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Abstract: To study the relationship between genetic variants and phenotypes, association testing
is adopted; however, most association studies are conducted by genotype-based testing. Testing
methods based on next-generation sequencing (NGS) data without genotype calling demonstrate an
advantage over testing methods based on genotypes in the scenarios when genotype estimation is
not accurate. Our objective was to develop NGS data-based methods for association studies to fill
the gap in the literature. Single-variant testing methods based on NGS data have been proposed,
including our previously proposed single-variant NGS data-based testing method, i.e., UNC combo
method. The NGS data-based group testing method has been proposed by us using a linear model
framework which can handle continuous responses. In this paper, we extend our linear model-based
framework to a generalized linear model-based framework so that the methods can handle other
types of responses especially binary responses which is a common problem in association studies. To
evaluate the performance of various estimators and compare them we performed simulation studies.
We found that all methods have Type I errors controlled, and our NGS data-based methods have
better performance than genotype-based methods for other types of responses, including binary
responses (logistics regression) and count responses (Poisson regression), especially when sequencing
depth is low. We have extended our previous linear model (LM) framework to a generalized linear
model (GLM) framework and derived NGS data-based methods for a group of genetic variables.
Compared with our previously proposed LM-based methods, the new GLM-based methods can
handle more complex responses (for example, binary responses and count responses) in addition to
continuous responses. Our methods have filled the literature gap and shown advantage over their
corresponding genotype-based methods in the literature.

Keywords: next-generation sequencing; association testing; generalized linear model; joint
significance test; variable collapse test; genotype calling; score test; group testing; rare variant

MSC: 62P10; 62J12; 92B15

1. Introduction

Next-generation sequencing (NGS) is a massively parallel sequencing technology
used to determine the order of nucleotides in entire genomes or targeted regions of de-
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oxyribonucleic acid (DNA) or ribonucleic acid (RNA) which offers ultra-high throughput,
scalability, and speed [1]. With fast development in NGS technology, it becomes more and
more widely-used in association studies of genetic variables. Compared with traditional
sequencing technologies, such as Sanger technology [2], NGS technologies can achieve
higher sequencing throughput and lower costs. Enormous amounts of NGS data are col-
lected from NGS platforms (for example, MiniSeq, MiSeq, NextSeq 1000 and NovaSeq 6000
from Illumina) by researchers and these researchers own the datasets and conduct genetic
studies based on these NGS datasets [3].

Next-generation sequencing (NGS) data in the format of raw sequencing reads are col-
lected in NGS platforms [4–6]. These platforms typically do not provide genotype data. Re-
searchers have proposed multi-step bio-informatics data-processing pipelines to obtain geno-
types based on NGS data. A typical pipeline usually includes quality control (QC), alignment
of sequences, variant calling, and genotype calling (GC) [5,7,8]. Genotype calling is the process
of determining the genotype for each individual and is typically only performed for positions
in which a SNP or a ’variant’ has already been called [9]. After obtaining estimated genotypes,
researchers conduct regression analysis to study the relationship between phenotype and
genotype, as well as other variables (environmental variables, clinical variables, etc.) [9–11].

Regression methods have been used in statistics and bio-statistics including kernel re-
gression [12], spline smoother [13], Alternative Conditional Expectations (ACE) [14], and
Additivity Variance Stabilization (AVAS) [15]. Suppose X ∈ Rm and Y ∈ R, and there is a
relationship m(.) between X and Y via the model Y = m(X) + e, where the error term e has
zero mean conditional on X, i.e., E(e|X) = 0. Kernel regression can estimate the function
m(.) non-parametrically using kernel functions [12]. The spline smoother estimates the re-
lationship between X and Y, i.e., m(.), using splines. That is, the spline smoother assumes
that m(.) can be approximated by splines, and then it finds the best spline m as the (spline
estimator) of m(.) [13]. Alternating conditional expectations (ACE) is a non-parametric method
to find the optimal non-linear transformations of the response variable Y and its predictor
variables X’s to minimize the fraction of variance in transformed Y not explained by trans-
formed X’s assuming an additive model. In mathematics, let X1, X2, . . . , Xp, Y be random
variables. Suppose θ(Y), φ1(X1),φ2(X2), . . . , φp(Xp) are zero-mean functions. The fraction
of variance in transformed Y not explained by transformed X based on additive models are
E[θ(Y)−∑

p
i=1 φi(Xi)]

2/E[θ2(Y)]. ACE is a non-parametric method to find optimal transfor-
mations (θ, φ1, . . . , φp) to minimize this fraction [14]. The Additivity Variance Stabilization
(AVAS) method is an improved method over ACE which also aimed to find optimal transfor-
mation to maximize the fraction in transformed Y explained by transformed Xs, and AVAS has
better performance than ACE when correlation between transformed Xs and transformed Y is
small [15]. An application example of the regression algorithm is arterial volume-weighted
arterial spin tagging (AVAST), which is a variant of a pseudo-continuous arterial spin labeling
acquisition (PCASL) technique to measure the arterial cerebral blood volume (aCBV) and
provides useful information about neuronal activation based on functional magnetic resonance
imaging (fMRI) brain data [16]. Regression methods based on a linear model (LM) and a gener-
alized linear model (GLM) are widely used for association studies. Responses are phenotypes.
Genotypes and other variables, including environmental variables and behavior variables,
are explanatory variables/predictors. Depending on different types of responses, different
regression models can be adopted. For example, bio-statisticians typically conduct logistics
regression and linear regression, respectively, for binary responses and continuous responses. If
the response is a count/integer type, a Poisson regression can be adopted. To handle complex
responses (various types), the framework of a generalized linear model (GLM) can be adopted,
which is better than the linear model (LM) framework because LM can only handle continuous
responses as we proposed before [17]. This motivates us to extend our previous linear model
framework [17] to a general linear model framework in this article.

Testing methods are different for common variants and rare variants. Common vari-
ants refer to genetic variables with minor allele frequency (MAF) greater than a threshold
value c, 0.01 ≤ c ≤ 0.05 [18,19]. Researchers typically set c = 0.05. Rare variants refer
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to those with MAF less than c. For common genetic variants, single-variant testing is
conducted in association studies. The genetic effect can be specified by an additive model,
dominant model, or recessive model [9,20]. Genome-wide association study (GWAS) means
to repeat the single-variant testing for all markers genomewide [9,20]. For common variants,
Chi-square test or F tests are adopted to test for the joint significance of a group of variables.
Markers within a gene can be treated as a group and tested simultaneously. Genome-wide
gene-based group testing means repeat the single-gene joint-significance testing one-by-one
for all genes in the whole genome.

Because rare variants have a small MAF, say MAF < 0.05, they have low variations in
genotypes so that the power of testing for a variant may not be enough [18,21]. Rare-variant
testing is often a group test instead of single variable test. There are various testing methods
for rare variants in the literature. Among these tests, two big categories are often adopted.
Category 1 refers to variable collapsing (VC) testing methods. These methods first calculate
one variable based on multiple genetic variants, i.e., collapse/merge multiple variants into
one, and then conduct association studies using the calculated variable [22,23]. Burden
test is a representative method. It conducts association studies between the phenotype
and the total number of rare alleles in a group of markers [23,24]. Category 2 contains
different versions of Sequence Kernel Association testing (SKAT) methods, including SKAT,
MK-SKAT, SKAT-O, and BESKAT [18,22,25,26]. The SKAT method is a representative
method in Category 2 and it adopts a linear-model framework (linear regression) to deal
with continuous phenotypes, and a logistics-model framework (logistics regression) to deal
with binary phenotypes [26]. Continuous type and binary type are two mostly encountered
types of phenotypes in association studies, thus this article focuses on these two types; both
categories are genotype-based tests. Genotypes are estimated and association studies are
performed between phenotypes and estimated genotypes.

There are estimation errors in genotype calling. Genotype accuracy are influenced
by a range of factors, including sequencing errors, alignment accuracy, and sequencing
depth. When sequencing depth is low, genotype calling can be very imprecise, which can
influence the performance of association methods based on estimated genotypes [27,28]. To
improve the performance of testing, NGS data-based methods with no genotype calling
are recommended. These methods model NGS data directly without genotype calling and
have shown better performance [29,30].

Researchers have proposed a range of NGS data-based single-variant association
testing methods without genotype calling [29–31], including our previously proposed
UNC combo method [30]. When sequencing depth is low and genotype calling is not
accurate, these NGS data-based single-variant methods can achieve better performance
under the scenario of low sequencing depth, heterogeneous sequencing depths, and impre-
cise genotype calls [29–31]; however, there are no NGS data-based group testing methods
in the literature except our previously proposed linear model (LM)-based group testing
methods [17]. Being linear model-based, our previously proposed method can only han-
dle continuous phenotypes. However, in the fields of bio-statistics and bio-informatics,
especially association studies, other types of phenotypes, especially binary phenotypes
(such as disease status and case/control association studies), are widely encountered. It
is greatly desired and necessary to extend our methods to enable handling of other types
of phenotypes, especially binary phenotypes. Thus, we extend our method from a linear
model (LM)-based framework to a generalized linear model (GLM)-based NGS data-based
group testing method so that our proposed methods can handle complex responses, in-
cluding continuous responses (linear regression), binary responses (logistics regression),
and count/integer responses (Poisson regression). The proposed NGS-based group testing
methods are expected to have an advantage over genotype-based methods, especially when
sequencing is low and genotype calling/estimation is not accurate.

