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Abstract
Context Due to advances in synthesizing lower-dimensional materials, there is the challenge of finding the wave equation
that effectively describes quantum particles moving on 1D and 2D domains. Jensen and Koppe and Da Costa independently
introduced a confining potential formalism showing that the effective constrained dynamics is subjected to a scalar geometry-
induced potential; for the confinement to a curve, the potential depends on the curve’s curvature function.
Method To characterize the π electrons in polyenes, we follow two approaches. First, we utilize a weakened Coulomb
potential associated with a spiral curve. The solution to the Schrödinger equation with Dirichlet boundary conditions yields
Bessel functions, and the spectrum is obtained analytically. We employ the particle-in-a-box model in the second approach,
incorporating effective mass corrections. The π -π∗ transitions of polyenes were calculated in good experimental agreement
with both approaches, although with different wave functions.

Keywords Geometry-induced potential · Differential geometry · Bessel wave functions · Polyenes · π electrons ·
Effective mass

Introduction

Thanks to tremendous advances in experimental techniques,
synthesizing lower-dimensional materials became a reality
(seeRef. [1] and references therein). Suchmaterials often dis-
play formidable properties that offer countless opportunities.
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With such advances comes the challenge of finding the wave
equation that effectively describes quantum particles moving
on 1D and 2D materials. To find the effective wave equa-
tion for a particle confined to move on a lower-dimensional
region, it is necessary to account for the uncertainty rela-
tions since any confinement involves the full knowledge of
the degrees of freedom associated with the motion along
the direction orthogonal to the constraining region. In the
1950s, De Witt attempted to describe quantum confine-
ment in a curved space through a quantization procedure,
which resulted in an ordering ambiguity [2]. A formalism
that does not suffer from this ambiguity has been proposed
independently by Jensen and Koppe [3] in the 1970s and
by Da Costa in the 1980s [4]: their formalism shows that
the effective constrained dynamics is subjected to a scalar
geometry-induced potential. Jensen and Koppe analysed a
case where confinement occurs between two parallel sur-
faces. They obtained that the Schrödinger equation depends
on a geometry-induced potential Vgip that incorporates the
geometry of the confinement region [3]. On the other hand,
Da Costa arrived at the same result by employing an explicit
strong confining potential to restrict the particle’s motion to
the desired lower-dimensional region [4]; for the confinement
of a quantum particle to a curve, he obtained a Hamiltonian
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whose geometry-induced potential depends on the curve’s
curvature function.

Several works have exploited the Jensen-Koppe-Da
Costa’s formalism. For example, there are studies of charge
transport in semiconductors or carbon nanostructures [5–7].
Del Campo et al. studied geometry-induced potentials that
result in better transmittance in bentwaveguides [5]. Da Silva
et al. studied the problem of prescribed geometry-induced
potential for invariant surfaces, showing that the probabil-
ity density distribution can be controlled if we add an extra
charge to the surface [6]. Lima et al. calculated the energy and
analysed the implications of the geometry-induced potential
for confinement in a helix, catenary, helicoid, and catenoid,
concluding that for the helix, the angular momentum is quan-
tized due to the geometry and that in the other cases, a
continuous energy band of excited states appears [7]. Experi-
mentally,Onoe et al. reported the observation of effects due to
the geometry-induced potential on the Tomanaga-Luttinger
liquid exponent in a 1DmetallicC60 polymer with an uneven
periodic peanut-shaped structure [8]. As an alternative to
Jensen-Koppe-Da Costa’s formalism, Bastos et al. studied
the effects of intrinsic geometry on a particle confined in a
generalized cylinderwith a smooth cross-section. They noted
that the topology, and not the geometry of the cross-section,
plays a fundamental role in solving the problem in a Möbius
strip and aromatic molecules [9].

Electrons moving in the ballistic regime are less affected
by the lattice structure and can often be described as free par-
ticles if we properly renormalize their mass [10], thus giving
rise to the concept of effective mass. A similar situation hap-
pens for π electrons, i.e. electrons on a π bond. The π bonds
are usually weaker than sigma bonds. Consequently, π elec-
trons can sometimes be reasonably described as a particle in
a box [11–13]. The π electron wave functions are the usual
trigonometric functions in such a regime.

