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ABSTRACT Microbial communities in nature are dynamically evolving as member 
species change their interactions subject to environmental variations. Accounting for 
such context-dependent dynamic variations in interspecies interactions is critical for 
predictive ecological modeling. In the absence of generalizable theoretical foundations, 
we lack a fundamental understanding of how microbial interactions are driven by 
environmental factors, significantly limiting our capability to predict and engineer 
community dynamics and function. To address this issue, we propose a novel theoretical 
framework that allows us to represent interspecies interactions as an explicit function 
of environmental variables (such as substrate concentrations) by combining growth 
kinetics and a generalized Lotka-Volterra model. A synergistic integration of these two 
complementary models leads to the prediction of alterations in interspecies interactions 
as the outcome of dynamic balances between positive and negative influences of 
microbial species in mixed relationships. The effectiveness of our method was experi­
mentally demonstrated using a synthetic consortium of two Escherichia coli mutants 
that are metabolically dependent (due to an inability to synthesize essential amino 
acids) but competitively grow on a shared substrate. The analysis of the E. coli binary 
consortium using our model not only showed how interactions between the two amino 
acid auxotrophic mutants are controlled by the dynamic shifts in limiting substrates 
but also enabled quantifying previously uncharacterizable complex aspects of microbial 
interactions, such as asymmetry in interactions. Our approach can be extended to other 
ecological systems to model their environment-dependent interspecies interactions from 
growth kinetics.

IMPORTANCE Modeling environment-controlled interspecies interactions through 
separate identification of positive and negative influences of microbes in mixed 
relationships is a new capability that can significantly improve our ability to understand, 
predict, and engineer the complex dynamics of microbial communities. Moreover, the 
prediction of microbial interactions as a function of environmental variables can serve as 
valuable benchmark data to validate modeling and network inference tools in microbial 
ecology, the development of which has often been impeded due to the lack of ground 
truth information on interactions. While demonstrated against microbial data, the theory 
developed in this work is readily applicable to general community ecology to predict 
interactions among macroorganisms, such as plants and animals, as well as microorgan­
isms.

KEYWORDS microbial communities, competition, cooperation, context dependence, 
kinetic models, Lotka-Volterra models

M icrobial communities play pivotal roles in maintaining human and animal health, 
plant productivity, and ecosystem services (1–4). Increasing efforts are being 

dedicated toward maximizing their beneficial roles in natural systems or creating 
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new industrial applications (5). However, control and design of microbial community 
dynamics and function are challenging tasks, primarily due to higher-order or 
emergent properties that are not observable from individual species in isolation but arise 
through nonlinear interspecies interactions (6, 7). Therefore, rational design of microbial 
communities or consortia requires a fundamental knowledge of microbial interactions as 
a mechanistic linkage between the environment and the community compositions and 
function, necessitating the employment of predictive mathematical models as indispen­
sable tools (8–14).

The development of accurate models of microbial communities that are commonly 
subject to environmental variations is truly complicated by the following intrinsic 
ecological aspects. First, microorganisms in a community build dynamic interactions 
that cannot effectively be represented by a rigid network with a fixed structure (15, 
16). Rather, microbial communities keep reorganizing interaction networks in response 
to biotic and/or abiotic perturbations or through adaptation to long-lasting environ­
mental changes. Second, microorganisms often build mixed relationships by exerting 
both promotive and inhibitive impacts on the growth of their partners/neighbors 
(17, 18). Individual identification of these simultaneously acting positive and negative 
interactions is critical because community dynamics is mainly driven by the balances 
between all counteracting impacts among member species (19). The lack of capability to 
account for these key properties of microbial interactions limits our ability to predict and 
engineer microbial community dynamics and functions.

Despite rapid progress in microbiome science, we still do not know how to iden­
tify environment-controlled dynamic variation in interspecies interactions addressed 
above. Three major branches of microbial interaction modeling include (20, 21) (i) 
network inference, (ii) metabolic network modeling, and (iii) kinetic modeling. Network 
inference is widely used for modeling microbial interactions to identify interaction 
networks based on correlative relationships among microbial populations (22–25), 
parameter identification through regression (26–28), or a prescribed set of rules or 
hypotheses (21). The resulting networks represent interspecies interactions as single 
constant metrics, therefore being unable to describe dynamic variations in interactions 
or identify the balances among counteracting individual impacts in mixed relationships. 
As an exception, the approach termed minimal interspecies interaction adjustment (15, 
16) uniquely enables predicting context-dependent interactions due to the changes 
in memberships, which, however, has not been extended to address the environmen­
tal impacts. In contrast with such data-driven network inference methods, metabolic 
network and kinetic modeling can account for both positive and negative interactions 
based on cross-feeding of small molecules (essential for growth) or competition for 
shared substrates/nutrients among species; in theory, kinetic models can additionally 
simulate their dynamic variations. While more mechanistic than network inference, these 
methods cannot quantify the magnitude or even the sign of net interactions.

In this work, we fill these gaps by proposing a novel theoretical framework that 
enables a quantifiable, mechanistic representation of the dynamic linkage between 
microbial interactions and the environment. For this purpose, we synergistically integrate 
two complementary modeling frameworks to overcome their own limitations: a 
generalized Lotka-Volterra (gLV) model (29) and population growth kinetics. Like other 
network inference approaches, a typical gLV model with a focus on pairwise interactions 
is constructed based on an implicit assumption of constant interactions. We relax this 
assumption by representing interaction coefficients in the gLV model as a function 
of environmental variables (i.e., concentrations of cross-fed metabolites and shared 
substrates) described in microbial growth kinetics, which is termed here kinetics-based 
inference of dynamic variation in microbial interactions (KIDI). The resulting functional 
representation of interactions by KIDI enables not only quantifying their dynamic 
variation as environmental conditions change but also individually identifying negative 
and positive influences among species in mixed relationships. The effectiveness of 
KIDI was demonstrated through a coordinated design of experiments using a binary 
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consortium composed of tyrosine and tryptophan auxotrophic mutants of Escherichia 
coli (30) so that they both compete and/or cooperate depending on environmental 
conditions.