Corresponding to genotype-based group testing methods for common variants (joint
significance test) and rare variants (variable collapse test) [22,26,32], we fill the literature
gap by proposing their corresponding NGS data-based methods without genotype calling.
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That is, for a group of common variants, the joint significance test (JS) based on NGS
data is proposed. For a group of rare variants, the variable collapse test (VC) based
on NGS are proposed. Compared with our previous work [17], the major contribution
of this work is that it can handle a range of types of phenotypes, including continuous,
binary, and count/integer phenotypes based on the GLM framework, whereas our previous
work [17] can only handle continuous phenotypes based on the LM framework.

In this study, we proposed novel NGS data-based testing methods for association
studies based on a generalized linear model (GLM). The proposed methods fill the literature
gap as the first NGS data-based group testing methods without genotype calling based on a
GLM. We previously used the LM framework to develop association testing methods for a
group of genetic variables based on NGS data [17]; however, our previous methods can only
handle continuous responses. In this paper, we aimed to extend our linear model-based
framework to a generalized linear model (GLM)-based framework so that our methods can
handle other types of responses, especially binary responses, which is commonly-faced in
association studies. The objectives of this study were to (1) develop our proposed novel
NGS data-based testing methods for association studies based on a theoretical framework
of generalized linear models (GLM) and (2) show our proposed methods can achieve better
testing performance than their corresponding genotype-based methods.

2. Methodology

Denote the sample size of the study as N. For individual i (1 ≤ i ≤ N), the data
are (yi, gi, xi). The term yi, gi, and xi, respectively, represent the phenotype, genotypes,
and additional covariates. Examples of additional covariates are environmental variables,
gender, and age. The genotype can only have values of 0, 1, or 2 for bi-allelic markers.

Suppose our group testing includes dg genetic variants. We use a row vector to
represent the genotypes for individual i, i.e., gi = (gi1, gi2, . . . , gidg

), where the genotype at
variant j for individual i is gij. We use the row vector xi = (1, xi1, xi2, . . . , xidx ) represent
the intercept and dx additional covariates, where the value of additional variable j for
individual i is denoted as xij.

Denote genotype matrix with size N × dg to be g = (g1, g2, . . . , gN). Denote response
vector with length n to be y = (y1, y2, . . . , yN). Denote the matrix with size N × (dx + 1)
for additional covariates to be x = (x1, x2, . . . , xN).

2.1. Model Complex Phenotypes Using a GLM Framework

Both the linear model for a quantitative phenotype and the logistic regression model
for a binary phenotype conform the framework of the general linear model [33,34]. This
motivates us to model complex phenotypes by a generalized linear model (GLM) frame-
work. The GLM model-based derivation is a direct extension of our previous linear model
(LM)-based framework for testing of a group of variants [17], which is extended from work
on NGS-based single-variant testing [29].

We model the complex phenotype by a GLM [33,34]. For the i-th individual, the
probability of observing phenotype yi is modelled to be

p(yi|xi, gi) = pα,β,φ(yi|xi, gi) = exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)), (1)

where the row vector α ∈ Rdx+1 and β ∈ Rdg . The linear predictor is ηi = ηα,β(xi, gi) =

αxT
i + βgT

i .
Depending on the type of the phenotype under consideration, different specification

of the functions a(), b(), and c(), including

• The continuous phenotype, corresponding to a linear regression;
• The binary phenotype, corresponding to a logistics regression;
• The count (integer) phenotype, corresponding to a Poisson regression.
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To be more specific, we show how the modelling of the three types of phenotype
belongs to our generalised linear model (GLM) framework. First, consider a continuous
phenotype as specified in our previous linear model (LM) framework [17], i.e., yi ∼
N(ηi, σ2), where ηi = αxT

i + βgT
i . Our previously proposed LM framework is a special case

of our GLM framework because

f (yi|xi, gi) =
1√

2πσ2
exp(− (yi − ηi)

2

2σ2 ) = exp(
yiηi − η2

i /2
σ2 −

y2
i

2
− ln(2πσ2)

2
)

= exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)).

Thus, a(φ) = φ, φ = σ2, b(ηi) = η2
i /2 and c(yi, φ) = −y2

i /(2φ)− ln(2πφ)/2 for a
continuous phenotype.

Next, consider a binary phenotype modelled using a logistics regression model, i.e.,
πi = P(yi = 1|xi, gi), and ln(πi/(1− πi)) = ηi = αxT

i + βgT
i . This logistics model is a

special case of our GLM framework because

f (yi|xi, gi) = π
yi
i (1− πi)

1−yi = (
πi

1− πi
)yi (1− πi) = exp(ηiyi + ln(1− πi))

= exp(yiηi − ln(1 + eηi )) = exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)).

Thus, a(φ) = 1, b(ηi) = ln(1 + eηi ) and c(yi, φ) = 0 for a binary response.
Thirdly, consider a count (integer) phenotype modelled using a Poisson regression

model, i.e., Yi ∼ Poisson(λi = eηi ), where ηi = αxT
i + βgT

i . This Poisson regression is also
a special case of our GLM framework because

f (yi|xi, gi) =
λ

yi
i

yi!
e−λi =

eηiyi

yi!
e− exp(ηi)

= exp(yiηi − eηi − ln(yi!)) = exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)).

Thus, a(φ) = 1, b(ηi) = eηi and c(yi, φ) = − ln(yi!) for a count (integer) response.
Our proposed GLM framework is a general framework which can handle different

types of responses. The probability of observing phenotype yi is influenced by predictors
(xi and gi) and parameters (α, β, φ). When a(φ) and c(yi, φ) are constant functions with
respect to φ, we can drop φ out and denote the functions as a and c(yi). For example, in
logistics regression, a(φ) = 1, c(yi, φ) = 0, and in Poisson regression, a(φ) = 1, c(yi, φ) =
− ln(yi!). The parameters are (α, β) not involving φ. Then the probability of observing yi is
influenced by (xi and gi) and the parameters (α, β). In the following, we will discuss two
situations, (1) the situation when parameters are (α, β, φ); and (2) the situation when φ is
dropped out, i.e., parameters are (α, β).

2.2. Uncertain Genotypes

Because sequencing data and phenotype are conditional independent given true
genotypes, we model their joint distribution to be

pθ(yi, Di|xi) = ∑
g∈G

fθ(yi|xi, g)h(g, Di), (2)

where θ = (α, β, φ) or θ = (α, β) depending on whether φ can be dropped out, i.e., whether
a(φ) and c(yi, φ) are constant functions with respect to φ. For individual i, Di denotes
sequencing reads, yi denotes the phenotype, and xi denotes additional covariates. We
denote the genotype state space as G, which contains all possible genotype values for g.
The term ∑g∈G in Equation (2) refers to sum over all possible values of g. Because each of
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the dg genetic variants can only has values of 0, 1, and 2, G = {0, 1, 2}dg . The term h(g, Di)

is short for the probability of NGS data and genotype, i.e., h(g, Di) = p(Di|g)p(g| f̂ ). Here,
the estimated allele frequency f̂ is modelled in Skotte et al. [29]. The log-likelihood function
thus can be written as

ly,D(θ) =
N

∑
i=1

log{pθ(yi, Di|xi)} =
N

∑
i=1

log{∑
g∈G

fθ(yi|xi, g)h(g, Di)}, (3)

where θ = (α, β, φ) or (α, β) depending on whether φ is dropped out.
We are interested in testing for genetic effects based on NGS data. The null hypothesis

is H0 : β = 0. Under H0, we note that the density f does not depends on genotypes so that
in the likelihood function under H0, we can pull it out of the summation.

Then, under H0 : β = 0, we simplify the log-likelihood function as follows,

ly,D(α, 0, φ) =
N

∑
i=1

(ln( ∑
g∈G

fθ(yi|xi, g)h(g, Di)))

=
N

∑
i=1
{

yi(αxT
i )− b(αxT

i )

a(φ)
+ c(yi, φ)}+ constant in terms of parameters,

when φ is not dropped out and parameters are (α, β, φ). When φ is dropped out and the
parameters are (α, β), the formula is

ly,D(α, 0) =
N

∑
i=1

(ln( ∑
g∈G

fθ(yi|xi, g)h(g, Di)))

=
N

∑
i=1
{

yi(αxT
i )− b(αxT

i )

a
+ c(yi)}+ constant in terms of parameters.

Detailed derivations are in Supplementary Material S1 in Supplementary Information File.
Because constrained MLE under H0 : β = 0 can be obtained using the regression of

phenotype on additional covariate x (no genotype are used), this motivates us to use score
test to develop the methods. Score test only need to know constrained MLE. Note that
under H0 : β = 0, the linear predictor ηi = αxT

i + βgT = αxT
i is influenced only by xi, not

by g.

2.3. Joint Significance Test for a Group of Common Genetic Variants
2.3.1. The Situation When Parameters Are (α, β, φ)

We adopt the score test [35,36]. When parameters are (α, β, φ), the score is

sy,D(α, β, φ) =

∂ly,D(α, β, φ)/∂αT

∂ly,D(α, β, φ)/∂βT

∂ly,D(α, β, φ)/∂φ

, (4)

where the length of row vector α is dx + 1, the length of row vector β is dg, and φ is a scalar.
The analytical formula of sy,D(α, β, φ) is specified in Appendix A with detailed derivations
provided in Supplementary Material S2 in Supplementary Information File.

