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Supplemental Figures 
 

 

Fig S1: Validation of used blood plasma metabolite concentrations. The figure shows a comparison 

between HMDB1,2 and the data from Akinci et al (for glucose, HMDB value used in simulations), 

Siggaard-Andersen et al (for oxygen), and  Harada et al3–5. The line shows the ideal relationship 

between the data sources, it is not a linear fit to the points. Only metabolites with data from both 

sources where the metabolite name could be mapped to the model are shown. 

  



 

Fig. S2: Linear model for estimation of diffusion coefficients from molecular mass. The model is 

based on metabolites with known molecular mass and diffusion coefficients (shown in the figure) and 

is used to estimate the diffusion coefficients for metabolites where the diffusion coefficient is not 

available. Oxygen and albumin are not included in the model since a linear model is only valid within 

a limited molecular mass range. R2 = 0.665. 

  



 

Fig. S3: Growth limitation of metabolites when simulating tumor cell growth. Investigation of 

which metabolites are limiting for growth at different values of a. The simulation is performed by 

fixing the specific growth rate at the maximum possible specific growth rate, followed by a 

minimization of the uptake of a specific metabolite (FVA). The “min required fraction” represents the 

minimum required uptake rate of the metabolite divided by the maximal possible value – a value of 1 

thus represents that a metabolite is limiting for growth. 

  



 

Fig. S4: Simulation of tumor cell growth without oxygen constraints. Identical to the simulation in 

Fig. 1B in the main text except that oxygen uptake is unconstrained. Albumin uptake is also added to 

the figure. The albumin uptake rate is multiplied by 200 to fit the scale of the other fluxes, while 

other metabolites are scaled the same way as in Fig. 1B in the main text. Albumin was useful for 

growth at small a values since enzyme usage was not limited at such a values, allowing for full 

oxidation of the amino acids for the purpose of ATP generation, which overcomes the ATP cost 

associated with digestion of albumin into amino acids. 

 

  



 

Fig S5: Change in specific growth rate when removing parts of the biomass reaction. The figure 

shows the specific growth rate ratio between models with reduced and original biomass reaction. In 

all cases, the model is optimized for growth. “No ATP prot.“ refers to removal of the ATP cost from 

turning amino acids into proteins, while “No 2xATP” refers to having both the protein generation ATP 

cost and the direct ATP cost removed from the biomass reaction. For “No 2xATP, lipids”, the 

consumption of lipids have also been removed in addition to the other two factors. ATP generation is 

the limiting factor for all values of a. With ATP costs removed, the availability of lipids became 

limiting, while the direct use of amino acids for protein synthesis was small compared to the amounts 

available.   



 

Fig S6: Metabolites limiting for growth when the direct ATP cost of the biomass function and 

NGAM are reduced to 50% and 25% of the original values. A-B. Specific growth rate and metabolite 

uptake/export. C-D. Flux variability analysis showing how much each metabolite can be reduced 

while retaining growth. E-F. Specific growth rate reduction from reducing the maximum uptake rate 

of a single metabolite to 90%.  

  



 

Fig S7: Metabolic behavior for optimal growth using the blood flow model. A. Specific growth rate 

and metabolite uptake/export (see Fig. 1B in the main text for comparison with the diffusion model). 

B. Growth limitation of metabolites when simulating tumor cell growth (see Fig. S3 for comparison 

with the diffusion model). The simulation is performed by fixing the specific growth rate at the 

maximum possible specific growth rate, followed by a minimization of the uptake of a specific 

metabolite (FVA). The “min required fraction” represents the minimum required uptake rate of the 

metabolite divided by the maximal possible value – a value of 1 thus represents that a metabolite is 

limiting for growth. C. Specific growth rate reduction from reducing the maximum uptake rate of a 

single metabolite by 10% (see Fig. S4 for comparison with the diffusion model). The effect from 

glutamine, lipid pool, cholesterol, and lactate is negligible or non-existent. D. Change in specific 

growth rate when removing parts of the biomass reaction (see Fig. S6 for comparison with the 

diffusion model). The figure shows the specific growth rate ratio between models with reduced and 

original biomass reaction. In all cases, the model is optimized for growth. “No ATP prot.“ refers to 

removal of the ATP cost from turning amino acids into proteins, while “No 2xATP” refers to having 

both the protein generation ATP cost and the direct ATP cost removed from the biomass reaction. For 

“No 2xATP, lipids”, the consumption of lipids have also been removed in addition to the other two 

factors. ATP generation is the limiting factor for all values of a. With ATP costs removed, the 

availability of lipids became limiting, while the direct use of amino acids for protein synthesis was 

small compared to the amounts available. 

  



 

Fig S8: Uptake of amino acids in the tumor microenvironment simulation. A. Uptake of amino acids 

exhibiting low but varying uptake in a simulation of tumor cell growth with metabolite uptake 

constraints derived from the diffusion model. B. Uptake of amino acids that are mainly used for 

protein production in a simulation of tumor cell growth with metabolite uptake constraints derived 

from the diffusion model. These figures are similar to Fig. 2A in the main text. 

 

  



 

Fig S9: Fluxes through two proline reaction pathways used by the model for increasing growth. The 

PRODH curve represents the reverse flux through PRODH. We note that the model chooses to use 

PYCR3 here, while we in Fig. 2C in the main text has depicted the flux through PYCR1. The choice of 

PYCR enzyme by the algorithm is largely arbitrary; any of the PYCR enzymes can be used, although 

PYCR3 activates extra transporters since it resides outside mitochondria.  

  



 

Fig S10: The source of succinate export. Succinate export and the fluxes of complex II in reverse and 

succinyl-CoA synthetase in a simulation similar to that of Fig. 1B in the main text but allowing for 

succinate export. 

 

  



 

Fig S11: Differences in ATP production from the substrates lactate and glutamine. A. Hypoxic 

conditions with the reverse PRODH reaction blocked. B. Enzyme-limited conditions.   