In this work, we provide an alternative description of
π electrons by modelling them confined to a spiral-like
curved 1D box. By incorporating a spiral behaviour, the new
wave functions are given by certain Bessel functions. Bessel
functions exhibit a more complex behaviour than the usual
trigonometric functions and introduce new factors, such as
zero modes and wave amplitude dependence on the energy
level. We apply this idea to characterize the π electrons in
linear polyenes chains (Fig. 2). Specifically, we solve the
Schrödinger equation for a particle confined in certain spiral
curves that can describe the 1D hydrogen atom and polyene
linear chains. Our findings suggest a correlation between the
electronic confinement, the effectivemass, and the geometry-
induced potential.

This work is divided as follows. The “Constrained quan-
tum dynamics on plane curves” section presents Jensen-
Koppe-Da Costa’s formalism for quantum particles con-
strained tomove on a plane curve. The “1D hydrogen atom as

a constrained quantum dynamics problem” section discusses
the geometry of plane curves with power-law curvature
functions and applies it to the 1D hydrogen atom seen as
a constrained quantum dynamics problem. The “Polyene
chains as a constrained quantum dynamics problem ” section
introduces the family of plane curves that will be used to
model π electrons on polyene chains and presents the cor-
responding energy spectrum. Finally, in the “Conclusion”
section, we present our concluding remarks.

Constrained quantum dynamics on plane
curves

Assume we want to describe the motion of a quantum par-
ticle of mass m constrained to move along a plane curve
α : [a, b] → R

2. To find the equations for the con-
strained dynamics, we could follow Jensen and Koppe [3]
and describe the confinement by starting from the dynamics
in the region between two neighbouring parallel curves and
imposing homogeneous boundary conditions along them. If
we denote the distance between the two neighbouring curves
by 1/λ, then taking the limit λ → ∞, one obtains the equa-
tions that govern the constrained dynamics. In other words,
Jensen and Koppe considered the confinement via a particle-
in-a-box model: the particle is subject to a potential Vλ such
that Vλ(�r) = 0 if the distance from �r ∈ R

2 to α is smaller
than or equal to 1

2λ
−1, and Vλ(�r) = ∞ if otherwise (see

Fig. 1).
Alternatively, following Da Costa [4], we may apply a

family of explicit strong confining potentials Vλ to restrict

Fig. 1 Particle-in-a-box constraining potential in the confinement of a
quantum particle to a plane curve α : [a, b] ⊆ R → R

2. The particle is
subject to a potential Vλ that is zero on the points whose distance from
α is smaller than or equal to 1

2λ−1, and infinity if otherwise. In the limit
λ → ∞, one obtains the behaviour (1)
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the particle’s motion to the desired curve:

lim
λ→∞ Vλ(�r) =

{
0 , �r ∈ α

∞ , �r /∈ α
. (1)

These procedures allow us to decouple the tangential and
normal degrees of freedom in the limit λ → ∞. In other
words, one separates theHamiltonian into a term that governs
the low energy motion in the tangent direction, which is the
effective Hamiltonian along the constraint region, and a high
energy motion in the normal direction.

Employing the Jensen-Koppe-Da Costa formalism is nec-
essary to account for the uncertainty relations since any
confinement involves the full knowledge of some degrees of
freedom, namely the motion along the directions orthogonal
to the constraining region. De Witt’s description of quan-
tum confinement in a curved space resulted in an ordering
ambiguity [2]. The Jensen-Koppe-Da Costa formalism does
not suffer from this ambiguity. In addition, it shows that
the effective constrained dynamics is subjected to a scalar
geometry-induced potential Vgip.

The (effective) Schrödinger equation for a quantum parti-
cle constrained tomove on a plane curve α(s) = (x(s), y(s))
is given by [4]

− h̄2

2m

d2ψ(s)

ds2
+ Vgip ψ(s) = Eψ(s), Vgip = − h̄2

8m
k(s)2,

(2)

where s denotes the arc length parameter, i.e. α′(s) · α′(s) =
1, and k is the curvature function; k(s) = ‖α′′(s)‖.