The observed information matrix is

oy,D(α, β, φ) = −

∂2ly,D(α, β, φ)/∂αT∂α ∂2ly,D(α, β, φ)/∂αT∂β ∂2ly,D(α, β, φ)/∂αT∂φ

∂2ly,D(α, β, φ)/∂βT∂α ∂2ly,D(α, β, φ)/∂βT∂β ∂2ly,D(α, β, φ)/∂βT∂φ

∂2ly,D(α, β, φ)/∂φ∂α ∂2ly,D(α, β, φ)/∂φ∂β ∂2ly,D(α, β, φ)/∂φ2

.

The analytical formula for oy,D(α, β, φ) is specified in Appendix B with detailed derivations
provided in Supplementary Material S3 in Supplementary Information File.
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Denote the constrained MLE of the parameters (α, β, φ) under H0 : β = 0 as θ̃ =
(α̃, 0, φ̃). The test statistic is

R(y, D) = [sy,D(α̃, 0, φ̃)]T [oy,D(α̃, 0, φ̃)]−1[sy,D(α̃, 0, φ̃)]. (5)

To calculate this test statistic, we need to evaluate both s(y, D)(α, β, φ) (score func-
tion) and o(y, D)(α, β, φ) (information matrix) at the constrained MLE θ̃ = (α̃, 0, φ̃). The
evaluation of s(y, D)(α, β, φ) at the constrained MLE θ̃ = (α̃, 0, φ̃), i.e., sy,D(α̃, 0, φ̃) is speci-
fied in Appendix C with detailed derivations provided in Supplementary Material S4 in
Supplementary Information File. The evaluation of oy,D(α, β, φ) at constrained MLE θ̃, i.e.,
oy,D(α̃, 0, φ̃) is specified in Appendix D with detailed derivations provided in Supplemen-
tary Material S5 in Supplementary Information File.

Under H0, R(y, D) ∼ χ2
dg

. We conducted score test based on testing statistic R(y, D)

and p-value of the test can be calculated.

2.3.2. The Situation When Parameters Are (α, β)

When φ is dropped out and parameters are (α, β), the score function is

sy,D(α, β) =

[
∂ly,D(α, β)/∂αT

∂ly,D(α, β)/∂βT

]
, (6)

where the length of row vector α is dx + 1, the length of row vector β is dg. The analytical
formula of sy,D(α, β) is specified in Appendix E with detailed derivations provided in
Supplementary Material S6 in Supplementary Information File.

The observed information matrix is

oy,D(α, β) = −
[

∂2ly,D(α, β)/∂αT∂α ∂2ly,D(α, β)/∂αT∂β

∂2ly,D(α, β)/∂βT∂α ∂2ly,D(α, β)/∂βT∂β

]
.

The analytical formula of oy,D(α, β) is specified in Appendix F with detailed deriva-
tions provided in Supplementary Material S7 in Supplementary Information File.

Denote the constrained MLE of the parameters (α, β) under H0 : β = 0 as θ̃ = (α̃, 0).
The test statistic is

R(y, D) = [sy,D(α̃, 0)]T [oy,D(α̃, 0)]−1[sy,D(α̃, 0)]. (7)

To calculate this test statistic, we need to evaluate both sy,D(α, β) and o(y, D)(α, β)

at the constrained MLE θ̃ = (α̃, 0). The evaluation of sy,D(α, β) at the constrained MLE
θ̃ = (α̃, 0), i.e., sy,D(α̃, 0) is specified in Appendix G with detailed derivations provided in
Supplementary Material S8 in Supplementary Information File. The evaluation of oy,D(α, β)

at the constrained MLE θ̃ = (α̃, 0), i.e., oy,D(α̃, 0) is specified in Appendix H with detailed
derivations provided in Supplementary Material S9 in Supplementary Information File.

Under H0, the test statistic R(y, D) ∼ χ2
dg

. We conduct score test based on R(y, D) and
calculate p-values.

2.4. Variable Collapse Test for a Group of Rare Variants
2.4.1. The Situation When Parameters Are (α, β, φ)

For rare variants, variable collapse (VC) methods collapse multiple genetic variables
into one variable and use it in testing [23,37,38]. Rare genetic variants can be collapsed
in different ways, depending on which method is used. Weighted burden test based on
genotypes aggregate/collapse p rare variants by a weighted sum with the weight wj, i.e.,
AGi = ∑

p
j=1 wjgij , where gij refers to the genotype for the j-th rare variants for individual

i. Rare alleles are coded as 0 and wild/reference alleles are coded as 1. The burden test
adopts equal weight, i.e., w1 = w2 = · · · = wp = 1. In burden test, AGi = ∑

p
j=1 gij so that

association study is performed between the total sum of rare alleles for a group of genetic
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variants and the phenotype. This means the influence of genotype gij on the phenotype is
through AGi.

We model the phenotype using a generalized linear model [33,34]. For individual i,
the same generalized linear model is used except the change in linear predictor ηi. The
probability of observing phenotype yi is modelled to be

p(yi|xi, gi) = pα,β0,φ(yi|xi, gi) = exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)), (8)

where the row vector α ∈ Rdx+1 and β0 ∈ R is a scalar. The linear predictor in GLM
model is

ηi = ηα,β0(xi, gi) = αxT
i + β0 AGi = αxT

i + β0

dg

∑
j=1

wjgij. (9)

Depending on the type of the responses, we adopt different functions for a(.), b(.), and

c(., .). Note that AGi = ∑
dg
j=1 wjgij aggregates dg rare genetic variables into one aggregate

variable. The probability of observing yi is influenced by both (xi and AGi) and parameters
(α, β0, φ).

Our model for common variants uses the same GLM framework except the change in
linear predictor ηi, i.e.,

ηi = αxT
i + βgT

i , (10)

where β ∈ Rdg . We apply the chain rule in calculus to derive the formulae for the rare-
variant model (Equation (9)) based on the formulae in the common-variant model, i.e.,
Equation (10). The connection between the two models is that the effects of rare variants as
modeled by β0 satisfy the condition that β = β0W, where β ∈ Rdg and β0 ∈ R. For burden
test which uses equal weight, i.e., w1 = w2 = · · · = wdg = 1, so that W = [1, 1, . . . , 1] is a

unit row vector and AGi = ∑
dg
j=1 gij [23,37]. Then, ηi = αxT

i + β0WgT
i = αxT

i + β0 ∑
dg
j=1 wjgij.

Unequal weights can also be adopted, such as wj = β0 fBeta(MAFj, 1, 25), where fBeta is the
Beta density function. The term MAFj is MAF for the j-th rare variant [25,26,30].

The same assumption on weights are used in our proposed NGS data-based variable
collapse (VC) method. We adopted the assumption of weighted burden test in our test
based on NGS data. This assumption has been widely used in VC test based on genotypes
in the literature. [23,37]. The formula is β = β0W, where the weight W = (w1, w2, . . . , wdg)

is a row vector and β0 is a scalar. For identification purpose, the constraint ∑
dg
j=1 wj = dg

is adopted.
In our joint significance (JS) method for a group of common variants, ηi is modelled

as ηi = ηα,β(xi, gi) = αxT
i + βgT

i and (α, β, φ) are parameters and the length of row vector
β is dg. In comparison, in our variable collapse (VC) method for a group of rare variants,
the linear predictor ηi is modelled as ηi = ηα,β(xi, gi) = αxT

i + β0WgT
i and (α, β0, φ) are

parameters and β0 is a scalar. First, under H0 : β = 0 or H0 : β0 = 0, the same constrained
MLE for α and φ is obtained, no matter which log-likelihood function (ly,D(α, β, φ) or
ly,D(α, β0, φ)) is used. Thus, the same notation θ̃ = (α̃, 0, φ̃) is used to represent both
the constrained MLE in ly,D(α, β, φ) (note the term 0 refers to a row vector containing dg
elements with all elements equal to 0) and the constrained MLE in ly,D(α, β0, φ) (note that
the term 0 is a scalar with the value of 0).

The evaluation of the score function at the constrained MLE for the rare-variant model
is obtained as follows using the chain rule.

∂ly,D(α, β0, φ)

∂β0
|θ̃ = W

∂ly,D(α, β, φ)

∂β
|θ̃ = W{ 1

a(φ̃)

N

∑
i=1

[yi − b′(α̃xT
i )]E(gT |Di)}

∂ly,D(α, β0, φ)

∂α
|θ̃ = 0;

∂ly,D(α, β0, φ)

∂φ
|θ̃ = 0
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where E(gT |Di) = {∑g∈G h(g, Di)}−1 ∑g∈G gTh(g, Di) = (∑g∈G gTh(g, Di))/(∑g∈G
h(g, Di)) is the posterior expectation of the genotype of individual i given sequencing
data Di. Evaluation of the last two functions at constrained MLE is 0 because constrained
MLE is obtained by constrained optimization of the likelihood function so that the first-
order condition is satisfied, i.e., evaluation of the first derivatives are equal to 0.