 

Fig. S12: Additional plots for the combined model. A. Investigation of which metabolites are limiting 

for growth at different values of a for the m3 model, which has a high ECM content. The simulation is 

performed by fixing the specific growth rate at the maximum possible specific growth rate, followed 

by a minimization of the uptake of a specific metabolite. The min required fraction represents the 

minimum required uptake rate of the metabolite divided by the maximal possible value – a value 

close to 1 thus represents that a metabolite is limiting for growth. B. Maximum increase in specific 

growth rate by collaboration with CAFs allowing only metabolites previously identified in literature to 

be sent from the CAFs to the tumor cells. C. Same as B, but including transport of H2O2 as well. D. 

Metabolite uptake rates in a passive collaboration between cancer cells and other cells. The m6 

model is used, which has negligible fractions of both fibroblasts and ECM, and only a small fraction of 

other cells, which due to the low availability of oxygen is beneficial for showing shifts in oxygen use 

between cell types for different values of a. The simulation shows the expected behavior; the other 

cells consume little glucose while instead consuming the metabolites that are least useful for the 

cancer cells. These are a large pool of compounds such as citrate and linoleate together with oxygen 

and are used to generate the maintenance ATP needed to sustain the cells. E. Maximum increase in 

specific growth rate by collaboration with macrophages that reuse 10% of the produced biomass 

(dead cells).  



 

Fig. S13: Alternative explanation to collaboration between oxygenated and hypoxic cancer cells. A. 

It has been reported that oxygenated cancer cells (from well oxygenated regions of the tumor, 

representing a large value of a) collaborate with hypoxic cancer cells (from hypoxic regions, 

representing a lower a value) by consuming lactate6,7. Less glucose will then be spent in the well 

oxygenated regions and can diffuse to the hypoxic areas, and the necrotic regions in mouse tumor 

was shown to increase when lactate uptake was blocked6. A problem with this theory is that a 

corresponding increase in oxygen uptake is expected in the well oxygenated regions, since more 

oxygen is required to produce the same amount of ATP from lactate as compared to glucose, and less 

oxygen therefore will diffuse to the hypoxic regions, potentially counteracting the beneficial effect. 

An alternative theory could be that the increase in necrotic regions is related to the experimental 

setup where the lactate uptake was blocked by an inhibitor. The lactate uptake is then reduced in the 

whole body, likely resulting in higher lactate levels in blood, and therefore an increase in lactate 

influx to the tumor and consequently a decrease in pH in the extracellular compartment. The internal 

pH in cells must stay above a certain level for cell survival7–10, and it has been proposed that lowering 

the external pH makes active regulation of internal pH increasingly demanding, leading to a higher 

ATP demand for the cells8,11, and consequently, an increase in the necrotic regions. In addition, it has 

been shown that mammalian cells that are not under stress generally tend to take up lactate 

whenever available12, for example to regulate the pH of blood and tissue, and cancer cells may have 

simply retained this behavior from healthy cells. We conclude that although these results at first 

appear contradictory to our results, the increase in necrotic regions could just as well be explained by 

increased pH caused by the inhibitor and not due to interrupted collaboration between these cancer 

cells. B. Investigation of the impact on growth from constraining lactate output (and thereby 

production) for the purpose of increasing extracellular pH. The maximum lactate output was 

constrained to half of the glucose uptake bound, which showed a large negative impact on growth 

and a small increase of the necrotic region, further motivating that low extracellular pH can affect 

growth and survival negatively.   

     

       

  

       

                            

     

  

       

                    

              

 

 



 

Fig. S14: Results from the combined model using the blood flow model. A. Maximum increase in 

specific growth rate by collaboration with CAFs allowing only metabolites previously identified in 

literature to be sent from the CAFs to the tumor cells. B. Maximum increase in specific growth rate by 

collaboration with macrophages that reuse 10% of the produced biomass (dead cells). 



 

Supplemental Tables 
 

Table S1 – Reactions blocked in Human1 for the simulations 
The following reactions were blocked in Human1 as a curation step since they gave rise to unrealistic 

fluxes. 

Blocked reactions Reaction equation 

MAR08759 2 hypotaurine[c] + O2[c] => 2 taurine[c] 

MAR02779_REV glucose[c] + H+[c] + NADH[c] => D-glucitol[c] + NAD+[c]  

MAR03996 cystine[c] + H+[c] + NADH[c] <=> 2 cysteine[c] + NAD+[c] 

MAR06965 dehydrospermidine[c] + H+[c] + NADH[c] <=> NAD+[c] + spermidine[c] 

MAR13081* 4 ferrocytochrome C[m] + 7.92 H+[m] + O2[m] => 4 ferricytochrome C[m] + 
1.96 H2O[m] + 0.02 O2-[m] + 4 H+[i] 

MAR08981 NAD+[x] + malate[x] <=> H+[x] + NADH[x] + OAA[x] 

MAR03167 urate[c] => H+[c] + urate radical[c] 

MAR12019 leukoaminochrome[c] + O2[c] => H2O2[c] + 2,3-Dihydro-1H-Indole-5,6-
Dione[c] 

MAR01706 3alpha,7alpha-dihydroxy-5beta-cholest-24-enoyl-CoA[x] + H2O[x] => 
(24R,25R)3alpha,7alpha,24-trihydroxy-5beta-cholestanoyl-CoA[x] 

MAR08561 20-OH-LTB4[r] + O2[r] => 20-COOH-LTB4[r] + H+[r] + H2O[r] 

MAR07701 H+[c] + NADPH[c] + O2[c] => H2O2[c] + NADP+[c] 

MAR01575 20-OH-LTB4[r] + NADPH[r] + 1.5 O2[r] => 20-COOH-LTB4[r] + 2 H2O[r] + 
NADP+[r] 

MAR04423 H2O[e] + O2[e] + putrescine[e] => 4-aminobutanal[e] + H+[e] + H2O2[e] + 
NH3[e] 

MAR08606 H2O[c] + O2[c] + putrescine[c] => 4-aminobutanal[c] + H+[c] + H2O2[c] + 
NH3[c] 