RESULTS

Formulation of a conceptual model for understanding environment-depend­
ent interactions

For illustration of the concept of KIDI, we consider a hypothetical consortium composed 

of two members, where species 1 (X1) and species 2 (X2) cooperate by cross-feeding S1+
and S2+ each other but compete for the shared metabolite S− (the center circle in Fig. 

1). Growth kinetics for the ith species (Xi) (which requires two substrates Si+ and S− for 
growth) can be represented, e.g., using a double Michaelis-Menten equation as follows:

(1)μi =  μimax  Si+Ki+  +  Si+   S−Ki−  +  S− ,   i = 1, 2
where µi (1/h) is the specific growth rate of Xi , μimax is the maximal specific growth 

rate, si+ and s− (g/L) are the concentrations of Si+ and S− , and Ki+ and Ki− (g/L) are half-

saturation constants associated with the consumption of Si+ and S− , respectively. As 
inferable from growth kinetics in equation 1, the mixed relationship (i.e., competition and 
cooperation) between X1 and X2 when both substrates are limiting can turn into diverse 

forms of interactions as environmental conditions change. When S− is present in excess 

(therefore, no competition is necessary) but S1+ and S2+ are limiting, for example, their 

relationship is predominantly cooperative (where μi ≈ μimaxsi+Ki+ + si+ ). In the opposite case, if 

both S1+ and S2+ are excessive in the environment (so no partners are needed to acquire 

them) while S− is limiting, their relationship is governed by competition (where μi ≈ μimaxs−Ki− + s− ). Likewise, one can assume many other different scenarios where their 

relationships turn into competition, cooperation, amensalism, commensalism, and even 
neutrality, as illustrated in Fig. 1.

Representation of interaction parameters as a function of environmental 
variables

To model such environment-dependent microbial relationships, we derived a general 
form of interaction coefficients as a function of environmental variables by integrating 
growth kinetics and a gLV model. As described in detail in Materials and Methods, our 
formula (KIDI) represents interaction coefficients of species in the mixed relationship as a 
sum of positive and negative parts, i.e.,

(2)ai, j si+, s− = ai, j+ si+, s− + ai, j− si+, s− ,    i, j = 1, 2  or  2, 1
where ai, j+  and ai, j−  denote the positive and negative influence of Xj on the growth 

rate of Xi , which are defined as follows:

(3)ai, j+ si+, s− ≡ ∂∂si+ μi si+, s− ⋅ ∂si+∂xj (4)ai, j− si+, s− ≡ ∂∂s− μi si+, s− ⋅ ∂s−∂xj
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The positive influence of Xj on the growth rate of Xi (i.e., ai, j+ ) is represented by the 
two subsequent terms on the right-hand side of equation 3: (i) the impact of the change 

in the population size of X j on the concentration of the cross-fed substrate Si+ (as 

denoted by ∂si+/ ∂xj) and (ii) the subsequent impact of the change in Si+ on the growth 

rate of the ith species (i.e., μi) (as denoted by ∂ μi s−, si+ / ∂si+). The negative impact of Xj
on the growth rate of Xi (ai, j− ) in equation 4 can be interpreted in a similar fashion.

The derivative terms on the right-hand side of equations 3 and 4 are fully identifiable 
from reaction stoichiometry and kinetics. In the case of using a double Monod kinetics, 

for example, incorporation of equation 1 into equations 3 and 4 yields ai, j+  and ai, j−  as 
follows:

(5)ai, j+ si+, s− = μimax Ki+Ki+ + si+ 2
s−Ki− + s− ⋅ YSi+/Xj

FIG 1 Conceptual illustration of context-dependent microbial interactions in a binary consortium dictated by the environmental contexts. Two species X1 and 

X2 compete for the substrate S− but cooperate by cross-feeding metabolites S1+ and S2+ (center panel). This mixed relationship between X1 and X2 diverge into 

six different types of interactions by excessive addition of specific substrates S1+, S2+, and/or S−. Symbols next to the arrows denote the substrate(s) excessively 

added to the environment.
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(6)ai, j− si+, s− = μimax si+Ki+ + si+ Ki−Ki− + s− 2 ⋅ −YS−/Xj
where YSi+/Xj and YS−/Xj denote the stoichiometric relationships between 

the changes in substrate and biomass concentrations associated with Xj, i.e., YSi+/Xj = Δsi+/Δx j  and YS−/Xj = Δs−/Δx j  (see Materials and Methods).

To identify net interactions between two species with mixed relationships, we further 
defined a normalized interaction parameter γi, j as follows:

(7)γi, j ≡ ai, j+ + ai, j−ai, j+ − ai, j− ,    i, j = 1, 2  or  2, 1
Once ai, j+  and ai, j−  are identified from equations 3 and 4, the parameter γi, j is readily 

calculable by equation 7. The parameter γi, j ranges from −1 to 1 to represent posi­
tive influences of species j on species i when greater than 0 and negative impacts 
when less than 0, respectively, consequently allowing us to conveniently quantify the 
relative dominance of inhibition vs promotion in mixed interactions. The parameter γi, j
complements ai, j, rather than replaces it, in that the magnitude of interactions cannot 
be determined by γi, j, but by the original interaction parameter, ai, j. In this regard, γi, j
provides an additional complementary explanation of dynamic changes in interspecies 
interactions. Therefore, all these parameters, including ai, j defined in equations 2 to 4 
and γi, j, sufficiently characterize the dynamic variation of interactions between X1 and X2
based on co-culture growth data as demonstrated in the following sections.