Working similarly, for rare-variant models, we obtain the observed information matrix,
and evaluate it at the constrained MLE. The formulae are

∂2ly,D(α, β0, φ)

∂αT∂α
|θ̃ =

∂2ly,D(α, β, φ)

∂αT∂α
|θ̃ = − 1

a(φ̃)

N

∑
i=1

b′′(α̃xT
i )xT

i xi

∂2ly,D(α, β0, φ)

∂β2
0

|θ̃ = W{
∂2ly,D(α, β, φ)

∂βT∂β
|θ̃}W

T

= W{
N

∑
i=1

[
(yi − b′(α̃xT

i ))
2

[a(φ̃)]2
(E(gT g|Di)− E(gT |Di)E(g|Di))−

b′′(α̃xT
i )

a(φ̃)
E(gT g|Di)]}WT

∂2ly,D(α, β0, φ)

∂φ2 |θ̃ =
N

∑
i=1

[(yiα̃xT
i − b(α̃xT

i ))(
2[a′(φ̃)]2

[a(φ̃)]3
− a′′(φ̃)

[a(φ̃)]2
) +

∂2c(yi, φ)

∂φ2 |θ̃ ]

∂2ly,D(α, β0, φ)

∂αT∂β0
|θ̃ =

∂2ly,D(α, β, φ)

∂αT∂β
|θ̃WT = − 1

a(φ̃)

N

∑
i=1

b′′(α̃xT
i )xT

i E(g|Di)WT

∂2ly,D(α, β0, φ)

∂αT∂φ
|θ̃ =

∂2ly,D(α, β, φ)

∂αT∂φ
|θ̃ = 0

∂2ly,D(α, β0, φ)

∂β0∂φ
|θ̃ = W

∂2ly,D(α, β, φ)

∂βT∂φ
|θ̃ = −W

a′(φ̃)
[a(φ̃)]2

N

∑
i=1

(yi − b′(α̃xT
i ))E(gT |Di)

∂2ly,D(α, β0, φ)

∂β0∂α
|θ̃ = (

∂2ly,D(α, β0, φ)

∂αT∂β0
|θ̃)

T ;
∂2ly,D(α, β0, φ)

∂φ∂α
|θ̃ = (

∂2ly,D(α, β0, φ)

∂αT∂φ
|θ̃)

T

∂2ly,D(α, β0, φ)

∂φ∂β0
|θ̃ =

∂2ly,D(α, β0, φ)

∂β0∂φ
|θ̃

The test statistic is

R(y, D) = [sy,D(α̃, 0, φ̃)]Toy,D(α̃, 0, φ̃)[sy,D(α̃, 0, φ̃)].

Under H0 : β0 = 0, R(y, D) is approximately χ2
1. Based on the test statistic, we conduct

score test and calculate p-value.

2.4.2. The Situation When Parameters Are (α, β)

Consider the situation when φ is dropped out and parameters are parameters are
(α, β). All setups are the same except for the following changes:

1. The parameters used in rare-variant testing are (α, β0), where β0 ∈ R and the param-
eters in common-variant testing are (α, β), where β ∈ Rdg ;

2. The likelihood functions for rare-variant testing and common-variant testing are,
respectively, denoted as ly,D(α, β0) and ly,D(α, β);

3. The same notation θ̃ = (α̃, 0) is used to represent the constrained MLE in ly,D(α, β0)
(note the term 0 is a scalar of 0) and the constrained MLE in ly,D(α, β) (note the term 0
is a zero row vector of length dg).
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Evaluation of the score function at the constrained MLE is as follows.

∂ly,D(α, β0)

∂β0
|θ̃ = W

∂ly,D(α, β)

∂β0
|θ̃ = W{a−1

N

∑
i=1

(yi − α̃xT
i )E(gT |Di)}

∂ly,D(α, β0)

∂α
|θ̃ = 0

Note that, on the above, the first formula is derived by the chain rule. The second
formula is 0 because constrained MLE maximizes the log-likelihood under H0 : β0 = 0, so
that the first order condition in constrained optimization is satisfied, i.e., evaluation of the
first derivatives at constrained MLE is 0.

Working similarly, we derive the observed information matrix, and evaluate it at the
constrained MLE. The derivations are as follows.

∂2ly,D(α, β0)

∂αT∂α
|θ̃ =

∂2ly,D(α, β)

∂αT∂α
|θ̃ = −1

a

N

∑
i=1

b′′(α̃xT
i )xT

i xi

∂2ly,D(α, β0)

∂β2
0

|θ̃ = W{
∂2ly,D(α, β)

∂βT∂β
|θ̃}W

T

= W{
N

∑
i=1

[
(yi − b′(α̃xT

i ))
2

a2 (E(gT g|Di)− E(gT |Di)E(g|Di))−
b′′(α̃xT

i )

a
E(gT g|Di)]}WT

∂2ly,D(α, β0)

∂αT∂β0
|θ̃ =

∂2ly,D(α, β)

∂αT∂β
|θ̃WT = −1

a
{

N

∑
i=1

b′′(α̃xT
i )xT

i E(g|Di)}WT

∂2ly,D(α, β0)

∂β0∂α
|θ̃ = (

∂2ly,D(α, β0)

∂αT∂β0
|θ̃)

T ;

The test statistic is

R(y, D) = [sy,D(α̃, 0)]Toy,D(α̃, 0)[sy,D(α̃, 0)].

Under H0 : β0 = 0, R(y, D) is approximately χ2
1. Based on the test statistic, we conduct

a score test and calculate the p-value.

2.5. Software to Implement the Methods

We implement our proposed NGS data-based methods using R software (version
4.2.0). We have uploaded the R script files to implement our methods into the Github folder,
which is publicly available via the link: https://github.com/zhengxu0459/NGS.Data.
Based.Group.Testing.Based.On.GLM (accessed on 17 May 2023). The Github folder contains
six script files to implement our NGS data-based (1) joint significance test and (2) variable
collapse test for (i) continuous phenotype, (ii) binary phenotype, and (iii) count phenotype.

2.6. Specification of Simulation Studies

To evaluate the performance of our proposed methods (NGS data-based JS test for
common variants and VC test for rare variants) versus literature methods (corresponding
methods based on genotypes), we conduct simulation studies. Various setting simulation
have been designed.

For common genetic variables and binary response, we evaluated the performance
of our JS test based on NGS data versus literature methods (Chi-square test) based on
genotype. For rare genetic variables and binary response, we evaluated the performance of
our VC test based on NGS data versus literature methods (burden test and SKAT test based
on genotypes).

We also conducted simulations for count/integer response. Although continuous re-
sponse and binary response are two of the most commonly encountered types of phenotype

https://github.com/zhengxu0459/NGS.Data.Based.Group.Testing.Based.On.GLM
https://github.com/zhengxu0459/NGS.Data.Based.Group.Testing.Based.On.GLM
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in association studies, other types of responses are also in association studies, though not as
common as continuous type and binary type. We show that the use of a generalized linear
model-framework allows us to handle other types of responses in addition to continuous
phenotype. Because genotype-based SKAT testing method is only available for continuous
phenotype and binary phenotype [25], we did not compare our methods with genotype-
based SKAT method for count/integer response in rare-variant testing. For count/integer
phenotype and rare genetic variables, we evaluated the performance our NGS data-based
VC test versus genotype-based burden test literature. For count/integer phenotype and
common genetic variables, we evaluated the performance of our NGS data-based JS test
versus the genotype-based literature method (Chi-square test).

The software COSI was used to simulate 100 kb genomic regions based on a coalescent
model. We adopt the best-fit model in COSI so that regions can be generate to mimic local
recombination rate, LD patterns and European population history of Europeans [39]. We
simulate chromosomes in the simulated regions. We used the software ShotGun [40] to
generate sequencing data (per base pair error rate = 0.5%). ShotGun is publicly available
at the webpage https://yunliweb.its.unc.edu/shotgun.html, (accessed on 17 May 2023).
We specify various average sequencing depths, such as d = 1X, 2X, 4X, 10X. We classify
genetic variables as common or rare depending on whether MAF ≥ 0.05. Two additional
covariates are simulated: X1 ∼ N(0, 1) (continuous) and X2 ∼ Bernoulli(0.5) (binary).

To simulate the binary phenotype, we use the logistics model,

ln(
P(Y = 1)

1− P(Y = 1)
) = β0 + β1X1 + β2X2 +

dg

∑
j=1

βgjGj + ε, (11)

where there are dg is genetic variables, β0 = 0, β1 = 1, β2 = 1, and ε ∼ N(0, 1).
To simulate the count/integer phenotype, we use the Poisson model

Y ∼ Poisson(λ = eη), η = β0 + β1X1 + β2X2 +
dg

∑
j=1

βgjGj, (12)

where there are dg genetic variables, β0 = 0, β1 = 1, β2 = 1, and ε ∼ N(0, 1).
In simulations of both types, we set genetic effects, i.e., values of βgj, differently in

different scenarios, which allows us to evaluate Type I errors and perform power analysis
(Type II errors).

Under H0 : βg1 = βg1 = · · · = βgdg = 0, we generate 9000 replicates for the evaluation
of Type I errors. Type I errors are calculated for all combinations of 3 samples sizes
(n = 300, 500, 1000) and 4 sequencing depths (d = 1X, 2X, 4X, 10X). Results of Type I errors
are reported for (1) the JS test of a group of common genetic variables with the binary
phenotype and the count/integer phenotype, and (2) the VC test of a group of rare genetic
variables with the binary phenotype and the count/integer phenotype.