MAR00059 3alpha,7alpha-dihydroxy-5beta-cholest-24-enoyl-CoA[x] + FADH2[x] + 0.5 
O2[x] => (24R,25R)3alpha,7alpha,24-trihydroxy-5beta-cholestanoyl-CoA[x] + 
FAD[x] 

MAR07703 glycolate[c] + O2[c] => glyoxalate[c] + H2O2[c] 

MAR07706 glycolate[x] + O2[x] => glyoxalate[x] + H2O2[x] 

MAR06539 inositol[c] + O2[c] => glucuronate[c] + H+[c] + H2O[c] 

MAR06606 ascorbate[c] + urate radical[c] <=> monodehydroascorbate[c] + urate[c] 

MAR06611 H2O[c] + O2[c] + urate[c] <=> 5-hydroxyisourate[c] + H2O2[c] 

MAR08017 H2O[x] + lysine[x] + O2[x] => 6-amino-2-oxohexanoate[x] + H+[x] + H2O2[x] + 
NH3[x] 

MAR08021 L-pipecolate[x] + O2[x] => 1-piperideine-6-carboxylate[x] + H+[x] + H2O2[x] 

MAR05390 H2O[c] + methionine[c] + O2[c] => 4-methylthio-2-oxobutanoic acid[c] + H+[c] 
+ H2O2[c] + NH3[c] 

MAR06770 H2O[c] + O2[c] + tyrosine[c] => 4-hydroxyphenylpyruvate[c] + H+[c] + H2O2[c] 
+ NH3[c] 

MAR07647 D-alanine[x] + H2O[x] + O2[x] => H+[x] + H2O2[x] + NH3[x] + pyruvate[x] 
* This reaction is a variant of another reaction in the model, with the only difference that this 

reaction generates ROS. It was removed for convenience; it is not needed in the model since we 
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Table S2 – Additional blood metabolite candidates from HMDB 
Available as a separate Excel sheet. 

Table S3 – Metabolites from HMDB that could not be mapped to the 

model 
Available as a separate Excel sheet. 

Table S4 – Consensus metabolite concentrations in blood and 

corresponding diffusion coefficients 
Available as a separate Excel sheet. 

Table S5 – Potential target reactions in hypoxia 
The following reactions were identified as important in hypoxia, while having only a negligible effect 

on growth in normoxia. The table shows the relative growth rate for the two conditions when the 

reactions are knocked out compared to the unperturbed case. The table was filtered to only show 

reactions where the relative growth rate was at least 10% lower in hypoxia compared to normoxia, 

while having a minimum relative growth rate of 0.5 in normoxia. 

Reaction id Pathway Relative growth in 
hypoxia 

Relative growth in 
normoxia 

MAR06914 OXPHOS, Complex IV 0.79 1.00 

MAR06916 OXPHOS, Complex V 0.81 1.00 

MAR06918 OXPHOS, Complex I 0.82 1.00 

MAR05043 OXPHOS, import of H+/Pi 0.90 1.00 

MAR04896_REV Oxygen uptake 0.75 0.99 

 

Table S6 – Potential collaboration metabolites between fibroblasts 

and tumor cells identified using the m2 model 
Available as a separate Excel sheet. 

Table S7 – Additional metabolite availability from dead cells 
Available as a separate Excel sheet. 

  



  



Supplemental notes 

Note S1 – GECKO Light 
The baseline implementation of GECKO had some disadvantages when used with large models: 1) It 

produced large models – a single FBA for our combined tumor model with three cell types took over 

10 minutes to solve; 2) The implementation led to very low-magnitude fluxes, which in turn could 

cause numerical instability in the solver, resulting in failure to find a solution despite a solution 

existing; and 3) The pipeline took a considerable time to run. To remedy these issues, we 

implemented a light-weight version of GECKO, called GECKO Light, which runs in a couple of minutes 

and produces smaller models that do not cause any numerical issues in the solver. Unless constraints 

of individual enzymes from for example absolute proteomics measurements are used, GECKO light 

should in theory produce the same results from FBA as a full GECKO model, although uncertainties in 

the solver may produce slightly different results.  

GECKO Light is based on strategies previously developed and implemented in GECKO Toolbox13,14, 

but with the aim to produce minimal models, similarly to what has been done in sMOMENT15. A 

m      i   “    _    ” i            h  m    ,        h      i        i     wi h      z m       

consumes this metabolite. The stoichiometric coefficient N is calculated as 

𝑁 =
∑ 𝑀𝑤,𝑖𝑖

𝑘𝑐𝑎𝑡
 

where Mw,i is the molecular weight of part i in the complex, where non-complex enzymes are treated 

as a complex with just one part and kcat represents the catalytic efficiency of the enzyme. In cases 

where several isozymes convey the same reaction, the stoichiometric coefficient of the isozyme with 

the lowest protein cost is used. 

Reactions with empty gene rules are assigned a standard protein cost (the median over all 

   i hi m   i     ffi i     f   “    _    ”     i   h  m    ). E  h          i                  

reactions only involving a single metabolite are excluded, as well as reactions marked as 

spontaneous in Human1. 

To hinder poorly matched outlier kcat values from dominating the simulation, GECKO Light fills in a 

standard protein cost for reactions with missing gene rules and corrects unrealistically low kcat values 

by not allowing values below a threshold (1 s-1). This value is at the low end of the range of kcat 

values reported for most enzymes (1- 100 s-1) (21506553) and is of the same order of magnitude as 

the kcat of the RuBisCO enzyme, known to be a particularly slow enzyme16. 

A        i       h          i    f  h  “    _    “ m      i   (       “    _    _   h    ”) i  

also added to the model. The constraint on the total metabolic enzyme usage was fit to 

experimental values of 11 cell lines from NCI-60 for which the specific growth rate and metabolite 

uptake rates were deemed reliable17–19, resulting in a value of 0.022 g/gDW. 

GECKO Light is also implemented as part of version 3 of GECKO toolbox. To investigate the 

differences between the Light and Full (baseline GECKO implementation), we used the GECKO 3 

implementation to create a full and a light model from Human-GEM, and ran a standard FBA 

optimized for growth on both models with standard protein pool constraint and unconstrained 

access to metabolites. Data from the run are presented in Table A below. A small discrepancy in 

growth rate was observed, which could potentially be explained by limitations in solver accuracy. 

