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Ensuring diagnostic performance of artificial intelligence (Al) before introduction into clinical practice is
essential. Growing numbers of studies using Al for digital pathology have been reported over recent
years. The aim of this work is to examine the diagnostic accuracy of Al in digital pathology images for
any disease. This systematic review and meta-analysis included diagnostic accuracy studies using
any type of Al applied to whole slide images (WSlIs) for any disease. The reference standard was
diagnosis by histopathological assessment and/orimmunohistochemistry. Searches were conducted
in PubMed, EMBASE and CENTRAL in June 2022. Risk of bias and concerns of applicability were
assessed using the QUADAS-2 tool. Data extraction was conducted by two investigators and meta-
analysis was performed using a bivariate random effects model, with additional subgroup analyses
also performed. Of 2976 identified studies, 100 were included in the review and 48 in the meta-
analysis. Studies were from a range of countries, including over 152,000 whole slide images (WSls),
representing many diseases. These studies reported a mean sensitivity of 96.3% (Cl 94.1-97.7) and
mean specificity of 93.3% (Cl1 90.5-95.4). There was heterogeneity in study design and 99% of studies
identified for inclusion had at least one area at high or unclear risk of bias or applicability concerns.
Details on selection of cases, division of model development and validation data and raw performance
data were frequently ambiguous or missing. Al is reported as having high diagnostic accuracy in the

reported areas but requires more rigorous evaluation of its performance.

Following recent prominent discoveries in deep learning techniques, wider
artificial intelligence (AI) applications have emerged for many sectors,
including in healthcare'~’. Pathology Al is of broad importance in areas
across medicine, with implications not only in diagnostics, but in cancer
research, clinical trials and Al-enabled therapeutic targeting’. Access to
digital pathology through scanning of whole slide images (WSIs) has
facilitated greater interest in Al that can be applied to these images®. WSIs
are created by scanning glass microscope slides to produce a high resolution
digital image (Fig. 1), which is later reviewed by a pathologist to determine
the diagnosis’. Opportunities for pathologists have arisen from this tech-
nology, including remote and flexible working, obtaining second opinions,

56

easier collaboration and training, and applications in research, such as AI™".

Application of Al to an array of diagnostic tasks using WSIs has rapidly
expanded in recent years™. Successes in Al for digital pathology can be
found for many disease types, but particularly in examples applied to
cancer*”™"". An important early study in 2017 by Bejnordi et al. described 32
Al models developed for breast cancer detection in lymph nodes through
the CAMELYON16 grand challenge. The best model achieved an area
under the curve (AUC) of 0.994 (95% CI 0.983-0.999), demonstrating
similar performance to the human in this controlled environment'”. A study
by Lu et al. in 2021 trained Al to predict tumour origin in cases of cancer of
unknown primary (CUP)". Their model achieved an AUC of 0.8 and 0.93
for top-1 and top-3 tumour accuracies respectively on an external test set. Al
has also been applied to making predictions, such as determining the 5-year
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Virtual Pathology at the University of Leeds

Fig. 1 | Example whole slide image (WSI) of a liver biopsy specimen at low magnification. These are high resolution digital pathology images viewed by a pathologist on a
computer to make a diagnostic assessment. Image from www.virtualpathology.leeds.ac.uk'®.

survival in colorectal cancer patients and the mutation status across multiple
tumour types'".

Several reviews have examined the performance of Al in sub-
specialties of pathology. In 2020, Thakur et al. identified 30 studies
of colorectal cancer for review with some demonstrating high
diagnostic accuracy, although the overall scale of studies was small
and limited in their clinical application'®. Similarly in breast cancer,
Krithiga et al. examined studies where image analysis techniques
were used to detect, segment and classify disease, with reported
accuracies ranging from 77 to 98%"’. Other reviews have examined
applications in liver pathology, skin pathology and kidney pathol-
ogy with evidence of high diagnostic accuracy from some Al
models'®™. Additionally, Rodriguez et al. performed a broader
review of AT applied to WSIs and identified 26 studies for inclusion
with a focus on slide level diagnosis’. They found substantial
heterogeneity in the way performance metrics were presented and
limitations in the ground truth used within studies. However, their
study did not address other units of analysis and no meta-analysis
was performed. Therefore, the present study is the first systematic
review and meta-analysis to address the diagnostic accuracy of Al
across all disease areas in digital pathology, and includes studies
with multiple units of analysis.