Identification of kinetics and stoichiometry via data fit

For experimental demonstration of the mathematical formulation derived in the 
previous section, we constructed a synthetic consortium composed of two E. coli 
auxotrophic mutants that can cooperatively cross-feed amino acids, while competi­
tively growing on glucose (31). Among 14 amino acid auxotrophic mutants, we chose 
tryptophan and tyrosine auxotrophic mutants by considering the bioenergetic cost for 
the synthesis of amino acids based on a previous study in the literature (30). This 
consortium is considered an ideal, simplest model system for studying environment-
dependent dynamic variations in microbial interactions. Due to its exact correspondence 
to the hypothetical consortium in Fig. 1, we denote two E. coli mutant strains ΔtrpC and 

ΔtyrA by X1 and X2 and glucose, tryptophan, and tyrosine by S−, S1+, and S2+, respectively.
Using these two strains, we performed growth experiments under diverse culture 

conditions: two individual batch experiments using X1 (Fig. 2A) and X2 (Fig. 2B), 
respectively, and two sets of co-culture experiments (Fig. 2C and D). The top panels 
in Fig. 2C and D denote co-growth experiments in batch cultures, while the middle 
and bottom panels denote the same in semi-batch cultures, where we added glucose 
feedbeads (FBs) at times 7.5 and 10 hours, respectively, to induce dramatic changes in 
interspecies interactions during co-growth. Other differences in co-culture conditions in 

Fig. 2C and D include initial concentrations of S−, S1+, and S2+, and the number of added 
FBs (see supplemental material). We measured optical density (OD) at an absorbance 
of 600 nm as a metric of cell density for the entire culture and determined the relative 
proportions of the species populations through additional analysis using quantitative 
PCR (qPCR). By combining these two measurements, we obtained individual ODs for 
each strain in Fig. 2C. The OD profiles in Fig. 2D denote the combined population change 
of both strains, i.e., X1 + X2.

Based on the four data sets in Fig. 2, we constructed a dynamic co-growth model of 
X1 and X2 to determine associated kinetics and stoichiometry, key information required 
for quantifying interspecies interaction parameters (ai, j and γi, j) in equations 2 to 7. The 
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dynamic co-growth model is composed of five mass balance equations for X1, X2, S−, S1+, 

and S2+. We determined stoichiometric and kinetic parameters using three subsets of 
data in Fig. 2A through C and validated the model against the remaining one (in Fig. 2D) 
that was not used for model identification. The consistency between simulated and 
measured data in Fig. 2D, as well as those in Fig. 2A through C, indicates the acceptability 
of using the identified model parameters in inferring interaction coefficients. The full list 

FIG 2 Experimental data and model simulations for the growth of two E. coli mutant strains in axenic and binary culture conditions. (A and B) Cultures of 

tryptophan auxotrophic and tyrosine auxotrophic E. coli mutants (X1 and X2), respectively. (C and D) Co-cultures with two auxotrophs in batch and semi-batch 

cultures. Detailed culture conditions for the 12 panels are provided in Table S2. Circles and lines denote the experimentally measured values and simulation 

results, respectively. Black line denotes simulation results for glucose concentration (S−), and the lines in blue, red, and purple are simulated population densities 

of X1 , X2, and X1 + X2. The vertical error bars represent the standard deviation of measurements across three replicates. Panels A, B, and C show data fitting to 

determine model parameters, while the results in panel D validate model predictions.
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of model equations with parameter values is provided in Table 1 and the culture 
conditions in Table S1.

While the overall performance of the kinetic model was satisfactory, we found that 
our experimental setups were not ideal for accurately determining all model parameters. 
For example, Fig. 2A and B did not effectively show the dependence of the growth of 
ΔTrp and ΔTry strains on tryptophan and tyrosine because the range of initial concentra­
tions of amino acids (from 10 to 40 mg/L) was too high compared to the half-saturation 

constants K1
+ and K2

+ (which were determined to be 0.0033 mg/L for tryptophan and 
0.00039 mg/L for tyrosine, respectively). This mismatch is partly due to the difficulty 
in identifying the magnitudes of half-saturation constants in advance before being 
determined through data fit. We also investigated to what extent model uncertainties 
could be reduced by expanding the data sets for parameter identification. We found 
that the inclusion of all experimental data sets from Fig. 2A through D yielded similar 
parameter values to those listed in Table 1, showing no appreciable changes in both 
model simulations and KIDI’s estimation of interspecies interaction coefficients.

