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Using a pan-cancer atlas to investigate
tumour associated macrophages as
regulators of immunotherapy response

Alexander Coulton 1, Jun Murai 1, Danwen Qian 1, Krupa Thakkar1,

Claire E. Lewis 2,3 & Kevin Litchfield 1,3

The paradigm for macrophage characterization has evolved from the simple

M1/M2 dichotomy to a more complex model that encompasses the broad

spectrumofmacrophage phenotypic diversity, due to differences in ontogeny

and/or local stimuli. We currently lack an in-depth pan-cancer single cell RNA-

seq (scRNAseq) atlas of tumour-associated macrophages (TAMs) that fully

captures this complexity. In addition, an increased understanding of macro-

phage diversity could help to explain the variable responses of cancer patients

to immunotherapy. Our atlas includes well establishedmacrophage subsets as

well as a number of additional ones. We associate macrophage composition

with tumour phenotype and show macrophage subsets can vary between

primary and metastatic tumours growing in sites like the liver. We also

examine macrophage-T cell functional cross talk and identify two subsets of

TAMs associated with T cell activation. Analysis of TAM signatures in a large

cohort of immune checkpoint inhibitor-treated patients (CPI1000 + ) identify

multiple TAM subsets associated with response, including the presence of a

subset of TAMs that upregulate collagen-related genes. Finally, we demon-

strate the utility of our data as a resource and reference atlas for mapping of

novel macrophage datasets using projection. Overall, these advances repre-

sent an important step in both macrophage classification and overcoming

resistance to immunotherapies in cancer.

The complex interplay between cancer-cell intrinsic factors and the

tumour microenvironment (TME) determine the prognosis, progres-

sion and efficacy of treatment for cancer. Tumour-associated macro-

phages (TAMs) are a highly diverse and prominent component of this

environment, and much like their functional diversity in the body1,

whether as microglia in the brain, Kupffer cells in the liver and Lan-

gerhans cells lining the skin epithelium, they also form a diverse array

of functions within the heterogeneous architecture of the tumour2.

Specifically, TAMs have been shown to promote invasion of cancer

cells into the surrounding tissues, vascularization of tumours, escape

of cancer cells into tumour blood vessels, extravasation of cancer cells

from the circulation into metastatic sites like the lungs, and suppres-

sion of anti-tumour immunity2–4.

In most tumour types, the density of TAMs correlates with poor

prognosis5–8, but in some like colorectal cancer the opposite is true9–12.

Macrophage classification has historically followed a bipartite system

named M1/M2, with M1 macrophages associated with inflammatory

functionality, and M2macrophages associated with anti-inflammatory

properties. Whilst the paradigm for the role of macrophages in the

TME has evolved with research, moving from a simpler M1/M2
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dichotomy defined based on the inflammatory axis of TAMs in vitro13,

to more complicated models reflecting the full spectrum of their

functional diversity14,15, we currently lack a comprehensive atlas of

TAM phenotypes that utilizes the full breadth of scRNAseq data

available, with existing efforts focusing on broader subsets of immune

cells such as all monocytes and their developmental derivatives

(including macrophages), or all myeloid cells and lymphoid cells16,17,

rather than just on TAMs.

Here we construct a large and in-depth characterization of TAM

diversity, defining a number of macrophage subsets present in 17

human tumour types, and performing extensive analysis of their

definitive markers and pathways. We correlate TAM subsets with var-

ious tumour genomic / phenotypic features and show that distinct

subsets predict tumour responses to checkpoint inhibitors. Finally we

demonstrate the use of this atlas as a resource for future research,

analyzing it in light of newermodels of TAM diversity14, and projecting

new datasets on to the atlas in an effort to characterize the macro-

phage composition of novel studies. This advance represents an

important step in macrophage research.

Results
Construction of a large-scale, pan-cancer macrophage atlas
Recent publications have highlighted the diversity of TAMs in

tumours14,16–18. Herewe attempt to augment these efforts by producing

a dedicated, pan-tumour, single-cell atlas encompassing the full

breadth of TAMdiversity both in termsof broad-level clustering aswell

as a complete catalogue of information at the level of expression data

for individual genes. We selected 32 studies comprising 17 cancer

types16,19–48 (Fig. 1a) and processed them using a standard scRNAseq

pipeline (Fig. 1b). These data were obtained through exhaustive sear-

ches of both the literature and theGene ExpressionOmnibus database.

The acquisition strategy is detailed in Supplementary Fig. 1. The total

dataset includes 363,315 TAMs or macrophage-like cells (i.e. mono-

cytes), with 279,104 cells originating from tumour tissue, 74,982 from

adjacent normal, and 9229 cells from other sites (blood, lymph node;

Fig. 1c). Of these tumour cells with available annotation, 73.8% origi-

nated from primary tumour tissue, whilst 18.5% originated from

metastases (remainder were unknown / NA; Fig. 1d). Lung cancers had

the highest number of cells in the atlas, followed by clear-cell renal cell

carcinomas (ccRCCs) and glioblastoma multiforme (GBM) tumours

(Fig. 1e). Additional metadata, such as histological (e.g. LUAD, LUSC or

SCLC for lung cancer) or molecular subtype (e.g. ER + / HER2+ status

for breast cancer), for each cancer was extracted for downstream

analysis.

The data was generated from a mixture of different sites using a

variety of scRNA sequencing platforms (10x Genomics, MARS-seq,

GEXSCOPE, In-Drop and Smart-Seq2; Supplementary Fig. 2), as well as

two studies utilizing snRNAseq (Supplementary Fig. 3). We performed

batch correction and data integration across studies before clustering.

We benchmarked numerous approaches using the iLISI criterion49

(methods) and performed integration using the RPCA algorithm of

Seurat. Clustering and differential expression analysis were performed

with native approaches implemented in Seurat. Cancer/tissue dis-

tribution of cells and samples is detailed in Supplementary Data 1,

whilst study/tissue distribution of cells and samples is detailed in

Supplementary Data 2. The number of macrophages and non-

macrophages in original studies is detailed in Supplementary Data 3.

The spectrum of TAM diversity is broad and complex
Prevailing models for the functions of TAMs have advanced over time,

with recent studies14 advocating for a move away from the traditional

M1/M2 inflammatory axis classification, to instead focus on a broader

view of these cells that encompasses their diverse phenotypes and

functions. Here we identified TAMs with recurrent phenotypes using a

graph-based clustering approach, which iteratively groups cells

together using the Louvain algorithm as implemented in Seurat,

resulting in 23 clusters in total, visualized as a 2-dimensional UMAP in

Fig. 2a. The inter-cluster relationshipswere explored using hierarchical

clustering (Fig. 2b).

To assess the validity of our clustering approach, we performed

mapping of known markers of diversity in TAMs14 to each of the

clusters, which confirmed correct recovery of known macrophage

subsets, such as IFN-stimulated or proliferating macrophages. In

addition, given the well-powered nature of the dataset we identified

rare and less well-documented subsets, most likely pertaining to sub-

sets that have not previously been identified. Cluster 0, the largest of

the clusters with 38,071 TAMs in total, represents alveolar macro-

phages, the majority of these TAMs originating from lung tissue, with

high expression of alveolar macrophage markers FABP4 (Fig. 2c),

MCEMP1 and CD5230,50. Cluster 1 was found to have immunoregulatory

function, with upregulation of SELENOP, a selenium transporter pre-

viously associated with M2 macrophage polarization51,52; SLC40A1, a

component of ferroportin, a cellular iron transporter in which high

expression has been shown to promote M2-polarization of TAMs53, as

well as other M2-associated genes including PLTP54, F13A155 and

FUCA255. Cluster 21 TAMs also express SLC40A1 and SELENOP, but in

addition, highly upregulate CD163 and HMOX1, suggesting that these

are heme-clearance macrophages.

Clusters 2, 6, 7, 8, 10 and 17 were all found to be associated with

inflammation, with cluster 2 upregulating C3, required for opsoniza-

tion and phagocytosis56, PLD4, previously associated with M1

polarization57 as well as the MHC class II molecule subunits HLA-DPA1

and HLA-DPB1. Cluster 6 upregulates CCL20, which promotes cancer

cellmigration and therefore progression /metastasis58,59;CXCL3, which

also promotesmetastasis in pancreatic cancer60; the pro-inflammatory

cytokine IL1B, as well as other chemokines CXCL2 and CXCL8

(Fig. 2c, d). Similarly, cluster 7 is associated with cytokines including

CCL2, CCL8, CCL4L2, CCL3L3, and SPP1, which has been shown to both

promote M2 polarization in lung adenocarcinoma61 as well as being

associated with angiogenesis62,63. Top upregulated genes in cluster 8

include CXCL9, CXCL10, MMP9, which is required for ECM remodeling

and therefore macrophage migration64 and is also implicated in

priming premetastatic sites in lung metastases65, as well as VAMP5,

which is an interferon-induced gene66. Cluster 17 TAMs also display an

interferon-induced phenotype, the highest upregulated gene being

ISG15, as well as chemokines CXCL10 and CCL8. Similarly, cluster 22

TAMs show evidence of exposure to interferons, with upregulation of

IFITM2 and LST1. Cluster 10 TAMs upregulate a variety of cytokines,

including CCL3L3, CCL4L2, CXCL8, IL1B, TNF, CCL4 and CCL3.