If we were to describe the constrained quantum dynamics
on a plane curve α without the geometry-induced potential,
then the resulting energy spectrum would not depend on the
geometry of α but only on whether α is a closed or an open
curve [14]. Indeed, solving Eq. (2) without Vgip with homo-
geneous boundary conditions (open curve of length L) gives

Eop
n = h2n2

8mL2 , (3)

while solving (2) without Vgip with periodic boundary con-
ditions (closed curve of length L) gives

Ecl
n = 4Eop

n = h2n2

2mL2 . (4)

1D hydrogen atom as a constrained
quantum dynamics problem

If we consider a function of the form k(s) = 1
σ
√
s
, where σ

is a real parameter, then confining a particle to move on a

plane curve with curvature k can lead to a geometry-induced
corresponding to the 1D hydrogen atom:

Vgip = − h̄2

8m
k(s)2 = − h̄2

8mσ 2s
= −K

q1q2
s

, (5)

where K denotes the permittivity of free space, K = 9 ×
109Nm2/C , q1 denotes the charge of the nucleus, and q2
the charge of the electron. Indeed, take the constant σ =√

h̄
8mKq1q2

. We shall refer to a curve αH : [a, b] → R
2

whose corresponding curvature function k satisfies (5) as a
hydrogen curve.

Plane curves with power-law curvature function

A plane curve α(s) with curvature function k(s) can be
parametrized as [15]

s 
→ α(s) =
(∫ s

s0
cos(

∫ v

s0
k(u) du) dv,

∫ s

s0
sin(

∫ v

s0
k(u) du) dv

)
.

(6)

For a generic parametrization α(t), the arc length param-
eter can be obtained as a function of t by the expression
s = ∫ t

t0
‖α̇(τ )‖ dτ , while the curvature function is k =

‖α̇ × α̈‖/‖α̇‖3.
The hydrogen curve belongs to the family of curves with

a power-law curvature function

k(s) = 1

σ s p
, σ > 0 and p ∈ R. (7)

The hydrogen curve αH has p = 1/2. Power-law curva-
ture functions lead to spiral-like curves.

Every plane curve satisfies the Frenet equations

{
t′(s) = k(s)n(s)
n′(s) = −k(s) t(s)

, (8)

where t = α′ denotes the curve’s unit tangent and n is the
principal normal vector field. The geometric interpretation of
the vector fields t and n is as follows. If we think of a plane
curve as describing the motion of a particle in the plane,
the unit normal n points in the direction of the centripetal
acceleration vector. Indeed, applying the chain rule, dα

dt =
v dα
dt , v = ‖dα/dt‖, from which we obtain that d2α

dt2
= dv

dt t+
v2k n.

The solutions of Eq.8 for the power-law case, Eq.7, are
given by

t(s) = aCp(s) + b Sp(s) and n(s)

= σ s p t′(s) = −a Sp(s) + bCp(s),
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where a and b are constant vectors and the real functions Cp

and Sp are defined as

Cp(s) =

⎧⎪⎨
⎪⎩
cos

(
s1−p

σ(1 − p)

)
, p �= 1

cos
(
σ−1 ln s

)
, p = 1

and

Sp(s) =

⎧⎪⎨
⎪⎩
sin

(
s1−p

σ(1 − p)

)
, p �= 1

sin
(
σ−1 ln s

)
, p = 1

. (9)

If p = 1
2 , then

∫
C 1

2
(s) ds = σ

√
s S 1

2
(s) + σ 2

2
C 1

2
(s) + c1 (10)

and

∫
S 1

2
(s) ds = −σ

√
s C 1

2
(s) + σ 2

2
S 1

2
(s) + c2 , (11)

where c1 and c2 are arbitrary constants.
Assuming for simplicity that t(s0) = (1, 0) and n(s0) =

(0, 1), integration of the unit tangent, αH = ∫ s t, allows us
to explicitly parametrize the hydrogen curve as

αH (s) = R 1
2
(s0)

⎛
⎝ σ 2

2 σ
√
s

−σ
√
s σ 2

2

⎞
⎠

(
C 1

2
(s)

S 1
2
(s)

)
+ α0 , (12)

where α0 ∈ R
2 is a constant point and we have defined a

“rotation” matrix Rp(s)

Rp(s) =
(

Cp(s) Sp(s)

−Sp(s) Cp(s)

)
. (13)

Note that ‖αH (s) − α0‖ = σ

√
s + σ 2

4 ∼ s1/2, which
shows that αH spirals around a point.