Despite the many developments in pathology Al, examples of
routine clinical use of these technologies remain rare and there are
concerns around the performance, evidence quality and risk of bias for
medical Al studies in general”. Although, in the face of an
increasing pathology workforce crisis, the prospect of tools that can
assist and automate tasks is appealing’*°. Challenging workflows and
long waiting lists mean that substantial patient benefit could be rea-
lised if AI was successfully harnessed to assist in the pathology
laboratory.

This systematic review provides an overview of performance of diag-
nostic tools across histopathology. The objective of this review was to
determine the diagnostic test accuracy of artificial intelligence solutions
applied to WSIs to diagnose disease. A further objective was to examine the
risk of bias and applicability concerns within the papers. The aim of this was
to provide context in terms of bias when examining the performance of
different AT tools (Fig. 1).

Results

Study selection

Searches identified 2976 abstracts, of which 1666 were screened after
duplicates were removed. 296 full text papers were reviewed for potential
inclusion. 100 studies met the full inclusion criteria for inclusion in the
review, with 48 studies included in the full meta-analysis (Fig. 2).

Study characteristics

Study characteristics are presented by pathological subspecialty for all 100
studies identified for inclusion in Tables 1-7. Studies from Europe, Asia,
Africa, North America, South America and Australia/Oceania were all
represented within the review, with the largest numbers of studies coming
from the USA and China. Total numbers of images used across the datasets
equated to over 152,000 WSIs. Further details, including funding sources for
the studies can be found in Supplementary table 10. Tables 1 and 2 show
characteristics for breast pathology and cardiothoracic pathology studies
respectively. Tables 3 and 4 are characteristics for dermatopathology and
hepatobiliary pathology studies respectively. Tables 5 and 6 have char-
acteristics for gastrointestinal and urological pathology studies respectively.
Finally, Table 7 outlines characteristics for studies with multiple pathologies
examined together and for other pathologies such as gynaepathology,
haematopathology, head and neck pathology, neuropathology, paediatric
pathology, bone pathology and soft tissue pathology.

Risk of bias and applicability
The risk of bias and applicability assessment using the tailored QUADAS-2
tool demonstrated that the majority of papers were either at high risk or
unclear risk of bias in three out of the four domains (Fig. 3). The full
breakdown of individual paper scores can be found in Supplementary Table
1. Of the 100 studies included in the systematic review, 99% demonstrated at
least one area at high or unclear risk of bias or applicability concerns, with
many having multiple components at risk.

Of the 48 studies included in the meta-analysis (Fig. 3c, d), 47 of
48 studies (98%) were at high or unclear risk of bias or applicability concerns
in at least one area examined. 42 of 48 studies (88%) were either at high or
unclear risk of bias for patient selection and 33 of 48 studies (69%) were at
high or unclear risk of bias concerning the index test. The most common
reasons for this included: cases not being selected randomly or
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Fig. 2 | Study selection flow diagram. Generated using PRISMA2020 at https://estech.shinyapps.io/prisma_{flowdiagram/"*.

consecutively, or the selection method being unclear; the absence of external
validation of the study’s findings; and a lack of clarity on whether training
and testing data were mixed. 16 of 48 studies (33%) were unclear in terms of
their risk of bias for the reference standard, but no studies were considered
high risk in this domain. There was often very limited detail describing the
reference standard, for example the process for classifying or diagnosing
disease, and so it was difficult to assess if this was an appropriate reference
standard to use. For flow and timing, to ensure cases were recent enough to
the study to be relevant and reasonable quality, one study was at high risk but
37 of 48 studies (77%) were at unclear risk of bias.