There is significant interest in the therapeutic targeting of TAMs

due to their immunosuppressive function67, and a large number of

compounds are in clinical development aiming to either deplete,

repolarise or block TAM subset activity. Cluster 3 TAMs were found in

most cancer types, andpartially recapitulated a gene signature that has

been associated with immunotherapy resistance in melanoma68, with

high expression of SPP1, RNASE1, NUPR1 and TREM2. TREM2 has been

described in diverse contexts, including in the maintenance of

microglial fitness in the context of Alzheimer disease69, in association

with lipid-associated TAMs70, and furthermore, experimental data on

mice shows that inhibition of TREM2 potentiates immunotherapy

response and inhibits tumourgrowth71. Like cluster 3, TAMs in cluster 4

upregulate TREM2, however in contrast, they also upregulate APOE, a

fatty acid metabolism gene studied extensively in neurological

disorders72 and recently associated withmacrophage subsets in breast

cancer42, as well as APOC1, which has been shown as a potential

prognostic biomarker for lung cancer progression73 and when inhib-

ited, promotes transformation of M2 polarized TAMs to an M1 state

and enhances anti-PD1 immunotherapy in hepatocellular carcinoma74.

Cluster 5 TAMs are characterized by their upregulation of stress-

inducible heat shock transcripts (Fig. 2c, e), which are associatedwith a
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broad number of features of cancer development75, including HSPA6,

HSPA1B, HSPA1A, DNAJB1, HSPB1, HSPH1, HSPD1, HSP90AA1 and BAG3,

which interacts with heat shock proteins and is also induced under

stressful stimuli76.

A subset of TAMs have been implicated in the promotion of

angiogenesis in tumours14,16 — these correspond to cluster 9 in our

atlas, which is the only cluster to significantly differentially express

angiogenesis-associated genes VEGFA, VCAN and THBS1. In addition,

TAMs from this cluster highly upregulate two epidermal growth fac-

tors, AREG, which is involved in fibroblast migration via macrophage-

fibroblast interaction77 and EREG, which promotes early cancer

development78, as well as cytokine IL1B.
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Fig. 1 | Overview of the pan-cancer, tumour-associated macrophage atlas.

a Anatomical representation of the 17 cancer types included in the atlas.

b Schematic overview of the methodology of construction of the atlas, from data

curation, through processing to analysis. c Pie chart illustrating the distribution of

tissue types within the atlas in terms of cells (shown as numbers). d Pie chart

illustrating the proportion of cells originating from primary and metastatic

tumours included in the atlas in terms of cells (shown as numbers). e Barplots

showing the number of cells, samples and patients per cancer type, with colour

representing the tissue type (tumour or normal). BCC Basal cell carcinoma; BRCA

Breast Cancer; RCC Renal cell carcinoma; CRC Colorectal cancer; ESO Esophageal

cancer; GBMGlioblastomamultiforme; LIHC Liver hepatocellular carcinoma; LUAD

Lung adenocarcinoma; LUSC lung squamous cell carcinoma; SCLC small cell lung
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Cluster 19 appears to be composed of classical monocytes, with

these cells upregulating a number of genes typical to this cell type,

including S100A8, S100A9, S100A12, VCAN, and LYZ18.

Proliferating TAMs upregulate genes associated with cell-cycle

and DNA replication; these are represented by cluster 14 TAMs in our

atlas. This includes upregulation ofH4C3 (histone component), TOP2A

(a DNA topoisomerase), some cyclin-dependent kinase related genes

including CDK1, CDKN3 and CKS1B, as well as CENPF (kinetochore

component), STMN1 (involved in cell cytoskeleton), and was the only

cluster to upregulate MKI67, a canonical marker of proliferation.

For some of the TAM clusters identified, their function with rela-

tion to tumour development and growth was less clear, revealing

potential avenues for future experimental elucidation. Cluster 11 TAMs

upregulate metallothioneins MT1G, MT1X, MT2A, MT1E, MT1H, MT1F
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Fig. 2 | Detailed characterization of macrophage clusters in tumours. a UMAP

visualization of macrophage subsets in the atlas. b Hierarchical clustering analysis

indicating similarity of clusters in terms of average expression. c Dotplot showing

the percentage of cells expressing (size) and mean expression (colour) of top 2

most significantly upregulated markers per cluster. d, e Radar plot illustrating key

biological pathways upregulated for selected clusters. Source data are provided as

a Source Data file.
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and MT1M, involved in zinc metabolism and also established as a

prognostic biomarker for some cancers79,80. Cluster 13 TAMs upregu-

lated FN1, released in the cargo of extracellular vesicles by TAMs81 and

influencive of PDAC response to chemotherapy andM2polarization in

HNSCC82, as well as S100A6, S100A10, S100A4, all of which are calcium

binding proteins. S100A4 acts both intracellularly and extracellularly,

the latter has been shown to promote inflammation and metastasis,

and is typically released in response to stress83. Cluster 15 TAMs were

characterized by upregulation of LYZ, an anti-bacterial enzyme that

targets the peptidoglycan component of bacterial cell-walls, and is also

thought to be anti-inflammatory in nature84. Interestingly, the top two

upregulated genes in cluster 16 TAMs were MMP9, a matrix metallo-

proteinase involved in the breakdown of extracellular matrix85 and

prognostic of breast cancer86, as well as TIMP1, which is an inhibitor of

MMP9, suggesting a homeostatic role for these TAMs in modulating

metalloproteinase activity.

Cells in cluster 20 appear to bemislabelled asmacrophages. Cells

in this cluster expressed genes associated with T cells, such as NKG7,

TRBC2 and CD3D, as well as a B cell-associated gene, IGKC, possibly

explained by cell doublets.We retain this cluster for use as a control in

downstream analyses.

TAMs from cluster 12 were highly enriched inmelanoma tumours,

specifically in melanoma brain metastases. The highest upregulated

gene from the differential expression analysis was LRMDA, a melano-

cyte differentiation factor, suggesting an interactive role between

these TAMs and the tumour cells. TAMs in Cluster 18 on the other

hand upregulate genes involved in extracellular matrix remodeling

(Fig. 2c, d), including COL1A2, COL1A1, COL3A1, SPARC, COL6A2,

COL6A1, COL6A3, SPARCL1. Cluster distribution by cancer type is

shown in Supplementary Fig. 4 and Supplementary Data 4. Cluster

distribution by tissue type is shown in Supplementary Fig. 5.

Both tumour-intrinsic and environmental factors shape macro-
phage phenotype
Having produced a detailed characterization of each macrophage

cluster in terms of their differentially expressed genes and pathways,

we then sought to examine whether TAM composition within samples,

in terms of the clusters present, differed between various conditions,

including the tissue site of the tumour, tumour histology, or tumour

molecular subtype. In this way, we aimed to untangle the influences of

tumour location in the body from tumour genotype on macrophage

composition, by comparing TAM-composition in primary tumours of

e.g. colorectal cancer to colorectal metastases in the liver and primary

liver tumours, or by comparing primary melanomas in the skin to

melanoma brainmetastases and primary glioblastomas. To do this, we

utilized a statistical method designed to test for differences in pro-

portion of cell type between samples within single cell data87.

In our comparison of CRC (whether primary or metastasis; liver

metastases derived from ref. 26) and LIHC tumours, we detected sig-

nificant differences in the proportion of five clusters between the three

conditions. The most prominent of these differences was in the pro-

portions of cluster 18_ECMMac, which was significantly enriched

(moderated two-sided ANOVA via propeller87 with FDR correction,

q = 0.0000008703) in both CRC primaries and CRCmetastases in the

liver, but relatively depleted in primary liver tumours (Fig. 3a, b),

indicating a potential influence of CRC cancer cell intrinsic genotypic

or phenotypic factors on TAMs subsets. In addition, cluster

6_SPP1AREGMac was significantly enriched (moderated two-sided

ANOVA via propeller87 with FDR correction, q = 0.02903) in both

LIHCs and CRC metastases of the liver but showed reduced levels in

primary CRCs (Fig. 3a).

The comparison of melanomas (primary or metastasis) and GBMs

also yielded several significant differences in the proportions of mac-

rophage subsets (Fig. 3c, d). Most strikingly, cluster 12_MBMMac, in

which the top differentially expressed gene was LRMDA, a known

melanocyte differentiation factor, was significantly highly enriched

(moderated two-sided ANOVA via propeller87 with FDR correction,

q = 0.00000000102) in melanoma brain metastases compared to

both primary melanomas and primary glioblastomas (Fig. 3c, d), sug-

gestive of an interaction between this tumour genotype and the sur-

rounding brain tissue. In addition, cluster 2_C3Mac was significantly

enriched (moderated two-sided ANOVA via propeller87 with FDR cor-

rection, q = 0.02982) in both primary melanomas and primary glio-

blastomas compared to melanoma brain metastases.

