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A multi-organ maize metabolic model connects
temperature stress with energy production
and reducing power generation

Niaz Bahar Chowdhury,1 Margaret Simons-Senftle,2,6 Berengere Decouard,3,6 Isabelle Quillere,3

Martine Rigault,3 Karuna Anna Sajeevan,4 Bibek Acharya,4 Ratul Chowdhury,4 Bertrand Hirel,5 Alia Dellagi,3

Costas Maranas,2 and Rajib Saha1,7,*

SUMMARY

Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic
crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ
maizemetabolic model, iZMA6517, and contextualized it with heat and cold stress transcriptomics data us-
ing expression distributed reaction flux measurement (EXTREAM) algorithm. Furthermore, implementing
metabolic bottleneck analysis on contextualized models revealed differences between these stresses.
While both stresses had reducing power bottlenecks, heat stress had additional energy generation
bottlenecks.Wealso performed thermodynamic driving force analysis, revealing thermodynamics-reducing
power-energy generation axis dictating the nature of temperature stress responses. Thus, a temperature-
tolerant maize ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-
energy generation axis. We experimentally inoculatedmaize root with a beneficial mycorrhizal fungus, Rhi-
zophagus irregularis, and as a proof-of-concept demonstrated its efficacy in alleviating temperature stress.
Overall, this study will guide the engineering effort of temperature stress-tolerant maize ideotypes.

INTRODUCTION

Temperature stress, resulting fromglobal climate change, can reducemaize productivity by 7–18%.1 Thus, there is a pressing need to develop

high-yielding maize genotypes capable of withstanding temperature stress. A metabolism-centric approach can be useful to achieve that.

Hence, an in-depth understanding of the impact of temperature on plant-wide metabolism is required. Such impacts include, but are not

limited to, reduced photosynthesis and carbohydrate synthesis in leaves,2 reduced starch synthesis in kernels,3,4 upregulation of amino

acid and downregulation of diterpenoidmetabolism in root,4 and lignin biosynthesis in stalks.5 In addition to metabolism, temperature stress

can directly damage enzymes and tissues,6 impair flowering,7 and trigger oxidative stress at the reproductive stage.8 Additionally, the repro-

ductive stage of the crops such asmaize, tomato, soybean, rice, and cotton is susceptible to temperature stress9 since the temperature rise at

the panicle or flowering stage can reduce the fertility or inactivate the flower of the corp.10 Although these studies were note-worthy, a holistic

plant-wide understanding of temperature stress responses, delineating the interactions between vegetative and reproductive organs at key

stages of plant development, is still in its infancy. Moreover, the plant-wide effect of well-known beneficial arbuscular mycorrhizal fungi (AMF),

such as Rhizophagus irregularis,11 has not been evaluated for its potential to alleviate temperature stress on maize growth. A multi-organ

genome-scale metabolic model (GSM) is suited to address these issues. The first multi-organ plant GSMwas reconstructed for barley,12 sub-

sequently for barrelclover,13 arabidopsis,14,15 soybean,16 foxtail millet,17 and rice.18 These models were useful to characterize inter-organs

crosstalk under various conditions. Thus, for a holistic understanding of plant-wide temperature stress responses of maize, we reconstructed

the first multi-organ maize GSM, iZMA6517, integrating comprehensive root, stalk, kernel, and leaf GSMs.

Contextualization of GSM by integrating ‘‘omics’’ data is a crucial step to connect metabolism to phenotypes. There are two classes of

algorithms for contextualization: valve approaches (assuming reactions fluxes and transcript levels are proportional) and switch approaches

(assuming reaction are turned on/off based on transcript levels). Earlier studies discussed the suitability of both approaches,19 showing E-flux

algorithm20 (a valve approach) capturing better phenotypic predictions. However, E-flux algorithm can predict unrealistic phenotypes too.21
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Thereby, to improve the phenotypic prediction accuracy, there is a need to develop a valve approach which can address this limitation. To

achieve this, we proposed the expression distributed reaction flux measurement (EXTREAM) algorithm. Moreover, we propose a metabolic

bottleneck analysis (MBA) algorithm to pinpoint metabolic bottlenecks in iZMA6517.

In this study, we combined iZMA6517, EXTREAM, and MBA to dissect plant-wide responses of temperature stress by pinpointing

metabolic bottlenecks in different organs and to determine if responses to cold and heat share common characteristics. We

found reducing power capacity had a pivotal role in responses to both stresses. Additionally, heat stress responses incurred energy gener-

ation bottlenecks. Thermodynamic driving force analysis of bottleneck pathways highlighted the role of thermodynamics-reducing power-

energy generation axis when plants are subjected to temperature stress. Finally, as a proof of concept, we extended our analysis by inte-

grating maize ‘‘omics’’ data when the plant is inoculated with the R. irregularis in iZMA6517 and found that the inoculation has the potential

to alleviate temperature stresses. Ultimately, this study could offer a blueprint to engineer robust abiotic stress-tolerant maize ideotypes.

RESULTS

Maize responses to heat and cold stress

To decipher maize responses to temperature stress, heat and cold-stress-related transcriptomic data of B73 genotype were collected from

the literature.22 Seedlings were subjected to cold (50 C for 16 h) or heat (500 C for 4 h) stresses, compared to a control condition (240 C). All

plants were grown in the autoclaved soil collected from field. While heat stress drastically affected transcriptional response compared to con-

trol conditions (Figure 1A), the effect of cold stress was similar to control conditions (Figure 1B), indicating a difference of plant adaptations to

Figure 1. Transcriptomics data analysis and introduction to EXTREAM algorithm

(A) Scatterplot of control and cold stress transcriptomics data.

(B) Scatterplot of control and heat stress transcriptomics data.

(C) Scatterplot of heat and cold stresses transcriptomics data.

(D) Correlation matrix among control, heat stress, and cold stress (95% confidence interval, two-tail test).

(E) K-means clustering analysis of heat and cold stress data.

(F) E-flux and EXTREAM both predicted correct biomass production and carbon fixation for three selected cross sections of leaf, whereas only EXTREAM

predicted the correct leaf starch content.
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temperature stresses (Figures 1C and 1D). To explore the components of temperature stresses, we performed K-means clustering (Figure 1E)

on both heat and cold stress data, identifying four distinct clusters followed by gene enrichment analyses (Figures S1–S4). These analyses

revealed that photosynthesis-related genes (cluster 2) were upregulated under both stress conditions. In addition, heat shock genes (cluster

3) were upregulated in heat stress conditions. Clusters 1 and 4 revealed genes associated with central carbon and secondary metabolism,

respectively.

As photosynthesis is one of the core metabolic features of plants, cluster 2 was examined in further detail. A previous study indicated a

similar high transcriptional response of photosynthetic genes under temperature stress.23 However, photosynthetic activity of plants, as

measured through decreased rubisco activation,24 decreases under temperature stress. This suggests potential metabolic bottlenecks in

plant tissues preventing higher photosynthetic activity in leaves. A contextualized multi-organ GSM of maize can identify such bottlenecks.

There may also be bottlenecks between transcription and translation, such as mRNA degradation, however, that would be outside of the

scope of GSM. Next, we will design a suitable algorithm for such contextualization of GSM.

EXTREAM algorithm

Our previous study used the E-flux algorithm25 to accurately predict the maize root phenotype under nitrogen starvation based on transcrip-

tomic data. This work involved photosynthetic tissues, having additional metabolic complexities compared to roots. Thereby, the efficacy of

the E-flux algorithm was re-assessed.