Variation in microbial interactions driven by the switch in limiting substrates 
in batch cultures

Based on the stochiometric and kinetic parameters determined through data fit in Table 
1, we were able to determine microbial interactions and their variations as a function 
of environmental conditions using KIDI. We first analyzed various co-culture scenarios in 
batch reactors (Fig. 3). In Fig. 3A, we considered the growth of X1 and X2 on relatively 

high and low initial concentrations of S− (2 g/L) and S1+ and S2+ (1 mg/L for both) 
as a reference condition. In the present setting, the relationship between X1 and X2
is expected to be mostly cooperative (because S− is excessive in the beginning) and 

become competitive as the level of S− decreases. While this overall trend was captured 
well by our model, the simulation results showed more intricate dynamics than our 

expectations. As depicted in the top panel of Fig. 3A, the concentrations of S1+ and S2+
show a decreasing and increasing trend over time, respectively. This means that X2 does 

not supply sufficient S1+ for X1, whereas X1 provides an excess of S2+ for X2. As a result, the 
growth pattern of X1 exhibits two distinct exponential phases. Notably, the second phase 

commences with a slower growth rate when S1+ becomes depleted in the medium (the 
second panel from the top). This dynamic accounts for the observed slowdown in the 

consumption rate of S− (in the first panel). Overall, these results indicate that the growth 

of X1 has a greater dependency on X2 than X2 has on X1 , particularly when S1+ becomes 
depleted. This aspect is correctly captured by the higher values of γ1,2 than γ2,1 as shown 
in the third panel from the top. Actual values of interaction coefficients can be seen from ai, j, ai, j+ , and ai, j−  (three bottom panels of Fig. 3A), which also showed that a1,2+  > a2,1+  (and 
consequently a1, 2 > a2, 1) in the second growth phase of X2.

For comparison, we analyzed two additional conditions (i) with a lower initial 

concentration of S− (i.e., 0.5 g/L) (Fig. 3B) and (ii) with lower and higher initial concentra­

tions of S− (0.5 g/L) and S1+ and S2+ (i.e., 4 mg/L for both) (Fig. 3C), respectively. Unlike the 

first case in Fig. 3A, the growth profile of X2 does not show biphasic growth because S1+
and S− are depleted almost at the same time. In the case of lowering the initial concen­

tration of S− (Fig. 3B), KIDI showed that the level of initial competition increases (due to 

the limited availability of S−) as indicated by relatively lower values of γ1, 2 and γ2, 1
compared to the case of Fig. 3A. Notably, γ2, 1 showed negative value throughout the co-
growth (indicating the dominance of negative influence of X1 on the growth of X2). In 

the case of increasing the initial concentrations of S1+ and S2+ in addition to lowering S−
(Fig. 3C), the relationship between the two strains became even more negative (i.e., both 
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γ1, 2 and γ2, 1 are negative), which was also an expected outcome because metabolic 
dependence between X1 and X2 will accordingly reduce when they can acquire what 
they need from the environment, rather than from partners.

In all of these cases, the relations between the two E. coli strains were asymmetric, i.e.,γ1,2 ≠ γ2,1, a1, 2 ≠ a2, 1, a1,2− ≠ a2,1− , and a1,2+ ≠ a2,1+ . Asymmetric interactions in terms of ai, j′s
can also be seen over smaller time windows in Fig. S1. KIDI predicted a1, 2 > a2, 1 for the 
first two cases (Fig. S1A and B) but a1, 2 < a2, 1 for the third case (Fig. S1C). In the reference 

condition where glucose is excessive (so ai, j− ’s are relatively negligible), it is mostly due to a1, 2+ > a2, 1+  (i.e., X1 has a higher comparative advantage in exchanging amino acids with 
X2 than the other way around) that leads γ1, 2 > γ2, 1 (as well as a1, 2 > a2, 1) (Fig. 3A; Fig. 
S1A). A similar trend (i.e., γ1, 2 > γ2, 1 and a1, 2 §amp;gt; a2, 1) is observed in the second case 
where all substrates (glucose and amino acids) are limitedly available in the environment 

and therefore both ai, j+ ’s and ai, j− ’s make comparable contributions to the net interaction 
coefficients (i.e., ai, j’s) (Fig. 3B; Fig. S1B). In contrast with the first two cases, the net 
interaction coefficients are shown to be a1, 2 < a2, 1 for the third case, where the glucose 

level is low while amino acids are abundant (so ai, j+ ’s are negligible) because the magni­

tudes of ai, j− ’s are greater than ai, j+ ’s. Interestingly, KIDI predicted γ1, 2 > γ2, 1 (Fig. 3C) 
despite a1, 2 < a2, 1 (Fig. S1C), which can happen because the implications of γi, j and ai, j
are not necessarily identical. The former denotes the relative dominance between 

TABLE 1 Model equations with kinetic parameters and stoichiometric coefficients determined through 
the model fit to experimental data collected under various limiting conditionsa

Equation or parameter

Stoichiometric equation (Ri) for the growth of XiRi :YS−/XiS− + YSi+/XiSi+ → Xi + YSj+/XiS j+,       i, j = 1, 2  or  2, 1 (T1)

Dynamic mass balancesdxidt = μixi − kd, ixi,      i = 1, 2 (T2)

ds−dt = − YS−/X1μ1x1 − YS−/X2μ2x2 +qS− (T3)

dsi+dt = − YSi+/Xiμixi + YSi+/Xjμjxj,       i, j = 1, 2  or  2, 1 (T4)

Double Monod kinetics

μi = μimax si+Ki+ + si+ s−Ki− + s− ,      i = 1, 2 (T5)

Kinetic parameters and stoichiometric coefficients determined through data fit
Parameter Value Parameter Valueμ1max (1/h) 2.961 × 10−1 YS−/X1 (g/OD) 1.372μ2max (1/h) 1.658 × 10−1 YS−/X2 (g/OD) 1.773K1− (g/L) 3.091 × 10−4 YS1+/X1 (mg/OD) 1.550