In terms of histology and molecular subtype, we also tested for

differences in macrophage composition between lung adenocarcino-

mas (LUAD) and lung squamous cell carcinomas (LUSC), as well as

between breast cancers with varying receptor status, including HR + ,

HER2 + , HR + /HER2+ and triple negative breast cancers (TNBC). This

analysis revealed significantly higher proportions of clusters 16_ECM-

HomeoMac and6_SPP1AREGMac in LUSC, and conversely, significantly

higher proportions of 15_LYZMac in LUAD (Moderated two-sided T-

test via Propeller with FDR correction formultiple testing, q = 0.03168,

q = 0.00000387, q = 0.08006 respectively; Supplementary Fig. 6). In

addition, TNBCs had significantly higher proportions of 14_ProliMac

compared to HR + /HER2+ positive breast cancers, with the reverse

trend for 2_C3Macs, which were higher in HR + /HER2+ positive breast

cancers compared to TNBCs (Moderated two-sided T-test via Propeller

with FDR correction for multiple testing, q = 0.0594 and q = 0.0761

respectively; Supplementary Fig. 7). The higher proportion of pro-

liferating macrophages in TNBCs is concordant with the high pro-

liferative activity and increased immune infiltrate of TNBCs compared

to other breast cancers88.

TAM phenotypes and patient responses to immune checkpoint
inhibitors
TAMs have long been associated with therapeutic outcome67,89,90,

including the response to immune checkpoint inhibitors (ICI)91. There

is also considerable interest in the repolarization of TAMs from M2 to

M1 phenotype92, a strategy that could impact ICI outcome, as well as

using M1 TAMs as drug delivery vectors93. We hypothesized that spe-

cific macrophage subsets in our atlas might be associated with ICI

response, and assessed this with an expanded version of our pre-

viously published CPI1000 cohort, here encompassing 1446 ICI-

treated patients with bulk RNA-seq data and referred to as the

CPI1000+ cohort94 (methods).

Firstly, we defined scRNAseq cluster gene expression signatures

based on the top differentially expressed markers per cluster, and

evaluated their potential efficacy in bulk data using a second atlas

containing all cell types (see methods, Supplementary Data 5-6). This

allowed us to assess whether the signatures were macrophage-

specific or not. We went on to define a set of macrophage-specific

“gold-standard” signatures, which consistently identified their

respective macrophage clusters when assessed via UCell scores in

the all cell-type atlas (methods), namely for clusters 5_StressMac,

6_SPP1AREGMac, 8_IFNGMac, 11_MetalloMac, 17_IFNMac3, 21_Heme-

Mac and 22_IFNMac4.

We examined the differences in expression of these signatures

between responders and non-responders, whilst accounting for the

effect of tumour type, using the CPI1000+ bulk RNAseq

data in conjunction with DESeq295 and fast-gene set enrichment

analysis96 (methods). We discovered several significant relationships

between our cluster signatures and response in both directions.

20_TDoub and 8_IFNGMac signatures were both significantly enriched

in responding patients (fgsea, q-value = 0.001668273617609862 and

0.000000000013715289 respectively). This was expected, as the

former cluster is composed of T cell doublets with macrophages, and

themost highly upregulated gene in the latter wasCXCL9, a chemokine

known to be involved in T cell recruitment to tumours97. Similarly,

signatures 17_IFNMac3, 14_ProliMac, 11_MetalloMac, 4_ICIMac2 and
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3_ICIMac1 were significantly enriched in responders (fgsea, q-value =

0.000000017930358164, 0.000000000006084325, 0.036466593

541472025, 0.002756081126333197 and 0.027749715367563134

respectively). Contrastingly, 18_ECMMac was significantly enriched in

non-responding patients (fgsea, q-value = 0.000038213695118505;

Fig. 4a). As this cluster is associated with extracellular matrix mod-

ification, we hypothesized that the mechanism of resistance may be

due to T cell exclusion from the tumour. However, in an analysis of a

general T-cell signature (methods) and its association with the ECM

signature, we observed significantly higher (Two-sided Mann-Whitney

U test; nlower= 362, nupper = 723; p < 0.0001; W= 74219; distinct sam-

ples) T-cell signatures associated in the upper quartile of ECM sig-

nature samples in the CPI1000+ (Fig. 4b), indicating that general T cell

exclusion might not be the mechanism of association between

response and this cluster, and that a more nuanced interaction

between cells might be at play. A number of tumours in our TAM

assembly analysis had marked polarization towards an 18_ECMMac

state (Supplementary Note 1). In terms of distribution by cancer type,
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Fig. 3 | Examination of influence of tumour genotype / phenotype and envir-

onmentonmacrophage composition. aBarplotdemonstrating clusters thatwere

significantly differently distributed between primary CRCs, metastatic CRCs of the

liver, and primary LIHCs. The y-axis shows the percentage of cells from the

respective tumour type belonging to the cluster indicated on the x-axis. Sig-

nificance testing performed via a moderated two-sided ANOVA using propeller87

with false-discovery rate correction for multiple testing; *q < 0.1, ****q < 0.00005.

q-values for 6_SPP1AREGMac, 7_IFNMac, 8_IFNGMac, 16_ECMHomeoMac, 18_ECM-

Mac were 0.0290377800734, 0.0864189357922, 0.0392092001302,

0.0156655261662 and 0.0000008703445 respectively. b UMAP showing the dis-

tribution of TAMs in CRCs and LIHCs, showing all clusters (top) and 18_ECMMac

(bottom). CRC Colorectal cancer, LIHC Liver hepatocellular carcinoma. c Barplot

showing clusters significantly differently distributed between primary melanomas,

melanomametastases in the brain and primary glioblastomas. The y-axis shows the

percentage of cells from the respective tumour type belonging to the cluster

indicated on the x-axis. Significance testing performed via a moderated two-sided

ANOVA using propeller87 with false-discovery rate correction for multiple testing;

*q < 0.1, **q < 0.01 ****q <0.00005. q-values for 12_MBMMac, 6_SPP1AREGMac,

5_StressMac, 9_AngioMac, 10_InflamMac, 11_MetalloMac, 7_IFNMac, 4_ICIMac2,

20_TDoub, 2_C3Mac, were 0.000000001027255, 0.0000004568955,

0.0000490144, 0.002526791, 0.005923449, 0.007044681, 0.02982392,

0.02982392, 0.02982392 and 0.02982392 respectively. d UMAP showing the dis-

tribution of TAMs in the melanomas and glioblastomas, showing all clusters (top)

and 12_MBMMac only (bottom). GBM Glioblastoma multiforme, SKCM Skin cuta-

neous melanoma. Source data are provided as a Source Data file.
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most TAMs from 18_ECMMac were from ccRCC (28.2%), followed by

HGSOC (15.4%) and CRC (14.9%).

One further strand of investigation into the role of TAMs in ICI

response is the interaction of TAMs and T cells. T cells exhibit changes

to their transcriptional programme upon stimulation by cancer-

associated neoantigens, including upregulation of CXCL13 and MHC

class II genes among others in lung cancer98, which we collectively call

the mutation-associated neoantigen score, or MANA score. We
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Fig. 4 | Association between TAM subsets and immune checkpoint inhibitor

response. a Dotplot showing comparisons between responders and non-

responders in expression ofmacrophage subset signatures in bulk expression data

from the CPI1000+ cohort. Only significantly different signatures between

responders and non-responders after controlling for cancer type are shown. NES

Normalized enrichment score. “Gold-standard” signatures, which identified their

corresponding macrophage cluster in an all-celltype atlas with confidence (meth-

ods), are indicated. b The generalised T cell signature is significantly higher in the
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****p <0.00000000000000022. Central line indicates median, box indicates
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Source data are provided as a Source Data file.
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hypothesized that TAM-T cell interaction may play a role in this

change, and compiled a second, smaller atlas of TAMs and T cells (see

methods) from lung cancers to assess whether there are changes in

TAM cluster distribution in samples with T cells exhibiting different

MANA scores. To minimize the risk of type I errors, we chose the top

fourmost significant signatures from the gene-set enrichment analysis

in the bulk CPI1000+ cohort above (14_ProliMac, 8_IFNGMac, 17_IFN-

Mac3 and 18_ECMMac) and tested whether these clusters had sig-

nificantly different proportions in lung tumour samples in upper vs

lower quartiles of MANA scores. We observed significantly higher

proportions of 18_ECMMac in samples in the lower quartile of MANA

scores compared to theupper quartile (Moderated two-sidedT-test via

Propeller with FDR correction for multiple testing, q = 0.07801182;

Fig. 4c). Conversely, 8_IFNGMacwas significantly enriched in the upper

quartile of samples (Moderated two-sidedT-test via Propellerwith FDR

correction for multiple testing, q = 0.05962064; Fig. 4c).