Solution of the 1D hydrogen atom

In the 1950s, Loudon solved the 1D hydrogen atom on the
line [16]:

− h̄2

2m

dψ2

dx2
− e2

|x |ψ = Eψ, (14)

where e is the electric charge of the electron and ψ is a
complex function defined over the real line: ψ : R → C.
The difficulty of solving the 1D hydrogen atom lies in the
existence of a pole at x = 0. The idea is to solve the equation
for the regions x < 0 and x > 0 and then join the two
solutions at x = 0 by approaching the actual potential as the

limit of a nonsingular potential V (x), see, e.g., Fig. 1 of Ref.
[16].

If we write the eigenfunction along the hydrogen curve as
a function of the arc length parameter s > 0, we have the
following wave function along the curve

ψ = Be− z
2 z L1

N (z), z = 2s

Na0
, (15)

where B is a normalizing constant, a0 = h̄2/me2, and Lb
a(z)

denotes an associated Laguerre polynomial. Note that this
solution is not equal to the radial solution of the 3D hydrogen
atom:

RN�(r) = BN�, e
− z

2 z�L2�+1
N (z), z = 2r

Na0
, (16)

where BN� is a normalizing constant. However, taking into
account the use of spherical coordinates to describe the radial
part, one obtains the same probability density in both cases:
dP1D = |ψ1D|2ds = dP3D = r2|ψ1D|2dr , where one must
take � = 0 in the 3D solution to compare the solutions in
both dimensions properly. As expected, this means that in
the 1D solution, only s orbitals make sense and, therefore, a
1D periodic table will have 2 columns only [17, 18].

Polyene chains as a constrained quantum
dynamics problem

The consideration of π electrons is essential for the stability
of certain carbon compounds, such as polyenes [19, 20]. In
these compounds, π electrons can often be approximated as
particles in a box [11–13]. For a particle confined in a one-
dimensional box of length L , the solution to the Schrödinger
equation gives the wave function

ψn(s) =
√

2

L
sin

(nπs

L

)
. (17)

The allowed energy levels, En , of the particle are quan-
tized and given by

En = n2π2h̄2

2mL2 . (18)

This model provides a good approximation for conjugated
molecules with minimal alternation of bond lengths. How-
ever, for systems with significant bond length alternation,
such as long-chain polyenes, the model cannot adequately
describe the finite absorption wavelength limit of the sys-
tem, thus requiring adjustments [21].

It is possible to improve the particle-in-a-box model by
incorporating an effective mass into the Laplacian operator.
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This approach involves assessing which mass value accu-
rately predicts the wavelengths of experimental transitions.
Specifically, the calculated effective masses were 0.531me,
0.457me, 0.440me, and 0.384me for deca-2,4,6,8-tetraene,
dodeca-2,4,6,8,10-pentaene, tetradeca-2,4,6,8,10,12-hexa-
ene, and hexadeca-2,4,6,8,10,12,14-heptaene molecules,
respectively. These values, inversely proportional to the
increase in the chains’ length, align with expectations from
models of ballistic electrons in nanostructures and crystals,
which tend towards 0.173me [22].

The π electrons are not strongly bound to the chain, with
interactions weaker than those between charges, especially
noticeable in long-chain systems such as polyenes. In this
work, we propose to describe π electrons using confinement
with geometry-induced potential

Vgip = − h̄2

8mσ 2s2
. (19)

We aim to represent a kind of average interaction between
the molecule and the π electrons. However, this interac-
tion would be electromagnetic, weaker than a conventional
Coulomb interaction but stronger than dipole interactions or
Van der Waals forces.

Polyene curve

Let us denote by αP a plane curve whose corresponding cur-
vature function is of the form k = 1

σ s , i.e. Equation7 with
p = 1. We shall refer to αP as a polyene curve.

