
 

 

Supplementary materials: 

BERMAD: Batch effect removal for single-cell RNA-seq 

data using a multi-layer adaptation autoencoder with dual-

channel framework 

I. Method workflow 

For understandability and applicability, we describe the workflow of our 

method BERMAD here. The workflow diagram of BERMAD is shown in 

Figure S1. In general, the complete workflow can be divided into the 

following steps: 

1. Perform clustering for each dataset individually with Seurat package 

using Louvain algorithm in R, thus dividing cells into different clusters 

within each batch. 

2. Calculate similarity score between cells from different batches, which 

will be used to recognize similar cell clusters later. 

3. Conduct batch correction and data integration using a deep 

autoencoder with multi-layer adaptation and dual-channel framework. 



 

 

4. After training, the output combined file can be used for downstream 

tasks and analysis. In this paper, that will be clustering with k-means 

algorithm as well as qualitative and quantitative evaluation. 

 

Fig. S1. The workflow diagram of our method BERMAD. 

II. Maximum Mean Discrepancy 

The Maximum Mean Discrepancy (MMD) (Gretton et al., 2012) is a non-

parametric method to measure the difference between embeddings of the 

probability distributions in a reproducing kernel Hilbert space (RKHS). It 

is a kernel two-sample test which rejects or accepts the null hypothesis 

based on the observed samples (Long et al., 2017). The basic idea behind 

MMD is that if the generating distributions are identical, all the statistics 

are the same. It is an effective criterion that compares probability 



 

 

distributions without initially estimating their density functions (Ghifary et 

al., 2014). 

Let 𝒟𝒟𝑋𝑋𝑠𝑠 = {𝑥𝑥1𝑠𝑠, … , 𝑥𝑥𝑛𝑛𝑠𝑠
𝑠𝑠 }  and 𝒟𝒟𝑋𝑋𝑡𝑡 = {𝑥𝑥1𝑡𝑡 , … , 𝑥𝑥𝑛𝑛𝑡𝑡

𝑡𝑡 }  be the sets of 

samples from distributions 𝑃𝑃(𝑋𝑋𝑠𝑠)  and 𝑄𝑄(𝑋𝑋𝑡𝑡) , respectively. Formally, 

MMD defines the following difference measure: 

𝒟𝒟ℋ(𝑃𝑃,𝑄𝑄) ≜ sup
𝑓𝑓∈ℋ

(𝔼𝔼𝑋𝑋𝑠𝑠[𝑓𝑓(𝑋𝑋𝑠𝑠)] − 𝔼𝔼𝑋𝑋𝑡𝑡[𝑓𝑓(𝑋𝑋𝑡𝑡)]), 

(1) 

where ℋ  is a class of functions. In practice, an estimate of the MMD 

compares the square distance between the empirical kernel mean 

embeddings as: 
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(2) 

Where 𝒟𝒟�ℋ(𝑃𝑃,𝑄𝑄) is an unbiased estimator of 𝒟𝒟ℋ(𝑃𝑃,𝑄𝑄). 

 In domain adaptation or transfer learning, MMD has been used to 

reduce the distribution mismatch between the source and target domain 

(Ghifary et al., 2014). Pan et al. (2010) proposed a PCA-based model called 

Transfer Component Analysis (TCA), which used MMD to induce a 

subspace where the data distributions in different domains are closed to 

each other. Long et al. (2013) presented a Transfer Sparse Coding (TSC) 

that utilizes MMD in the encoding stage to match the distributions of the 



 

 

sparse codes. In this paper, we utilize MMD to conduct distribution 

matching between different batches to accomplish batch correction. 

III. MetaNeighbor algorithm 

MetaNeighbor (meta-analysis via neighbor voting) is a simple, supervised 

framework to assess how well cell-type-specific transcriptional profiles 

replicate across datasets (Crow et al., 2018). It makes use of the cell-type 

labels supplied by data providers, and assesses the correspondence of cell 

types across datasets by taking the following approach: 

1. Generate a network about correlations between all pairs of cells. 

2. Divide the datasets into training set and test set. 

3. Predict the labels of the test set based on the training data. 

We use MetaNeighbor to calculate similarity score between cells from 

different batches, thus integrating cells of the same type together with our 

method BERMAD. 



 

 

IV. Comparative experiments on hyperparameters of hidden 

layers 

 

Fig. S2. Visualization results of different hyperparameter values on Simulated dataset. Cells are 

dyed by batch ID. 

 

 



 

 

Fig. S3. Visualization results of different hyperparameter values on Simulated dataset. Cells are 

dyed by type. 