There were concerns of applicability for many papers included in the
meta-analysis with 42 of 48 studies (88%) with either unclear or high
concerns for applicability in the patient selection, 14 of 48 studies (29%) with
unclear or high concern for the index test and 24 of 48 studies (50%) with
unclear or high concern for the reference standard. Examples for this
included; ambiguity around the selection of cases and the risk of excluding
subgroups, and limited or no details given around the diagnostic criteria and
pathologist involvement when describing the ground truth.

Synthesis of results

100 studies were identified for inclusion in this systematic review. Included
study size varied greatly from 4 WSIs to nearly 30,000 WSIs. Data on a WSI
level was frequently unavailable for numbers used in test sets, but where it
was reported this ranged from 10 WSI to nearly 14,000 WSIs, with a mean of
822 WSIs and a median of 113 WSIs. The majority of studies had small
datasets and just a few studies contained comparatively large datasets of
thousands or tens of thousands of WSIs. Of included studies, 48 had data
that could be meta-analysed. Two of the studies in the meta-analysis had
available data for two different disease types”*, meaning a total of 50
assessments included in the meta-analysis. Figure 4 shows the forest plots
for sensitivity of any Al solution applied to whole slide images. Overall, there
was high diagnostic accuracy across studies and disease types. Using a
bivariate random effects model, the estimate of mean sensitivity across all
studies was 96.3% (CI 94.1-97.7) and of mean specificity was 93.3% (CI
90.5-95.4), as shown in Fig. 5. Additionally, the F1 score was calculated for
each study (Supplementary Materials) from the raw confusion matrix data
and this ranged from 0.43 to 1, with a mean F1 score of 0.87. Raw data and

additional data for the meta-analysis can be found in Supplementary
Tables 3 and 4.

The largest subgroups of studies available for inclusion in the meta-
analysis were studies of gastrointestinal pathology’* ™, breast
pathology”*'~" and urological pathology”**~** which are shown in Table 8,
representing over 60% of models included in the meta-analysis. Notably,
studies of gastrointestinal pathology had a mean sensitivity of 93% and
mean specificity of 94%. Similarly, studies of uropathology had mean sen-
sitivities and specificities of 95% and 96% respectively. Studies of breast
pathology had slightly lower performance at mean sensitivity of 83% and
mean specificity of 88%. Results for all other disease types are also included
in the meta-analysis™”*. Forest plots for these subgroups are shown in
Supplementary figure 1. When examining cancer (48 of 50 models) versus
for non-cancer diseases (2 of 50 models), performance was better for the
former with mean sensitivity 92% and mean specificity 89% compared to
mean sensitivity of 76% and mean specificity of 88% respectively. For studies
that could not be included in the meta-analysis, an indication of best per-
formance from other accuracy metrics provided is outlined in Supple-
mentary Table 2.

Of models examined in the meta-analysis, the number of sources
ranged from one to fourteen and overall the mean sensitivity and specificity
improved with a larger number of data sources included in the study. For
example, mean sensitivity and specificity for one data source was 89% and
88% respectively, whereas for three data sources this was 93% and 92%
respectively. However, the majority of studies used one or two data sources
only, meaning that studies with larger numbers of data sources were com-
parably underrepresented. Additionally, of these models, the mean sensi-
tivity and specificity was higher in those validated on an external test set
(95% and 92% respectively compared to those without external validation
(91% and 87% respectively), although it must be acknowledged that fre-
quently raw data was only available for internal validation performance.
Similar performance was reported across studies that had a slide-level and
patch/tile-level unit of analysis with a mean sensitivity of 95% and 91%
respectively versus a mean specificity of 88% and 90% respectively. When
comparing tasks where data was provided in a multiclass confusion matrix
compared to a binary confusion matrix, multiclass tasks demonstrated
slightly better performance with a mean sensitivity of 95% and mean
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Fig. 3 | Risk of bias and concerns of applicability in summary percentages for
studies included in the review. a Summaries for risk of bias for all 100 papers
included in the review. b Summaries for applicability concerns for all 100 papers

included in the review. ¢, d Summaries for risk of bias for 48 papers included in the
meta-analysis. d Summaries for applicability concerns for 48 papers included in the
meta-analysis.

specificity of 92% compared to binary tasks with mean sensitivity 91% and
mean specificity 88%. Details of these analyses can be found in Supple-
mentary Tables 5-9.