In a previous study, the maize leaf was divided into 15 cross-sections, and generated transcriptomics data for each of these sections.26 For

this study, we collected transcriptomics data of cross-based on the greenness of the leaf blade (less green to greener). These data were in-

tegrated in the leaf GSM27 using E-flux algorithm. The highest growth rates in maize leaves occur at the base of the leaf, where new cells are

actively dividing and elongating. As the cells grow toward the tip, they undergo expansion and maturation, leading to a decrease in the

growth rate. Eventually, the cells at the tip stop elongating altogether. The contextualized leaf model correctly predicted higher biomass

growth rate of leaf base compared to leaf tip (Figure 1F). The model also predicted rate of carbon fixation correctly, however, it incorrectly

predicted the starch distribution profile along the leaf (Figure 1F). Thus, modification of the E-flux algorithm was required to fit the starch

distribution profile.

To achieve this, we proposed the EXTREAM algorithm, which equally distributed transcript levels for each gene based on the number of

cognate biochemical reactions. Oncewe contextualized the leafmodel with the EXTREAMalgorithm, it predicted the correct biomass growth

rate, carbon fixation, and starch distribution profiles along the selected leaf sections (Figure 1F). Thus, EXTREAM algorithm can be effective in

modeling plant organs, including photosynthetic organs.

Multi-organ genome-scale metabolic model of maize

In this study, we reconstructed the first multi-organ maize GSM, iZMA6517 (Figure 2A) for the B73 genotype. The model is based on the pre-

viously reconstructed root and leaf-specific GSMs,19,27 and newly reconstructed stalk and kernel GSMs, connected via vascular tissues

(Table S1).

To further refine our existing leaf model, we identified thermodynamically infeasible cycles (TICs) and resolved those using our previously

developedOptFill28 pipeline. For stalk and kernel GSMs, we assigned gene-protein-reaction (GPR) relationships to all known reactions based

on the MaizeCyc database.29 The GPR relationships used Boolean logic to determine if enzymes associated with metabolic reactions are en-

coded by isozymes (OR relationship) or protein complexes (AND relationship). We next identified organ-specific reactions and the corre-

sponding metabolic pathways by categorizing each gene’s expression level for each organ. Next, we reconstructed the stalk and kernel

biomass equation based on literature (Table S2). Upon completing the pathway participation in the organ-specific GSMs, we carried out

gap-filling.

Finally, iZMA6517 was assembled by connecting organ-specific GSMs via vascular tissues, namely phloem and xylem (Figure 2B).

Although phloem and xylem are distinct tissues, the direction of the flow of metabolites was sufficient to determine if it was present in

either one of those. Therefore, the two tissues were combined for simplicity. These vascular tissues will facilitate inter-organ crosstalk

by translocating metabolites from one organ to another. For example, sugars travel from the leaf tissue to other tissues via the vascular

tissues. Similarly, nutrients, such as nitrate and phosphate, are uptaken by root and distributed to the other organs. Table S3 has details on

inter-organ transfer of metabolites. iZMA6517 also improved phenotype predictions in different organs compared to the individual organ

model. For example, while additional constraint was required for the individual root metabolic model to uptake water, no such constraint

was required for the root model in iZMA6517. Overall, iZMA6517 contains 6,517 genes, 5,228 unique reactions, and 3,007 unique metab-

olites. Among these, 2,305 reactions (Figure 2C), 2,405 metabolites (Figure 2D), and 6,285 genes (Figure 2E) were common across all

organs.

Next, to assess plant-wide impact of temperature stress, we contextualized iZMA6517 for heat and cold stresses using the EXTREAM al-

gorithm (Figure 2F). The transcriptomics data from the seedling were the aggregate data of root, stalk, and leaf. As kernel is a sink, like a

previous studywhere it showed that there is a control of assimilates translocation from stalk to kernels,30 we assumed themetabolismof kernel

will be dictated by the aggregate behavior of root, stalk, and leaf. Thus, the aggregate transcriptomics data were used to contextualize the

model (iZMA6517) comprising root, stalk, kernel, and leaf under heat and cold stress. Previous studies showed control conditions had the

highest nutrient uptakes, followed by heat and cold stress.31 Once these nutrient uptakes patterns were implemented in contextualized iZ-

MA6517s, control and cold-stressed plants showed the highest and lowest biomass growth rates, respectively (both individual organs and
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whole plant) (Figure 2G), supporting previous studies.32 Indeed, by projecting the aggregate transcriptomics data from seedling to kernel, we

were able to predict the correct growth rate pattern for kernel in control, heat stress, and cold stress (Figure 2G). That confirms our initial

assumption that, as a sink, the kernel metabolism is dictated by other organs like root, stalk, and leaf. Thus, the contextualized iZMA6517

were suitable for identifying metabolic bottlenecks of temperature stresses.

Figure 2. Overview of iZMA6517 reconstruction and contextualization

(A) Individual metabolic models for root, stalk, kernel, and leaf.

(B) Connection between individual tissues via the vascular tissues.

(C) Comparison of reactions among the individual GSMs.

(D) Comparison of metabolites among the individual GSMs.

(E) Comparison of unique genes among the individual GSMs.

(F) Incorporating heat and cold stress related transcriptomics data with the iZMA6517 using the EXTREAM algorithm.

(G) EXTREAM algorithm predicted lower biomass production in each organ and in the whole plant (WP) during the cold stress compared to the heat stress.
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Identification of metabolic bottlenecks

To assess the impact of temperature stress on maize metabolism, we implemented MBA to contextualized iZMA6517s. MBA expanded the

flux space of each reaction separately and assessed its impact on the whole plant biomass growth rate. It revealed 180 bottleneck reactions

under heat stress, of which 70% occurred in leaves, 28% in kernels, and 2% in roots (Figure 3A). These reactions were distributed across

Figure 3. Identification of temperature stress bottlenecks

(A) Organ specific bottleneck reactions for heat stress (number of reactions is indicated inside the column).

(B) Organ specific bottleneck reactions for cold stress, (number of reactions is indicated inside the column).

(C) Cytochrome b5 reductase bottleneck in the fatty acid metabolism for heat and cold stress.

(D) Thermodynamic driving force analysis in fatty acid metabolism.

(E) Pyruvate-phosphate dikinase and malate dehydrogenase bottlenecks in the photosynthetic pathway for heat stress.

(F) Thermodynamic driving force analysis of the photosynthetic pathway.
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purine metabolism, pyrimidine metabolism, fatty acid metabolism, the Calvin cycle, and glycolysis (Figure S5). Among these 180 reactions,

root cytochrome b5 reductase (24%) and acyl-ACP-hydrolase (24%) increased the plant biomass growth rate the most. Here, percentages

indicate increase in biomass growth rate after debottlenecking a specific bottleneck reaction, compared to the biomass growth rate of

corresponding stress condition before debottlenecking. Overall, 19 reactions increased plant biomass growth rate by more than 10%

(Figure S6).

For cold stress, MBA revealed five different bottleneck reactions. Two of these occurred in the root, and one each in other organs (Fig-

ure 3B). Among those five reactions, similar to the heat stress, cytochrome b5 reductase in roots (182%) and leaves (147%) and acyl-ACP-hy-

drolase in roots (146%) increased the plant biomass growth rate the most. The stalk coniferyl-aldehyde dehydrogenase (32%) and the kernel

phosphohexomutase (4%) were other bottleneck reactions.