We next sought to validate the presence of 18_ECMMac in tissue

through the use of a spatial transcriptomic dataset comprising 5

tumours from NSCLC patients, generated on the NanoString CosMx

platform.We calculated an 18_ECMMac signature score on all cellswith

UCell, and observedmarked heterogeneity between samples, with one

sample containing a large number of TAMs upregulating this sig-

nature, andotherswith very few (Supplementary Fig. 8). Analysis of the

transcript expression revealed cells co-expressing CD68, COL1A1,

COL1A2, and COL3A1 (Fig. 4d). We also identified several putative

fibroblasts, as identified by comparison of cellular gene signatures to

known cell-type signatures99, that expressed CD68, potentially indica-

tive of an intermediate cell state in between fibroblasts and TAMs

(Supplementary Fig. 9). We performed a nearest neighbour analysis,

and found that the closest neighbouring cells to 18_ECMMac+ TAMs

were other TAMs followed by fibroblasts (Fig. 4e), indicative of inter-

cellular communication between these cell types.We also assessed the

nearest neighbours of 8_IFNGMac macrophages, finding that the clo-

sest neighbours to 8_IFNGMac TAMs were other TAMs, followed by

CD4 memory T cells, cancer cells and CD8memory T cells (Fig. 4e). In

contrast, the nearest neighbours to macrophages not belonging to

either of these clusters were TAMs, followed by neutrophils and

NK cells.

Our atlas augments existing literature-basedmodels, and forms
a comprehensive reference for future studies
In addition to facilitating a data-driven approach to macrophage clas-

sification, the atlas also forms a valuable resource for projection of

novel datasets. We took a scRNAseq data from a recent study on oral

cancer100 and projected the TAMs from this study onto the pan-cancer

atlas (Fig. 5a). TAMs classified as C1QB+ TAMs by the authors primarily

mapped to our 2_C3Mac cluster (Fig. 5b), CD14+ Mono primarily

mapped to 19_ClassMono cluster, CXCL8 +TAM mapped to

6_SPP1AREGMac and SPP1+ TAMsmapped to 16_ECMHomeoMac.Many

TAMs also mapped to clusters other than these most frequent map-

pings, such as a proportion of the CD14+ Mono TAMs identified by the

authors mapping to our 9_AngioMac cluster, which was closely related

to 19_ClassMono in our hierarchical clustering analysis (Fig. 2c), per-

haps due to the higher resolution of our clustering in the atlas. There

were no 18_ECMMac TAMs detected in the oral cancer dataset, indi-

cating that this cancer type is negatively associatedwith this pathway of

macrophage differentiation. Markers highly expressed in the original

clustering of the authors, such as CXCL8 and SPP1, were also highly

expressed in the mapped clusters. We also assessed the utility of the

atlas in a novel spatial RNAseq dataset (Supplementary Note 2).

Thoughts on how best to characterize TAMs have increasingly

changed, shifting away from the M1/M2 dichotomy13 towards more

complicated models encompassing macrophage stimuli and

ontogeny14,15,101,102. Ma and colleagues propose a seven-part model that

accounts for this diversity, and also state that these categories lie on a

spectrum, reflecting different stages of differentiation and stimuli of

the macrophages. With the construction of a pan-cancer macrophage

atlas based on high-resolution scRNAseq data, it is possible to assess

the dynamics of this spectrum and the markers that encompass it. We

took key marker genes defined by Ma and colleagues and examined

the cluster membership of the cells positively expressing these mar-

kers along each percentile of expression magnitude (Fig. 5c, d). This

revealed varying degrees of heterogeneity in cluster membership,

ranging from markers mostly dominated by one cluster, to markers

that were more evenly spread across all clusters, highlighting the

pervasiveness of some markers in the macrophage landscape, and

indicating that many markers are not indicative of macrophage dif-

ferentiation state. Markers attributed to proliferating macrophages,

including MKI67 and CDK1 can be attributed to the former category,

the majority of cells expressing these genes belonging to cluster

14_ProliMac. Similarly, cells expressing LYVE1 and FOLR2 primarily

belonged to cluster 1_MetM2Mac, whilst cells expressing CXCL9

mainly belonged to cluster 8_IFNGMac. Markers distributed among a

large number of clusters included APOE, APOC1, ARG1 and

HES1 (Fig. 5c).

Discussion
The paradigm for the characterization of TAMshas evolved14. With this

evolution of ideas it is important that there is a corresponding atlas of

TAM states assembled from the scRNAseq data itself. Whilst existing

pan-cancer atlases incorporate TAMs, these are on the whole focused

on broader subsets of immune cells. Our extensive characterization of

TAMs in a pan-cancer setting plugs the gap.

TAMs play diverse roles within the architecture of the tumour,

influencing tumour cell invasion, angiogenesis, immune evasion and

metastatic potential2. These varying functional roles of TAMs are also

dependent on macrophage composition within the tumour, for

example hypoxia-exposed TAMs release matrix-metalloproteinases

that degrade the extracellular matrix and promote tumour cell

invasion103, whilst resident tumour TAMs with embryonic ontogeny,

rather than monocyte-derived macrophages, promote metastasis in a

mouse model of ovarian cancer104. Our atlas characterizes the broad

number of states of macrophage assemblages within samples, ranging

from highly polarized towards one particular subset, to a hetero-

genous state containing many different macrophage subsets. Fur-

thermore, we associated particular macrophage subsets with cancers

of varying phenotype, finding that melanoma brain metastases, and

not glioblastomas, harboured a large proportion of 12_MBMMac

macrophages, which uniquely upregulated LRMDA, a melanocyte dif-

ferentiation factor, indicative of an interaction between tumour cells

and TAMs in this context.

One cluster identified here that is absent from other TAM

analyses14,18 is 18_ECMMac. These macrophages showed high levels

of increased collagen production compared to other TAM subsets in

the atlas. This cluster most likely represents an avenue towards

fibroblast differentiation105, and was enriched in certain cancer

types, including ccRCC and lung cancers, raising the possibility that

certain cancer types harbour an environment that encourages this

differentiation pathway. Furthermore, the enrichment of this subset

in CRC primaries and their liver metastases compared to primary

liver tumours indicates that tumour genotype is also an influencing

factor. Our analyses of this ECM signature indicate that this could

also be an important factor in immune checkpoint inhibitor

response, further highlighting the point that macrophage M1/M2

polarization are not the only factors of importance in cancer, and

that macrophage functional diversity should be considered in its

entirety. A recent study has shown that collagen producing macro-

phages restrict CD8 + T cell function in breast cancer106, which could

be associated with the effect shown here. It should be noted how-

ever that our association with response only indicates the potential
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of these TAMs to influence response — fibroblasts will also be an

important factor. As the 18_ECMMac signature contained many

collagen producing genes, we cannot say with certainty that TAMs

are responsible for the lack of ICI response in these patients, as

fibroblasts must also play a role. Similarly, other non “gold-stan-

dard” signatures may be influenced by cell types other than mac-

rophages. However, the possibility remains that some tumours may

increase the frequency of 18_ECMMac by positively influencing the

differentiation of TAMs into myofibroblasts, which could contribute

to a negative response to ICI treatment. It will be of interest to study

this macrophage subset in more detail in the future.

Also of interest was the difference in macrophage composition

between lung cancer histologies, namely LUAD and LUSC, as well as

the differences in macrophage composition between different T-cell

activation states in lung cancers, represented in our analysis by the

MANAscore.Whilstwe investigatedhistology /T cell activation state in

the context of lung cancer in this study, it has also been shown that

genotypic driver associates with ICI response in lung cancer107.
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Fig. 5 | The atlas as a resource. aUMAPprojection of a novel oral cancer dataset on

to the atlas.bHeatmap showingmapping ofmacrophage subsets in the oral cancer

dataset to subsets in our atlas. c Cluster distribution as a function of magnitude of

expression (percentile) of cells expressing subset-defining markers of Ma et al.14,

indicating that some markers are cluster specific in our atlas, whereas others are
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select markers. Source data are provided as a Source Data file.
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Although not feasible here due to limited availability of metadata, a

detailed analysis of lung cancer driver genotype and macrophage

composition will be of interest in future.

Our association of the atlas with existing models of macrophage

diversity demonstrates its utility in the quantification of the “spec-

trum” of this diversity. TAMs from a range of phenotypic backgrounds

can upregulate what were thought to be subset definingmarkers, such

as APOE, APOC1, ARG1 and HES1. We hope that this atlas can serve as a

valuable resource for future study, and encourage researchers to

download and utilize the atlas, either as we have demonstrated here as

aprojection tool tomapTAMs fromnovel data, or in newwaysentirely.

Methods
Selection of TAMs from individual datasets
As we were focused specifically on tumour-associatedmacrophages, it

was necessary to devise a strategy for extraction of these cells from

each of the 32 constituent studies comprising our atlas. The studies

were heterogeneous in their methods and supplied metadata, with

some using FACs enrichment for immune cells, and some supplying

annotations at the cellular level. We used these annotations to extract

TAMs where possible as these studies were all peer reviewed, and

authors are likely to have domain-specific knowledge for their

respective cancer types. When cellular annotations were not available,

weperformeddenovonormalization and clustering separately to each

dataset following standard practices with Seurat108, and measured a

known macrophage signature from the literature109 in each of the

clusters. Where this signature was a standard deviation in expression

above the signature value for the entire dataset, we defined these

clusters as TAMs and extracted them for incorporation into the atlas.

Integration/batch correction of datasets and atlas construction
We compared four methods of integration/batch correction, Seurat

CCA, Seurat RPCA, Harmony and Scanorama. Eachwas attemptedwith

a cluster node with 1.5 TB of RAM assigned. Seurat CCA failed to run

successfully, and was therefore excluded from the iLISI49 comparison.