Then, we conduct simulation studies under the alternative hypothesis H1, i.e., there
are non-zero effects in the dg genetic variables. In our simulation, we randomly choose
multiple genetic variables as causal markers. For common variants, we randomly choose
2 to 5 causal genetic markers. For rare variants, we randomly choose 2 to 10 causal
genetic markers. Then we simulate phenotypes based on these causal genetic markers
and additional covariates (X1, X2). The total genetic effect is between 0 and 1 (Scale
Parameter = 0.2 multiplied by the magnitude range of 0 to 5) with individual genetic effect
specified to be the total effect divided by the number of causal variables.

Our simulations have used various (1) sequencing depths, (2) sample sizes, (3) number
of causal variables, and (4) genetic effects. Based on simulated data, we evaluate the
performance of different testing methods for common variants and rare variants, and
compare our NGS data-based methods with the corresponding genotype-based methods
in literature.

https://yunliweb.its.unc.edu/shotgun.html
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Our NGS data-based joint significance (JS) test use true allele frequencies (AFs) and
two methods to estimate allele frequencies as in Skotte et al. [29]. NGS data-based JS test 1, 2,
and 3, respectively, refer to JS test based on NGS data using (1) true AFs, (2) estimated AFs
using the two-step genotype-based method (first estimate genotypes, and then calculate
AFs using the estimated genotypes), and (3) one-step MLE estimator of AFs using the
likelihood function of NGS data inSkotte et al. [29]. Both AF estimation methods have been
proposed in Skotte et al. [29]. In general, we expect our testing method based on NGS data
to have the best performance when true allele frequencies are used, i.e., our JS test 1 based
on NGS data; however, JS Test 1 is not feasible because we do not know true AFs in practice;
therefore, we need to use estimated AFs. The use of estimated AFs instead of true AFs is
expected to make testing performance a little worse but we expect it will still be better than
the corresponding genotype-based methods in the literature. Because one-step MLE of AFs
is expected to be more accurate than the two-step genotype-based AF estimator, which has
been reported in our previous work based on the same simulated sequencing data [17].
Thus, we expect our JS Test 3 based on NGS data to be better than our JS Test 2 based on
NGS data.

Similarly, Variable Collapse (VC) Test 1, Test 2, and Test 3 based on NGS data refers to
VC tests based on NGS data using (1) true AFs, (2) two-step genotype-based estimated AFs,
and (3) one-step MLE of AFs. VC Test 1 is an infeasible estimator because, in practice, we
do not know true AFs. We expect that VC Test 3 based on NGS data will be better than VC
Test 2 based on NGS data.

2.7. Plan of a Real NGS Data Study

We describe our plan to systematically evaluate our methods in real NGS data. To
be more specific, in our real NGS data example, we use the recent expansion of the 1000
Genomes Project (1kGP), which includes 602 trios, as described in Byrska-Bishop et al. [41].
We selected the 1000 Genomes Project (1kGP) for analysis because 1kGP is the largest fully
open resource of whole-genome sequencing (WGS) data consented for public distribution
without access or use restrictions. Recent expansion of 1kGP has contained 3202 samples,
including 602 complete trios, deep sequenced to a depth of 30X, which is a suitable NGS
dataset for analysis. The dataset is publicly available at https://www.internationalgenome.
org/data-portal/data-collection/30x-grch38 (accessed on 5 May 2023).

To evaluate the performance of our methods under different scenarios of sequenc-
ing depths (d = 1X, 2X, 4X, 10X, 30X), down-sampling has been conducted to generate
sequencing data with depth d = 1X, 2X, 4X, and 10X using the bioinformatics software
samtools [42], accessible at http://www.htslib.org/ (accessed on 5 May 2023), which can
work on NGS data in the bam file format and randomly down-sample NGS reads. For
example, if we want to generate NGS data with the depth 10X based on 30X data, we set
the down-sample ratio to be 1 out of 3, i.e., the ratio of 1:3. To generate NGS data with
sequencing depths d = 1X, 2X, 4X, and 10X, the down-sample ratios are, respectively, 1:30,
1:15, 2:15, and 1:3. Because our methods are for unrelated individuals only, we randomly
select at most 1 individual for each family to form a dataset with unrelated individuals.
The 1000 genome project has provided accurately-estimated genotypes based on deep
sequenced NGS data at d = 30X and we use these accurately estimated as true genotypes.
The estimated genotypes were obtained by genotype calling on the down-sampled NGS
data, i.e., NGS data at depth d = 1X, 2X, 4X, and 10X. Because 1 kGP does not provide
phenotype data, we simulate phenotype based on a generalized linear model. Therefore,
this real data example makes use of real NGS data and genotype data rather than simulated
phenotype data.

In our ongoing project, we will evaluate the performance of our methods and compare
with traditional methods in the literature.

https://www.internationalgenome.org/data-portal/data-collection/30x-grch38
https://www.internationalgenome.org/data-portal/data-collection/30x-grch38
http://www.htslib.org/


Mathematics 2023, 11, 2560 13 of 28

3. Results

Results of simulations are summarized as (1) Type I errors in Tables 1–4, and (2) power
analysis in Figures 1–4. We evaluate the performance of different testing methods. We
compare our testing methods based on NGS data with the corresponding genotype-based
methods in the literature.

3.1. Results of Type I Errors

Type I errors in different scenarios (sample size n = 300, 500, 1000; depth d = 1, 2, 4, 10)
are reported. Depending on whether genetic variables are common or rare, different NGS
data-based methods (JS test or VC test) are used.

For association between continuous phenotype and common genetic variables, Type
I errors of our NGS data-based joint significance (JS) tests using true AFs and two ways
of estimating AFs are reported. In Table 1, Type I error for different testing methods
for association between binary phenotype and a group of common genetic variables are
calculated. Genotype-based Chi-square test conduct a Chi-square test for JS of a group
of variables in the logistics regression of phenotype on estimated genotypes and other
predictors. Genotype-based methods refers to methods which first estimate genotypes
and then conduct association study based on estimated genotypes and phenotype. Our
methods based on NGS data directly model the probability of observing phenotype and
sequencing data, without the step of genotype estimation. We repeat our simulation study
for count/integer phenotype and common genetic variants, and report Type I errors in in
Table 2. According to Tables 1 and 2, for both binary response and integer/count response,
in most scenarios, all methods control Type I errors as expected.

For association between binary phenotype and rare genetic variables, Type I errors of
our NGS data-based variable collapse (VC) tests using true AFs, and two ways of estimating
AFs (two-step genotype-based AF estimation and one-step NGS data-based AF estimation).
NGS data-based VC Test 1, 2, 3 refer to our testing methods based on NGS data using true
AFs and two allele frequency estimators. In Table 3, Type I errors for a group of rare genetic
variables with a binary phenotype are reported. We evaluate the Type I errors of our NGS
data-based VC Test 1, 2, 3, and two genotype-based rare-variant methods (burden test and
SKAT test). We repeat our simulation study for count/integer phenotype and rare genetic
variants and report simulation results of Type I errors in Table 4. Because genotype-based
SKAT testing is only available for continuous response and binary response, we compare
our methods with genotype-based burden tests. According to Tables 3 and 4, for both
binary response and integer/count response, in most scenarios, all methods control Type I
errors as expected.

Table 1. Type I errors of testing methods for a group of common genetic variants and binary
phenotype. Genotype-based χ2 test refers to Genotype-based Chi-square test. The term “NGS
JS Test 1, 2, 3” refer to NGS data-based joint significant test with use of (1) true AF, (2) two-step
genotype-based estimated AF, and (3) MLE of AFs based on NGS data.

Sample Size Depth
Genotype-
Based χ2

Test

NGS JS
Test 1

NGS JS
Test 2

NGS JS
Test 3

300 1 0.050 0.050 0.050 0.049

500 1 0.047 0.050 0.053 0.050

1000 1 0.047 0.046 0.048 0.046

300 2 0.050 0.050 0.053 0.049

500 2 0.051 0.051 0.052 0.050

1000 2 0.050 0.050 0.049 0.049

300 4 0.050 0.048 0.049 0.049
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Table 1. Cont.

Sample Size Depth
Genotype-
Based χ2

Test

NGS JS
Test 1

NGS JS
Test 2

NGS JS
Test 3

500 4 0.054 0.050 0.050 0.050

1000 4 0.044 0.048 0.048 0.048

300 10 0.054 0.046 0.047 0.047

500 10 0.052 0.047 0.047 0.047

1000 10 0.047 0.051 0.052 0.052

Table 2. Type I errors of testing methods for a group of common genetic variants and
count/integer phenotype. Genotype-based χ2 test refers to Genotype-based Chi-square test. The
term “NGS JS Test 1, 2, 3” refer to NGS data-based joint significant test with use of (1) true AFs,
(2) estimated AFs based on genotype-based method, and (3) MLE of AFs based on NGS data.

Sample Size Depth
Genotype-
Based χ2

Test

NGS JS
Test 1

NGS JS
Test 2

NGS JS
Test 3

300 1 0.047 0.052 0.052 0.052

500 1 0.047 0.051 0.052 0.051

1000 1 0.054 0.051 0.051 0.052

300 2 0.053 0.052 0.050 0.052

500 2 0.053 0.050 0.050 0.050

1000 2 0.052 0.045 0.043 0.044

300 3 0.046 0.052 0.052 0.052

500 3 0.052 0.049 0.047 0.048

1000 3 0.050 0.051 0.050 0.051

300 4 0.049 0.049 0.050 0.049

500 4 0.052 0.048 0.047 0.047

1000 4 0.050 0.046 0.046 0.046

Table 3. Type I errors of testing methods for a group of rare genetic variants and binary phenotype.
Burden and SKAT refer to genotype-based burden test and SKAT test. The term “NGS VC Test 1, 2, 3”
refer to NGS data-based variable collapse test with use of (1) true AFs, (2) estimated AF based on
genotype-based method, and (3) MLE of AFs based on NGS data.