As reaction thermodynamics is influenced by temperature, we applied Min/Max Driving Force (MDF) analysis to pathways containing

bottleneck reactions, within the physiological range of substrate concentration (0.01 mM–10 mM)33 to assess the impact of thermodynamics

on those pathways. The standard Gibbs free energy of reactions was calculated (Table S4) using the group contribution method.34 The root

cytochrome b5 reductase and acyl-ACP-hydrolase were common to both temperature stresses. The reaction catalyzed by cytochrome b5

reductase is part of the fatty acid biosynthesis pathway (Figure 3C) and impacted the production of 18:1-phosphoglycerate choline and lino-

leic acid of biomass components.MDF analysis indicated that, with anNAD+ concentration greater than 1.1mM (cold stress) and 3.7mM (heat

stress), the fatty acid biosynthesis pathway was thermodynamically feasible and the cytochrome b5 reductase had the lowest driving force

(Figure 3D). Acyl-ACP-hydrolase is involved in the fatty acid biosynthesis pathway and impacted the octadecanoic acid of biomass compo-

nents (Figure S7). MDF analysis again revealed that the pathway was thermodynamically feasible when the NAD+ concentration was between

0.1 and 5.7 mM, while acyl-ACP-hydrolase had the lowest driving force (Figure S8).

Coniferyl-aldehyde dehydrogenase involved in the phenylpropanoid biosynthesis pathway (Figure S9) in stalk was a cold stress-related

bottleneck and impacted the production of ferulic acid of the stalk biomass. MDF analysis revealed that, with an NAD+ concentration greater

than 0.3 mM, the phenylpropanoid biosynthesis pathway became thermodynamically infeasible, and coniferyl-aldehyde dehydrogenase had

the lowest driving force (Figure S10). Phosphohexomutase of the fructose-mannose biosynthesis pathway in the kernel was a cold stress

bottleneck (Figure S11). MDF analysis showed that the fructose-mannose biosynthesis pathway was thermodynamically feasible only when

the concentration of fructose 6-phosphate was between 2.5 and 5 mM. In this concentration range, phosphohexomutase was the reaction

with the lowest driving force (Figure S12).

For heat stress-only metabolic bottlenecks, we focused on pyruvate-phosphate dikinase andmalate dehydrogenase, both associated with

the leaf photosynthetic pathway (Figure 3E), and increased the biomass growth rate by 14% each, followed by cytochrome b5 reductase (24%)

and acyl-ACP-hydrolase (24%). MDF showed that, with an ATP concentration below 1.8 mM, the photosynthetic pathway was thermodynam-

ically infeasible (Figure 3F). Both pyruvate-phosphate dikinase and malate dehydrogenase were combined bottlenecks when the ATP con-

centration was between 4.7 and 5.7 mM. A similar analysis was performed by varying the concentration of NAD+, revealing photosynthetic

pathway was thermodynamically feasible when its concentration was between of 0.1–5.7 mM. Pyruvate-phosphate dikinase and malate de-

hydrogenase were the combined bottleneck in this range of NAD+ concentration. Thus, the MDF analysis connected metabolic bottlenecks

with thermodynamic driving forces. Other bottleneck reactions for heat stress are listed in Table S5.

Parameter tuning of bottleneck enzymes

As the relation between bottleneck reactions and thermodynamics was consistent, we explored different parameters of corresponding en-

zymes to understand the nature of the bottlenecks. For that, we devised a template-based algorithm, Structure Informed enzyme turnover

rate ðSI� kcatÞ, to calculate kcat (Table S6) of two common enzymes of both stress conditions (cytochrome b5 reductase and acyl-ACP-hy-

drolase), two enzymes for the heat stress (malate dehydrogenase and pyruvate-phosphate dikinase), and one enzyme for cold stress (con-

iferyl-aldehyde dehydrogenase). Using predicted kcat values, we determined the relationship between enzyme concentration ðEÞ and satu-

ration ðKÞ, (Equation 18), (Figure S13). kcat of an enzyme may vary depending on the compartmentalization of the enzyme (all other

information such as vreaction and DG are also compartment-specific). Therefore, the accuracy of E values largely depends on the compu-

tational framework of estimating kcat . SI � kcat is based on experimental evidence coming from maize or other closely related organisms.

Thus, we expect a good accuracy of the calculated E values. For all the five enzymes, with lower enzyme saturations (0.1–0.2), higher kcat
reduced the required enzyme concentrations. However, once the enzyme saturation passed 0.6, the effect of different kcat became lower.

Thus, one strategy to improve temperature stress could be to engineer bottleneck enzymes to maintain high saturation by improving its

affinity to substrates
�

1
km

�
.

Potential of AMF to alleviate bottlenecks: A proof of concept

Although fine-tuning between kcat and K can help improve bottlenecks, it requires significant effort in designing synthetic biology tools.

Instead, we can use AMFs, which are well known to alleviate different abiotic stresses in plants.35 Among these AMFs, the effectiveness of

maize inoculation with the R. irregularis is well studied.11 Therefore, as a proof of concept, we generated maize root and leaf transcriptomic

data from R. irregularis inoculatedmaize plants to assess the status of bottleneck reactions. In roots, 7,769 genes were differentially expressed

in inoculated plants compared to control plants, among which 4,693 were upregulated (Figure 4A). Similarly, 6,639 genes were differentially

expressed in leaves, amongwhich 3,485 were upregulated (Figure 4B). In addition, 1,200 and 43 genes showed a log2 fold-change higher than

2 in roots and leaves, respectively. Gene enrichment analysis was then performed for the root genes exhibiting a log2 fold-change higher than
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10 (Figure S14). We found an enrichment of xylanase inhibitor protein, suggesting protection frommicrobial xylanase-induced hemicellulose

degradation of maize roots by R. irregularis. A similar analysis was conducted with leaf genes exhibiting a log2 fold-change higher than 2

(Figure S15). We found a significant enrichment of pyruvate dikinase and malate dehydrogenase.36

We plotted root transcripts for inoculated plants and non-inoculated plants and found a relatively low correlation of 0.55, indicating a

distinct transcriptional response after inoculation (Figure 4C). Alcohol dehydrogenase and pyruvate decarboxylase were significantly

Figure 4. Maize plant responses to the AMF R irregularis

(A) Volcano plot of root transcriptomic data for control and inoculated plants.

(B) Volcano plot of leaf transcriptomic data for control and inoculated plants.

(C) Comparison between root transcriptomic data for control and inoculated plants.

(D) Comparison between leaf transcriptomic data for control and symbiotic conditions.

(E) Root and leaf transcriptomic data integration using the iZMA6517.

(F) R. irregularis inoculation of maize root.

(G) Root inoculated contextualized iZMA6517 predicted the pattern of biomass growth rate, matched with experimental growth pattern. WP: Whole Plant.

(H) Picture of plants used for the study displaying higher biomass under inoculation conditions compared to control.

(I) In the symbiotic interaction, 65% of bottlenecks, identified in cold stress, were alleviated.
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upregulated in the symbiosis. For leaves, we found a strong correlation of 0.95, indicating a similar transcriptomic response in the plants inoc-

ulated with R. irregularis compared to the control (Figure 4D).

As leaf and root tissues were most affected by the temperature stress, we used these transcriptomics data to reconstruct contextualized

iZMA6517s for control and inoculated plants using EXTREAM (Figure 4E). As these models were not constrained for kernel and stalk, it

enabled us to find all theoretical temperature stress alleviation strategies for these two organs. Next, from contextualized models, we found,

both whole plant biomass and organ-specific biomass growth rates were higher in the inoculated plants (Figures 4F–4H). Subsequently, im-

plementing MBA to the symbiosis model showed that all the cold stress bottleneck reactions were alleviated. For heat stress, 85 out of 180

(47%) bottleneck reactions were no longer bottlenecks following inoculation (Figure 4I). Moreover, 31 bottleneck reactions (18%) showed

improvement in inoculated plants. Finally, 64 bottleneck reactions (35%) did not show improvement upon inoculation. However, out of those

64 reactions, 62 had aminimal (1–3%) impact on biomass growth rate, except for pyruvate kinase in two different pyruvate 2-O-phosphotrans-

ferase of the leaf (8% and 7%), (Table S7). Thus, inoculation with R. irregularis has the potential to alleviate temperature stress.