K2− (g/L) 3.923 × 10−4 YS1+/X2 (mg/OD) 2.961

K1+ (mg/L) 3.300 × 10−3 YS2+/X1 (mg/OD) 1.365

K2+ (mg/L) 3.881 × 10−4 YS2+/X2 (mg/OD) 2.994kd, 1 (1/h) 1.206 × 10−4 qS− (for three FBs) (g/L/h) 5.580 × 10−2kd, 2 (1/h) 4.024 × 10−7 qS− (for five FBs) (g/L/h) 9.300 × 10−2

aRi is the stoichiometric growth reaction for Xi, and YS−/Xi, YSi+/Xi, and YSj+/Xi denote the stoichiometric 

coefficients for S− , Si
+ , and S j

+ associated with the growth of Xi. s−, si+, and sj+, respectively, denote concentra­

tions of S−, Si+, and Sj+, xi is the population density of Xi, μi is the specific growth rate of Xi, kd, i is the specific 
cell death rate of Xi, and qs− is the substrate releasing rate from FBs in glucose-limited semi-batch cultures 

(i.e., qs− = 0 in a batch mode). μimax is the maximal growth rate, and Ki− and Ki+ are half-saturation constants 

associated with the consumption of S− and Si
+.
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promotion vs inhibition in the relationship of species i with species j, while the latter 
represents the net effect of species j on the growth of species i .
Dynamic response of microbial interactions to environmental perturbations 
during growth

We extend our analysis to semi-batch cultures that are perturbed by the addition of 
glucose FBs during growth and therefore are expected to show more dramatic changes 
in interspecies interactions and community dynamics. In contrast with the batch cultures 
considered in the previous section, where no further growth is possible after the 

depletion of the initially added S−, the two strains continue to grow in semi-batch 

cultures due to slow but continual provision of S− from the added FBs. Despite a general 
expectation that the competition level between the two strains will be mitigated at 
least at the moment of FB addition, it is uncertain (i) to what degree this will occur 
under different environmental conditions, and (ii) how governing microbial interactions 
will shift (between competition and cooperation), particularly in a later phase when the 

growth of the two strains is be limited by both S− and Si+. To answer these questions, we 
applied KIDI to the following three cases. For simplicity, we set the initial conditions to be 
the same as before.

First, we considered the initial concentrations of 2 g/L for S− and 1 mg/L for S1+ and 

S2+ and added three FBs of S− at around 7.5 hours (Fig. 4A). Due to the relatively high 

concentration of S− , the impact of adding three FBs of S− on interactions was minimal. 

FIG 3 Inference of dynamic variations of interaction parameters (γi, j, ai, j, ai, j+ , and ai, j− ) for the two E. coli mutants (X1 and X2) co-growing in three batch cultures. 

Initial substrate concentrations were (A) 2 g/L of glucose, 1 mg/L of tryptophan, and 1 mg/L of tyrosine; (B) 0.5 g/L of glucose, 1 mg/L tryptophan, and 1 mg/L of 

tyrosine; and (C) 0.5 g/L of glucose, 4 mg/L of tryptophan, and 4 mg/L of tyrosine. Black line denotes the simulated concentration of glucose (S−); the lines in blue 

and red indicate the variables and parameters associated with X1 and X2, respectively.
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The profiles of interaction parameters (i.e., γi, j, ai, j, ai, j+ , and ai, j−  in the four bottom panels 
in Fig. 3A) as well as the growth curves of X1 and X2 showed no qualitative differences 

from the batch case (Fig. 3A), while the concentration profile of S− showed an apprecia­
ble increase at the time of addition of three FBs (the top panel in Fig. 3A).

By contrast, when the initial concentration of S− was low (i.e., 0.5 g/L) (Fig. 4B), KIDI 
identified the greater impact of adding FBs on both glucose concentration and microbial 

interactions, as indicated by sudden increases in S−, γ1, 2, and γ2, 1. Interestingly, the value 

of γ1, 2 shifted to negative (from positive) when the medium was depleted of S− but 

reverted to positive upon the depletion of S1+. The latter suggests a substantial rise in 

the dependence of X1 on X2 in the absence of S1+ from the medium. A similar pattern 

was also noted for a1,2 , a1,2+  , and a1,2− . Additionally increasing the initial concentrations 

of S1+ and S2+ (as shown in Fig. 4C), thereby intensifying the level of competition, resulted 
in overall patterns similar to the previous case. However, both γ1, 2 and γ2, 1 consistently 
showed negative values, attributed to the heightened competition. Unlike the previous 

scenario, there was no increase in interaction parameters, as S1+ remained available in 
the medium throughout the time window up to 30 hours. Asymmetry in interaction 
parameters over a shorter time frame is observable in the detailed views provided in Fig. 
S2.

The simulations presented in this section demonstrate that the interactions between 

the two strains are highly nonlinear, influenced by the availability of S−, S1+, and S2+ in 

FIG 4 Inference of dynamic variations of interaction parameters (γi, j, ai, j, ai, j+ , and ai, j− ) for the two E. coli mutants (X1 and X2) co-growing in three semi-batch 

cultures with three glucose FBs added at 7.5 hours. Initial substrate concentrations were (A) 2 g/L of glucose, 1 mg/L of tryptophan, and 1 mg/L of tyrosine; 

(B) 0.5 g/L of glucose, 1 mg/L tryptophan, and 1 mg/L of tyrosine; and (C) 0.5 g/L of glucose, 4 mg/L of tryptophan, and 4 mg/L of tyrosine. Black line denotes the 

simulated concentration of glucose (S−); the lines in blue and red indicate the variables and parameters associated with X1 and X2, respectively.
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the environment, as well as the growth characteristics of X1 and X2. As a general trend, 

interspecies interactions were dominated by competition when S− levels were low but 

shifted toward cooperation in the presence of additional limitations of S1+ (potentially 

S2+ as well). Similar patterns were observed in other scenarios involving perturbations, 
where both the number of added FBs and the timing of their addition varied, as shown in 
Fig. S3.