Sample
Size Depth Burden SKAT NGS VC

Test 1
NGS VC

Test 2
NGS VC

Test 3

300 1 0.050 0.052 0.045 0.046 0.046

500 1 0.052 0.048 0.048 0.050 0.049

1000 1 0.049 0.053 0.049 0.045 0.049

300 2 0.046 0.051 0.042 0.043 0.043

500 2 0.050 0.050 0.053 0.054 0.053

1000 2 0.054 0.047 0.054 0.053 0.053

300 3 0.048 0.052 0.051 0.051 0.052

500 3 0.043 0.048 0.050 0.049 0.050

1000 3 0.050 0.049 0.052 0.052 0.052
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Table 3. Cont.

Sample
Size Depth Burden SKAT NGS VC

Test 1
NGS VC

Test 2
NGS VC

Test 3

300 4 0.048 0.052 0.054 0.054 0.054

500 4 0.047 0.054 0.051 0.050 0.051

1000 4 0.051 0.050 0.052 0.052 0.053

Table 4. Type I errors of testing methods for a group of rare genetic variants and count/integer
phenotype. Burden refers to genotype-based burden test. The term “NGS VC Test 1, 2, 3” refer to
NGS data-based variable collapse test with use of (1) true AFs, (2) estimated AFs based on genotypes,
and (3) MLE of AF based on NGS data.

Sample Size Depth Burden NGS VC
Test 1

NGS VC
Test 2

NGS VC
Test 3

300 1 0.049 0.051 0.053 0.050

500 1 0.051 0.051 0.051 0.049

1000 1 0.045 0.050 0.052 0.050

300 2 0.052 0.050 0.050 0.050

500 2 0.054 0.051 0.052 0.051

1000 2 0.052 0.048 0.051 0.048

300 3 0.048 0.047 0.050 0.048

500 3 0.045 0.045 0.047 0.046

1000 3 0.050 0.044 0.045 0.044

300 4 0.047 0.046 0.046 0.046

500 4 0.049 0.047 0.046 0.047

1000 4 0.050 0.047 0.048 0.047

3.2. Results of Power Analyses

Performance of different methods are evaluated in terms of statistical power. Statistical
power is the probability of rejecting the null hypothesis under alternative hypothesis.

In Figure 1, we show power of different tests for a binary phenotype and common
genetic variables. From top to bottom, the four rows have sequencing depth of 1, 2, 4,
and 10. From left to right, the three columns have sample sizes of 300, 500, and 1000. Powers
of different tests (genotype-based Chi-square test (red), NGS data-based joint significance
test 1 (black), test 2 (purple), and test 3 (green)) are represented as curves. We found that
when sequencing depth is low (depth = 1X, 2X), our proposed methods based on NGS data
performed better than the genotype-based test in the literature. When sequencing depth
increases, the advantage of NGS data-based methods over methods based on genotypes
decreases. When sequencing depth is 10X, methods based on NGS data and methods based
on genotypes have similar performance. When sample size increases, the power of all tests
increases. Comparing the three NGS data-based JS tests, we found JS Test 1 (using true AF)
and 3 (using MLE of AF based on NGS data ) have similar performance, whereas JS Test
2 (estimate AF using genotype-based method) has slightly worse performance compared
with Test 1 and 3; however, NGS data-based JS Test 2 still has better performance than the
corresponding genotype-based test in the literature. When sequencing becomes deep, the
three NGS data-based tests show similar performance in terms of statistical power.
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We repeat power analysis of common genetic variants for count/integer phenotype.
Similar findings are obtained for the count/integer phenotype. We found that the power
of all tests increases as the sample size increases from 300 to 1000. When sequencing
depth is low (depth = 1X, 2X), our NGS data-based methods demonstrate advantages over
genotype-based methods in the literature; however, when sequencing depth increases, the
magnitude of the advantage decreases. When sequencing depth is at 10X, all methods show
similar performances. JS Test 1 (using true AF) and 3 (using MLE of AF based on NGS
data [29]) have similar performance, whereas JS Test 2 (estimate AF using genotype-based
method) show slightly worse performance compared with Test 1 and 3. We report our
results for the count/binary phenotype in Figure 2.

In Figure 3, power of different tests for binary phenotype and a group of rare genetic
variables are reported. The four rows from up to down are for sequencing depth 1X, 2X,
4X, and 10X. The three columns from left to right are for sample size n = 300, 500, and
1000. Powers of different tests are represented as curves and coloured differently. The tests
include genotype-based burden test (red), SKAT test (blue), NGS data-based VC Test 1
(black), 2 (purple), and 3 (green). Our proposed methods based on NGS data are found to
have better performance than genotype-based methods in the literature when sequencing
depth is low (1X and 2X). When sequencing become more deep, the advantages of NGS
data-based methods over genotype-based methods decreases. When sequencing depth is
10X, NGS data-based methods and genotype-based methods have similar performance.
Comparing the three methods based on NGS data, we find VC Test 1 (using true AF) and 3
(using MLE of AF based on NGS data) have similar performance, whereas Test 2 (estimate
AF based on genotypes) is slightly worse compared with Test 1 and 3. When sequencing
becomes deep, the difference between the performance of the three VC tests decreases.
Comparing two genotype-based methods (Burden and SKAT), we find that the burden test
has better performance than SKAT methods because our scenarios assume that all genetic
effects in one direction, i.e., positive, which is not the assumption for SKAT, which allows
effects in two directions, i.e., positive effects and negative effects for the group of markers.

We repeat our power analysis of rare genetic variants for count/integer phenotype.
In Figure 4, the powers of different tests for count/integer phenotype and a group of rare
genetic variables are shown. Because SKAT test is not available for count/integer phenotype,
we compare our NGS-based methods with genotype-based burden test. Similar findings
were obtained for count/integer phenotype as we find in binary phenotype.

For binary phenotype and rare variants, we consider the scenario of genetic effects
in both directions (positive and negative), which is suitable for the SKAT test. We found
that under this scenario, all burden tests (genotype-based and NGS data-based) fail as we
expected. This is because burden tests assume genetic effects only in one direction and the
burden-test assumption is not satisfied in this scenario. The failure of the burden test under
the scenarios of genetic effects in both directions was recognized by researchers.

We leave the work of developing NGS data-based group testing methods for rare
variants allowing genetic effects in two directions as our future study since it is beyond
the scope of this article. Developing the NGS data-based SKAT test can address this issue
and will be studied in the future. This article focused on developing NGS data-based test
corresponding to genotype-based burden test and joint significant test in the literature.
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Figure 1. Power curves of tests for a group of common genetic variants and binary phenotype.
From up to down, the four rows are for sequencing depth 1X, 2X, 4X, and 10X. From left to right, the
three columns are for sample size n = 300, 500, and 1000. The panels show powers of genotype-based
Chi-square test (red solid line), NGS data-based joint significance test 1 (black dotted line), test 2
(purple dotted-dashed line), and test 3 (green long-dashed line).
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Figure 2. Power curves of tests for a group of common genetic variants and count/integer pheno-
type. From up to down, the four rows are for sequencing depth 1X, 2X, 4X, and 10X. From left to
right, the three columns are for sample size n = 300, 500, and 1000. The panels show powers of
genotype-based Chi-square test (red solid line), NGS data-based joint significance test 1 (black dotted
line), test 2 (purple dotted-dashed line), and test 3 (green long-dashed line).
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Figure 3. Power curves of tests for a group of rare genetic variants and binary phenotype. From
up to down, The four rows are for sequencing depth 1X, 2X, 4X, and 10X. From left to right, the
three columns are for sample size n = 300, 500, and 1000. The panels show power of genotype-based
burden test (red solid line), genotype-based SKAT test (blue dashed line), NGS data-based variable
collapse test 1 (black dotted line), 2 (purple dotted-dashed line), and 3 (green long-dashed line).
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Figure 4. Power curves of tests for a group of rare genetic variants and count/integer phenotype.
From up to down, the four rows are for sequencing depth 1X, 2X, 4X, and 10X. From left to right, the
three columns are for sample size n = 300, 500, and 1000. The panels show power of genotype-based
burden test (red solid line), NGS data-based variable collapse test 1 (black dotted line), test 2 (purple
dotted-dashed line), and test 3 (green long-dashed line).

4. Discussion

The major finding of our article is that the proposed methods show advantage over
their corresponding methods based on genotype in the literature both in testing for a group
of common markers and testing for a group of rare markers. The main objective of our study
was to apply the GLM framework to derive innovative group testing methods based on
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NGS data. We fulfil the demand from researchers in bio-statistics, bio-informatics, and
biology for developing group testing methods based on NGS data.

Our methods adopt the GLM framework to handle a range of types of phenotypes,
including binary responses and continuous responses, which are two mostly encoun-
tered types in association studies. Our method extends our previous linear model frame-
work [17] with the analytical capacity for more complex phenotypes in addition to continu-
ous phenotypes.