DISCUSSION

Climate change, causing temperature stress, is a leading cause of reducedmaize production.37 Here, we introduced iZMA6517, amulti-organ

maize GSM, to better understand the maize metabolism under temperature stress. Figure 5 shows the overall workflow of this study.

In first-generation plant GSMs, all organ-specific reactions were combined into a singlemulti-compartmentmodel. Example of suchGSMs

are AraGEM,38 C4GEM,39 and iRS1563.40 However, thesemodels were unable to simulate inter-organ interactions. The first multi-organ GSM

was reconstructed for barley,12 and subsequently for other plants (see introduction). However, apart from a core arabidopsis GSM,15 none of

the multi-organ GSMs included root, stalk, kernel, and leaf (Table S8). iZMA6517 is the only model thus far combining these four organ-spe-

cific GSMs with finer resolution (Figure S16), making it the most comprehensive multi-organ plant GSM.

The E-flux algorithm predicted accurate root phenotype under nitrogen starvation.19 However, it could not predict the carbohydrate pro-

file in the leaf (Figure 1F). We hypothesized that the solution space of the E-flux algorithm was overly permissive, resulting in an inaccurate

carbohydrate profile. Thus, we further restricted the feasible solution space by equally distributing the transcript of each gene based on the

number of reactions the gene participated in. The objective function was to minimize the sum of reaction fluxes compared to a reference

condition, calculated from the transcriptomic data. A similar objective function was used in MOMA.41 However, MOMA used wild-type

flux distribution as the reference to estimate flux distribution after gene knockouts. In our case, the purpose of the reference condition

was to maximize agreement between transcriptomic data and reaction flux. After these modifications, the new algorithm, EXTREAM, pre-

dicted the correct carbohydrate profile across leaf cross-sections. We also wanted to check which aspect of EXTREAM contributed more to-

ward the correct prediction of starch distribution. To address that, we formulated two different optimization problems. In one optimization

problem (OPT-01), we used the distributed transcriptomics data with biomass maximization, and in the other optimization problem (OPT-02),

we used non-distributed transcriptomics data with the modified objective function. OPT-01 predicted the right starch distribution, whereas

OPT-02 predicted inaccurate starch distribution. Thereby transcript distribution played a crucial role in the correct prediction of starch profile.

The optimization problems can be accessed through the GitHub directory (data and code availability section).

After contextualizing iZMA6517 with EXTREAM, we devised MBA to find plant-wide metabolic bottlenecks. MBA identifies bottleneck re-

actions in a given metabolic network by expanding the flux space of each reaction to a maximum possible value individually and assess its

impact on the biomass growth rate. Compared to the shadowprice analysis, which is ametabolite-centric approach,MBA is a reaction-centric

approach and better suited for metabolic engineering/bottleneck identification purpose. Under heat stress, 180 reactions were identified as

metabolic bottlenecks, whereas only 5 metabolic bottlenecks were identified under cold stress, revealing a fundamental difference between

both stresses. This finding can explain the weak transcriptomic correlation between heat and cold stresses (Figure 1C). MBA indicated that

leaf tissue hostedmost bottleneck reactions under heat stress (Figure 3A), consistent with previous works.42 For cold stress, root tissue hosted

most bottleneck reactions (Figure 3A), also confirmed by an earlier study.43 To further understand both stresses, we analyzed heat stress

bottleneck reactions and 17%of those (Table S9) were associatedwith NAD+/NADHpair, suggesting a relationship between reducing power

and heat stress. Additionally, 25% of the bottleneck reactions (Table S10) were associated with ADP/ATP pairs. Thus, heat stress is driven by

two major components, reducing power and energy generation. Previous studies independently confirmed the effect of reducing power44

and energy generation45 on heat stress. However, this work showed the synergistic impact of both metabolic components on heat stress.

A similar analysis on cold stress bottleneck reactions revealed 60% of those were associated with NAD+/NADH (Table S11). Surprisingly,

none of the reactions were related to the ADP/ATP pair. Previous studies also confirmed the effect of reducing power on cold stress.46

We performed the MDF analysis to find common features behind the interplay of reducing power and energy generation. The analysis found

all the tested reactions can be the thermodynamic bottlenecks in their respective pathways, revealing a multi-faceted characteristic of tem-

perature stress, geared by the thermodynamics-reducing power-energy generation axis. Literature evidence suggested that cytochrome b5

reductase (one of the two bottleneck enzymes on both stresses) of arabidopsis mutant had lower growth than the wild type.47 A similar

Figure 5. Overall workflow of this project

We reconstructed the first evermulti-organGSMofmaize, iZMA6517.We integrated heat and cold stress transcriptomics data with iZMA6517with the EXTREAM.

Later, we devised MBA to find metabolic bottlenecks of heat and cold stress conditions. We showed that, metabolic bottlenecks on both conditions are guided

by thermodynamic principles. We then proposed protein engineering strategies to improve metabolic bottlenecks. Finally, we showed that R. irregularis

symbiosis with maize root can also alleviate major metabolic bottlenecks.
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observationwasmade for acyl-ACP-hydrolase (another commonbottleneck enzyme under both heat and cold stress) for arabidopsis.48 These

evidences further validate the proposed thermodynamics-reducing power-energy generation axis.

Enzymes are increasingly repurposed by rational design for directed evolution. Enzyme turnover rate (kcat ) and saturation ðKÞ are common

parameters for such rational design.49 A previous work50 established a relation among enzyme concentration ðEÞ, kcat , and K . To explore the

relationship for bottleneck enzymes mentioned in the result section, reliable values of kcat are needed, based on which, E can be calculated.

There is a deep learning-based algorithm51 that can predict kcat ; however, for maize, the algorithm returned kcat values, not in good agree-

ment with the literature (Figures S17–S21). Thus, we proposed a structural similarity weightage-based algorithm (SI � kcat ), which predicted

kcat values of enzymes, close to experimental observations. With the new kcat values, we sampled the different enzyme saturation to calculate

E. For all the tested enzymes, the effect of kcat was prevalent in the lower K (Figure S16). However, with the increasing K , the effect of kcat
became less. Hence, a strategy for rational enzyme design for alleviating temperature stress can be to implement directed evolution for

heat/cold stress to fine-tune the relationship between kcat � K .

A practical approach to alleviating abiotic stress can be to inoculate maize root with an AMF such as R. irregularis.35,52–54 Previous work

indicated that AMF inoculated C4 plant species exhibited better abiotic stress tolerance through improved quantum yield of PSII, thus

providing additional electron sinks.55 Moreover, AMF improves plant nutrition by increasing availability and translocation of numerous nutri-

ents.56 AMF also improves soil quality by changing its properties, which contributes in improving plant health.57 Hyphae of AMF can hasten

the breakdown of organic materials in soil and can make more nutrients available to roots.58 Furthermore, mycorrhizal fungi may influence

ambient CO2 fixation of host plants by boosting ‘‘sink effect’’ and photo assimilate transport from aerial portions to roots. Thus, as a proof

of concept, we generated transcriptomic data for control and AMF inoculated maize and reconstructed GSMs for both conditions to assess

the status of bottleneck reactions. InoculationGSMpredicted a higher biomass growth rate for all tissues (Figure 4F). Moreover, we predicted

that the inoculation alleviated all cold stress and 65% heat stress reactions.We also calculated flux sum, a proxy for metabolite concentration,

for NAD+ and found 49% (Figure S22) increase in the inoculation condition, indicating an additional availability of electron sink provided by

the inoculation with R. irregularis, which can potentially help maize overcoming the temperature stress. However, R. irregularis symbiosis still

had bottlenecks from purine, pyruvate, pyrimidine, folate, and fatty acid metabolism (Table S12; Figure S23). Additional improvements of the

plant biomass production can be achieved by debottlenecking these reactions.