Scanorama produced lower iLISI scores than the unintegrated data,

whilst Harmony and Seurat RPCA performed similarly. SCT

normalization110 was used on the raw count data prior to integration

and clustering as it has been shown to enhance biological signal

separation in downstream clustering. For all other downstream ana-

lyses of the expression data, including differential expression analysis,

log normalization was used. Low quality cells were identified on a per-

study basis, and were defined as cells expressing too few or too many

genes, or where a high proportion of reads were assigned to mito-

chondrial genes. These cells were excluded from the atlas. Atlas meta

data is provided in Supplementary Data 7.

Clustering, annotation and low-dimensional embedding
Clustering was performed using the standard workflow in Seurat

(v4.2.0), namely using the RunPCA, FindNeighbors and FindClusters

functions. FindClusters was run numerous times with a range of values

for the resolution argument until appropriate granularity was reached.

Characterization and annotation of clusters was performed through

extensive literature searches of the top differentially expressed mar-

kers, as defined by the FindMarkers function of Seurat. In addition, we

validated the macrophage / monocyte classification of the clusters

using SingleR111 using cell expression profiles from the Human Primary

Cell Atlas112. 2-dimensional embeddings of cells were produced with

Uniform Manifold Approximation (UMAP), specifically using the

RunUMAP function in Seurat.

Pathway analysis
Pathway analysis was performed using FGSEA v1.22.096, with pathways

selected based on the common pathways among top differentially

expressed genes for each cluster.

Testing for differences in proportions of clusters between
conditions
We used Propeller v0.99.187 with the arcsin transformation to test for

differences in proportions of clusters between conditions.

Multiple testing correction
False-discovery rate correction (FDR) was employed throughout the

paper to correct for multiple-testing, using q <0.1 as a significance

threshold.We used FDRwhen there were 4 ormore tests performed in

an analysis.

Statistical analysis and data manipulation
Statistical analysis and data manipulation was performed with R

version 4.2.2.

Analysis of the similarity between clusters
To examine the similarity between clusters, hierarchical clustering was

employed on the mean expression values of each gene for all cells of

each of the clusters, using the Euclidean distance between samples

as input.

Examination of co-occurrence of macrophage clusters
Pairwise correlationswere performedwith non-parametric Spearman’s

rho to account for non-normally distributed data. The Euclidian dis-

tance ofmacrophage compositions per samplewas used input to both

PCO analysis, as implemented in R’s cmdscale() function, as well as

hierarchical clustering analysis, as implemented in hclust().

Assessing the specificity of macrophage cluster signatures in
bulk data
To assess the specificity of our macrophage signatures, defined as

the top 10 positively differentially expressed genes in each of the

clusters in the atlas, we constructed a new atlas without cell type-

specific filtering, including cancer cells as well as cells from the

tumour microenvironment. This atlas contained a variety of tumour

types, and was comprised of data from the39 study, which consisted

of breast cancer, colorectal cancer, ovarian cancer and lung cancer;

the31 study, consisting of clear cell renal cell carcinomas; and the30

study, which was a lung cancer study. This atlas consisted of 482,677

cells. Clustering was performed de novo for this atlas and celltype

labels from the original studies were used. After this de novo clus-

tering, we defined additional clusters, which corresponded to the

macrophages that are found both in this new atlas, and in our ori-

ginal macrophage atlas.

We took our 10-gene signatures for each of our macrophage

clusters and calculated the UCell113 scores for every cell in the atlas.

After this process, we calculated the mean UCell score per signature

per cluster. We then took two metrics to assess the reliability of

these signatures in identifying their original clusters, even in the

presence of non-macrophage cell types. The first of these was the

difference between the highest and the second highest cluster in

terms of their mean UCell scores, which here we call Metric1. The

secondmetric was derived by examining, for the five cancer types, in

how many of these cancer types was the best-hit cluster the same as

the cluster of the signature being examined in terms of UCell score

(Metric2).

We then decided to take only the signatures which scored the

highest in terms of these metrics specifically only selecting cluster

signatures in which for 3 or more cancer types, the best-hit cluster

matched the cluster signature being examined. We also required

Metric1 to be greater than a strict threshold of 0.1. This gave us a set of

“gold-standard” signatures that should be reliable for profiling in bulk

RNA data, including 5_StressMac, 6_SPP1AREGMac, 8_IFNGMac,

11_MetalloMac, 17_IFNMac3, 21_HemeMac and 22_IFNMac4. The

metrics are detailed in Supplementary Data 5.
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Association of macrophage subsets with immune checkpoint
inhibitor response
To associate macrophage clusters identified in the atlas with immune

checkpoint inhibitor response, we used an expanded version of the

cohort described in our previous publication94. Basic processing of

RNAseq data (i.e. read mapping, quality control, quantification) was

performedwith the RIMA pipeline114. This expanded cohort consists of

1446 ICI-treated patients from five cancer types, 552 bladder cancer,

411 lung cancer, 226 melanomas, 212 renal carcinomas and 45 gastric

cancers115–124.

We then performed a differential expression analysis using

DESeq2 v1.36.095, accounting for tumour type and response in the

DESeq2 design formula. To examine macrophage subsets that were

enriched in responders, we used the DESeq2 results as input into the

fgsea R package96, using our macrophage signatures as pathways.

Significance was determined via FDR-corrected p-values with a

threshold of q <0.1.

Assessing T cell infiltration in bulk RNAseq data
The generalised T-cell signature is a general score used to measure

overall T-cell infiltration. It is composedof the following genes:PRKCQ,

CD3D, CD28, LCK, TRAT1, BCL11B, CD2, TRBC1, TRAC, ITM2A, SH2D1A,

CD6, CD96, NCALD, GIMAP5, TRA, CD3E, SKAP1, and was taken from the

supplementary information in ref. 109.

Calculation of MANA score and compilation of smaller
secondary atlas
To assess MANA score per sample, we combined a second, smaller

atlas of lung cancers from 7 studies25,30,35,39,41,48, consisting of 31598

macrophages and 72585T cells. MANA scores per CD8 T cell were

calculated using the AddModuleScore function from the Seurat R

package, using the gene signature defined in ref. 98: CXCL13, HLA-DRA,

HLA-DRB5, HLA-DQA1, HLA-DRB1, HLA-DQB1, CCL3, GZMA, GEM,

ENTPD1, HLA-DPA1, TNS3, MIR4435-2HG, HLA-DPB1.

Spatial analysis of the ECM macrophage subset
For analysis of the presence of the ECM macrophage subset in tissue,

the open-source CosMxTM SMI FFPE dataset from NanoString was

employed, a spatial gene expression dataset of 5 lung cancer samples

representing 960 genes across 771236 cells. The 18_ECMMac and

8_IFNGMac signatures of our macrophage clusters were profiled in the

CosMx data using UCell113, with UCell scores > 0.8 interpreted as a

macrophage belonging to the respective cluster and scores of <0.4

interpreted as amacrophage not belonging to that cluster. The nearest

neighbour analysis was performed with these two subsets using the

RANN (v2.6.1) package125,126.

Projection of novel datasets on to the atlas
Projection of the oral cancer dataset100 on to the atlas was performed

using the native referencemapping procedure implemented in Seurat.

Specifically, the PCA structureof the integrated data from the atlaswas

projected onto the query dataset for cell type prediction, and the

query was projected onto the atlas UMAP structure for visualization.

Reporting summary
Further information on research design is available in the Nature

Portfolio Reporting Summary linked to this article.

Data availability
The scRNAseq atlas generated in this study has been deposited in

Zenodo as a Seurat object under accession code 11222158. All other

data are available in the article and its Supplementary files or from the

corresponding author upon request. Source data are provided with

this paper.

Code availability
The code associated with this manuscript is available at https://github.

com/alexcoulton/macrophage-atlas and under the following Zenodo

https://doi.org/10.5281/zenodo.11221774.

References
1. Lee, C. Z. W. & Ginhoux, F. Biology of resident tissue macro-

phages. Development 149, dev200270 (2022).

2. Yang,M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse Functions

of Macrophages in Different Tumor Microenvironments. Cancer

Res. 78, 5492–5503 (2018).

3. Chen, J. J. W. et al. Tumor-Associated Macrophages: The Double-

Edged Sword in Cancer Progression. JCO 23, 953–964 (2005).

4. Inagaki, K. et al. Role of tumor-associated macrophages at the

invasive front in humancolorectal cancer progression.Cancer Sci.

112, 2692–2704 (2021).

5. Hwang, I. et al. Tumor-associated macrophage, angiogenesis and

lymphangiogenesis markers predict prognosis of non-small cell

lung cancer patients. J. Transl. Med. 18, 443 (2020).

6. Jeong, H., Hwang, I., Kang, S. H., Shin, H. C. & Kwon, S. Y. Tumor-

Associated Macrophages as Potential Prognostic Biomarkers of

Invasive Breast Cancer. J. Breast Cancer 22, 38–51 (2019).