DISCUSSION

In this study, we proposed a novel computational method (KIDI) that enables quan­
titatively identifying environment-dependent interspecies interactions in microbial 
communities. By integrating growth kinetics into a gLV model, we derived an analytical 
form of interaction coefficients as a function of environmental variables (i.e., concentra­
tions of chemical substrates that affect interactions), the results of which were subse­
quently validated through a coordinated design of co-culture experiments.

Our theoretical development significantly extends the current scope of micro­
bial ecological modeling by completely relaxing the typical assumption of constant 
interactions among species. The gLV model, for example, has been widely used as a basic 
ecological modeling template for the simulation of population dynamics and inference 
of interspecies interactions in microbial communities (26–28). Due to the constant 
interaction assumption, however, the application of the gLV model is often confined 
to a narrow range of conditions where interspecies interactions are expected to remain 
largely constant. KIDI addresses this limitation by representing interaction coefficients 
as an explicit function of limiting substrates. As an exception, a previous study by 
Momeni et al. (32) showed that pairwise interaction (i.e., gLV) models are derivable from 
mechanistic (i.e., kinetic) models through empirical manipulation of equations, which is, 
however, limited to special forms of kinetics and therefore cannot be generalizable (32). 
By contrast, our chain rule-based formulation allows us to handle any complex forms of 
kinetic equations with no such constraints. Consequently, KIDI enables the incorporation 
of any form of kinetic equations as demonstrated using a double Michaelis-Menten 
kinetics as a demonstration example.

Dynamic variations in microbial interactions inferred by KIDI were experimen­
tally validated using a synthetic binary consortium of two metabolically engineered 
auxotrophic E. coli mutants that cross-feed amino acids they cannot synthesize (i.e., 
tryptophan and tyrosine). A coordinated design of experiments provided multiple sets 
of data required for determining kinetic and stoichiometric parameters in the mech­
anistic model along with substrate concentrations, which are key inputs for quantify­
ing environment-dependent interactions. Despite diverse culture conditions including 
axenic and binary growth in batch and semi-batch reactors, our model with a single 
set of parameters showed a satisfactory fit to the three training data sets and provided 
consistency with the validation data set set aside in advance. Such a fair goodness of fit 
indicates the acceptability of model parameters and, therefore, the subsequent inference 
of microbial interactions.

Our kinetic model also shows consistency with the analysis of the energetic cost of 
synthesizing amino acids in the literature. Mee et al. (30) estimated the energetic cost 
for the synthesis of 14 individual amino acids based on the amounts of extracellularly 
supplemented amino acids and the observed growth yield of E. coli auxotrophic mutants. 
From the linear relationships between these two variables, they calculated the supple­

mented amounts of amino acids per cell, which were 1.5 × 107 and 3.7 × 107 for the 
tryptophan and tyrosine auxotrophic E. coli mutants, respectively. These two quantities 
correspond to the stoichiometric coefficients YSi+/Xi i = 1,2  in our kinetic model, which 

were determined to be 1.550 (= YS1+/X1) and 2.994 (= YS2+/X2) (mg/OD) through data 

fit (Table 1). As the direct one-to-one matching between them might not be feasible, 
e.g., due to different units of biomass [i.e., cell number in Mee et al. (30) vs OD in this 
work], we compared the ratios, which showed consistency between the two studies, i.e., 

Research Article mSystems

May 2024  Volume 9  Issue 5 10.1128/msystems.01305-2311

https://doi.org/10.1128/msystems.01305-23


1.5 × 107

3.7 × 107
≈ 0.41 vs 1.5502.994 ≈ 0.52. Both results imply that compared to tyrosine, the synthesis 

of tryptophan is more costly. In support of this, Mee et al. (30) estimated that the 
biosynthetic cost for tryptophan is about 43% higher than that for tyrosine.

We highlight that inferring environment-dependent interactions and their dynamic 
variations is a critical capability uniquely associated with KIDI. Even in a simple binary 
consortium considered in this work, KIDI provides new insights into interspecies 
interactions such as asymmetry between the two amino acid auxotrophs, which might 
not be obtainable otherwise. In perturbed growth experiments with glucose FBs (as in 

Fig. 4B), for example, KIDI identified that (i) a1,2+ §amp;gt; a2,1+  while the shared substrate 
(glucose) is abundant, implying that the tryptophan auxotroph (X1) does not support the 

growth of the tyrosine auxotroph (X2) as much as X2 does for X1; (ii) a1,2− §amp;lt; a2,1−
after the completion of initially added glucose until tryptophan is depleted, implying 
that less favorable supporters during cooperation become worse enemies when the 
relationship turned into a competition.

While KIDI determines pairwise interaction terms following the gLV framework, it 
is also capable of accounting for the influences of additional species, provided these 
impacts are reflected in the growth kinetics. For instance, in the case study of this 
article, species 1 and 2 exhibit a complex relationship, competing for glucose uptake 
while cooperating for amino acid exchange. However, if a third species is introduced, 
which synthesizes and contributes amino acids to the environment more rapidly than 
the existing members, the dynamic between species 1 and 2 shifts. Their reliance on 
each other for amino acids diminishes, transforming their mixed relationship into pure 
competition due to the influence of the third species.