The improvements in execution time have also been applied to the full GECKO model generation in 

GECKO 3.  



Table A. Comparison of Light and Full GECKO 3 models. 

Property name GECKO Light GECKO Full 

No. reactions 17,538 43,448 

No. metabolites 8,370 11,254 

Simulated growth rate 0.1428 0.1443 

  



Note S2 – diffusion model 
It is challenging to accurately model and quantify the maximum absolute fluxes of metabolites from 

the blood stream into the tumor. These fluxes depend on many parameters, such as capillary 

permeability and the geometry of the tumor and blood vessels. A more practical approach is to 

instead try to quantify the fluxes of metabolites relative to those of other metabolites, which can be 

useful for estimating which metabolites are potentially in short supply and thereby limiting for 

tumor growth. We assume a model where the influx of metabolites from the blood to the tumor is 

driven by diffusion.  

The diffusion process is modeled axisymmetrically in two dimensions with radial flux out from the 

capillary wall, assuming that the capillary is long and that we therefore have no net flux along the 

capillary (Fig A). In steady state, we assume a fixed concentration of each metabolite just outside the 

capillary wall, which is proportional to its concentration in the blood (cb). While it is hard to estimate 

the permeability of the blood vessel, such an assumption is reasonable under the assumptions that 

the blood vessel wall is thin, the concentration is constant in the blood vessel, and the metabolites 

are much smaller than the openings in the blood vessels. We then for simplicity assume an even 

distribution of cells in the tumor space, where the tumor space is divided into two regions for each 

metabolite. In tumor region A, closest to the capillary, there is an excess of the metabolite and cells 

only take up some of the available metabolite influx. In tumor region B, further away from the 

capillary, cells are starving and consume all the available metabolite influx. It is also assumed that 

the proportions of different cell types do not vary across the volume, and that cells operate 

according to the same metabolic regime regardless of distance to the capillary. The latter means that 

the uptake ui of metabolite i at any distance from the capillary can be expressed as 

𝑢𝑖 = 𝑔𝑢𝑟,𝑖 

where g is a proportionality constant and ur,i is the uptake of metabolite i at an arbitrarily chosen 

distance from the capillary that is the same for all metabolites. The border between region A and B is 

at different distances from the capillary for different metabolites. It is however important to realize 

that the metabolites of interest are the growth-limiting metabolites, since the estimate of the upper 

bounds of other metabolites have no effect on growth. In practice, all limiting metabolites are 

mainly used for ATP production. To simplify the model, we assume that the border between the 

regions A and B is at the same place for those metabolites, although this assumption may not hold 

for all metabolites. To simplify the calculations further, we use the approximation that this border is 

at the same distance from the capillary (xb) for all metabolites, since the upper bounds of non-

limiting metabolites has little effect on the modeling results. 



 

Fig. A. The diffusion model. 
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the case here, the concentration is on the scale of around 5,000 μM at the most (for glucose) and 

 h      i         i v   i                          i i   ,  ivi       h              i   “     ”). 

Th  m      i   f    i       mi       Fi  ’  fi      w:  

𝑱(𝒙) = −𝐷∇c(𝒙)    (1) 

where J is the flux, D the diffusion coefficient, and ∇c(x) is the metabolite concentration gradient in 

three-dimensional space (where x normally is a three-dimensional vector, in our model a two-

dimensional vector). We can determine ∇c(x) f  m              i i        Fi  ’           w: 

𝜕𝑐(𝑥,𝑡)

𝜕𝑡
= ∇ ∙ (𝐷∇𝑐(𝒙, 𝑡))    (2) 

where t is time and ∇ ∙ is the divergence of the vector field D∇c(x, t). For the problem at hand, we 

focus on steady state conditions, meaning that the left-hand side of Eq. 2 can be reduced to a sink 

which is constant over time (metabolite uptake) and that the concentration gradient is not 

dependent on time. We move the left-hand side to the right of Eq. 2. In Region A, the uptake rate is 

constant, and can simply be modeled as -A, where A is a constant.  In region B, we assume that cells 

take up a proportion of the metabolites that diffuse to the cell surface (with the same 

proportionality constant). This can be modeled as -BDc(x), where B is a constant. This assumes that 

for many substrates, such as glucose and amino acids, the most effective transporters have similar 

Km values. Since we assume that cells behave optimally, they will balance the expression of these 

transporters to obtain a similar transport capacity for all limiting metabolites, which will give a 

similar value for the constant B for those metabolites. 

If the cells in region A are assumed to behave the same way as cells on the border between region A 

and region B, we can assume that the metabolite uptake is the same for those cells. We can then 

replace the sink term -A with -BDc(xb), where xb represents the radial position of the border.  

For simplicity, we assume that the diffusion constant D      ’  v    wi hi   h    m  , whi h m     

that D can be moved out of the divergence. We can then rewrite Eq. 2 as 

outer 
boundary

Radial Flux
capillary

Region A

Region B



0 = ∇ ∙ (𝐷∇𝑐(𝒙)) −  
𝜕𝑐(𝑥,𝑡)

𝜕𝑡
= 𝐷∇ ∙ (∇𝑐(𝒙)) −

𝜕𝑐(𝑥,𝑡)

𝜕𝑡
=  𝐷∆𝑐(𝒙) −

𝜕𝑐(𝑥,𝑡)

𝜕𝑡
    (3) 

where ∆ is the Laplace operator. We now insert the sink term for Region A: 

0 = 𝐷∆𝑐(𝒙) − 𝐴 =  𝐷∆𝑐(𝒙) − 𝐵𝐷𝑐(𝒙𝒃)  (4)  

from which the diffusion constant can be removed: 

0 = ∆𝑐(𝒙) − 𝐵𝑐(𝒙𝒃)   (5) 

Similarly, we add the terms for Region B: 

0 = 𝐷∆𝑐(𝒙) − 𝐵𝐷𝑐(𝒙) (6), from which the diffusion constant can be removed: 

0 = ∆𝑐(𝒙) − 𝐵𝑐(𝒙)   (7) 

Given our assumptions, the concentration gradients for the limiting metabolites are not dependent 

on their diffusion coefficients in any of the regions. 