7. Pittet, M. J., Michielin, O. & Migliorini, D. Clinical relevance of

tumour-associated macrophages. Nat. Rev. Clin. Oncol. 19,

402–421 (2022).

8. Xu, B. et al. Prognostic value of tumor infiltrating NK cells and

macrophages in stage II+III esophageal cancer patients. Onco-

target 7, 74904–74916 (2016).

9. Khorana, A. A., Ryan, C. K., Cox, C., Eberly, S. & Sahasrabudhe, D.

M. Vascular endothelial growth factor, CD68, and epidermal

growth factor receptor expression and survival in patients with

Stage II and Stage III colon carcinoma. Cancer 97, 960–968

(2003).

10. Koelzer, V. H. et al. Phenotyping of tumor-associated macro-

phages in colorectal cancer: Impact on single cell invasion (tumor

budding) and clinicopathological outcome. OncoImmunology 5,

e1106677 (2016).

11. Li, J. et al. Tumor-associated macrophage infiltration and prog-

nosis in colorectal cancer: systematic review and meta-analysis.

Int J. Colorectal Dis. 35, 1203–1210 (2020).

12. Zhou, Q. et al. The density of macrophages in the invasive front is

inversely correlated to liver metastasis in colon cancer. J. Transl.

Med. 8, 13 (2010).

13. Mills, C. D., Kincaid, K., Alt, J.M.,Heilman,M. J. &Hill, A.M.M-1/M-2

Macrophages and the Th1/Th2 Paradigm. J. Immunol. 164,

6166–6173 (2000).

14. Ma, R.-Y., Black, A. & Qian, B.-Z. Macrophage diversity in cancer

revisited in the era of single-cell omics. Trends Immunol. 43,

546–563 (2022).

15. Nahrendorf, M. & Swirski, F. K. Abandoning M1/M2 for a network

model of macrophage function. Circ. Res. 119, 414–417 (2016).

16. Cheng, S. et al. A pan-cancer single-cell transcriptional atlas of

tumor infiltrating myeloid cells. Cell 184, 792–809.e23 (2021).

17. Nieto, P. et al. A single-cell tumor immune atlas for precision

oncology. Genome Res 31, 1913–1926 (2021).

18. Mulder, K. et al. Cross-tissue single-cell landscape of human

monocytes andmacrophages in health and disease. Immunity 54,

1883–1900.e5 (2021).

19. Azizi, E. et al. Single-Cell Map of Diverse Immune Phenotypes in

the Breast Tumor Microenvironment. Cell 174, 1293–1308.e36

(2018).

20. Becker, W. R. et al. Single-cell analyses define a continuum of cell

state and composition changes in themalignant transformation of

polyps to colorectal cancer. Nat. Genet. 54, 985–995 (2022).

Article https://doi.org/10.1038/s41467-024-49885-8

Nature Communications |         (2024) 15:5665 11

https://doi.org/10.5281/zenodo.11222158
https://github.com/alexcoulton/macrophage-atlas
https://github.com/alexcoulton/macrophage-atlas
https://doi.org/10.5281/zenodo.11221774


21. Bi, K. et al. Tumor and immune reprogramming during immu-

notherapy in advanced renal cell carcinoma. Cancer Cell 39,

649–661.e5 (2021).

22. Biermann, J. et al. Dissecting the treatment-naive ecosystem of

human melanoma brain metastasis. Cell 185, 2591–2608.e30

(2022).

23. Borcherding, N. et al. Mapping the immune environment in clear

cell renal carcinoma by single-cell genomics. Commun. Biol. 4,

122 (2021).

24. Braun, D. A. et al. Progressive immune dysfunctionwith advancing

disease stage in renal cell carcinoma.Cancer Cell 39, 632–648.e8

(2021).

25. Chan, J. M. et al. Signatures of plasticity, metastasis, and immu-

nosuppression in an atlas of human small cell lung cancer.Cancer

Cell 39, 1479–1496.e18 (2021).

26. Che, L.-H. et al. A single-cell atlas of liver metastases of colorectal

cancer reveals reprogramming of the tumor microenvironment in

response to preoperative chemotherapy. Cell Discov. 7,

1–21 (2021).

27. Durante, M. A. et al. Single-cell analysis reveals new evolutionary

complexity in uveal melanoma. Nat. Commun. 11, 496 (2020).

28. Jerby-Arnon, L. et al. A Cancer Cell Program Promotes T Cell

Exclusion and Resistance to Checkpoint Blockade. Cell 175,

984–997.e24 (2018).

29. Khaliq, A. M. et al. Refining colorectal cancer classification and

clinical stratification through a single-cell atlas. Genome Biol. 23,

113 (2022).

30. Kim, N. et al. Single-cell RNA sequencing demonstrates the

molecular and cellular reprogramming of metastatic lung ade-

nocarcinoma. Nat. Commun. 11, 2285 (2020).

31. Krishna, C. et al. Single-cell sequencing links multiregional

immune landscapes and tissue-resident T cells in ccRCC to tumor

topology and therapy efficacy.Cancer Cell39, 662–677.e6 (2021).

32. Leader, A. M. et al. Single-cell analysis of human non-small cell

lung cancer lesions refines tumor classification and patient stra-

tification. Cancer Cell 39, 1594–1609.e12 (2021).

33. Li, Z. et al. Liquid biopsy-based single-cell metabolic phenotyping

of lung cancer patients for informative diagnostics.Nat. Commun.

10, 3856 (2019).

34. Lu, Y. et al. A single-cell atlas of the multicellular ecosystem of

primary and metastatic hepatocellular carcinoma. Nat. Commun.

13, 4594 (2022).

35. Maynard, A. et al. Therapy-Induced Evolution of Human Lung

Cancer Revealed by Single-Cell RNA Sequencing. Cell 182,

1232–1251.e22 (2020).

36. Pelka, K. et al. Spatially organized multicellular immune hubs in

human colorectal cancer. Cell 184, 4734–4752.e20 (2021).

37. Pombo Antunes, A. R. et al. Single-cell profiling ofmyeloid cells in

glioblastoma across species and disease stage reveals macro-

phage competition and specialization. Nat. Neurosci. 24,

595–610 (2021).

38. Pu, W. et al. Single-cell transcriptomic analysis of the tumor eco-

systems underlying initiation and progression of papillary thyroid

carcinoma. Nat. Commun. 12, 6058 (2021).

39. Qian, J. et al. A pan-cancer blueprint of the heterogeneous tumor

microenvironment revealed by single-cell profiling. Cell Res 30,

745–762 (2020).

40. Sharma, A. et al. Onco-fetal Reprogramming of Endothelial Cells

Drives Immunosuppressive Macrophages in Hepatocellular Car-

cinoma. Cell 183, 377–394.e21 (2020).

41. Wu, F. et al. Single-cell profiling of tumor heterogeneity and the

microenvironment in advanced non-small cell lung cancer. Nat.

Commun. 12, 2540 (2021).

42. Wu, S. Z. et al. A single-cell and spatially resolved atlas of human

breast cancers. Nat. Genet 53, 1334–1347 (2021).

43. Xu, K. et al. Single-cell RNA sequencing reveals cell heterogeneity

and transcriptome profile of breast cancer lymph node metas-

tasis. Oncogenesis 10, 1–12 (2021).

44. Zhang, K. et al. Longitudinal single-cell RNA-seq analysis reveals

stress-promoted chemoresistance in metastatic ovarian cancer.

Sci. Adv. 8, eabm1831 (2022).

45. Zhang, X. et al. Dissecting esophageal squamous-cell carcinoma

ecosystem by single-cell transcriptomic analysis. Nat. Commun.

12, 5291 (2021).

46. Zhang, Y. et al. Single-cell analyses reveal key immune cell sub-

sets associatedwith response to PD-L1 blockade in triple-negative

breast cancer. Cancer Cell 39, 1578–1593.e8 (2021).

47. Zheng, X. et al. Single-cell transcriptomic profiling unravels the

adenoma-initiation role of protein tyrosine kinases during color-

ectal tumorigenesis. Sig Transduct. Target Ther. 7, 1–14 (2022).

48. Zilionis, R. et al. Single-Cell Transcriptomics of Human andMouse

Lung Cancers Reveals Conserved Myeloid Populations across

Individuals and Species. Immunity 50, 1317–1334.e10 (2019).

49. Korsunsky, I. et al. Fast, sensitive and accurate integration of

single-cell datawithHarmony.Nat.Methods 16, 1289–1296 (2019).

50. Zhou, Y. et al. Single-cell RNA landscape of intratumoral hetero-

geneity and immunosuppressive microenvironment in advanced

osteosarcoma. Nat. Commun. 11, 6322 (2020).

51. Barrett, C. W. et al. Selenoprotein P influences colitis-induced

tumorigenesis by mediating stemness and oxidative damage. J.

Clin. Invest 125, 2646–2660 (2015).

52. Serra, M., Columbano, A., Ammarah, U., Mazzone, M. & Menga, A.

Understanding Metal Dynamics Between Cancer Cells and Mac-

rophages: Competition or Synergism? Front. Oncol. 10,

646 (2020).