 

Tab. S1. Metric results of different hyperparameter values on Simulated Dataset. 

𝜶𝜶:𝜷𝜷:𝜸𝜸 Divergence Silhouette ARI 

uncorrected 3.96±0.06 0.34±0.00 1.00±0.00 

0.1:0.1:0.1 0.01±0.00 0.92±0.00 1.00±0.00 

0.2:0.2:0.2 0.01±0.00 0.94±0.00 1.00±0.00 

0.3:0.3:0.3 0.01±0.00 0.95±0.00 1.00±0.00 

0.4:0.4:0.4 0.02±0.01 0.96±0.01 1.00±0.00 

0.5:0.5:0.5 0.04±0.00 0.99±0.00 1.00±0.00 

 

 
Fig. S4. Visualization results of different hyperparameter values on Pancreas dataset. Cells are dyed 

by batch ID. 

 



 

 

 
Fig. S5. Visualization results of different hyperparameter values on Pancreas dataset. Cells are dyed 

by type. 

 

Tab. S2. Metric results of different hyperparameter values on Pancreas Dataset. 

𝜶𝜶:𝜷𝜷:𝜸𝜸 Divergence Silhouette ARI 

uncorrected 8.11±0.08 0.37±0.00 0.61±0.00 

0.1:0.1:0.1 0.13±0.01 0.72±0.01 0.93±0.00 

0.2:0.2:0.2 0.33±0.03 0.80±0.00 0.94±0.00 

0.3:0.3:0.3 0.67±0.02 0.81±0.01 0.94±0.00 

0.4:0.4:0.4 0.77±0.03 0.81±0.01 0.93±0.00 

0.5:0.5:0.5 0.91±0.02 0.80±0.04 0.92±0.00 

 



 

 

V. Qualitative figures dyed by batch ID 

 
Fig. S6. Visualization for batch effect removal on simulated dataset. Cells are dyed by batch ID. 

 

 

Fig. S7. Visualization for batch effect removal on Pancreas_Same dataset. Cells are dyed by batch 

ID. 

 

 



 

 

Fig. S8. Visualization for batch effect removal on PBMC dataset. Cells are dyed by batch ID. 

 

 

Fig. S9. Visualization for batch effect removal on Multi-Batch dataset. Cells are dyed by batch ID. 

VI. Evaluation metrics 

We choose three performance evaluation metrics commonly used in this 

field to evaluate our method from different aspects, and compare 

BEAMAD with some state-of-the-art methods. 

Firstly, because the primary goal of batch correction is to completely 

integrate cells of the same type between batches, we choose divergence as 

the first performance evaluation metric, which is used to measure the 

distribution discrepancy between batches. For 𝑛𝑛  batches 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛 

and their corrected low-dimensional representations 𝑍𝑍1,𝑍𝑍2, … ,𝑍𝑍𝑛𝑛 , we 

refer to Wang et al. (2019) to define divergence as follows: 

𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =
1
𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑

�𝐷𝐷(𝑠𝑠�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗�, 𝑠𝑠(𝑍𝑍𝑗𝑗 ,𝑍𝑍𝑖𝑖))
𝑖𝑖≠𝑗𝑗

, 

(1) 



 

 

where 𝑠𝑠�𝑍𝑍𝑖𝑖 ,𝑍𝑍𝑗𝑗� is the cell population in 𝑍𝑍𝑖𝑖 shared by 𝑍𝑍𝑗𝑗, 𝐷𝐷 is the 

divergence estimation of the two distributions given samples 𝑍𝑍𝑖𝑖 and 𝑍𝑍𝑗𝑗, 

and 𝑛𝑛𝑑𝑑𝑑𝑑𝑑𝑑 is the number of batch pairs with shared cell population. Since 

the goal is to minimize the distribution discrepancy between similar cell 

clusters, a lower divergence is better. 

Secondly, whether dissimilar cell clusters still maintain good 

separation after integration is also an important factor to consider. We 

choose silhouette as the measure to evaluate this separation. Following 

Haghnerdi et al. (2018), for cell 𝑐𝑐, let 𝑎𝑎(𝑐𝑐) represent the average distance 

of 𝑐𝑐 to cells within the same cluster, and 𝑏𝑏(𝑐𝑐) represent the smallest of 

the average distances of 𝑐𝑐  to all cells in any other cluster. Then the 

silhouette of cell 𝑐𝑐 is defined as: 

𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑐𝑐) =
𝑏𝑏(𝑐𝑐) − 𝑎𝑎(𝑐𝑐)

max{𝑎𝑎(𝑐𝑐), 𝑏𝑏(𝑐𝑐)}, 

(2) 

We take the average value of all cells’ silhouette as the final evaluation 

metric. Since the dataset corrected should have a clear cluster structure, 

which means same cells are close to each other, while different cells are far 

away from each other, a higher silhouette is preferred. 

