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Abstract—Cooperative caching has emerged as an efficient
way to alleviate backhaul traffic and enhance user experience
by proactively prefetching popular videos at the network edge.
However, it is challenging to achieve the optimal design of
video caching, sharing, and delivery within storage-limited edge
networks due to the growing diversity of videos, unpredictable
video requirements, and dynamic user preferences. To address
this challenge, this work explores cost-efficient cooperative video
caching via video compression techniques while considering
unknown video popularity. First, we formulate the joint video
caching, sharing, and delivery problem to capture a balance
between user delay and system operative cost under unknown
time-varying video popularity. To solve this problem, we develop
a two-layer decentralized reinforcement learning algorithm,
which effectively reduces the action space and tackles the
coupling among video caching, sharing, and delivery decisions
compared to the conventional algorithms. Specifically, the outer
layer produces the optimal decisions for video caching and
communication resource allocation by employing a multiagent
deep deterministic policy gradient algorithm. Meanwhile, the
optimal video sharing and computation resource allocation are
determined in each agent’s inner layer using the alternating
optimization algorithm. Numerical results show that the proposed
algorithm outperforms benchmarks in terms of the cache hit rate,
delay of users and system operative cost, and effectively strikes
a tradeoff between system operative cost and users’ delay.

Index Terms—Cooperative video caching, multiagent reinforce-
ment learning, performance-cost tradeoff.
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I. INTRODUCTION

ITH the advancements in communication technologies,
Wthe proliferation of mobile terminals and diversified
applications have led to the explosive growth of mobile data
traffic [1]. According to the forecast report of Ericsson, the
video traffic (e.g., short online videos, high-definition films,
and live streaming), will account for 79 percent of the mobile
network traffic that will reach 370 exabytes per month in
2027 [2].

Edge caching arises as a promising technology to address
the challenge of mobile data traffic [3]. Specifically, edge
caching enables the edge servers to store popular videos,
thereby reducing latency and alleviating the transmission
pressure [4], [S]. However, the capacity of the edge servers
may not meet the requirement of data storage due to the
rapid surge in data traffic. Fortunately, the introduction of
cooperative caching has enabled the edge to accommodate a
larger number of videos. This is attributed to its capability to
facilitate collaboration among multiple edge servers, enabling
them to share the cached videos [6], [7], [8]. Concurrently,
video compression serves as another effective method to
mitigate the limitations of storage space at edge servers. By
compressing videos, edge servers can cache the smaller sized
videos along with their corresponding transcoding parameters,
thereby consuming less storage space compared to storing
the original videos [9], [10]. Therefore, the combination of
cooperative caching and video compression allows the edge
to store a greater variety of videos within the limited storage
capacities of edge servers.

Additionally, cooperative video sharing and video deliv-
ery are two pivotal strategies within the cooperative video
caching framework, influencing the Quality of Experience
(QoE) for users. On the one hand, along with the cooper-
ative video caching strategy, video sharing strategies enable
edge to provide users with more video services by video
migration among edge servers [I11]. On the other hand,
video delivery strategies can directly impact the transmis-
sion delay that edge servers send the requested videos to
users, thereby influencing the delay which users acquire
videos [12]. Therefore, it is essential to jointly optimize
the strategies of cooperative caching, sharing and delivery.
Ren et al. [13], Zhang et al. [14], and Kuo et al. [15] investi-
gated the joint optimization of the three above strategies in a
cooperative caching system, aiming to minimize the delay of
users [13], [14] or maximize user satisfaction [15]. However,
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the operational cost was not considered in [13], [14], and [15],
which is important for mobile network operator (MNO) [16].
MNO expects the development of cost-efficient cooperative
caching systems, aiming to enhance users’ QoE while mini-
mizing operational costs, in response to practical constraints
and cost considerations [17]. It is worth mentioning that
there is an inherent conflict between high performance and
low-operative cost in the cooperative caching system [18].
Therefore, achieving a favorable performance-cost tradeoff
is essential when considering cooperative video sharing and
video delivery in this system.

The integration of cooperative video caching, sharing,
and delivery offers significant benefits, but achieving joint
optimization of these elements is a complex challenge.
This complexity is primarily due to the varying popular-
ity of videos across different edge servers over time and
space, influenced by the diverse and changing preferences
of individual users. The spatio-temporal variations in video
popularity are unknown, which poses significant challenges
for traditional optimization methods like the greedy algo-
rithm [19], [20], convex optimization [21], and Lyapunov
optimization [22], [23]. These methods typically rely on the
assumption that user video preferences are either known or can
be accurately predicted to solve the joint optimization problem
in cooperative caching systems, which is impractical for real-
world scenarios.