53. Pfeifhofer-Obermair, C., Tymoszuk, P., Petzer, V.,Weiss,G. &Nairz,

M. Iron in the Tumor Microenvironment—Connecting the Dots.

Front. Oncol. 8, 549 (2018).

54. Vuletic, S., Dong, W., Wolfbauer, G., Tang, C. & Albers, J. J. PLTP

regulates STAT3 and NFκB in differentiated THP1 cells and human

monocyte-derived macrophages. Biochimica et. Biophysica Acta

(BBA) - Mol. Cell Res. 1813, 1917–1924 (2011).

55. Wang, Y., Yan, K., Lin, J., Li, J. & Bi, J. Macrophage M2 Co-

expression Factors Correlate With the ImmuneMicroenvironment

and PredictOutcomeof Renal Clear Cell Carcinoma. Front. Genet.

12, 615655 (2021).

56. Van Lookeren Campagne, M., Wiesmann, C. & Brown, E. J. Mac-

rophage complement receptors and pathogen clearance. Cell.

Microbiol. 9, 2095–2102 (2007).

57. Gao, L. et al. PLD4 promotes M1 macrophages to perform anti-

tumor effects in colon cancer cells. Oncol. Rep. 37, 408–416

(2017).

58. Kadomoto, S., Izumi, K. & Mizokami, A. The CCL20-CCR6 Axis in

Cancer Progression. Int. J. Mol. Sci. 21, 5186 (2020).

59. Liu, B. et al. Tumor-associated macrophage-derived CCL20

enhances the growth and metastasis of pancreatic cancer. Acta

Biochimica et. Biophysica Sin. 48, 1067–1074 (2016).

60. Sun, X. et al. Inflammatory cell-derived CXCL3 promotes pan-

creatic cancer metastasis through a novel myofibroblast-hijacked

cancer escape mechanism. Gut 71, 129–147 (2022).

61. Zhang, Y., Du, W., Chen, Z. & Xiang, C. Upregulation of PD-L1 by

SPP1 mediates macrophage polarization and facilitates immune

escape in lung adenocarcinoma. Exp. Cell Res. 359, 449–457

(2017).

62. Rowe, G. C. et al. PGC-1α Induces SPP1 to Activate Macrophages

andOrchestrate Functional Angiogenesis in Skeletal Muscle.Circ.

Res. 115, 504–517 (2014).

63. Zhang, L. et al. Single-Cell Analyses Inform Mechanisms of

Myeloid-Targeted Therapies in Colon Cancer. Cell 181,

442–459.e29 (2020).

Article https://doi.org/10.1038/s41467-024-49885-8

Nature Communications |         (2024) 15:5665 12



64. Gong, Y., Hart, E., Shchurin, A. & Hoover-Plow, J. Inflammatory

macrophage migration requires MMP-9 activation by plasmino-

gen in mice. J. Clin. Invest 118, 3012–3024 (2008).

65. van Kempen, L. C. L. & Coussens, L. M. MMP9 potentiates pul-

monary metastasis formation. Cancer Cell 2, 251–252 (2002).

66. Dakin, S. G. et al. Inflammation activation and resolution in human

tendon disease. Sci. Transl. Med. 7, 311ra173 (2015).

67. Xiang, X., Wang, J., Lu, D. & Xu, X. Targeting tumor-associated

macrophages to synergize tumor immunotherapy. Sig Transduct.

Target Ther. 6, 1–12 (2021).

68. Xiong, D., Wang, Y. & You, M. A gene expression signature of

TREM2hi macrophages and γδ T cells predicts immunotherapy

response. Nat. Commun. 11, 5084 (2020).

69. Ulland, T. K. & Colonna, M. TREM2 — a key player in microglial

biology and Alzheimer disease. Nat. Rev. Neurol. 14, 667–675

(2018).

70. Jaitin, D. A. et al. Lipid-associatedmacrophages controlmetabolic

homeostasis in a Trem2-dependent manner. Cell 178,

686–698.e14 (2019).

71. Molgora, M. et al. TREM2 Modulation Remodels the Tumor Mye-

loid Landscape Enhancing Anti-PD-1 Immunotherapy. Cell 182,

886–900.e17 (2020).

72. Vitek, M. P., Brown, C. M. & Colton, C. A. APOE genotype-specific

differences in the innate immune response. Neurobiol. Aging 30,

1350–1360 (2009).

73. Ko, H.-L. et al. Apolipoprotein C1 (APOC1) as a novel diagnostic

and prognostic biomarker for lung cancer: A marker phase I trial.

Thorac. Cancer 5, 500–508 (2014).

74. Hao, X. et al. Inhibition of APOC1 promotes the transformation of

M2 into M1 macrophages via the ferroptosis pathway and enhan-

ces anti-PD1 immunotherapy in hepatocellular carcinoma based

on single-cell RNA sequencing. Redox Biol. 56, 102463 (2022).

75. Wu, J. et al. Heat Shock Proteins and Cancer. Trends Pharmacol.

Sci. 38, 226–256 (2017).

76. Rosati, A., Graziano, V., De Laurenzi, V., Pascale, M. & Turco, M. C.

BAG3: a multifaceted protein that regulates major cell pathways.

Cell Death Dis. 2, e141 (2011).

77. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage

reciprocal interactions in health, fibrosis, and cancer. Immunity

54, 903–915 (2021).

78. Cheng, W.-L. et al. The Role of EREG/EGFR Pathway in Tumor

Progression. Int. J. Mol. Sci. 22, 12828 (2021).

79. Pedersen, M. Ø., Larsen, A., Stoltenberg, M. & Penkowa, M. The

role of metallothionein in oncogenesis and cancer prognosis.

Prog. Histochem. Cytochem. 44, 29–64 (2009).

80. Peng, B. et al. Ferroptosis-Related Gene MT1G as a Novel Bio-

marker Correlated With Prognosis and Immune Infiltration in

Colorectal Cancer. Front Cell Dev. Biol. 10, 881447 (2022).

81. Xavier, C. P. R. et al. Chitinase 3-like-1 and fibronectin in the cargo

of extracellular vesicles shed by human macrophages influence

pancreatic cancer cellular response to gemcitabine. Cancer Lett.

501, 210–223 (2021).

82. Zhou, W.-H. et al. The Overexpression of Fibronectin 1 Promotes

Cancer Progression and Associated with M2 Macrophages Polar-

ization in Head andNeck SquamousCell Carcinoma Patients. Int J.

Gen. Med 15, 5027–5042 (2022).

83. Ambartsumian, N., Klingelhöfer, J. & Grigorian, M. The Multi-

faceted S100A4 Protein in Cancer and Inflammation. in Calcium-

Binding Proteins of the EF-Hand Superfamily: From Basics to

Medical Applications (ed. Heizmann, C. W.) 339–365 (Springer,

New York, NY). https://doi.org/10.1007/978-1-4939-9030-6_22

(2019).

84. Bergamo, A. et al. Lysozyme-Induced Transcriptional Regulation

of TNF-α Pathway Genes in Cells of the Monocyte Lineage. Int J.

Mol. Sci. 20, 5502 (2019).

85. Yabluchanskiy, A., Ma, Y., Iyer, R. P., Hall, M. E. & Lindsey, M. L.

Matrix Metalloproteinase-9: Many Shades of Function in Cardio-

vascular Disease. Physiol. (Bethesda) 28, 391–403 (2013).

86. Wu, Z.-S. et al. Prognostic significanceofMMP-9 andTIMP-1 serum

and tissue expression in breast cancer. Int J. Cancer 122,

2050–2056 (2008).

87. Phipson, B. et al. propeller: testing for differences in cell type

proportions in single cell data. Bioinformatics 38, 4720–4726

(2022).

88. Benchama, O. et al. Inhibition of triple negative breast cancer-

associated inflammation and progression by N- acylethanolamine

acid amide hydrolase (NAAA). Scientific Rep. 12, 22255 (2022).

89. Komohara, Y., Fujiwara, Y., Ohnishi, K. & Takeya, M. Tumor-

associated macrophages: Potential therapeutic targets for anti-

cancer therapy. Adv. Drug Deliv. Rev. 99, 180–185 (2016).

90. Noy, R. & Pollard, J. W. Tumor-Associated Macrophages: From

Mechanisms to Therapy. Immunity 41, 49–61 (2014).

91. Chamseddine, A. N., Assi, T., Mir, O. & Chouaib, S. Modulating

tumor-associated macrophages to enhance the efficacy of

immune checkpoint inhibitors: A TAM-pting approach. Pharmacol.

Therapeutics 231, 107986 (2022).

92. Jin, H. et al. Targeting lipid metabolism to overcome EMT-

associated drug resistance via integrin β3/FAK pathway and

tumor-associated macrophage repolarization using legumain-

activatable delivery. Theranostics 9, 265–278 (2019).

93. Xia, Y. et al. EngineeringMacrophages for Cancer Immunotherapy

and Drug Delivery. Adv. Mater. 32, 2002054 (2020).

94. Litchfield, K. et al. Meta-analysis of tumor- and T cell-intrinsic

mechanisms of sensitization to checkpoint inhibition. Cell 184,

596–614.e14 (2021).

95. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold

change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 15, 550 (2014).