Of papers included within the meta-analysis, details of specimen
preparation were frequently not specified, despite this potentially impacting
the quality of histopathological assessment and subsequent Al performance.
In addition, the majority of models in the meta-analysis used haematoxylin
and eosin (H&E) images only, with two models using H&E combined with
IHC, making comparison of these two techniques difficult. Further details of
these findings can be found in Supplementary Table 11.

Discussion

AT has been extensively promoted as a useful tool that will transform
medicine, with examples of innovation in clinical imaging, electronic health
records (EHR), clinical decision making, genomics, wearables, drug devel-
opment and robotics”. The potential of Al in digital pathology has been
identified by many groups, with discoveries frequently emerging and
attracting considerable interest™'. Tools have not only been developed for
diagnosis and prognostication, but also for predicting treatment response
and genetic mutations from the H&E image alone*”"". Various models have
now received regulatory approval for applications in pathology, with some
examples being trialled in clinical settings™**.

Despite the many interesting discoveries in pathology Al translation to
routine clinical use remains rare and there are many questions and chal-
lenges around the evidence quality, risk of bias and robustness of the medical
Al tools in general””***** This systematic review and meta-analysis
addresses the diagnostic accuracy of Al models for detecting disease in
digital pathology across all disease areas. It is a broad review of the perfor-
mance of pathology Al addresses the risk of bias in these studies, highlights
the current gaps in evidence and also the deficiencies in reporting of
research. Whilst the authors are not aware of a comparable systematic

review and meta-analysis in pathology Al, Aggarwal et al. performed a
similar review of deep learning in other (non-pathology) medical imaging
types and found high diagnostic accuracy in ophthalmology imaging,
respiratory imaging and breast imaging’>. Whilst there are many exciting
developments across medical imaging Al, ensuring that products are
accurate and underpinned by robust evidence is essential for their future
clinical utility and patient safety.

Findings
This study sought to determine the diagnostic test accuracy of artificial
intelligence solutions applied to whole slide images to diagnose disease.
Overall, the meta-analysis showed that AT has a high sensitivity and spe-
cificity for diagnostic tasks across a variety of disease types in whole slide
images (Figs. 4 and 5). The F1 score (Supplementary Materials) was variable
across the individual models included in the meta-analysis. However, on
average there was good performance demonstrated by the mean F1 score.
The performance of the models described in studies that were not included
in the meta-analysis were also promising (see Supplementary Materials).
Subgroups of gastrointestinal pathology, breast pathology and urolo-
gical pathology studies were examined in more detail, as these were the
largest subsets of studies identified (see Table 8 and Supplementary Mate-
rials). The gastrointestinal subgroup demonstrated high mean sensitivity
and specificity and included Al models for colorectal cancer’*******, gas-
tric cancer™”"**77%% and gastritis”’. The breast subgroup included only Al
models for breast cancer applications, with Hameed et al. and Wang et al.
demonstrating particularly high sensitivity (98%, 91% respectively) and
specificity (93%, 96% respectively)*>*’. However, there was lower diagnostic
accuracy in the breast group compared to some other specialties. This could
be due to several factors, including challenges with tasks in breast cancer
itself, an over-estimation of performance and bias in other areas and the
differences in datasets and selection of data between subspecialty areas.
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Fig. 4 | Forest plots of performance across studies included in the meta-analysis. These show sensitivity (a) and specificity (b) in studies of all pathologies with 95%
confidence intervals. These plots were generated by MetaDTA: Diagnostic Test Accuracy Meta-Analysis v2.01 Shiny App https://crsu.shinyapps.io/MetaDTA/ and the raw