For p = 1, the auxiliary functions Cp and Sp defined in
Eq.9 have the form∫

C1(s) ds = σ s

1 + σ 2 [S1(s) + σC1(s)] + c1 (20)

and∫
S1(s) ds = − σ s

1 + σ 2 [C1(s) − σ S1(s)] + c2 , (21)

where c1 and c2 are arbitrary real constants.
Assuming for simplicity that t(s0) = (1, 0) and n(s0) =

(0, 1), integration of the unit tangent, αP = ∫ s t, allows us
to explicitly parametrize the polyene curve as

αP (s) = σ s

1 + σ 2 R1(s0)

(
σ 1
1 −σ

) (
C1(s)
S1(s)

)
+ α0 , (22)

where α0 ∈ R
2 is constant and R1(s) is defined as in Eq.13.

Note that ‖αP (s) − α0‖ = σ√
1+σ 2 s, which shows that αP

spirals around a point, as happens for the hydrogen curve.
Note that polyene curves approach its initial point α0 faster

than the hydrogen curve: ‖αP (s)−α0‖‖αH (s)−α0‖
s→0−→ 0. In addition,

polyene curves rotate around its initial point α0 more than
the hydrogen curve, as a comparison between {C1(s), S1(s)}
and {C 1

2
(s), S 1

2
(s)} indicates.

Spectrum of� electrons in polyene chains

In this section, we provide an alternative description of
π electrons confined in a 1D curved box, as defined
by the polyene curves discussed in the previous section.
Bessel functions exhibit more complex behaviour than usual
trigonometric functions and introduce new factors such as
zero modes [23] and the dependence of wave amplitude on
the energy level. We apply (2) to describe the π electrons
in the polyenes deca-2,4,6,8-tetraene, dodeca-2,4,6,8,10-
pentaene, tetradeca-2,4,6,8,10,12-hexaene, and hexadeca-
2,4,6,8,10,12,14-heptaene [24] (Fig. 2).

The polyene curve parametrization is given by

αP (s) = σ s

1 + σ 2

(
cos

(
ln s

σ

)
+ σ sin

(
ln s

σ

)
, sin

(
ln s

σ

)

−σ cos

(
ln s

σ

) )
, (23)

where we have set s0 = 1 and α0 = (0, 0) in Eq.22.
For the geometry-induced potential of polyenes curves,

Vgip = − h̄2

8mσ 2s2
, Eq. 2 becomes

−d2ψ

ds2
=

(
ε + 1

4σ 2s2

)
ψ, ε = 2mE

h̄2
, (24)

whose general solution is expressed as a linear combination
of Bessel functions Jω(s) and Yω(s) of the first and second
types, respectively:

ψn(s) = c1
√
s Jω(

√
ε s) + c2

√
s Yω(

√
ε s),

ω = 1

2

√∣∣∣∣1 − 1

σ 2

∣∣∣∣ . (25)

We want a solution on the interval [0, L] and, therefore,
must impose the condition c2 = 0 (Bessel functions of the
second type diverge at the origin). Applying the homoge-
neous boundary conditions inEq.25, the solutions are subject
to the relationship

L = jω,n√
ε

⇒ En = h̄2

2mL2 j2ω,n , (26)

where jω,n denotes the n-th zero of Jω.
To determine the value of c1, we can use the normalization

condition

1 =
∫ L

0
|ψn(s)|2 ds = c21

∫ L

0
|√s Jω(

√
ε s)|2 ds, (27)
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(a)

(b)

(c)

(d)

Carbon Hydrogen

Fig. 2 Polyenes. (a) deca-2,4,6,8-tetraene; (b) dodeca-2,4,6,8,10-pentaene; (c) tetradeca-2,4,6,8,10,12-hexaene; (d) hexadeca-2,4,6,8,10,12,14-
heptaene

and obtain

c1 =
√
2

L
√
Jω(

√
ε s) − Jω−1(

√
ε s)Jω+1(

√
ε s)] . (28)

Using that ε = jω,n
L and Jω( jω,n) = 0, we have

c1 =
√
2

L
√−Jω−1( jω,n)Jω+1( jω,n)

. (29)

Thus, the complete basis of wave functions is

ψn(s) =
√
2

L
√−Jω−1( jω,n)Jω+1( jω,n)

√
s Jω

(
jω,n

L
s

)
.