To determine the concentration gradient from this equation at maximum metabolite uptake, we 

need boundary conditions. In our case, Dirichlet boundary conditions are suitable since they specify 

concentrations, not fluxes, and thereby do not involve the diffusion coefficient. We assume that in 

steady state there is a fixed concentration of the metabolite just outside the capillary wall, which is 

proportional to the concentration in the blood (cb). It is hard to estimate the permeability of the 

blood vessel, but under the assumption that the blood vessel wall is thin, that the concentration is 

constant in the blood vessel, and that the metabolites are much smaller than the openings in the 

blood vessels, this is a reasonable assumption.  

The second boundary condition used is that at infinite distance from the blood vessel, the 

concentration is zero. This is a commonly applied assumption that is required to be able to solve the 

concentration equation.  

To solve the problem, we would need additional data, such as physical distances, etc., which is 

difficult to acquire. It is however not necessary to solve the problem to estimate the relative 

maximal fluxes of metabolites – we can directly draw some conclusions from the model given the 

assumptions: 1) The concentration gradient of a limiting metabolite is not dependent on the 

diffusion coefficient, since both Eq. 5 and 7 and the boundary conditions are independent of the 

diffusion coefficient. This means that the gradient ∇c(𝒙) is approximately the same for all limiting 

metabolites, given the same concentration in the blood. 2) The concentration gradient ∇c(𝒙) of a 

limiting metabolite is approximately proportional to the metabolite concentration in the blood. This 

follows from that at each boundary condition, the remaining concentration for the limiting 

metabolites is proportional to the concentration in blood (zero far out and proportional to the blood 

near the blood vessel), which intuitively means that the concentration gradient divided by the 

concentration in blood is approximately the same for all limiting metabolites. 

A    i   Fi  ’  fi      w, w       h      m      h  m  im m i f     f    imi i   m      i   i    any 

point of the tumor as 

𝐽(𝒙) = −𝐷∇c(𝒙) = 𝑎𝐷𝑐𝑏   (8) 

where the proportionality constant a is the same for all metabolites. For metabolic modeling 

purposes, the uptake flux of each metabolite can thus be constrained to this value. A low value of a 



represents the situation at a large distance from the capillary, while a high value gives conditions 

closer to the blood vessel. This equation can be generalized to  

𝑈𝑖 = 𝑎𝐷𝑖𝑐𝑏,𝑖   (9) 

where Ui is the estimated upper bound for the uptake flux of metabolite i, Di is the diffusion 

coefficient for metabolite i, and cb,i is the concentration of metabolite i in the blood. 

There are many uncertainties that will introduce errors in the diffusion model. The model is based 

on four major assumptions: 1) The border between region A and region B is at the same place for all 

metabolites. 2) The cells have the same relative uptake rate of the growth-limiting metabolites 

regardless of the value of a, which is a simplification of the complex behavior of cells; 3) The cells are 

equally good at taking up different metabolites; and 4) We assume that the blood is constantly 

replenished and that the concentration of metabolites and oxygen in the blood are unaffected by 

cellular uptake. 

Assumption 1 is likely violated for the limiting metabolites, which can be suspected from the FVA 

presented in Fig. S3. The violation is not expected to have a large impact on the modeling results but 

may introduce small errors in the estimated uptake bounds for some metabolites. The error 

manifests as a small under- or overestimation of the sink terms in Eq. 4 and Eq. 6 for some 

metabolites, but these errors are deemed small compared to the differences in metabolite 

concentrations in blood between metabolites. 

Assumption 2 is likely violated to a certain extent since different absolute metabolite concentrations 

are expected to make the cells operate according to different metabolic regimes, which will 

introduce errors to the estimated uptake constraints. An example of this is the Warburg effect, 

where cells closer to the capillary are expected to take up a lower fraction of oxygen (compared to 

other metabolites) than cells further away from the blood vessel. 

The third major assumption, where we assume that the cell is equally good at taking up different 

metabolites, is based on that most metabolites are imported to cells via effective transporters with 

low Km values. An example is the glucose transporter GLUT1, Km = 1-2 mM for glucose 20, and the 

glutamine transporter SNAT1, with reported Km = 0.23-0.30 mM 21. It is assumed that differences in 

Km and kcat between the transporters can be compensated for by different abundancies of the 

transporters in the cell membrane.  Oxygen is an exception, which behaves very differently from the 

metabolites. Oxygen easily diffuses into cells through the membrane; the diffusion through the cell 

membrane is reported to be negligibly lower than in water 22. Furthermore, the diffusion coefficient 

of oxygen is much higher than for the metabolites, making it more sensitive to errors in the diffusion 

model. Regardless of these differences, we still modeled oxygen uptake the same way as for the 

metabolites, although the relative constraint for oxygen uptake likely is less reliable. 

Assumption 4, where the blood is expected to be constantly replenished with nutrients and thereby 

have constant metabolite concentrations throughout the tumor, may not hold. Depletion of oxygen 

in blood vessels is a well-known phenomenon referred to as acute hypoxia 23, and we can assume 

that the same effect to a certain extent is available for other metabolites. As long as the limiting 

metabolites are depleted in an equal way that is not a problem. However, oxygen behaves 

differently since the concentration is replenished from hemoglobin in the blood, and metabolites 

with higher diffusion coefficients may be more depleted in the blood. While the differences between 

most metabolites likely are small, oxygen may stand out together with lipids and albumin. To 

investigate the effect of violations of this assumption, we also modeled the metabolism using a 



blood flow model, where the metabolite uptake bounds are limited by blood flow and not diffusion 

(Note S3). 

There are also uncertainties in the diffusion coefficients. For example, the diffusion constant of lipids 

and albumin are very uncertain, since they may be physically hindered to move in the TME due to 

their size. However, between metabolites such as glucose and amino acids, the difference in the 

diffusion coefficients is modest, and measurement errors there are not expected to have a large 

impact on the modeling results. 

