

root.title("Robot Navigation System")

# root.attributes(’-fullscreen’, True) # Set the window to full screen

# Load and display a logo in the corner of the UI

logo = PhotoImage(file="logo_2.png") # Ensure "logo_2.png" exists in your project

directory

logo_label = tk.Label(root, image=logo)

52



logo_label.pack(anchor=’nw’, pady=10, padx=10)

# Create a frame for buttons to use grid layout

buttons_frame = tk.Frame(root)

buttons_frame.pack(pady=20)

buttons_frame.configure(background=’#00A499’)

# Buttons using grid within the buttons frame

style = ttk.Style()

style.configure(’TButton’, font=(’Helvetica’, 20), padding=(20, 10))

start_button = ttk.Button(buttons_frame, text="Start",command=move_relative.

start_script,style=’TButton’)

start_button.grid(row=0, column=0, padx=10, pady=20)

stop_button = ttk.Button(buttons_frame, text="Stop",command=move_relative.

stop_script, style=’TButton’)

stop_button.grid(row=1, column=0, padx=10, pady=20)

close_button = ttk.Button(buttons_frame, text="Close", command=close_window,style=

’TButton’)

close_button.grid(row=5, column=0, padx=10, pady=20)

# Configure background

root.configure(bg=’#00A499’)

# Ensure clean exit

root.protocol("WM_DELETE_WINDOW", close_window)

# Start the application

root.mainloop()

53



move_relative.py

from KUKALIB.kukaconnector import KUKA_Handler

from KUKALIB import Parameters as Parameters

import threading

import numpy as np

from sensor_connect import FT_CONNECT

import logging

import re

import time

# Setup basic logging

logging.basicConfig(level=logging.INFO)

logger = logging.getLogger(__name__)

# Initializing global variables

running = threading.Event()

robot = KUKA_Handler(Parameters.ip_KUKACell, Parameters.port_KUKACell)

sensor = FT_CONNECT(net_ft_host=Parameters.ip_sensor)

script_thread = None

reset_position = Parameters.KUKA_reset_rel_move

force_threshold = Parameters.force_threshold

impedance_factor = Parameters.impedance_factor # adjust for step movement

def robot_stop_move():

robot.client.write("MOVE_CONT", ’{X ’ + str(reset_position[0]) +

’, Y ’ + str(reset_position[1]) +

’, Z ’ + str(reset_position[2]) + ’}’)

def move_robot_wrist():

# Open the connection to the robot

robot.KUKA_Open()

# tare sensor

sensor.set_tare()

running.set()

54



try:

while running.is_set():

packet_count = Parameters.packet_group# packets to be averaged for

force calculation

accumulated_fx = accumulated_fy = accumulated_fz = 0.0

sensor.start_streaming()

for _ in range(packet_count):

success, ft_streaming, sequence = sensor.read_ft_streaming(timeout

=1)

if success:

_, _, _, fx, fy, fz = ft_streaming

accumulated_fx += fx

accumulated_fy += fy

accumulated_fz += fz

else:

logger.info("No data Received")

if packet_count > 0: #

avg_fx = accumulated_fx / packet_count

avg_fy = accumulated_fy / packet_count

avg_fz = accumulated_fz / packet_count

else:

logger.error("set packet count value greater than zero")

avg_fx = avg_fy = avg_fz = 0.0

# Determine if movement is needed based on force threshold

if avg_fx>force_threshold or avg_fx<(-1*force_threshold):

x_force = True

else:

x_force=False

if avg_fy>force_threshold or avg_fy<(-1*force_threshold):

y_force = True

else:

55



y_force=False

if avg_fz>force_threshold or avg_fz<(-1*force_threshold):

z_force = True

else:

z_force=False

if x_force or y_force or z_force:

logger.info(f"robot is moving")

x_move = impedance_factor*avg_fy

y_move = impedance_factor*avg_fx

z_move = -1*impedance_factor*avg_fz

rel_move_distance = np.array([x_move, y_move, z_move, 0.0, 0.0,

0.0], dtype="float")

robot.client.write("MOVE_CONT", ’{X ’ + str(rel_move_distance[0]) +

’, Y ’ + str(rel_move_distance[1]) +

’, Z ’ + str(rel_move_distance[2]) + ’}’)

else:

robot_stop_move()

logger.info(f"threshold not crossed")

sensor.stop_streaming()

except KeyboardInterrupt:

logger.info(f"Stopped by user ")

finally:

robot.KUKA_Close()

sensor.stop_streaming()

def start_script():

global script_thread

if not running.is_set():

running.set() # Signal that we intend to run

script_thread = threading.Thread(target=move_robot_wrist)

script_thread.start()

def stop_script():

56



logger.info("its stopped")

global robot

robot.KUKA_Open()

running.clear() # Signal to stop the loop in move_robot_wrist

robot_stop_move()

robot.KUKA_Close()

sensor.stop_streaming()

if __name__ == ’__main__’:

move_robot_wrist()

test_move.src

&ACCESS RVO

DEF test_move( )

BAS (#INITMOV, 0)

PTP $AXIS_ACT

$BASE = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

$TOOL = {X 0.0, Y 0.0, Z 0.0, A 0.0, B 0.0, C 0.0}

MOVE_CONT = {X 0.0, Y 0.0, Z 0.0}

PTP TEST_START

LOOP

CONTINUE

PTP_REL MOVE_CONT C_PTP

ENDLOOP

END

57


	List of symbols and abbreviations
	List of Figures
	List of Tables
	Introduction
	Analysis of the Navigation System for Industrial Robot
	Designing of Navigation system 
	System architecture
	System Workflow Diagram
	Hardware Components
	Software Part

	Implementation of Navigation System
	Configuration of System Components
	Software development
	User-Interface Development

	 Testing and Validation
	Tests done
	Limitations

	Conclusion
	References
	Appendices
	Code