96. Korotkevich, G. et al. Fast gene set enrichment analysis. 060012

Preprint at https://doi.org/10.1101/060012 (2021).

97. Reschke, R. & Gajewski, T. F. CXCL9 and CXCL10 bring the heat to

tumors. Sci. Immunol. 7, eabq6509 (2022).

98. Caushi, J. X. et al. Transcriptional programsof neoantigen-specific

TIL in anti-PD-1-treated lung cancers. Nature 596, 126–132 (2021).

99. He, S. et al. High-plex imaging of RNA and proteins at subcellular

resolution in fixed tissue by spatial molecular imaging. Nat. Bio-

technol. 40, 1794–1806 (2022).

100. Luoma, A. M. et al. Tissue-resident memory and circulating T cells

are early responders to pre-surgical cancer immunotherapy. Cell

185, 2918–2935.e29 (2022).

101. Martinez, F. O. & Gordon, S. The M1 and M2 paradigm of macro-

phage activation: time for reassessment. F1000Prime Rep. 6,

13 (2014).

102. Sly, L. M. & McKay, D. M. Macrophage immunotherapy: over-

coming impediments to realize promise. Trends Immunol. 43,

959–968 (2022).

103. Henze, A.-T. & Mazzone, M. The impact of hypoxia on tumor-

associated macrophages. J. Clin. Invest 126, 3672–3679 (2016).

104. Etzerodt, A. et al. Tissue-resident macrophages in omentum pro-

mote metastatic spread of ovarian cancer. J. Exp. Med. 217,

e20191869 (2020).

105. Luo, H. et al. Pan-cancer single-cell analysis reveals the hetero-

geneity and plasticity of cancer-associated fibroblasts in the

tumor microenvironment. Nat. Commun. 13, 6619 (2022).

106. Tharp, K. M. Tumor-associated macrophages restrict CD8+ T cell

function through collagen deposition and metabolic reprogram-

ming of the breast cancer microenvironment. Nat. Cancer 1–18

https://doi.org/10.1038/s43018-024-00775-4 (2024)

107. Song, P. et al. Relationship between the efficacy of immunother-

apy and characteristics of specific tumor mutation genes in

Article https://doi.org/10.1038/s41467-024-49885-8

Nature Communications |         (2024) 15:5665 13

https://doi.org/10.1007/978-1-4939-9030-6_22
https://doi.org/10.1101/060012
https://doi.org/10.1038/s43018-024-00775-4


non‐small cell lung cancer patients. Thorac. Cancer 11, 1647–1654

(2020).

108. Hao, Y. et al. Integrated analysis of multimodal single-cell data.

Cell 184, 3573–3587.e29 (2021).

109. Chung, W. et al. Single-cell RNA-seq enables comprehensive

tumour and immune cell profiling in primary breast cancer. Nat.

Commun. 8, 15081 (2017).

110. Hafemeister, C. & Satija, R. Normalization and variance stabiliza-

tion of single-cell RNA-seq data using regularized negative bino-

mial regression. Genome Biol. 20, 296 (2019).

111. Aran, D. et al. Reference-based analysis of lung single-cell

sequencing reveals a transitional profibrotic macrophage. Nat.

Immunol. 20, 163–172 (2019).

112. Mabbott, N. A., Baillie, J. K., Brown, H., Freeman, T. C. & Hume, D.

A. An expression atlas of human primary cells: inference of gene

function from coexpression networks. BMC Genomics 14, 632

(2013).

113. Andreatta, M. & Carmona, S. J. UCell: Robust and scalable single-

cell gene signature scoring. Comput Struct. Biotechnol. J. 19,

3796–3798 (2021).

114. Yang, L. et al. Tutorial: integrative computational analysis of bulk

RNA-sequencingdata tocharacterize tumor immunity usingRIMA.

Nat. Protoc. 18, 2404–2414 (2023).

115. Banchereau, R. et al. Molecular determinants of response to PD-L1

blockade across tumor types. Nat. Commun. 12, 3969 (2021).

116. Hugo,W. et al. Genomic and Transcriptomic Features of Response

to Anti-PD-1 Therapy in Metastatic Melanoma. Cell 165, 35–44

(2016).

117. Kim, S. T. et al. Comprehensive molecular characterization of

clinical responses to PD-1 inhibition in metastatic gastric cancer.

Nat. Med. 24, 1449–1458 (2018).

118. Liu, D. et al. Integrativemolecular and clinical modeling of clinical

outcomes to PD1 blockade in patients with metastatic melanoma.

Nat. Med. 25, 1916–1927 (2019).

119. Mariathasan, S. et al. TGFβ attenuates tumour response to PD-L1

blockade by contributing to exclusion of T cells. Nature 554,

544–548 (2018).

120. McDermott, D. F. et al. Clinical activity andmolecular correlates of

response to atezolizumab alone or in combination with bev-

acizumab versus sunitinib in renal cell carcinoma. Nat. Med 24,

749–757 (2018).

121. Miao, D. et al. Genomic correlates of response to immune

checkpoint therapies in clear cell renal cell carcinoma. Science

359, 801–806 (2018).

122. Patil, N. S. et al. Intratumoral plasma cells predict outcomes to PD-

L1 blockade in non-small cell lung cancer. Cancer Cell 40,

289–300.e4 (2022).

123. Riaz, N. et al. Tumor and Microenvironment Evolution during

Immunotherapy with Nivolumab. Cell 171, 934–949.e16 (2017).

124. Van Allen, E. M. et al. Genomic correlates of response to CTLA-4

blockade in metastatic melanoma. Science 350, 207–211 (2015).

125. Arya, S., Kemp, S. E., Jefferis, G. & Mount, D. RANN: Fast Nearest

Neighbour Search (Wraps ANN Library) Using L2 Metric. (2019).

126. Coulton, A. et al. 2024. Macrophage Atlas, https://doi.org/10.

5281/zenodo.11221774 (2024).

Acknowledgements
K. Litchfield is fundedby theUKMedical ResearchCouncil (MR/P014712/

1 and MR/V033077/1), the Rosetrees Trust and Cotswold Trust (A2437),

and CRUK (C69256/A30194). A. Coulton is funded by the Melanoma

Research Alliance (award reference 686061). C.E.L acknowledges grant

support for her work from Prostate Cancer UK (RIA16-ST2-022). We are

thankful to Joe Brock of the Francis Crick Institute, who produced the

anatomical illustration used in Fig. 1.

Author contributions
A.C. performed data collation, atlas construction, analysis, wrote the

manuscript, produced figures. J.M. performed data collation, atlas

construction and analysis. D.Q. assisted with the MANA score analysis.

K.T. provided the CPI1000+ data. C.E.L. and K.L. provided supervision

and oversight of the project.

Competing interests
K.L. has the following disclosures (all unrelated to the current work):

patent on indel burden and CPI response pending, patent on ctDNA

minimal residual disease calling methods, patent pending on a lung

cancer vaccine; speaker fees fromRoche tissue diagnostics and Ellipses

pharma; research funding from CRUK TDL/Ono/LifeArc alliance and

Genesis Therapeutics; and consulting roles with Monopteros Ther-

apeutics, Saga diagnostics, Kynos Therapeutics and Tempus Labs, Inc.

Again unrelated to this work, K.L. is currently employed by Isomorphic

Labs. J.M. is an employee of Ono Pharmaceutical. The other authors

declare no competing interests.

Additional information
Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-024-49885-8.

Correspondence and requests for materials should be addressed to

Claire E. Lewis or Kevin Litchfield.

Peer review information Nature Communications thanks Brian Henick,

Frederick Varn and the other, anonymous, reviewer(s) for their con-

tribution to the peer review of this work. A peer review file is available.

Reprints and permissions information is available at

http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-

isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons licence, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons licence and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this licence, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2024

Article https://doi.org/10.1038/s41467-024-49885-8

Nature Communications |         (2024) 15:5665 14

https://doi.org/10.5281/zenodo.11221774
https://doi.org/10.5281/zenodo.11221774
https://doi.org/10.1038/s41467-024-49885-8
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Using a pan-cancer atlas to investigate tumour associated macrophages as regulators of immunotherapy response
	Results
	Construction of a large-scale, pan-cancer macrophage atlas
	The spectrum of TAM diversity is broad and complex
	Both tumour-intrinsic and environmental factors shape macrophage phenotype
	TAM phenotypes and patient responses to immune checkpoint inhibitors
	Our atlas augments existing literature-based models, and forms a comprehensive reference for future studies

	Discussion
	Methods
	Selection of TAMs from individual datasets
	Integration/batch correction of datasets and atlas construction
	Clustering, annotation and low-dimensional embedding
	Pathway analysis
	Testing for differences in proportions of clusters between conditions
	Multiple testing correction
	Statistical analysis and data manipulation
	Analysis of the similarity between clusters
	Examination of co-occurrence of macrophage clusters
	Assessing the specificity of macrophage cluster signatures in bulk data
	Association of macrophage subsets with immune checkpoint inhibitor response
	Assessing T cell infiltration in bulk RNAseq data
	Calculation of MANA score and compilation of smaller secondary atlas
	Spatial analysis of the ECM macrophage subset
	Projection of novel datasets on to the atlas
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information