(30)

For each polyene, specific values of σ and ω were
obtained, representing system structure changes. Table 1
shows these values for four distinct systems. The value of
σ was determined using the relationship between the wave-
length of transition λ and the energy change �E : λ = hc

�E ,
where c is the velocity of light in vacuum and h the Planck
constant. Comparison with experimental values of λ [24]

allows us to estimate the corresponding values of σ . Note
that the appropriate energy levels used to compute �E
depend on how many π electrons the polyene chains have,
namely, 8 for the deca-2,4,6,8-tetraene molecule (n = 4),
10 for the dodeca-2,4,6,8,10-pentaene molecule (n = 5), 12
for the tetradeca-2,4,6,8,10,12-hexaene molecule (n = 6),
and 14 for the hexadeca-2,4,6,8,10,12,14-heptaene molecule
(n = 7).

The polyene curves, i.e. plane curves with curvature
k(s) = 1

σ s , are depicted in Fig. 3. These spiral curves have
a curvature function that resembles that used to simulate
the hydrogen atom (“1D hydrogen atom as a constrained
quantum dynamics problem” section). Power-law potentials
V ∝ s−p also describe interactions such as charge-charge,

Table 1 Values of σ and ω for distinct polyene chains

System σ ω

deca-2,4,6,8-tetraene
√
0.004 7.88987

dodeca-2,4,6,8,10-pentaene
√
0.0014 13.35370

tetradeca-2,4,6,8,10,12-hexaene
√
0.0009 16.65920

hexadeca-2,4,6,8,10,12,14-heptaene
√
0.00045 23.56490
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Fig. 3 Plots of polyene curves,
i.e. curves with curvature
function k(s) = 1

σ s . (a)
deca-2,4,6,8-tetraene; (b)
dodeca-2,4,6,8,10-pentaene; (c)
tetradeca-2,4,6,8,10,12-
hexaene; (d)
hexadeca-2,4,6,8,10,12,14-
heptaene

dipole-dipole, and also Van derWaals, a very important class
of potentials in chemistry. The relationship between σ , the
number of π electrons, and the spiral geometry seems to be
established, as it is evident that the curve’s pitch, i.e. the
distance between two points after a revolution of the spiral,
tends to decrease with the reduction of σ and the increase
in the number of π electrons. In other words, σ approaches
zero with an increase in the number of π electrons. This is
equivalent to an increase in the geometry-induced potential,
justifying the decrease in energy.

In the case of the hydrogen atom, the direction towards
the spiral’s centre indicates the nucleus’s attraction. How-
ever, forπ electrons, this association of potential to geometry
is not as direct. Comparing our results with the experi-
mental absorption values calculated using Vgip of polyenes,
we observe good agreement (Fig. 4). The errors obtained
are 2.30% for deca-2,4,6,8-tetraene, 1.85% for dodeca-
2,4,6,8,10-pentaene, 0.81% for tetradeca-2,4,6,8,10,12-
hexaene, and0.00%for hexadeca-2,4,6,8,10,12,14-heptaene.

decatetraene dodecapentaene tetradecahexaene hexadecaheptaene
300

310

320

330

340
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360
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380
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m
]
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 Exp.
 Vgip = -h2/8mσ2s2

Fig. 4 Adjustment of the parameter σ for each polyene curve
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Figure 4 shows that the π -π∗ transitions are satisfactorily
described with the geometry-induced potential. It is worth
noting that accurate results for these transitions can also be
obtained with a particle-in-a-box model using an appropriate
effective mass.