Overall, the first muti-organ maize GSM, iZMA6517, with the aid of EXTREAM and MBA, dissected the impact of temperature stress on

maize. Our analysis revealed three major conclusions: (1) heat and cold stresses are fundamentally different; (2) both stresses are associated

with reducing power, while heat stress has additional bottlenecks in energy generation; and (3) inoculation with R. irregularis can be an effec-

tive way to alleviate temperature stress. Using these inferences, a better temperature stress-tolerant maize ideotype with an improved grain

yield can be designed. Future work can be extended to elucidate the plant-wide impact of different other abiotic stresses and how abiotic

stresses can be amelioratedwith the inoculation of AMF.One such case can be to assess the plant-wide impact of R. irregularis under high and

low nitrogen conditions. This work is currently underway with promising predictions from iZMA6517.

Limitations of the study

There are a few limitations of this study. Starting from the model reconstruction process, the biomass composition used for individual organs

were collected from different literature, mostly from the unstressed conditions. However, in an ideal scenario, for each organ, there should

have been three different biomass equation—one for control condition, one for heat stress condition, and another one for cold stress con-

dition. This indicates, still many aspects of temperature stress is unexplored for maize. For MBA, although we pinpointed plant-wide meta-

bolic bottleneck in both heat and cold stresses, we could not perform in vivo experimentation to verify those. Future efforts will be dedicated

toward verifying those bottlenecks. Finally, although as a proof-of-concept, we showed R. irregularis could alleviate temperature stress, we

could not induce temperature stress with symbiosis study. Future experimentations will be geared toward that.
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N., Tolrá, R., Poschenrieder, C., Hajiboland,
R., Joudmand, A., Aliasgharzad, N., Tolrá, R.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

iZMA6517, EXTREAM, and MBA Chowdhury et al.19(this work) https://github.com/ssbio/iZMA6517

Structure Informed Turnover rate Chowdhury et al.19(this work) https://github.com/ChowdhuryRatul/kcat_iZMA6517

Deep Learning-based Turnover Li et al.51 https://www.nature.com/articles/s41929-022-00798-z

K-mean clustering Ahmed and Dey, 2007 https://doi.org/10.1016/j.datak.2007.03.016

Min/Max driving force analysis Noor el al.33 PMC3930492

E-flux Coljin et al. PMC2726785

GAMS GAMS https://www.gams.com/

CPLEX solver IBM https://www.ibm.com/products/ilog-cplex-optimization-

studio/cplex-optimizer

Temperature stress transcriptomics data Makarevitch et al.22 PMC4287451

NaCl VWR Chemicals 27788.366

Ca(NO3)2,4H2O VWR Chemicals 22384.367

CaCl2,2H2O VWR Chemicals 22322.364

Mg(SO4),7H2O VWR Chemicals 25163.364

KNO3 Sigma-Aldrich 49143

KCl VWR Chemicals 26752.366

KH2PO4 VWR Chemicals 26923.367

K2SO4 VWR Chemicals 26994.362

(NH4)6Mo7O24 Sigma-Aldrich 431346

H3BO3 VWR Chemicals 20185.260

MnSO4 VWR Chemicals 25303.233

ZnSO4 VWR Chemicals 29253.236

Sequestrene 138 FE 100 Syngenta 30643

TRIzol� Reagent Ambion 15596026

RNA Clean & Concentrator-5 w/Zymo-Spin

IC Columns

OZYME ZR016

1 kb Plus DNA Ladder Invitrogen 10787026

Dnase I,Rnase-free Thermo Scientific EN0531

dNTP Mix 25 mM each Thermo Scientific R1122

RiboLock RNase Inhibitor Thermo Scientific EO0382

RevertAid H Minus Reverse Transcriptase

(200 U/mL)

Thermo Scientific EP0452

Takyon� ROX SYBR 2X Mastermix dTTP Eurogentec UF-RSMT-B0701

Fragment Analyzer RNA Kit AGILENT DNF-471-0500

Fragment Analyzer DNA Kits AGILENT DNF-477-0500

Bioanalyzer RNA Nano 6000 kit AGILENT 5067–1511

Quant-iT� RiboGreen Thermo Scientific R-11491

0.5–10 Kb RNA Ladder Thermo Scientific AM7150

1 kb DNA Ladder New England Biolabs N3232L

Quant-iT� PicoGreen� dsDNA Reagent Thermo Scientific P7581

Illumina� Stranded mRNA Prep, Ligation

(96 samples)

ILLUMINA 20040534

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Dr. Rajib Saha (rsaha2@unl.edu).

Materials availability

The study did not generate new materials.

Data and code availability

� iZMA6517, EXTREAM, and MBA codes are publicly available in this GitHub directory: https://github.com/ssbio/iZMA6517. SI-kcat co-

des are available in this GitHub directory: https://github.com/ChowdhuryRatul/kcat_iZMA6517. RNAseq project is deposited in Gene

ExpressionOmnibus (GSE235654) and publicly available. All steps of the experiment, fromgrowth conditions to bioinformatic analyses,

were detailed in CATdb: http://tools.ips2.u-psud.fr.fr/CATdb/; Project: NGS2021_19_Rhizophagus according to the MINSEQE. Nutri-

ents for the plant growth can be accessed in Table S13.
� All statistical analyses were run in R 4.0.567 using code that implement the algorithms described in the papers that introduced these

statistical tests.33,59 All scripts are available upon request.
� The lead contact will provide any additional information needed to reanalyze the data reported in the paper.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Plant experiments

The maize line used in this study is B73. The fungal strain used is the highest quality of purity strain Rhizophagus irregularis DAOM197198

(Agronutrition Montpellier France). In all experiments, maize seeds were surface-sterilized as follows. Seeds were first incubated in ethanol

for 5 min at 28�C followed by rinsing with distilled water. Then the seeds were incubated for 45 min in a 15% commercial bleach solution with

0.01% Triton x100 then rinsed in distilled water. They were placed on wet sterile Watman paper in Petri dishes closed with parafilm and incu-

bated in the dark for 48-72 h at 20�C. Germinated seeds were selected and then sown in the experimental setup.