In the Results section, we show the findings of comparing our methods with their
corresponding methods in the literature for binary phenotype and count phenotype. For
continuous phenotype, the GLM-based model will reduce to our previously published LM-
based model [17]. Our findings for group testing of common variants from binary phenotype
and count/integer phenotype are similar to our findings from continuous phenotype for
group testing of common variants published previously [17]. Similarly, our findings for rare
variants testing from binary phenotype and count/integer phenotype are similar to our
findings from continuous phenotypes for rare variant testing published previously [17].

Our proposed model deals with association studies with unrelated/independent
individuals. Association studies can be conducted based on related individuals, such as
the situation where multiple individuals from the same family are involved in the study. In
that case, a generalized linear mixed (GLMM) model instead of a generalized linear (GLM)
model is used. Future studies can be on developing testing methods based on NGS data for
related individuals. In an ongoing project, we are working to extend our GLM framework
to GLMM framework so that it can handle related individuals.

Our proposed methods are based on a score test. We adopt the score test due to its
advantage of fast computation and easy derivation of calculation formulae because it only
calculates constrained MLE, which is the optimizer maximizing likelihood function under
the null hypothesis. The likelihood ratio test can have improved performance compared
with the score test [43,44]. Future studies can be on developing likelihood ratio-based
association tests using NGS data which may have improved performance.

Sequencing depth can impact the comparison of performance between methods
based on NGS data and methods based on genotypes. When sequencing depth is big
(d = 4X and 10X) and genotype estimation is accurate, methods based on NGS data
and methods based on genotypes show similar performance. When sequencing depth
is small (depth = 1X and 2X) and genotype estimation is not precise, methods based
on NGS data can have better performance than genotype-based methods, which are
based on estimated genotypes [17,29,30]. In practice, given a limited financial budget,
low sequencing to include more individuals is preferred to deep sequencing with few
individuals sequenced [29,30]. Our proposed methods mainly show an advantage when
sequencing is low (depth = 1X and 2X).

Our proposed methods are mainly developed based on a theoretical statistical frame-
work of general linear models. We make use of statistical inference methodology to derive
the score tests based on the likelihood function of next-generation sequencing (NGS) data
and phenotypes with latent/un-observable genotypes. Then we conducted extensive sim-
ulation studies to evaluate the performance of our methods and compare our methods
with the traditional methods in the theory. In an ongoing project, we are working on
systematically evaluating and comparing our methods based on real NGS data. We sepa-
rate the development of our methods into two stages. In Stage 1, we conduct theoretical
development of our methods and simulation studies. In Stage 2, we further evaluate our
methods in real NGS data.

We note that simulations performed in our hypothetical scenarios could be biased
so that simulation studies could be biased and real data results can provide stronger
verification. In our ongoing project, we aimed to systematically evaluate our method in
real NGS data.

We note that verification of our methods can be at four levels. The four levels of
verification are:
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(1) Statistically theoretical verification to derive our methods theoretically based on GLM
framework to show that our methods are statistically theoretically founded;

(2) Simulation studies to evaluate method performance and show that our methods can
achieve better performance compared with traditional methods in the literature;

(3) Multiple real NGS data examples to evaluate and compare different methods;
(4) Biology lab verification and biology literature verification to show our methods indeed

find some biologically meaningful genes related to the phenotype.

When possible, we recommend the use of higher levels of verification. For example,
simulation studies under a specific scenario can be biased so that real data studies can
provide stronger verification. We also recommend the use of as many verification levels as
possible to provide verification in different perspectives. The current manuscript provides
statistical theoretical derivations and simulation studies. The next steps for verification
should be Level 3 (real data verification) and 4 (biology lab verification and biology lit-
erature verification). In our ongoing project, we are working on verification from real
NGS data. In the future, biology lab verification and biology literature verification can be
conducted by collaborating with biology experts.

Future directions of our study include (1) extending our GLM-based methods to
generalized linear mixed model (GLMM)-based methods so that they can handle related
individuals in association studies; (2) systematically evaluating the performance of our
methods and comparing our methods with literature methods in real NGS data; (3) evaluat-
ing our methods based on the other three genetic effect models, recessive model, dominant
model, and heterogeneous effect models [45]; and (4) biology lab verification and biology
literature verification by collaborating with biology experts.

To describe the effect of genotype (coded as 0, 1, 2) at a single marker on phenotype,
four models are widely used. The effect on linear predictor η in the GLM framework
is specified differently in the four models [45], (1) additive model (e f f ect = β0 + βag);
(2) recessive model (e f f ect = β0 + βr I(g = 2)); (3) dominant model (e f f ect = β0 + βd I(g ≥
1)); and (4) heterogeneous effect model (e f f ect = β0 + β1 I(g = 1) + β2 I(g = 2)). The
indicator function I(condition) is equal to 1 when the condition is satisfied, and is equal to
0 otherwise. The probability of observing the response in the GLM framework is

p(yi|xi, gi) = pα,β,φ(yi|xi, gi) = exp(
yiηi − b(ηi)

a(φ)
+ c(yi, φ)), (13)

and the linear predictor ηi is modelled differently for the recessive model, dominant model
and heterogeneous effect model with dg genetic markers. We model linear predictor ηi in
GLM, respectively, as follows,

ηi = αxT
i + βa{I(Gi = 2)}T ,

ηi = αxT
i + βd{I(Gi ≥ 1)}T ,

ηi = αxT
i + β1{I(Gi = 1)}T + β2 I(Gi = 2)T ,

where the four row vectors (βd, βa, β1, β2) have length of dg. Although our methods
are proposed based on the additive model described in Equation (10), the methods can
be adapted for the other three genetic-effect models (recessive model; dominant model;
heterogeneous effect model) by changing ηi and its first and second derivatives with respect
to model parameters.

5. Conclusions

We extend our previously proposed NGS data-based testing methods (joint signifi-
cance test for a group of common variants and variable collapse test for a group of rare
variants) from a linear model (LM) framework to a generalized linear model (GLM) frame-
work so that it can handle a range of types of responses (binary phenotypes; count/integer
phenotypes) in addition to continuous phenotypes. Our proposed methods fill the lit-
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erature gap. In addition, based on our results from simulation studies reported in the
Results section, we found that our methods can achieve better performance than their
corresponding genotype-based methods in the literature. Future studies will be conducted
to evaluate our methods based on real NGS data.
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Appendix A. Analytical Formula of sy,D(α, β, φ)

sy,D(α, β, φ) =
N

∑
i=1

[{pθ(yi, Di|xi)}−1 ∑
g∈G

fθ(yi|xi, g)


yi−b′(ηi)

a(φ) xT
i

yi−b′(ηi)
a(φ) gT

− yiηi−b(ηi)
[a(φ)]2 a′(φ) + ∂c(yi ,φ)

∂φ

h(g, Di)],

where ηi = η(xi, g) = αxT
i + βgT . Detailed derivations have been provided in Supplementary

Material S2 in Supplementary Information File.
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Appendix B. Analytical Formula of oy;D(α; β; φ)

oy,D(α, β, φ) = −


∂2ly,D(α,β,φ)

∂αT∂α

∂2ly,D(α,β,φ)
∂αT∂β

∂2ly,D(α,β,φ)
∂αT∂φ

∂2ly,D(α,β,φ)
∂βT∂α

∂2ly,D(α,β,φ)
∂βT∂β

∂2ly,D(α,β,φ)
∂βT∂φ

∂2ly,D(α,β,φ)
∂φ∂α

∂2ly,D(α,β,φ)
∂φ∂β

∂2ly,D(α,β,φ)
∂φ2

.

∂2 ly,D(α, β, φ)

∂αT ∂α
=

N

∑
i=1

(−{pθ(yi , Di |xi)}−2)[∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
xT

i h(g, Di)][∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
xih(g, Di)]

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g)[
(yi − b′(ηi))

2

[a(φ)]2
− b′′(ηi)

a(φ)
]xT

i xih(g, Di);

∂2 ly,D(α, β, φ)

∂αT ∂β
=

N

∑
i=1

(−{pθ(yi , Di |xi)}−2)[∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
xT

i h(g, Di)][∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
gh(g, Di)]

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g)[
(yi − b′(ηi))

2

[a(φ)]2
− b′′(ηi)

a(φ)
]xT

i gh(g, Di);

∂2 ly,D(α, β, φ)

∂αT ∂φ
=

N

∑
i=1

(−{pθ(yi , Di |xi)}−2)[∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
xT

i h(g, Di)][∑
g∈G

fθ(yi |xi , g)(− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
)h(g, Di)]

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g)[(− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
)(

yi − b′(ηi)

a(φ)
)− yi − b′(ηi)

[a(φ)]2
a′(φ)]xT

i h(g, Di);

∂2 ly,D(α, β, φ)

∂βT ∂β
=

N

∑
i=1

(−{pθ(yi , Di |xi)}−2)[∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
gT h(g, Di)][∑

g∈G
fθ(yi |xi , g)

yi − b′(ηi)

a(φ)
gh(g, Di)]

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g)[
(yi − b′(ηi))

2

[a(φ)]2
− b′′(ηi)

a(φ)
]gT gh(g, Di);

∂2 ly,D(α, β, φ)

∂βT ∂φ
=

N

∑
i=1

(−{pθ(yi , Di |xi)}−2)[∑
g∈G

fθ(yi |xi , g)
yi − b′(ηi)

a(φ)
gT h(g, Di)]{∑

g∈G
fθ(yi |xi , g)[− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
]h(g, Di)}

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g)((
yi − b′(ηi)

a(φ)
gT)(− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
)− (

yi − b′(ηi)

[a(φ)]2
a′(φ)gT))h(g, Di);

∂2 ly,D(α, β, φ)

∂φ2 =
N

∑
i=1

[−{pθ(yi , Di |xi)}−2(∑
g∈G

fθ(yi |xi , g)[− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
]h(g, Di))

2

+{pθ(yi , Di |xi)}−1 ∑
g∈G

fθ(yi |xi , g){[− yiηi − b(ηi)

[a(φ)]2
a′(φ) +

∂c(yi , φ)

∂φ
]2 + (yiηi − b(ηi))(

2[a′(φ)]2

[a(φ)]3
− a′′(φ)

[a(φ)]2
) +

∂2c(yi , φ)

∂φ2 }h(g, Di)];

∂2 ly,D(α, β, φ)

∂βT ∂α
= (

∂2 ly,D(α, β, φ)

∂αT ∂β
)T ;

∂2 ly,D(α, β, φ)

∂φ∂α
= (

∂2 ly,D(α, β, φ)

∂αT ∂φ
)T ;

∂2 ly,D(α, β, φ)

∂φ∂β
= (

∂2 ly,D(α, β, φ)

∂βT ∂φ
)T .