492,*)3

data can be found in Supplementary Table

Overall results were most favourable for the subgroup of urological studies
with both high mean sensitivity and specificity (Table 8). This subgroup
included models for renal cancer**™ and prostate cancer”*~*"****, Whilst
high diagnostic accuracy was seen in other subspecialties (Table 8), for
example mean sensitivity and specificity in neuropathology (100%, 95%
respectively) and soft tissue and bone pathology (98%, 94% respectively),
there were very few studies in these subgroups and so the larger subgroups
are likely more representative.

Of studies of other disease types included in the meta-analysis (Fig. 4),
Al models in liver cancer’, lymphoma’, melanoma’, pancreatic cancer’’,
brain cancer® lung cancer’” and rhabdomyosarcoma™ all demonstrated a
high sensitivity and specificity. This emphasises the breadth of potential
diagnostic tools for clinical applications with a high diagnostic accuracy in
digital pathology. The majority of studies did not report details of the
fixation and preparation of specimens used in the dataset. Where frozen
section is used instead of formalin fixed paraffin embedded (FFPE) samples,
this could impact the digital image quality and impact AI performance. It
would be helpful for authors to consider including this information in the
methods section of future studies. Only two models included in the meta-
analysis used THC and this was in combination with H&E stained samples. It

would be interesting to explore the comparison between tasks using H&E
when compared to IHC in more detail in future work.

Sensitivity and specificity were higher in studies with a greater number
of included data sources, however few studies chose to include more than
two sources of data. To develop AI models that can be applied in different
institutions and populations, a diverse dataset is an important consideration
for those conducting research into models intended for clinical use. A higher
mean sensitivity and specificity for those models that included an external
validation was identified, although many studies did not include this, or
included most data for internal validation performance. Improved overall
reporting of these values would allow a greater understanding of the per-
formance of models at external validation. Performance was similar in the
models included in the meta-analysis when a slide-level or patch/tile-level
analysis was performed, although slide-level performance could be more
useful when interpreting the clinical implications of a proposed model. A
pathologist will review a case for diagnosis at slide level, rather than patch
level, and so slide-level performance may be more informative when con-
sidering use in routine clinical practice. Performance was lower in non-
cancer diseases when compared to cancer models, however only two of the
models included in the meta-analysis were for non-cancer diseases and so
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Fig. 5 | Summary receiver operating characteristic plot of AI applied to whole
slide images for all disease types generated from MetaDTA: diagnostic test
accuracy meta-analysis v2.01 Shiny App https://crsu.shinyapps.io/dta_ma/*>”.
95% confidence intervals are shown around the summary estimate. The predictive

region shows the area of 95% confidence in which the true sensitivity and specificity
of future studies lies, whilst factoring the statistical heterogeneity of studies
demonstrated in this review.

this must be interpreted with caution and further work is needed in these
disease areas.

Risk of bias and applicability assessments highlighted that the
majority of papers contained at least one area of concern, with many
studies having multiple areas of concern (Fig. 3 and Supplementary
Materials). Poor reporting of the pieces of essential information within the
studies was an issue that was identified at multiple points within this
review. This was a key factor in the risk of bias and applicability assess-
ment, as frequently important information that was either missing or
ambiguous in its description. Reporting guidelines such as CLAIM and
also STARD-AI (currently in development) are useful resources that could
help authors to improve the completeness of reporting within their
studies™™. Greater endorsement and awareness of these guidelines could
help to improve the completeness of reporting of this essential informa-
tion in a study. The consequence of identifying so many studies with areas
of concern, means that if the work were to be replicated with these con-
cerns addressed, there is a risk that a lower diagnostic accuracy perfor-
mance would be found. For this review, with 98-99% of studies containing
areas of concern, any results for diagnostic accuracy need to be interpreted
with caution. This is concerning due to the risk of undermining con-
fidence of the use of Al tools if real world performance is poorer than
expected. In future, greater transparency and reporting of the details of

datasets, index test, reference standard and other areas highlighted could
help to ameliorate these issues.