Taking all error sources into consideration, the uptake constraints are to be seen as an 

approximation of the true value. The uptake constraints for oxygen and lipids are expected to be 

more uncertain than the rest. Oxygen levels are however not that critical for the modeling results, 

we only need the oxygen levels to be low, which is a well-known fact in tumors. Results regarding 

lipids, however, are more uncertain and should be interpreted with care. In general, the diffusion 

model is also more reliable for higher values of a, since a smaller part of the regions where cells take 

up metabolites have been passed, reducing the errors introduced by some of the assumptions. 

 

  



Note S3 – blood flow model 
The diffusion model operates under the assumption that the metabolite availability for a certain cell 

is largely determined by its distance to the closest blood vessels, assuming that the blood supply in 

those blood vessels is sufficient. In such a case, the concentrations of metabolites available for 

diffusion into the tumor can be estimated to standard concentrations in blood. However, there is 

evidence that blood vessels in tumors are abnormal, leading to poor blood flow into the tumor 24. 

There is therefore a risk of metabolite depletion in the blood and it could be that the blood flow 

rather than diffusion is the major limiting factor for metabolite supply to the cells. As an alternative 

to the diffusion model, we therefore also investigated the optimal metabolism using a blood flow 

model for limiting metabolite uptake rates. 

The influx of metabolites into the tumor is assumed to be proportional to that of the standard blood 

concentrations. In the blood flow model, we assume that all cells get access to a proportion of the 

metabolites flowing into the tumor. That proportion varies across cells, where some regions have a 

higher blood flow than others. In the blood flow model, we thus limit the upper uptake bound Ui of 

each metabolite i to  

𝑈𝑖 = 𝑎𝑐𝑏,𝑖   (10) 

where a is a proportionality constant (just as in the diffusion model) and cb,i is the standard 

concentration in blood of metabolite i. While it could be argued that the diffusion is still in play, the 

diffusion works in two ways. Given the same concentrations, metabolites with a higher diffusion 

coefficient can diffuse to the cells at a higher flux but will also be depleted faster in the blood, 

thereby lowering the concentration and reducing the effect. We have therefore chosen not to 

include the diffusion coefficient in the blood flow model. 

A difference in the blood flow model compared to the diffusion model is the concentration of 

oxygen used. In the blood flow model, we assume that most of the oxygen will eventually be 

exported out of the blood vessel regardless of if it is bound to hemoglobin or not, and we therefore 

use the total oxygen consumption, estimated to 9,200 μM 4, which increases the oxygen availability 

substantially compared to the diffusion model case. 

  



Note S4 – metabolite concentrations in blood 
Since the diffusion model requires concentrations of metabolites in blood, we retrieved blood 

plasma measurements from several sources to form a collection of 69 metabolites with associated 

concentration values. The metabolites were filtered on the criteria that the metabolite must be 

represented in the model and have a blood plasma concentration above 1 μM. Specifically, we 

downloaded the average concentration of 94 polar metabolites in blood plasma from 8,413 healthy 

patients in a Japanese cohort 5 , of which 64 passed the filtering criteria, which also included removal 

of lipids. In addition to these metabolites, we also allowed for uptake of albumin, since cancer cells 

are known to take up albumin as a source of amino acids, at a plasma mass concentration of  

40 g/l 25. 

Due to the high number of lipid species we grouped the lipids into two categories: sterols and other 

lipids, where the latter included fatty acyls, glycerolipids, glycerophospholipids, and sphingolipids. 

Sterols were represented by cholesterol in the model, while the other lipids were assumed to 

 v               v             m   i i    f f       i     fi        h  m      i   “NEFA            

i ”, whi h i       fi    i  Human1 to match the composition in blood plasma. Lipid concentrations 

in blood plasma were downloaded from literature26 and summed up to form mass concentrations in 

          m  f        w   i i        . Th   v      m         w i h   f  h  “NEFA            i ” 

was calculated from its composition, and the mass concentrations were then converted to blood 

plasma concentration  f    h              “NEFA            i ”.  

Estimation of the oxygen concentration is a special case since the concentration for the diffusion 

model should be that of free oxygen and not include oxygen bound to hemoglobin. The free oxygen 

has been estimated to only be around 1-2 % of the total oxygen in blood, at a concentration of 

around 100 μM 4. In addition, any remaining metabolites that are essential for growth were added 

either unbounded (for metabolites that do not actively contribute to growth, such as water etc.) or 

with an upper bound of ten times the lowest upper bound present for the other metabolites, which 

is a level tested to be sufficient but not high enough to have a large impact on growth. 

To test the validity of the metabolite concentration values, we downloaded and curated blood 

plasma concentration values from the human metabolome database (v. 4.0), HMDB1,2, which 

contains concentration data from a large collection of studies. The metabolite concentrations in our 

metabolite collection were in good agreement with HMDB for the metabolites present in both 

sources (Fig. S1). In addition, we scanned HMDB for metabolites that were not present in our 

metabolite collection, yielding a collection of additional metabolite candidates (Table S2) and a list of 

metabolites that could not be mapped to the model (Table S3), both only containing metabolites 

with modest concentrations. To reduce the complexity of the model we decided not to include any 

of the new candidates since they were not deemed important and concluded that none of the 

unmapped metabolites would have a large effect on our modeling outcome. Our collection of 

metabolites with associated concentrations was hence deemed suitable for use with our model. The 

metabolite concentrations are available in Table S4. 