Conclusion

In this work, we employed a method to obtain the π elec-
tron spectrum using the Jensen-Koppe-Da Costa’s confining
potential formalism. Treating π electrons as trapped in a 1D
curved spiral box leads to a Schrödinger equation subjected
a geometry-induced potential depending on the geometry
of the corresponding spiral curve. The analytically obtained
spectrum allowed us to describe the π -π∗ transitions of the
polyenes chains deca-2,4,6,8-tetraene, dodeca-2,4,6,8,10-
pentaene, tetradeca-2,4,6,8,10,12-hexaene, and hexadeca-
2,4,6,8,10,12,14-heptaene. The solutions are given by Bessel
functions, which provide descriptions beyond the particle-in-
a-box model. Studying different systems with π resonances
should demonstrate newuses of the geometry-induced poten-
tial.

Acknowledgements Weacknowledge theCoordenação deAperfeiçoa-
mento de Pessoal de Nível Superior (CAPES) for their financial support
of this work.

Author Contributions E.V.S.A., A.C.P., L.C.B.S., and C.C.B. con-
tributed equally to this work. All authors reviewed the manuscript.

Data Availability No datasets were generated or analysed during the
current study.

Declarations

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Mannix AJ, Kiraly B, Hersam MC, Guisinger NP (2017) Synthe-
sis and chemistry of elemental 2D materials. Nature Rev Chem
1(2):0014. https://doi.org/10.1038/s41570-016-0014

2. DeWittBS (1957)Dynamical theory in curved spaces. I. a reviewof
the classical and quantum action principles. RevMod Phys 29:377.
https://doi.org/10.1103/RevModPhys.29.377

3. Jensen H, Koppe H (1971) Quantum mechanics with con-
straints. Ann Phys 63:586–591. https://doi.org/10.1016/0003-
4916(71)90031-5

4. Da Costa RCT (1981) Quantum mechanics of a constrained par-
ticle. Phys Rev A 23:1982. https://doi.org/10.1103/PhysRevA.23.
1982

5. del Campo A, Boshier MG, Saxena A (2014) Bent waveguides
for matter-waves: supersymmetric potentials and reflectionless
geometries. Sci Rep 4:5274. https://doi.org/10.1038/srep05274

6. da Silva LCB, Bastos CC, Ribeiro FG (2017) Quantum mechanics
of a constrained particle and the problem of prescribed geometry-
induced potential. Ann Phys 379:13–33. https://doi.org/10.1016/j.
aop.2017.02.012

7. Lima JDM, Gomes E, da Silva Filho FF, Moraes F, Teixeira R
(2021) Geometric effects on the electronic structure of curved
nanotubes and curved graphene: the case of the helix, catenary,
helicoid, and catenoid. Eur Phys J Plus 136:551. https://doi.org/
10.1140/epjp/s13360-021-01533-6

8. Onoe J, ItoT, ShimaH,YoshiokaH,KimuraS-I (2012)Observation
ofRiemanniangeometric effects on electronic states. EurophysLett
98(2):27001. https://doi.org/10.1209/0295-5075/98/2700

9. Bastos CC, Pavão AC, Leandro ESG (2016) On the quantum
mechanics of a particle constrained to generalized cylinders with
application to Möbius strips. J Math Chem 54:1822–1834. https://
doi.org/10.1007/s10910-016-0652-5

10. Oshikiri M, Takehana K, Asano T, Kido G (1996) Far-infrared
cyclotron resonance ofwide-gap semiconductors using pulsed high
magnetic fields. Physica B 216(3–4):351–353. https://doi.org/10.
1016/0921-4526(95)00515-3

11. Ruedenberg K, Scherr CW (1953) Free-electron network model
for conjugated systems. I. Theory J Chem Phys 21(9):1565–1581.
https://doi.org/10.1063/1.1699299

12. ScherrCW(1953)Free-electronnetworkmodel for conjugated sys-
tems. II. Numerical calculations. J Chem Phys 21(9):1582–1596.
https://doi.org/10.1063/1.1699300

13. Platt JR (1953) Free-electron network model for conjugated sys-
tems. III. A demonstration model showing bond order and “free
valence” in conjugated hydrocarbons. J Chem Phys 21(9):1597–
1600. https://doi.org/10.1063/1.1699301

14. BastosCC,PaivaGS,LeandroESG,PavãoAC(2012)Anextension
of the particle in a one dimensional boxmodel. PhysEducation 28:1