Deep reinforcement learning (DRL) emerges as a promising
solution to overcome the limitations of traditional optimization
methods [24], [25], [26]. To be specific, the DRL algorithms
do not rely on the assumption because the agent can directly
interact with the environment, acquiring the ability to generate
a sequence of actions that adapt to the spatio-temporal vari-
ations in video popularity [27], [28]. Existing works focused
on utilizing the DRL algorithms to optimize service caching
or content caching. Ren et al. [13] developed a proximal
policy optimization algorithm to explore request dynamics,
thereby enabling the joint optimization of service caching and
request scheduling in the multiaccess edge computing-assisted
networks. Luo et al. [29] proposed a Q-learning algorithm to
directly learn content placement instead of predicting content
popularity in cache-enabled networks.

However, the considered joint optimization problem in
cooperative video caching system is still nontrivial even
resorting to the powerful DRL algorithm. Specifically, the
cooperative video caching system, when factoring in video
sharing and delivery, involves numerous optimization vari-
ables. These variables encompass decisions related to video
caching, sharing, and resource allocations during the video
delivery phase, resulting in an extensive action space for
DRL. One reason for the huge action space is attributed
to the fact that the dimension of actions in the DRL algo-
rithm exponentially increases with the number of optimization
variables. Directly employing the DRL algorithm to address
the optimization problem with an extensive action space
requirement may slow down the convergence rate or even
result in the failure of the DRL algorithm’s convergence,
which is called the curse of dimensionality [30], [31]. Hence,
a tailored DRL-based algorithm that can reduce action space is

required for the joint optimization problem of video caching,
sharing and delivery.

To this end, we investigate the distributed cooperative
caching over the edge networks from the performance-cost
tradeoff perspective in this article. This is realized through
the joint optimization of video caching, sharing and delivery
while considering unknown time-varying video popularity and
limited storage capacity. To address this joint optimization
problem, we propose an innovative two-layer DRL algorithm
based on alternative optimization and the multiagent deep
deterministic policy gradient-based (MADDPG) algorithm.
The simulation results prove the feasibility of the proposed
scheme, which strikes the tradeoff between the operative cost
and performance. The main contributions of this article are
summarized as follows:

1) We consider the video sharing, video delivery and
video compression in the distributed cooperative caching
system with unknown video popularity and heteroge-
neous user needs. To investigate the performance-cost
tradeoff in the cache-enabled edge network, we analyze
and derive user delay and system operative cost.

2) We formulate the joint optimization problem of coop-
erative video caching, sharing and delivery to minimize
the user delay and operative cost while satisfying users’
delay requirements. The joint optimization involves five
decision variables, including two variables, related to
video caching and sharing as well as three resource
allocation variables relevant to the video delivery, i.e.,
computation resource, subcarrier, and power allocation.
These variables are tightly coupled in the objective
function and constraints, which makes the problem
difficult to solve.

3) To solve the problem with numerous optimization vari-
ables, we first decouple the joint optimization problem
into two subproblems: a) joint optimization of video
sharing and computation resource allocation and b)
joint optimization of video caching and communication
resource allocation. To deal with the two subproblems,
we propose a two-layer DRL algorithm. Specifically,
the outer layer of the proposed algorithm makes the
video caching and communication resource allocation
decision via the MADDPG algorithm, where each edge
base station (BS) is regarded as a learning agent. Then,
the inner layer of each agent generates a joint decision of
video sharing and computation resource allocation via an
alternating optimization algorithm, thereby effectively
reducing the action space.

4) The simulation results show that our proposed scheme
outperforms other benchmark methods in terms of aver-
age cache hit rate, the delay of users, and system
operative cost, which indicates that the proposed
scheme can better adapt to spatial-temporal varia-
tions of video popularity and time-varying wireless
channel quality. In addition, under different trade-
off factor settings, the proposed scheme reduces
over 11% user delay and 14.5% system operative
cost compared to benchmark schemes, which veri-
fies that the proposed scheme achieves a compelling



TABLE I
NOTATION SUMMARY

Notation Definition

B, B Set of physical BSs; size of B

K, K, K Set of users; size of /C, set of users associated
with physical BS b

v,V Set of videos; size of V

S, S Set of sub-carriers; size of S

1, Zugs P Version of videos and index of virtual edge;
the size of video v;; video compressed ratio

T, T The duration of each time slot; total number of
time slots

a0 (1) Video request indicator of user k

DYI(t) Transmission delay of video v; from network
entity [ to physical BS b

DY7e(t) Retrieval delay of video v in physical BS b

DY (t) Computation delay of video v for user k

b ‘“(t) Transmission delay of user k over access link

Dy (1)

Total delay of user k

B0, Egom(),
By ), Eedt),

Retrieval cost; computation cost; caching cost;
transmission cost over access link; total cost of