  



Note S5 – metabolite diffusion coefficients in tumors 
The diffusion model requires the diffusion coefficients for the metabolites in the model. Reliable 

diffusion coefficients for the tumor microenvironment are scarce or unavailable, and it is difficult to 

know how diffusion coefficients differ between different fluids. Some values are available for blood 

plasma27, although these were based on nuclear magnetic resonance (NMR) measured in two 

dimensions, which has been reported to be less reliable28. We settled for using diffusion coefficients 

measured in mouse seminal fluid for 16 of the polar metabolites in our metabolite collection28. We 

predicted the diffusion coefficients for the remaining small polar metabolites based on a linear 

model based on molecular mass (Fig. S2), which is reasonable as long as the masses are within a 

reasonably small range29. The diffusion coefficient does not only depend on molecular mass but also 

on other properties, for example electrical charge and structure. Therefore, some diffusion 

coefficients deviate from the line, for example aspartate (underestimated in the model) and 

isoleucine (overestimated in the model), and a certain uncertainty in prediction is expected. The 

diffusion coefficients for albumin30 and oxygen31 were collected separately from the literature. Lipids 

are not soluble in water and are therefore transported together with albumin or a lipoprotein, or 

potentially as droplets. These are large particles that do not diffuse well, and we modeled the 

diffusion of these particles by using the diffusion coefficient of albumin for all lipids. The metabolite 

concentrations and diffusion coefficients are available in Table S4. 

  



Note S6 – Glutamine addiction and the NADH/FADH2 ratio 
Amino acid metabolism in the genome-scale model is tightly connected to the effects of 

NADH/FADH2 production in the model. In normal conditions, these substrates can be oxidized by the 

electron transport chain to yield ATP. However, for fast growing cells with sufficient access to 

nutrients and oxygen, enzymatic capacity becomes limiting for growth and the model compensates 

by reducing its use of the ETC. The ETC complexes, of particular interest complex I, are large and 

slow and there are other strategies that can yield more ATP per enzyme usage. While aerobic 

glycolysis is the main alternative for producing ATP, the TCA cycle also remains an option, but can 

only be used if the NADH/FADH2 generated in the cycle can be oxidized. Thus, if the cell can either 

generate less NADH/FADH2 while running the TCA cycle or use alternative pathways to oxidize these 

substrates, the flux through the TCA cycle can be increased, contributing to the total ATP production. 

The NADH/FADH2 ratio is also important, since NADH requires the use of complex I while FADH2 does 

not, and the enzymatic cost per ATP produced is higher if complex I is used. However, the oxidation 

of NADH/FADH2 by the ETC under hypoxic, nutrient-deprived conditions is limited by oxygen 

availability rather than enzyme usage, so it becomes important to get as much ATP as possible out of 

each oxygen molecule. Since the oxidation of FADH2 is coupled to the reduction of ubiquinone to 

ubiquinol without generating any proton motive force, the ratio of NADH to FADH2 processed by the 

ETC should be as high as possible. Depletion of NADH under such conditions may therefore have a 

negative effect on ATP production, and it may be beneficial to generate NADH by other means than 

running the TCA cycle to avoid generation of FADH2. 

While we do not predict such needs with the model, another important factor in some hypoxic 

conditions may be the ability of the TCA cycle to produce building blocks for the cell. For example, 

when cell lines are grown in severe hypoxic conditions with full access to a nutrient-rich medium, 

ATP could to a large extent be generated through glycolysis, and ATP generation may not be critical. 

The possibility to dispose of NADH to enable flux through the TCA cycle for the purpose of 

generating TCA cycle intermediates such as α-ketoglutarate as building blocks for the cell may in 

such cases be an important function in the cell32. 

As mentioned in the main text, glutamine can be used as substrate to the TCA cycle instead of 

pyruvate to increase the flux through the TCA cycle. This leads to less NADH production per round in 

the TCA cycle but requires disposal of aspartate. Aspartate can be exported directly but can also be 

converted to lactate (via fumarate, malate, and pyruvate) without requiring ATP or altering the 

redox balance, which may explain why aspartate export is not observed. This process couples the 

oxidation of NADH to NAD+ with the reduction of NADP+ to NADPH, which may impact other 

processes. In addition, export of dihydroorotate has also been reported in hypoxic conditions, posing 

as an alternative pathway for disposing of aspartate33. Interestingly, it has been reported that 

different cell lines have different strategies for aspartate supply; some do not express aspartate 

transporters and rely on ETC activity for aspartate production, which is consistent with our modeling 

results, while others rely on import34. An additional benefit of using glutamine as substrate for the 

TCA cycle instead of pyruvate is that less ROS is produced, since complex I is run less and complex I 

produces substantially more ROS than complex II35. Another possibility is that glutamine can be 

converted to α-ketoglutarate and further via the TCA cycle in reverse to acetyl-CoA to support 

lipogenesis, which has been reported to be an important pathway in cell lines cultured under 

hypoxia36. While this is not predicted by the model since many lipids are directly supplied by the 

diffusion model, such a behavior presents another possibility to dispose of NADH in hypoxia using 

glutamine.  



Note S7 – Materials and Methods  

Model preparation 
We used the genome-scale metabolic model Human1 (version 1.12) with added enzyme constraints 
(using Gecko Light, see Note S1). The model was manually curated by inactivating 25 reactions, since 
they led to unrealistic fluxes (Table S1). We removed all reactions related to amino acid triplets and 
drug metabolism. Furthermore, we removed all reactions that could not carry flux given the 
m      i     v i      i              m’  m  i , whi h w    i    ifi     i     m  ifi   v   i    f 
the f    i   “h v F   ” i  RAVEN T    ox, except for the macrophage simulation where these 
reactions were retained since new metabolites were added as input. Furthermore, a non-growth 
associated maintenance (NGAM) value of 1.833 mmol*gDW-1h-1 was collected from literature 37,38 
and added to the model as a lower bound on the reaction MAR03964, representing hydrolysis of ATP 
to ADP. While cells can be expected to continuously undergo autophagy combined with 
reconstruction of organelles and building blocks for the cell, we have reasoned that this can be 
approximated with an ATP cost included in the NGAM. This assumes that the raw material from the 
degraded parts to a large extent can be reused for construction of their replacements, and hence 
only a small influx of new building blocks is required, which is not accounted for in the model. It is 
however expected that such reconstruction comes at an ATP cost, which is covered by the NGAM. 