The chain rule formulation in KIDI successfully estimates interactions from given 
kinetics, a capability that remains effective across microbial communities of varying 
complexities. The primary challenge, however, is in identifying growth kinetics. This issue 
is especially pronounced in complex microbial communities where prior knowledge 
of interspecies interactions is lacking. Considering these limitations, we showcased 
KIDI’s effectiveness using a binary consortium, which simplified the experimental data 
collection needed for parameter determination in the mechanistic model. The study 
of such model microbial consortia, extracted from natural communities, has been 
instrumental in enhancing our understanding of complex ecological systems (33, 34).

For KIDI to be effectively applied even to simple consortia, comprehensive measure­
ments of all chemical and biological species involved in interspecies interactions are 
still essential, as precise parameter identification is otherwise challenging. While absent 
in our study, integrating complete temporal amino acid profiles would improve the 
accuracy of parameter identification. Typically, metabolite levels exchanged between 
species, such as amino acids in our case, are low and often fall below detection limits. 
Additional analysis of axenic culture data would help address this issue.

Despite several challenges mentioned above, it is important to note that these 
stem from the difficulties in building kinetic models, rather than being a limitation 
of KIDI itself. KIDI’s primary function is to deduce the temporal variations in interac­
tion coefficients based on environmental variables. Its unique ability to handle context-
dependent interactions opens up various applications. For instance, KIDI can serve as 
a probing tool to investigate how assumed growth kinetics and environment-mediated 
mechanisms lead to specific interactions and their temporal evolution. This aspect is 
crucial for understanding the link between the growth mechanisms of particular species 
and their interactions. Moreover, KIDI can greatly aid in advancing network inference 
techniques. The development of new algorithms for predicting microbial interactions is 
often hindered by a lack of benchmark data, a gap that KIDI can help fill.

KIDI’s utility goes beyond microbial ecology, encompassing a wide range of 
community ecology fields. This versatility comes from the fact that context depend­
ency is not solely a microorganism trait but is also common in macroorganisms like 
plants and animals. For example, KIDI is applicable to classic ecological models, such 
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as MacArthur’s consumer-resource model (35). In this model, MacArthur quantifies the 
impact of consumer j on consumer i (ai, j) based on resource population densities and 
associated parameters, with an underlying assumption that resource populations change 
more rapidly than consumer populations. KIDI is adept at deducing the competitive 
relationships among consumers using the chain rule, as detailed in equation (4) (see 
supplemental material). This adaptability of the KIDI framework enables its extensive 
use in analyzing context-dependent interactions within and across different biological 
kingdoms in a variety of ecological systems.

MATERIALS AND METHODS

Mathematical definition of interaction coefficients

The dynamic change in population i in a community can be formulated in a general form 
as follows:

(8)1xi dxidt = fi x1, x2,⋯, xN , i = 1, 2,⋯, N
where xi is the population density of species i, the left-hand side defines the 

specific growth rate of species i, and the function fi x1, x2,⋯, xN  represents a nonlinear 
dependence of the specific growth rate of species i on population densities of other 
species.

Using a Taylor expansion, the right-hand side of equation 8 can be represented as a 
series of polynomial terms, i.e.,

(9)fi = fi, 0 + ∑j = 1
N ∂fi∂xj 0

xj + H .O . T . , i = 1,2,⋯, N
where the subscript 0 denotes a chosen reference condition, H.O.T. is higher-order 

terms. Neglecting the H.O.T. in equation 9, a gLV equation describes the specific growth 
of species i using a linear equation, i.e.,

(10)fi x1, x2,⋯, xN = fi, 0 + ∑j = 1
N ai, jxj, i = 1,2,⋯, N

where interaction coefficient ai, j denotes the effect of species population j on the 
specific growth of species i. For a binary community, equation 10 reduces to

(11)fi xi, xj = fi, 0 + ai, ixi + ai, jxj, i = 1,2
where fi, 0 is the basal growth rate of species i, ai, i is the intra-specific interaction 

coefficient, and ai, j is the inter-specific interaction coefficient.
From equation 11, the binary interaction coefficients in gLV are defined as follows:

(12)ai, j ≡ ∂fi xi, xj∂xj
The typical formulation assumes that ai, j is constant, which, however, leads the gLV 

model to fail to capture the delicate dynamics of microbial interactions. Indeed, ai, j
is a dynamic parameter [i.e., ai, j t ] that changes its value in varying environmental 
conditions as shown in the next section.
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Formulation of interaction coefficients as a function of environmental 
variables

For simplicity, we assume in this section that fi in the previous section is represented by 
kinetic growth rate, μi, which is formulated as a function of nutrient concentrations in the 
environment. In the circumstance considered in Fig. 1,

(13)μi t = μi si+ t , s− t
where si+ t  is the concentration of the nutrient (such as tryptophan or tyrosine) at 

time t that species i needs to get either from its partner or the environment, and s− t
represents the concentration of the shared nutrient (i.e., glucose) at time t that two 
species compete for.

Based on the chain rule, we formulate ai, j t  as a function of nutrient concentrations 
by plugging equation 13 into equation 12, i.e.,

(14)ai, j t = ∂∂xj μi si+ t , s− t = ∂∂si+ t μi si+ t , s− t ∂si+ t∂xj t + ∂∂s− t μi si+ t , s− t ∂s− t∂xj t
Note that the two terms on the R.H.S. of equation 14 represent the positive and 

negative effects of species j on i through environmental variables, i.e., ai, j+  and ai, j−  as 
defined below

(15)ai, j+ t ≡ ∂∂si+ t μi si+ t , s− t ∂si+ t∂xj t (16)ai, j− t ≡ ∂∂s− t μi si+ t , s− t ∂s− t∂xj t
In a similar fashion, we can formulate intra-specific interaction coefficients as 

functions of environmental variables, i.e.,

(17)ai, i t = ∂∂xi μi si+ t , s− t = ∂∂si+ t μi si+ t , s− t ∂si+ t∂xi t + ∂∂s− t μi si+ t , s− t ∂s− t∂xi t
Final forms of ai, j t  [ai, j+ t  and ai, j− t ] and ai, i t  depend on specific kinetics for μi s− t ,  si+ t . While the symbol t  is dropped for simplicity, all ai, j’s in the main text are 

dynamic interaction coefficients, the values of which are changing in time as formulated 
in this section.