METHOD DETAILS

K-means clustering analysis

K-means clustering60 algorithm was used to classify different genes into different clusters. Number of clusters was determined using the

Elbow method. The whole K-mean clustering was implemented in Python, using numpy, pandas, and sklearn modules. Default setting of

K-mean clustering, mentioned in the sklearn, was not changed in this study. Number of clusters were determined using the elbow method

(Figure S24). The elbow method is a graphical approach to determining the best number of clusters (K) value in the K-means clustering algo-

rithm. The elbow graph depicts the within-cluster sum-of-square values on the y axis for various K values. The ideal K value is the point on the

graph when it forms an elbow. To perform the K-mean clustering, we used 4 clusters, 10 centroid seeds, 300 maximum iteration, and 10� 4

relative tolerance.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

IDT for Illumina RNA UD Indexes Set A

(96 indexes, 96 samples)

ILLUMINA 20040553

AMPURE XP SPRI REAGENT 60 ML BECKMAN COULTER A63881

Agencourt RNA clean XP BECKMAN COULTER A63987

Ethanol absolute for BM 500 ML Sigma-Aldrich 51976-500ML-F

NovaSeq 6000 S4 Reagent Kit v1.5 (300 cycles) ILLUMINA 20028312

Phi X Control V3 ILLUMINA FC-110-3001

R R Studio V 4.0.567

CATdb Complete Arabidopsis Transcriptome

database

V 1.0

RNA-seq Data Gene Expression Omnibus GSE235654
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Genome-scale metabolic model reconstruction

Determining the primary set of reactions for stalk and kernel tissue

A previously published leaf genome-scalemodel27 was used as a scaffolding to reconstruct the stalk and kernel tissues. Microarray data61 was

used to determine the set of metabolic genes that were categorized as highly or lowly expressed in each tissue based on the gene’smaximum

expression level in the measured growth stages and tissues. Genes with an expression level above the cut-off (7.644) were categorized as

‘‘highly expressed.’’ ‘‘Lowly expressed’’ genes were defined as genes with an expression level below the cut-off in all growth stages for

the focus tissue, but have a measured expression level above the cut-off in at least one other tissue. Finally, genes that were expressed at

a level that is always below the cut-off for all growth stages and tissues were categorized as ‘‘always-lowly expressed.’’ Genes containedwithin

the model GPR relationships that were not included in the microarray data were included in the ‘‘always lowly expressed’’ set. Therefore, the

‘‘always lowly expressed’’ set includes all genes with no conclusive evidence. Within the model, GPR relationships are defined using Boolean

logic with isozymes represented by an ‘‘OR’’ relationship and subunits represented by an ‘‘AND’’ relationship. To determine the primary set of

reactions for each tissue-specific model, genes in the ‘‘highly expressed’’ set were assigned ‘‘True’’ in the Boolean logic and genes in the

‘‘lowly expressed’’ set were assigned ‘‘False.’’ Genes in the ‘‘always lowly expressed’’ set that are associated with a gene categorized into

either of the two other tissue specific sets were assumed to be co-expressed with their measured isozymes or subunits. In this way, ‘‘always

lowly expressed’’ genes cannot determine a reaction’s presence in the tissue-specific model. For example, a gene in the ‘‘always lowly ex-

pressed’’ set that is associated with a ‘‘False’’ isozyme or subunit (i.e., a gene in the ‘‘tissue lowly expressed’’ set) will be defined as ‘‘False’’

in the GPR Boolean logic relationship. This categorization based on co-expression was completed manually for 14 of the 2109 unique reac-

tions (i.e., the full set of metabolic reactions independent of the compartment or tissue). Reactions with GPR relationships that only contain

genes in the ‘‘always lowly expressed’’ set were placed in the set of notmeasured reactions. Reactions that were categorized as present based

on their GPR relationship are referred to as the primary set of reactions for that tissue. While reactions that were categorized as absent based

on their GPR relationship are referred to as the inactive set of reactions.

Creating stalk and kernel biomass reactions and ATP maintenance

Tissue-specific biomass reactions were created based on reported literature values. Each tissue-specific biomass reaction was normalized so

that the molecular weight of all biomass components sums to 1 g mmol�1 to ensure that there is no bias based on the proportion of biomass

components included for each tissue.62 This normalization is especially important as multiple tissues are growing simultaneously to ensure

growth is not artificially favored toward tissues with low biomass weights. Growth and non-growth associated ATPM levels were based on

leaf measurements59,63–65 for photosynthetic tissues and on root measurements64,66,67 for non-photosynthetic tissues.

Vascular tissue transport

The metabolites that are transported through the phloem and xylem tissues,68–72 as well as the transport costs predicted for each metabo-

lite,71,73–76 were identified based on the literature. The phloem and xylem tissues were combined together for simplicity in the model and are

referred to as vascular tissue.

Creating stalk and kernel models

The primary set of reactions JPrimary, vascular tissue transporters Vt and environmental nutrients JNutrients supplied to stalk and kernel were

combined to form the draft model for each tissue. When modeling stalk and kernel models, the nutrients include both those from environ-

ment, but also include thosemetabolites that can be imported from the vascular tissue. Inactive reactions, determinedby using themicroarray

data and GPR relationships, were placed into a set termed JInactive, which is unique for each tissue. Finally, spontaneous reactions and reac-

tions with a GPR relationship that only contain genes in the ‘‘always lowly expressed’’ set were placed into the set JNotMeasured, which is by

definition equivalent for each tissue. In order to ensure that each tissue-specific biomass reaction was not blocked given the available nutri-

ents to the tissue, (i.e., metabolites imported by the vascular tissue and the environment), a GapFill step77 was performed for each tissue indi-

vidually. The following algorithmwas used to determine theminimum number of reactions added with a preference of adding reactions from

the not measured set over reactions in the inactive set:

minimize
X

j˛JNotMeasured

yj + 10
X

j˛JInactive

yj

s:t:

X
j˛ J

Sijvj = 0;ci˛ I (Equation 1)

LBj % vj%UBj;cj˛JPrimaryWJNutrientsWVt (Equation 2)

LBjyj % vj%UBjyj;cj˛JInactiveWJNotMeasured (Equation 3)
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vbiomass R0:001 (Equation 4)

Here Sij is the stoichiometric coefficient of metabolite i in reaction j and vj is the flux through reaction j. I and J are sets that include all

metabolites and reactions known to occur within maize, respectively. The pseudo-steady state assumption (1) assumes that the tissue is

growing efficiently, and all internal metabolites are produced and consumed at an equal rate. The lower bound, LBj, and upper bound,

UBj, of reaction j (2 and 3) are sufficiently small and large and are determined by each reaction’s directionality based on thermodynamic con-

straints. The binary variable, yj, is equal to 1 if the reaction is added to the model and 0 otherwise (3). Finally, a small amount of flux is forced

through the biomass Equation 4 to ensure biomass is not blocked. From this algorithm, a set of reactions, JSecondary, was added to the draft

tissue-specific models to ensure flux through the biomass reaction is possible.

A second GapFill step was completed to activate as many reactions in the primary set as possible for stalk and kernel. The GapFill algo-

rithm displayed above was completed successively for each reaction that did not carry flux in the primary set by modifying the model con-

straints in the following manner. First, (2) was extended to encompass the secondary set of reactions to account for their inclusion in the tis-

sue-specific model. Second, (4) was applied to the reaction of interest rather than the biomass reaction. Reactions from the not measured set

were added as needed, however reactions from the inactive set were only included in the final model if their addition allowed ten previously

blocked reactions from the active set carry flux. This was done to ensure that reactions with genes that are lowly expressed in the tissue based

on transcriptomic data were added only if they allow for flux throughmultiple reactions in the primary set. The final set of reactions included in

stalk and kernel was defined for each tissue k as Jk.

Incorporating additional constraints based on literature evidence

To accurately capture the efficiency of photosynthesis, it is pertinent to understand the relationship between rubisco carboxylase and oxy-

genase. The maximum rate of carboxylation and oxygenation are related by the following equation:

Vc

Vo
=

ko
kcSR

(Equation 5)

Here, TheMichaelis-Menten constants for oxygenation ðkoÞ and carboxylation ðkcÞ and the rubisco specific SR were set to values typical of

C4 species,78 kc = 650mmolmol� 1, kc = 450mmolmol� 1, SR = 2590. Equation 5 works indicates the maximum possible rate of carboxylation

an oxygenation and thus set in the model simulation:

EXpression disTributed REAction flux Measurement algorithm

In this work, we proposed the EXTREAM,where transcript of each genewas equally dividedbased on the number of reactions the gene partic-

ipated. We also changed the objective function which is the minimization of sum of reaction fluxes compared to a reference condition, calcu-

lated from the transcriptomics data.