Limitations
It must be acknowledged that there is uncertainty in the interpretation of the
diagnostic accuracy of the AT models demonstrated in these studies. There
was substantial heterogeneity in the study design, metrics used to demon-
strate diagnostic accuracy, size of datasets, unit of analysis (e.g. slide, patch,
pixel, specimen) and the level of detail given on the process and conduct of
the studies. For instance, the total number of WSIs used in the studies for
development and testing of AI models ranged from less than ten WSIs to
tens of thousands of WSIs*”*. As discussed, of the 100 papers identified for
inclusion in this review, 99% had at least one area at high or uncertain risk of
bias or applicability concerns and similarly of the 48 papers included in the
meta-analysis, 98% had at least one area at risk. Results for diagnostic
accuracy in this paper should therefore be interpreted with caution.
Whilst 100 papers were identified, only 48 studies were included in the
meta-analysis due to deficient reporting. Whilst the meta-analysis provided
a useful indication of diagnostic accuracy across disease areas, data for true
positive, false positive, false negative and true negative was frequently
missing and therefore made the assessment more challenging. To address
this problem, missing data was requested from authors. Where a multiclass
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Table 8 | Mean performance across studies by pathological
subspecialty

Pathological subspecialty No. Al Mean Mean
models sensitivity specificity
Gastrointestinal pathology 14 93% 94%
Breast pathology 8 83% 88%
Uropathology 8 95% 96%
Hepatobiliary pathology 5 90% 87%
Dermatopathology 4 89% 81%
Cardiothoracic pathology 3 98% 76%
Haematopathology 3 95% 86%
Gynaecological pathology 2 87% 83%
Soft tissue & bone pathology 1 98% 94%
Head & neck pathology 1 98% 72%
Neuropathology 1 100% 95%

study output was provided, this was combined into a 2 x 2 confusion matrix
to reflect disease detection/diagnosis, however this offers a more limited
indication of diagnostic accuracy. Al specific reporting guidelines for
diagnostic accuracy should help to improve this problem in future®.

Diagnostic accuracy in many of the described studies was high.
There is likely a risk of publication bias in the studies examined, with
studies of similar models with lower reported performance on testing
that are likely missing from the literature. Al research is especially at
risk of this, given it is currently a fast moving and competitive area.
Many studies either used datasets that were not randomly selection or
representative of the general patient population, or were unclear in
their description of case selection, meaning studies were at risk of
selection bias. The majority of studies used either one or two data
sources only and therefore the training and test datasets may have
been comparatively similar. All of these factors should be considered
when interpreting performance.

Conclusions

There are many promising applications for AI models in WSIs to assist the
pathologist. This systematic review has outlined a high diagnostic accuracy
for Al across multiple disease types. A larger body of evidence is available for
gastrointestinal pathology, urological pathology and breast pathology.
Many other disease areas are underrepresented and should be explored
further in future. To improve the quality of future studies, reporting of
sensitivity, specificity and raw data (true positives, false positives, false
negatives, true negatives) for pathology Al models would help with trans-
parency in comparing diagnostic performance between studies. Providing a
clear outline of the breakdown of data and the data sources used in model
development and testing would improve interpretation of results and
transparency. Performing an external validation on data from an alternative
source to that on which an AI model was trained, providing details on the
process for case selection and using large, diverse datasets would help to
reduce the risk of bias of these studies. Overall, better quality study design,
transparency, reporting quality and addressing substantial areas of bias is
needed to improve the evidence quality in pathology Al and to therefore
harness the benefits of Al for patients and clinicians.