15. DoCarmoMP (1976)Differential geometry of curves and surfaces.
Prentice Hall, New Jersey

16. Loudon R (1959) One-dimensional hydrogen atom. Am J Phys
27:649. https://doi.org/10.1119/1.1934950

17. Loos P-F, Ball CJ, Gill PMW (2015) Chemistry in one dimen-
sion. Phys Chem Chem Phys 17:3196. https://doi.org/10.1039/
C4CP03571B

18. Ball CJ, Gill PMW (2015) Chem1D: a software package for elec-
tronic structure calculations onone-dimensional systems.MolPhys
113:1843. https://doi.org/10.1080/00268976.2015.1017018

19. Hückel E (1931) Quantentheoretische Beiträge zum Benzolprob-
lem. Z Phys 70:204–286. https://doi.org/10.1007/BF01339530

20. Penney WG (1934) The theory of the stability of the Benzene ring
and related compounds. Proceedings of the Royal SocietyA:Math-
ematical, Physical and Engineering Sciences 146(856):223–238.
https://doi.org/10.1098/rspa.1934.0151

21. Autschbach J (2007) Why the particle-in-a-box model works well
for cyanine dyes but not for conjugated polyenes. J Chem Educ
84(11):1840. https://doi.org/10.1021/ed084p1840

22. Santos F, Fumeron S, BercheB,Moraes F (2016)Geometric effects
in the electronic transport of deformed nanotubes. Nanotechnology
27:135302. https://doi.org/10.1088/0957-4484/27/13/135302

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/s41570-016-0014
https://doi.org/10.1103/RevModPhys.29.377
https://doi.org/10.1016/0003-4916(71)90031-5
https://doi.org/10.1016/0003-4916(71)90031-5
https://doi.org/10.1103/PhysRevA.23.1982
https://doi.org/10.1103/PhysRevA.23.1982
https://doi.org/10.1038/srep05274
https://doi.org/10.1016/j.aop.2017.02.012
https://doi.org/10.1016/j.aop.2017.02.012
https://doi.org/10.1140/epjp/s13360-021-01533-6
https://doi.org/10.1140/epjp/s13360-021-01533-6
https://doi.org/10.1209/0295-5075/98/2700
https://doi.org/10.1007/s10910-016-0652-5
https://doi.org/10.1007/s10910-016-0652-5
https://doi.org/10.1016/0921-4526(95)00515-3
https://doi.org/10.1016/0921-4526(95)00515-3
https://doi.org/10.1063/1.1699299
https://doi.org/10.1063/1.1699300
https://doi.org/10.1063/1.1699301
https://doi.org/10.1119/1.1934950
https://doi.org/10.1039/C4CP03571B
https://doi.org/10.1039/C4CP03571B
https://doi.org/10.1080/00268976.2015.1017018
https://doi.org/10.1007/BF01339530
https://doi.org/10.1098/rspa.1934.0151
https://doi.org/10.1021/ed084p1840
https://doi.org/10.1088/0957-4484/27/13/135302


Journal of Molecular Modeling           (2024) 30:237 Page 9 of 9   237 

23. KobayashiT, ShimboriT (2002)Zero-energy solutions andvortices
in Schrödinger equations. Phys Rev A 65. https://doi.org/10.1103/
physreva.65.042108

24. Christensen RL, Galinato MGI, Chu EF, Howard JN, Broene RD,
Frank HA (2008) Energies of low-lying excited states of linear
polyenes. J Phys Chem A 112:12629–12636. https://doi.org/10.
1021/jp8060202

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1103/physreva.65.042108
https://doi.org/10.1103/physreva.65.042108
https://doi.org/10.1021/jp8060202
https://doi.org/10.1021/jp8060202

	Quantum mechanics of particles constrained to spiral curves  with application to polyene chains
	Abstract
	Introduction
	Constrained quantum dynamics on plane curves
	1D hydrogen atom as a constrained quantum dynamics problem
	Plane curves with power-law curvature function
	Solution of the 1D hydrogen atom

	Polyene chains as a constrained quantum dynamics problem
	Polyene curve
	Spectrum of π electrons in polyene chains

	Conclusion
	Acknowledgements
	References