The formulation of EXTREAM is the following:

min
X
j

���vj
�� � vj;omics

�

Subject to,

X
j

Si;jvj = 0;ci˛ I (Equation 6)

vj;min % vj % vj;max ;cj˛ J (Equation 7)

vbiomass% f 3 vbiomass;max (Equation 8)

Here, vj is the flux to be calculated for reaction J, vj;omics is the reference condition calculated from the GPR association for reaction J, Si;j is

the stoichiometric matrix for metabolite I, and reaction J, vj;min and vj;max are the upped and lower bound of reaction J, vbiomass is the desired

biomass growth rate, vbiomass;max is the maximum possible biomass growth rate, and f is fraction between 0 and 1. To reformulate the

EXTREAMalgorithm to a linear optimization problemandwill also introduce the transcript distribution to better constraint the solution space.

Let’s assume two genes has the following expressions:

G1 = 10

G2 = 20

And there are three reactions associated with G1 and G2 as following

R1 = G1 or G2

R2 = G1

R3 = G2
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Then according to the E-flux algorithm, vj can be calculated as following:

R1 = 30 mmol/gDW/hr

R2 = 10 mmol/gDW/hr

R3 = 20 mmol/gDW/hr

If R1 is a forward reaction then the bounds on reaction will be 0%R1 % 30. Similarly, if R1 is a forward reaction then the bounds on reaction

will be � 30%R1 % 30. Same will be true for other reactions, such as R2 and R3.

According to the EXTREAM algorithm, the transcript will be distributed equally based on the number of reactions a gene participates.

Furthermore, the reference condition. vj;omics, can be calculated as following:

R1 = 15 mmol/gDW/hr

R2 = 5 mmol/gDW/hr

R3 = 10 mmol/gDW/hr

From EXTREAM, if R1 is a forward reaction then the bounds on reaction will be 0%R1 % 15. Similarly, if R1 is a forward reaction then the

bounds on reaction will be � 15%R1 % 15. Same will be true for other reactions, such as R2 and R3. Thus, EXTREAM algorithm provides a

tighter bounds on reaction fluxes compared to the E-flux algorithm and can be useful for realistic phenotypical predictions.

As the original formulation is a non-smooth optimization problem, the linearization of such non-smooth optimization problem can be

achieved as the following:

min
X
j

�
vj;new � vj;omics

�

Subject to,

X
j

Si;jvj = 0;ci˛ I (Equation 9)

vj % vj;new + vj;omics;cj˛ J (Equation 10)

� vj % vj;new � vj;omics;cj˛ J (Equation 11)

vj;min % vj % vj;max ;cj˛ J (Equation 12)

vbiomass% f 3 vbiomass;max (Equation 13)

Here, vj;new is a replacement variable used in the reformulation.

MBA

To determine the metabolic bottleneck in a GSM, we proposed the following algorithm.

2
6666664

Max vbiomass

Subjectto:
Xm
j = 1

Sijvj = 0;i˛ I ð14Þ

aj % vj %bj; j
�fj0g˛ J ð15Þ

vj0 ;min; % vj0 % vj0 ;max; j
0 ˛ Jð16Þ

3
777777775
;cj0˛ J

Here aj is the lower bound reaction vj and bj is the upper bound of reaction vj . Both aj and bj were calculated from the transcriptomics data

and GPR association. vj0 ;min is the expanded lower bound of the reaction j0 and vj0 ;max is the expanded upper bound of the reaction j0. In this

case, we set vj0 ;min = � 1000 mmol
gDW :hr and vj0 ;max = 1000 mmol

gDW :hr. We solved the optimization problem by maximizing the biomass vbiomass for the

new expanded flux space of each reaction j0 in an iterativemanner and then recorded the biomass growth rate. From this biomass growth rate

collections, we can check for which j0 biomass growth rate increased. Then that j0 can be considered as the metabolic bottleneck of a given

metabolic network.

Min/Max Driving Force analysis

To find out the thermodynamic driving force and thermodynamic bottleneck of a given pathway, we used max/min driving force analysis

(MDF) from the literature.33 In this method, wemaximized the driving force of each reaction in a given pathway within the biologically relevant

concentration and found the maximum possible driving force of a pathway. The formulation of MDF analysis is given below:

max B
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Subject to:

�DGRB (Equation 14)

DG =
�
DG0 + RT , ST,x

�
(Equation 15)

lnðCminÞ% x % lnðCmaxÞ (Equation 16)

DG0 is the standard Gibbs free energy, R is the gas constant, T (50 C for cold stress and 500 C for heat stress) is the temperature, and

x and C indicates concentration. This analysis is particularly useful when metabolomics information is not fully available for a given pathway.

Thus biologically relevant metabolite concentration range can be used to infer information about a pathway, whether it will be thermodynam-

ically feasible or not. Furthermore, we fixed the ATP/ADP and NADH/NAD ratio as mentioned in the original MDF article, ½ATP�
½ADP� = 10 and

½NADH�
½NAD+ � = 0:1.33 We simulated the MDF problem for different concentrations of target metabolites, mostly cofactors such as ATP and

NAD+ and recorded the change in MDF values.

Structure informed kcat prediction (SI-kcat )

The sequential protocol followed for kcat prediction is as follows:

Database scraping for kcat values

The SABIO-RK79 database was scraped for kcat values using E.C Number, KEGG reaction ID, and KEGG Compound IDs as search query. The

obtained kcat values are refined using source organism (Zea mays). In cases where no kcat values are reported for Zea mays, other phyloge-

netically close organisms are considered.

Structure modeling of enzymes from protein sequence

Geometric deep learning-based, single sequence protein structure predictor (RGN2) is employed to model the 3D atomic coordinates of

enzyme in PDB format.80

Tertiary structure collection of experimentally resolved enzymes

The experimentally resolved 3D structure of enzymes belonging to the same EC number and preferably same organism (Zea mays) are

collected from RCSB Protein DataBank (https://www.rcsb.org/).81,82

Structural similarity weightage (Sw) calculation

The 3D structures of the enzymes modeled in step (b) and the experimentally resolved enzymes (c) are aligned to estimate the similarities/

differences between their structures. Distance root mean square distance (dRMSD) between consecutive atom pairs are calculated and aver-

aged over the total number of pairs to give TM-score (TemplateModeling score). This is done using TM-alignweb server (https://zhanggroup.

org/TM-align/).83 TM-score ranges from 0 to 1, where 0 indicates no similarity in structure, while 1 indicates 100% structural similarity.

Structure Informed kcat prediction (SI � kcat)

The kcat prediction follows the following weighted averaging function:

SIkcat =
Swa:kcat a+Swb:kcat b+.Swnkcat n

Swa+Swb+.Swn
(Equation 17)

Where Sw refers to structural similarity weightage (TM-score) between modeled and experimentally reported structures and kcat refers to

kcat values scraped from SABIO-RK for the corresponding reaction and enzyme class.

Error estimation of structure-informed kcat values (SI � kcat)

The standard deviation of predicted kcat values were calculated from the protein sequence dissimilarity index. It is to be noted that similar

structural motifs in proteins did not necessarily mean identical protein sequences. Moreover, enzyme kinetics is dependent on the presence

of specific amino acids and the structural motifs that hold them together. Therefore, pairwise protein sequence alignment is carried out be-

tween structures from step (b) and step (c) as an estimate of standard deviation of SI � kcat .