Detailed derivations have been provided in Supplementary Material S3 in Supplementary
Information File.

Appendix C. Evaluation of sy,D(α, β, φ) at Constrained MLE θ̃, i.e., sy,D(α̃, 0, φ̃)

sy,D(α̃, 0, φ̃) =

 0

∑N
i=1

yi−b′(α̃xT
i )

a(φ̃) E(gT |Di)

0

,

where E(gT |Di) = {∑g∈G h(g, Di)}−1 ∑g∈G gTh(g, Di) = (∑g∈G gTh(g, Di))/(∑g∈G
h(g, Di)) is the posterior expectation of the genotype given sequencing data. Detailed
derivations have been provided in Supplementary Material S4 in Supplementary
Information File.
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Appendix D. Evaluation of oy,D(α, β, φ) at Constrained MLE θ̃, i.e., oy,D(α̃, 0, φ̃)

oy,D(α̃, 0, φ̃) = −


∂2ly,D(α,β,φ)

∂αT∂α
|θ̃

∂2ly,D(α,β,φ)
∂αT∂β

|θ̃
∂2ly,D(α,β,φ)

∂αT∂φ
|θ̃

∂2ly,D(α,β,φ)
∂βT∂α

|θ̃
∂2ly,D(α,β,φ)

∂βT∂β
|θ̃

∂2ly,D(α,β,φ)
∂βT∂φ

|θ̃
∂2ly,D(α,β,φ)

∂φ∂α |θ̃
∂2ly,D(α,β,φ)

∂φ∂β |θ̃
∂2ly,D(α,β,φ)

∂φ2 |θ̃

.

∂2ly,D(α, β, φ)

∂αT∂α
|θ̃ = − 1

a(φ̃)

N

∑
i=1

b′′(α̃xT
i )xT

i xi

∂2ly,D(α, β, φ)

∂αT∂β
|θ̃ = − 1

a(φ̃)

N

∑
i=1

b′′(α̃xT
i )xT

i E(g|Di)

∂2ly,D(α, β, φ)

∂αT∂φ
|θ̃ = 0

∂2ly,D(α, β, φ)

∂βT∂β
|θ̃ =

N

∑
i=1

[
(yi − b′(α̃xT

i ))
2

[a(φ̃)]2
(E(gT g|Di)− E(gT |Di)E(g|Di))−

b′′(α̃xT
i )

a(φ̃)
E(gT g|Di)]

∂2ly,D(α, β, φ)

∂βT∂φ
|θ̃ = − a′(φ̃)

[a(φ̃)]2
N

∑
i=1

(yi − b′(α̃xT
i ))E(gT |Di)

∂2ly,D(α, β, φ)

∂φ2 |θ̃ =
N

∑
i=1

[(yiα̃xT
i − b(α̃xT

i ))(
2[a′(φ̃)]2

[a(φ̃)]3
− a′′(φ̃)

[a(φ̃)]2
) +

∂2c(yi, φ)

∂φ2 |θ̃ ]

∂2ly,D(α, β, φ)

∂βT∂α
|θ̃ = (

∂2ly,D(α, β, φ)

∂αT∂β
|θ̃)

T ;
∂2ly,D(α, β, φ)

∂φ∂α
|θ̃ = (

∂2ly,D(α, β, φ)

∂αT∂φ
|θ̃)

T ;

∂2ly,D(α, β, φ)

∂φ∂β
|θ̃ = (

∂2ly,D(α, β, φ)

∂βT∂φ
|θ̃)

T

Detailed derivations have been provided in Supplementary Material S5 in Supplementary
Information File.

Appendix E. Analytical Formula of sy,D(α, β)

sy,D(α, β) =
N

∑
i=1

[{pθ(yi, Di|xi)}−1 ∑
g∈G

fθ(yi|xi, g)

[
yi−b′(ηi)

a xT
i

yi−b′(ηi)
a gT

]
h(g, Di)],

where ηi = η(xi, g) = αxT
i + βgT. Detailed derivations have been provided in Supplementary

Material S6 in Supplementary Information File.

Appendix F. Analytical Formula of oy,D(α, β)

oy,D(α, β) = −

 ∂2ly,D(α,β)
∂αT∂α

∂2ly,D(α,β)
∂αT∂β

∂2ly,D(α,β)
∂βT∂α

∂2ly,D(α,β)
∂βT∂β

.
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∂2ly,D(α, β)

∂αT∂α
=

N

∑
i=1

(−{pθ(yi, Di|xi)}−2)[ ∑
g∈G

fθ(yi|xi, g)
yi − b′(ηi)

a
xT

i h(g, Di)][ ∑
g∈G

fθ(yi|xi, g)
yi − b′(ηi)

a
xih(g, Di)]

+{pθ(yi, Di|xi)}−1 ∑
g∈G

fθ(yi|xi, g)[
(yi − b′(ηi))

2

a2 − b′′(ηi)

a
]xT

i xih(g, Di);

∂2ly,D(α, β)

∂αT∂β
=

N

∑
i=1

(−{pθ(yi, Di|xi)}−2)[ ∑
g∈G

fθ(yi|xi, g)
yi − b′(ηi)

a
xT

i h(g, Di)][ ∑
g∈G

fθ(yi|xi, g)
yi − b′(ηi)

a
gh(g, Di)]

+{pθ(yi, Di|xi)}−1 ∑
g∈G

fθ(yi|xi, g)[
(yi − b′(ηi))

2

a2 − b′′(ηi)

a
]xT

i gh(g, Di);

∂2ly,D(α, β)

∂βT∂β
=

N

∑
i=1

(−{pθ(yi, Di|xi)}−2)[ ∑
g∈G

fθ(yi|xi, g)
yi − b′(ηi)

a
gTh(g, Di)][ ∑

g∈G
fθ(yi|xi, g)

yi − b′(ηi)

a
gh(g, Di)]

+{pθ(yi, Di|xi)}−1 ∑
g∈G

fθ(yi|xi, g)[
(yi − b′(ηi))

2

a2 − b′′(ηi)

a
]gT gh(g, Di);

∂2ly,D(α, β)

∂βT∂α
= (

∂2ly,D(α, β)

∂αT∂β
)T .

Detailed derivations are in Supplementary Material S7 in Supplementary Information File.

Appendix G. Evaluation of sy,D(α, β) at Constrained MLE θ̃, i.e., sy,D(α̃, 0)

sy,D(α̃, 0) =

[
0

∑N
i=1

yi−b′(α̃xT
i )

a E(gT |Di)

]
,

where E(gT |Di) = {∑g∈G h(g, Di)}−1 ∑g∈G gTh(g, Di) = (∑g∈G gTh(g, Di))/(∑g∈G
h(g, Di)) is the posterior expectation of the genotype given sequencing data. Detailed
derivations are in Supplementary Material S8 in Supplementary Information File.

Appendix H. Evaluation of oy,D(α, β) at Constrained MLE θ̃, i.e., oy,D(α̃, 0)

oy,D(α̃, 0) = −

 ∂2ly,D(α,β)
∂αT∂α

|θ̃
∂2ly,D(α,β)

∂αT∂β
|θ̃

∂2ly,D(α,β)
∂βT∂α

|θ̃
∂2ly,D(α,β)

∂βT∂β
|θ̃

.

∂2ly,D(α, β)

∂αT∂α
|θ̃ = −1

a

N

∑
i=1

b′′(α̃xT
i )xT

i xi;
∂2ly,D(α, β)

∂αT∂β
|θ̃ = −1

a

N

∑
i=1

b′′(α̃xT
i )xT

i E(g|Di)

∂2ly,D(α, β)

∂βT∂β
|θ̃ =

N

∑
i=1

[
(yi − b′(α̃xT

i ))
2

a2 (E(gT g|Di)− E(gT |Di)E(g|Di))−
b′′(α̃xT

i )

a
E(gT g|Di)]

∂2ly,D(α, β)

∂βT∂α
|θ̃ = (

∂2ly,D(α, β)

∂αT∂β
|θ̃)

T .

Detailed derivation are in Supplementary Material S9 in Supplementary Information File.
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