Combined model 
The combined model contained three cell types: CAFs, cancer cells, and other cells, where the latter 
refers to cells that do not collaborate with the cancer cells, for example some types of immune cells 
(Fig. 3A). All three cell types were represented by a separate instance of the curated Human1 model, 
but the CAFs were extended with reactions for building the extracellular matrix. Each cell type had 
its own interstitium compartment, where cancer cells had the TME interstitium compartment, which 
receives all metabolite influx from blood (Fig. 3B). This setup enabled control of metabolite flux 
between cell types, where the CAFs and cancer cells could exchange metabolites but the flux of 
metabolites between other cells and cancer cells was unidirectional towards the other cells. The 
tumor biomass reaction, which was used as the FBA objective, contained tumor cell growth and 
construction of ECM, where the latter was synthesized by the CAFs. CAFs and other cells were 
assumed to be recruited to the tumor, and the biomass reactions of these cells were therefore not 
included in the total tumor biomass reaction. The ECM was composed of collagen I and GAGs 
(represented by heparan sulfate) (Table S3). The protein cost in the ECM biomass reaction also 
included an ATP cost for polymerizing amino acids into peptides. There was a small enzyme usage 
cost added for transportation of metabolites from the fibroblast interstitium compartment to the 
TME interstitium, with the purpose of avoiding unnecessary transportation of metabolites between 
cell types (which could add additional collaboration metabolites).  

Modeling amino acid metabolism 
We used a special modeling configuration to generate the results in Table 1. For all setups, we first 

blocked the input of all metabolites and removed the protein usage constraint. We then set the 

upper bound of the input exchange reactions of water, phosphate, oxygen, and H+ to infinity. The 

objective function was then set to maximize the flux through the ATP hydrolysis reaction 

(MAR03964), and the NGAM ATP cost was removed. For each metabolite, we then set the upper 

bound of the input exchange reaction of that metabolite to 10 mmol*gDW-1h-1. The optimization 

was run in several settings: “Low O2”: Here, the upper bound of oxygen was set to 1 mmol*gDW-1h-1. 

“Low O2, no PRODH”: Same as ”Low O2”      h    v     PR D       i   (“MAR03838”) i       

blocked. “No O2, no PRODH”: Same as “Low O2, no PRODH”, but the oxygen upper bound is set to 

zero. “Enzyme Lim.”: The protein usage was constrained to 0.001 g/gDW. 



Flux Balance Analysis (FBA) 
Flux balance analysis was performed using RAVEN Toolbox v. 2.7.539. We used Gurobi v. 9.5.0 as the 

solver and set the numerical tolerances to 10-9. 

Flux Variability Analysis (FVA) to determine growth-limiting metabolites 
To identify growth-limiting metabolites, we first optimized the model for growth (maximization of 

flux through the biomass reaction). The lower bound of the biomass reaction was then set to the 

maximum specific growth rate (subtracted by 10-4 to avoid numerical issues in the solver), followed 

by an optimization for each metabolite i  f i       , wh     h  f     f  h  m      i  ’  im     

exchange reaction was minimized, resulting in the minimum uptake rate um,i needed to sustain the 

maximum specific growth rate. The minimum required fraction of the metabolite, f, was then 

calculated as 

𝑓 = 𝑢𝑚,𝑖/𝑢𝑑,𝑖 

where ud,i is the maximum uptake rate of the metabolite as defined by the diffusion model. 

Identification of collaboration metabolites 
Potential collaboration metabolites for each value of a were identified using an iterative algorithm 

on the m2 model. The algorithm in each iteration finds the potential collaboration metabolites, 

defined as metabolites that are exported from the fibroblasts and imported into the cancer cells 

when optimizing the model for total tumor growth using FBA. These metabolites are added to a list 

of potential collaboration metabolites and are then blocked from further collaboration by zeroing 

the upper bound of the transport reaction from the fibroblast interstitium compartment (f_s) to the 

TME interstitium compartment (s). The procedure is then repeated to identify new potential 

collaboration metabolites to add to the list, until no more such metabolites are found. Metabolites 

with infinite availability, such as water and H+, are excluded. We did not investigate if potential 

collaboration metabolites can actually contribute to growth since such an effect may be complex 

and is not easily identified.  

Macrophage collaboration 
To estimate the increase in uptake bound for metabolites from macrophage collaboration, we first 

   iv    h  m      i     m   i i    f  h        f  m  h       i   “ i m   _h m  ”, i    i   ATP 

(since it is spent during growth) and some lowly abundant metabolites. A few metabolites that did 

not have exchange reactions were either changed to a similar compound or removed. We then for 

each value of a first optimized for growth. The additional metabolite availability uadd,i,x for metabolite 

i at a=x was then calculated as 

𝑢𝑎𝑑𝑑,𝑖,𝑥 = 𝑛𝑖 ∗ 𝑔𝑥 ∗ 𝑓𝑑𝑒𝑎𝑑 

where ni is the molar composition of metabolite i in the biomass reaction (mmol/gDW), gx is the 

specific growth rate at a=x, and fdead is the fraction of cells produced that die, assumed to be 0.1 in 

 h   im    i   . Th  f       i       w      v          h  m      i    “ h         ”     “NEFA       

     i ”. Th  m      i         h i            i         v i      i  T     S7. 

Software 
The data was analyzed using MATLAB R2019b and R version 3.6.1. MATLAB was used for all analyses 

and the figures were generated in R. To ensure the quality of our analyses, we verified and validated 

the code using a combination of test cases, reasoning around expected outcome of a function, and 



code review. The details of this activity are available in the verification matrix available with the 

code.  

Availability of data and materials 
The model Human1 is available in GitHub (https://github.com/SysBioChalmers/Human-GEM).  

kcat values are indirectly available in the Gecko Light repository in GitHub 

(https://github.com/SysBioChalmers/GeckoLight). Metabolite concentrations and diffusion 

coefficients are available in Table S4. The processed data and source code are available in Zenodo: 

https://doi.org/10.5281/zenodo.10277291. The source code is also available in GitHub: 

https://github.com/SysBioChalmers/TMEModeling. 

  

https://github.com/SysBioChalmers/Human-GEM
https://github.com/SysBioChalmers/GeckoLight
https://doi.org/10.5281/zenodo.10277291
https://github.com/SysBioChalmers/TMEModeling
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