Validation of structure-informed kcat values (SI � kcat)

The kcat predicted by the SI� kcat algorithmmatched reasonably well with the experimental predictions (Figures S17–S21). Comparison is pro-

vided between this method and other computational algorithm as well.51
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Once the kcat is determined, the following equation50 was used to determine the relationship between enzyme concentration ðEÞ and satu-

ration ðKÞ:

E =
vreaction

kcat :
�
1 � e

DG

RT
�
3

1

K
(Equation 18)

Here, DG values were collected from the correspondingMDF analysis, and vreaction were collected by solving contextualized iZMA6517 for

heat and/or cold stress.

R. irregularis symbiosis of maize root

Plant material, growth conditions and inoculation

The experimental design and the different steps of growing and harvesting for RNAseq experiment, performed in 2020, are indicated in Fig-

ure S25. Briefly, germinated seeds were sown in pots of 4 L containing amix of sterilized unfertilized peat and dried clay beads (1:1/v/v). A first

inoculation was performed with 500 spores of R. irregularis, a second inoculation was performed 1 week after sowing with 200 spore/plant,

and a third inoculation was performed 2 weeks after sowing with 200 spore per plant. Control plants were treated with distilled water. Plants

were grown under three different nitrogen regimes (1 mM NO3
� herein named LN, medium N 5 mM NO3

� and high N (HN) 10 mM NO3
�).

Details for nutrient solution composition are given in Table S13. For each N regime, plants were irrigated for the first three weeks with the

solution corresponding to the chosen N regime with low P (named P-) containing 10 mM Phosphate in order to trigger AMF colonization.

Then, at the indicated date in Figure S25, irrigation was turned into the same N level but containing 300 mM P. Increasing P level in the irri-

gation solution was necessary to allow plants reach the maturity stage.

Harvesting procedures

For RNA extractions, leaf and root samples were harvested and frozen in liquid nitrogen before extraction. The harvesting stage corresponds

to 15 days after tasseling which has been shown to provide a good indication of root colonization (data not shown). Dates of harvesting

differed depending on the condition (Figure S25). A piece of 1 cm 3 10 cm leaf surface from the leaf below the ear of each individual plant

was harvested. Thin secondary roots were harvested from the surrounding root system, close to the pot borders. They were washed with

distilled water and then frozen in liquid nitrogen.

RNA extraction for RNAseq

RNA extraction was performed with an adapted TRIZOL (TRIZOL by Invitrogen – Thermo Fisher Products & Kits) protocol followed by puri-

fication on Zymo-Spin column. Fresh tissue of leaves or roots (100 mg) were frozen in liquid nitrogen then ground to fine powder that was

homogenized in 1 mL of TRIZOL. Two glass beads were added to the extract in the tube and vortexed for 5 min, then incubated for 5 min

at room temperature (RT). Two hundred microliters of chloroform were added, then the sample was vortexed for 5 min and incubated for

3 min at RT. Samples were centrifuged at 12,000g for 15 min at 4�C. The aqueous phase (approximately 500 mL) was transferred to a new

tube where an equal volume of ethanol (95–100%) was added. The samplemixed with ethanol was then transferred to a Zymo-Spin IC column

and purification was proceeded following manufacturer instructions.

RNAseq and bioinformatic analysis

RNA-seq libraries were constructed by the POPS platform (IPS2) using the Illumina Stranded mRNA Prep kit (Illumina, California, U.S.A.) ac-

cording to the supplier’s instructions. Libraries were sequenced by the Genoscope on a Novaseq 6000 instrument (Illumina) with 150 base

paired-end sequences.

Raw data cleaning

The raw data were first cleaned by the Genoscope as follows.

Illumina filter. To remove the least reliable data from the analysis, the raw data were filtered to remove any clusters that have ‘‘too much’’

intensity corresponding to bases other than the called base. The purity of the signal from each cluster was examined over the first 25 cycles

and calculated as Chastity = Highest_Intensity/(Highest_Intensity + Next_Highest_Intensity) for each cycle. The default filtering implemented

at the base calling stage allows at most one cycle that is less than the Chastity threshold (0,6).

Genoscope filter. We remove adapters and primers on the whole read and low-quality nucleotides from both ends (while quality value is

lower than 20) and then continue next steps with the longest sequence without adapters and low quality bases. Then we removed sequences

between the second unknown nucleotide (N) and the end of the read. This step is done on trimmed (adapters + quality) reads. We then

discard reads shorter than 30 nucleotides after trimming. Later we removed read pairs that come from the low-concentration spike-in library

of Illumina PhiX Control. Next, reads pairs corresponding to ribosomal RNAwere removed using sortMeRNA (v2.184). We cleaned reads from
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Genoscope were adapter-trimmed again by the POPS platform with BBduk from the BBmap suite (v38.84)85 with the options k = 23 ktrim = r

qtrim = r useshortkmers = t mink = 11 trimq = 20 hdist = 1 tpe tbominlen = 30 using adapter sequences file included in the BBTools package.

Mapping and gene expression quantification. Filtered reads were then mapped and counted using STAR (v2.7.3a86) with the following

parameters –alignIntronMin 5 –alignIntronMax 60000 –outSAMprimaryFlag AllBestScore –outFilterMultimapScoreRange 0 –outFilterMulti-

mapNmax 20 on a combined reference genomemade by concatenating the files of the Zeamays B73 (V4.49) reference genome and the asso-

ciated GTF annotation files (also combined). Between 73.26 and 96.13% of the reads were uniquely mapped (median = 94.80%). Between

73.84 and 87.99% of the reads were associated with annotated genes (median = 87.28%).

Software and hardware resources

The General Algebraic Modeling System (GAMS) version 24.7.4 was used to run EXTREAM, MBA, and the OptFill algorithm on the model.

GAMSwas run on a high-performance cluster computing system at the Holland Computing Center of the University of Nebraska-Lincoln. The

K-mean clustering was implemented in Python, using numpy, pandas, and sklearnmodules. Transcriptomics data analysis was performed in R

module.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were conducted on R v3.6.2 (R Core Team, 2020) using the script-based tool DiCoExpress.87,88 DiCoexpress used the Bio-

conductor package edgeR (v 3.28.0,.89,90 The raw count file used for the statistical analyses only contain the reads of the Zea mays organism.

Dicoexpress analyzes RNAseq projects with at most two biological factors. For this reason and to answer biological questions of interest, 4

separate statistical analyses were conducted on samples from leaves and roots.

Gene filtering and normalization

For the four analyses, low counts genes were filtered using the ‘‘FilterByExpression’’ feature available through the edgeR package with a min-

imum count threshold of 15. Raw counts were normalizedwith the trimmedmean ofM values (TMM)method implemented in edgeRpackage.

Differential Expression analysis

The differential analysis is based on a negative binomial generalized linear model. For the 4 Zea mays analyses, the log2 of the average

normalized gene expression is an additive function of a treatment effect (inoculation or control), an interaction between the condition and

the treatment and the technical replicate factor (3 modalities for each nutritional condition LN and HN). To make the processing of these

multifactorial designs easier, Differential Expression (DE) analyses were performed using the DiffAnalysis_edgeR function of DiCoExpress

to automatically generate the contrasts. In each analysis, we considered the difference between the two treatment modalities and averaged

on the two condition modalities LN and HN). For each contrast a likelihood ratio test was applied, and raw p values were adjusted with the

Benjamini–Hochberg procedure to control the false discovery rate. The distribution of the resulting p values followed the quality criterion

described by Rigaill et al.91 A gene was declared differentially expressed if its adjusted p value is lower than 0.05.

ll
OPEN ACCESS

22 iScience 26, 108400, December 15, 2023

iScience
Article


	A multi-organ maize metabolic model connects temperature stress with energy production and reducing power generation
	Authors