Methods

This systematic review and meta-analysis was conducted in accordance with
the guidelines for the “Preferred Reporting Items for Systematic Reviews
and Meta-Analyses” extension for diagnostic accuracy studies (PRISMA-
DTA). The protocol for this review is available https://www.crd.york.ac.
uk/prospero/display_record.php?ID = CRD42022341864  (Registration:
CRD42022341864).

Eligibility criteria

Studies reporting the diagnostic accuracy of AI models applied to WSIs for
any disease diagnosed through histopathological assessment and/or
immunohistochemistry (IHC) were sought. This included both formalin
fixed tissue and frozen sections. The primary outcome was the diagnostic
accuracy of Al tools in detecting disease or classifying subtypes of disease.
The index test was any AI model applied to WSIs. The reference standard
was any diagnostic histopathological interpretation by a pathologist and/or
immunohistochemistry.

Studies were excluded where the outcome was a prediction of patient
outcomes, treatment response, molecular status, whilst having no detection
or classification of disease. Studies of cytology, autopsy and forensics cases
were excluded. Studies grading, staging or scoring disease, but without
results for detection of disease or classification of disease subtypes were also
excluded. Studies examining modalities other than whole slide imaging or
studies where WSIs were mixed with other imaging formats were also
excluded. Studies examining other techniques such as immunofluorescence
were excluded.

Data sources and search strategy

Electronic searches of PubMed, EMBASE and CENTRAL were performed
from inception to 20th June 2022. Searches were restricted to English lan-
guage and human studies. There were no restrictions on the date of pub-
lication. The full search strategy is available in Supplementary Note 1.
Citation checking was also conducted.

Study selection

Two investigators (C.M. and H.F.A.) independently screened titles and
abstracts against a predefined algorithm to select studies for full text review.
The screening tool is available in Supplementary Note 2. Disagreement
regarding study inclusion was resolved by discussion with a third investi-
gator (D.T.). Full text articles were reviewed by two investigators (C.M. and
E.L.C)) to determine studies for final inclusion.

Data extraction and quality assessment

Data collection for each study was performed independently by two
reviewers using a predefined electronic data extraction spreadsheet. Every
study was reviewed by the first investigator (C.M.) and a team of four
investigators were used for second independent review (E.L.C./C.J./G.M./
C.C.). Data extraction obtained the study demographics; disease examined;
pathological subspecialty; type of Al type of reference standard; datasets
details; split into train/validate/test sets and test statistics to construct 2 x 2
tables of the number of true-positives (TP), false positives (FP), false
negatives (FN) and true negatives (TN). An indication of best performance
with any diagnostic accuracy metric provided was recorded for all studies.
Corresponding authors of the primary research were contacted to obtain
missing performance data for inclusion in the meta-analysis.

At the time of writing, the QUADAS-ALI tool was still in development
and so could not be utilised”. Therefore, a tailored QUADAS-2 tool was
used to assess the risk of bias and any applicability concerns for the included
studies*”". Further details of the quality assessment process can be found in
Supplementary Note 3.

Statistical analysis

Data analysis was performed using MetaDTA: Diagnostic Test Accuracy
Meta-Analysis v2.01 Shiny App to generate forest plots, summary receiver
operating characteristic (SROC) plots and summary sensitivities and spe-
cificities, using a bivariate random effects model”. If available, 2 x 2 tables
were used to include studies in the meta-analysis to provide an indication of
diagnostic accuracy demonstrated in the study. Where unavailable, this data
was requested from authors or calculated from other metrics provided. For
multiclass tasks where only multiclass data was available, the data was
combined into a 2 x 2 confusion matrix (positives and negatives) format to
allow inclusion in the meta-analysis. If negative results categories were
unavailable for multiclass tasks, (e.g. for multiple comparisons between
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disease types only) then these had to be excluded. Additionally, mean
sensitivity and specificity were examined in the largest pathological sub-
specialty groups, for cancer vs non-cancer diagnoses and for multiclass vs
binary tasks to compare diagnostic accuracy among these studies.

Data availability
All data generated or analysed during this study are included in this pub-
lished article and its supplementary information files.
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