Finally, to evaluate how much the batch correction can boost the 

performance of downstream tasks, we use the k-means algorithm to cluster 

the corrected data, and then calculate the Adjusted Rand Index (ARI) 



 

 

(Hubert et al., 1985) commonly used in clustering tasks to evaluate the 

method: 

𝐴𝐴𝐴𝐴𝐴𝐴 =
∑ �𝑛𝑛𝑖𝑖𝑖𝑖2 �𝑖𝑖𝑖𝑖 − [∑ �𝑎𝑎𝑖𝑖2 �𝑖𝑖 + ∑ �𝑏𝑏𝑗𝑗2 �𝑗𝑗 ]�𝑛𝑛2�

�1
2� �∑ �𝑎𝑎𝑖𝑖2 �𝑖𝑖 + ∑ �𝑏𝑏𝑗𝑗2 �𝑗𝑗 � − [∑ �𝑎𝑎𝑖𝑖2 �𝑖𝑖 + ∑ �𝑏𝑏𝑗𝑗2 �𝑗𝑗 ]�𝑛𝑛2�

, 

(3) 

where 𝑛𝑛𝑖𝑖𝑖𝑖 is the number of cells assigned to cluster 𝑖𝑖 and 𝑗𝑗 based 

on the true labels and the cluster labels, 𝑎𝑎𝑖𝑖 is the number of cells assigned 

to cluster 𝑖𝑖 by the true labels while 𝑏𝑏𝑗𝑗 is the number of cells assigned to 

cluster 𝑗𝑗  by the cluster labels. A higher ARI means that the clustering 

result is closer to ground truth, which also means better batch correction 

performance. 

VII. Experimental results on Pancreas_Diff1 and 

Pancreas_Diff2 

 
Fig. S10. Visualization for batch effect removal on Pancreas_Diff1 dataset. Cells are dyed by type. 

 



 

 

 
Fig. S11. Visualization for batch effect removal on Pancreas_Diff1 dataset. Cells are dyed by batch 

ID. 

 

 

Tab. S3. Calculation results of evaluation metrics on Pancreas_Diff1 dataset. 

Method Divergence Silhouette ARI 

uncorrected 8.01±0.08 0.42±0.00 0.67±0.00 

MNN 5.94±0.00 0.22±0.00 0.43±0.00 

BBKNN 5.84±0.00 0.22±0.00 0.43±0.00 

Scanorama 1.51±0.00 0.12±0.00 0.02±0.00 

Harmony 2.84±0.03 0.07±0.00 0.29±0.00 

scVI 1.52±0.13 0.26±0.01 0.74±0.02 

BERMUDA 

HDMC 

iMAP 

2.26±0.08 

0.95±0.12 

1.71±0.08 

0.68±0.01 

0.66±0.00 

0.40±0.02 

0.48±0.01 

0.27±0.00 

0.55±0.02 

BEAMAD 0.69±0.08 0.74±0.00 0.81±0.00 

 



 

 

 

Fig. S12. Visualization for batch effect removal on Pancreas_Diff2 dataset. Cells are dyed by type. 

 

 

Fig. S13. Visualization for batch effect removal on Pancreas_Diff2 dataset. Cells are dyed by batch 

ID. 

 

Tab. S4. Calculation results of evaluation metrics on Pancreas_Diff2 dataset. 

Method Divergence Silhouette ARI 

uncorrected 5.07±0.12 0.36±0.00 0.59±0.00 

MNN 3.11±0.00 0.12±0.00 0.43±0.00 

BBKNN 3.10±0.00 0.12±0.00 0.41±0.00 

Scanorama 2.23±0.00 0.13±0.00 0.03±0.00 

Harmony 0.94±0.01 0.10±0.00 0.41±0.00 

scVI 0.84±0.04 0.22±0.01 0.68±0.02 



 

 

BERMUDA 

HDMC 

iMAP 

2.17±0.07 

1.46±0.10 

0.80±0.05 

0.69±0.00 

0.83±0.02 

0.38±0.03 

0.44±0.09 

0.59±0.08 

0.46±0.03 

BEAMAD 0.27±0.02 0.74±0.00 0.81±0.01 

 

VIII. Qualitative results of ablation study 

 

Fig. S14. Visualization results of ablation study on Pancreas dataset. Cells are dyed by batch ID. 

 

Fig. S15. Visualization results of ablation study on Pancreas dataset. Cells are dyed by type. 
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