Parameter identification

We determined the optimal parameter values listed in Table 1 by minimizing the sum of 
squared errors between simulation results and experimental data. During the optimiza­
tion process, we constrained the half-saturation constants for amino acid consumption 
and production rates to ensure that the models for the E. coli mutant strains could 
not grow in axenic cultures (Fig. S4) but could co-grow in binary cultures without the 
external provision of amino acids (Fig. 2C and D).

Microorganisms and culture conditions

Two auxotrophic Escherichia coli (E. coli) mutant strains, JW2581-1 and JW1254-2 
originally derived from the same strain (BW25113), were purchased from E. coli 
Genetic Stock Center at Yale University (http://cgsc2.biology.yale.edu/). As experimen­
tally validated in the literature (36), these mutant strains, JW2581-1 (ΔtyrA) and JW1254-2 
(ΔtrpC), are incapable of growing without supplementation of tyrosine and tryptophan, 
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respectively. Each strain was incubated overnight at 37°C and 225 rpm in 50 mL of 
Falcon tube containing 5 mL of Lysogeny broth supplemented with 33 µg/L kanamycin. 
Culture cells were collected and centrifuged them at 16,000 × g at 4°C for 1.5 min. The 
cell pellets were washed with K3 basal medium to remove residual amino acids in the 
samples. The washed cells were resuspended and transferred to 150 mL flasks carrying 
25 mL of K3 defined minimal medium (5) containing glucose and 33 µg/L kanamycin 
and cultivated at 37°C and 225 rpm. An initial absorbance at 600 nm (OD600) was 0.04 
with an equivalent cell ratio. For batch mode, 4.5 g/L glucose was supplied in the culture 
medium. For the fed-batch mode, 0.5 g/L of an initial glucose concentration was used to 
shorten the lag phase, and three or five glucose FeedBeads (Kühner, Basel, Switzerland), 
releasing glucose at a constant rate, were added when OD600 reached 0.2. We collected 
500 µL of culture medium from each flask and centrifuged them at 16,000 g for 1.5 min. 
The supernatant and pellets were stored at −20°C until further analysis.

Analysis of glucose concentration in the culture medium

The concentration of glucose was analyzed by a high-performance liquid chromatog­
raphy system (Agilent, Santa Ciara, CA, USA) equipped with a 1260 refractive index 
detector and an Aminex HPX-87H column (Bio-Rad, Hercules, CA, USA). Five microliters 
of filtered supernatants was injected. Analytes were separated isocratically using 5 mM 
sulfuric acid at a flow rate of 0.7 mL/min.

Analysis of amino acids concentration in the culture medium

The amino acids in 10 µL of filtered supernatants were analyzed using an ultra-perform­
ance liquid chromatography (Waters, Milford, MA, USA) coupled with a micrOTOF II mass 
spectrometry (TOF-MS) system (Bruker, Bremen, Germany). Analytes were measured 
using a tunable UV detector at 210 and 397 nm. The amino acids were separated by an 
Agilent Poroshell 120 EC-C18 column at 30°C. The 1% (vol/vol) of formic acid in water 
(mobile phase A) and 1% (vol/vol) of formic acid in acetonitrile (mobile phase B) were 
used, respectively. The amino acids’ separation was obtained at a flow rate of 0.3 mL/min 
with a gradient program that allowed 100% of mobile phase A until 2.1 min followed 
by increasing mobile phase B to 40% for 2 min and then equilibrated at 0% of eluent 
B in a total analysis time of 6 min. Analysis of the amino acids was performed using 
electrospray ionization and full-scan TOF-MS spectra (50–650 m/z) with 500 V end plate 
voltage and 4.5 kV capillary voltage. Nebulizer gas and drying gas were supplied in 
1.8 bar and 8 mL/min, respectively. The dry temperature was kept at 220°C.

Quantification of cell ratio in a microbial consortium

qPCR was carried out in a 96-well plate by using a CFX96 Real-Time Detection System 
(Bio-Rad, Hercules, CA, USA). The pellets were resuspended in ultra-pure water to make 
consistent concentration (OD600 = 0.4) and then, the 200 µL solution was transferred to 
a 250 µL PCR tube. The solutions were incubated at 98°C for 10 min for cell disruption 
using a T100 Thermal Cycler (Bio-Rad). The lysed cells were transferred to 1.5 mL of tubes 
and centrifuged at 20,000 × g for 2 min. The supernatants were analyzed by qPCR. The 
qPCR mixture was composed as follows: 3 µL of 10× Xtensa buffer, 0.3 µL of primer mix 
(50 µM for each), 0.15 µL of i-Taq (i-DNA Biotechnology, Singapore), 3 µL of 25 mM MgCl2, 
5 µL of purified cell lysate, and 18.55 µL of ultra-pure water. The thermal cycling was 
programmed as follows: 95°C for 1 min and 30 cycles of 95°C for 20 s, 55°C for 20 s, and 
68°C for 40 s. The primers for qPCR analysis to quantify the different E. coli strains were 
provided in Table S3. The qPCR analysis was performed in triplicate for each sample.
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