E(t) physical BS b

D(t), E(t) Total delay of all users; total system operative
cost

¢ & Refractive index of fiber; speed of light in the
vacuum

dy,i, M, Total optic fiber length; hop counts along the
shortest transmission path from physical BS b
to network entity [

Ro, Ry Transmission rate of backhaul link; transmis-
sion rate of wired links among physical BSs

)\iw Computing density required by user k to
transcode the compressed video vs

Bw Total bandwidth of the downlink

vk S(1), SINR and achievable data rate of user k on

Tk, (), RE(2)

sub-carrier s; transmission rate of user k over
the access link

7
wmyls Wg, Wow,

Unit prices of video migration, computation

Wp, We resource, bandwidth, power and video updating

g0 Normalized factor and trade-off factor between
user delay and system operative cost

rp(t), op Penalty function and penalty coefficient

v (1),Y7,Y

Indicator of video sharing decisions; set of

yﬁ’il (t); set of Y?

e, (1), Ct, C

Indicator of video caching decisions; set of
cﬁji (t); set of Cc?;

fR(t), FY

Variables of computatlon resource allocation,
set of fp(t); set of FY

ap (1), X7, X

Indicator of sub-carrier allocation; set of

z} ,(t); set of X?

pr{t). P{. P

Transmlt powers allocation variables; set of
P8, (t); set of PY

tradeoff between the system operative cost and user
delay.

The remainder of this article is organized as follows:
Section II presents the main components of the coopera-
tive caching model and the formulated optimization problem
minimizing delay and cost. In Section III, we propose a
decentralized two-layer DRL algorithm to solve the large-scale
mixed integer optimization problem. Simulation results are
presented in Section IV to evaluate the performances of our
proposed algorithm. Section V concludes this article. The main
notations of this paper are summarized in Table I.
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Fig. 1. System model of cooperative caching.

II. SYSTEM MODEL
A. Network Model

As shown in Fig. 1, B cache-enabled physical BSs con-
nected via fibers provide video services to K users. The
physical BSs and users are indexed by B={1,...,b,...,B}
and £ = {1,...,k , K}, respectively. For physical BS b,
its associated users are denoted by K; C K. It is assumed
each physical BS has the same caching capacity of z bits and
limited computing capacity of F cycle/s. The remote video
server communicates with all physical BSs through a backhaul
network.

By employing the network function virtualization (NFV),
each physical BS can be virtualized as one caching virtual
BS (CA-vBS) and one computation virtual BS (CO-vBS).
Naturally, the physical edge, formed by all physical BSs,
is divided into two virtual edges, namely, virtual edge 1
comprising CA-vBSs and virtual edge 2, consisting of CO-
vBSs. In virtual edge 1, each CA-vBS is endowed with large
storage space to cache uncompressed videos. Meanwhile, each
CO-vBS in virtual edge 2 has small storage space but sufficient
computing resources for caching and transcoding compressed
videos. Suppose that there are V videos in the remote video
server o, indexed by V = {l,...,v , V}. Each video v
has both uncompressed version v; and compressed version vy,
whose sizes are z,, and z,,, respectively. Moreover, z,, = pzy,
and 0 < p < 1 is video compressed ratio. For the convenience
of representation, let i € {1, 2} denote not only the version of
videos but also the index of the virtual edge.

B. Video Request Strategy

The time dimension is divided into time slots of duration ,
indexed by r € {1,2,...,T}. Assuming that each user sends
its video request at the beginning of each time slot. Let the
binary variable qz’v(t) indicate the request of user k associated
with physical BS b for video v at time slot ¢. Specifically, if
user k requests video v at time slot ¢, q,ﬁ”v(t) = 1; otherwise,
qzv(t) = 0. In this cooperative caching system, we assume
that each user request must be satisfied within the time slot
requested by the user. This assumption can be eliminated
by setting that the duration of each time slot T exceeds the
maximum delay constraint for all users [32]. Fig. 2 shows
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Fig. 2. Operation mechanism in one time slot.

the operation mechanism that the cooperative caching system
provide users with requested videos in one time slot. The
operation mechanism comprises a video sharing phase, a video
delivery phase, and a video caching phase [29]:

1) Video Sharing Phase: After receiving a user’s video
request, the physical BS associated with the user first
checks whether its corresponding CA-vBS and CO-vBS,
i.e., current vBSs, have cached the requested video.
If the current vBSs have cached the requested video,
current vBSs deliver the requested video to users. When
the requested video has been not cached by current
vBSs but is available in other vBSs, other vBSs share
the compressed or uncompressed requested video with
current vBSs via the high-speed wired link. In the worst-
case, none of the vBSs at the edge have cached the
requested video. In such instances, the remote video
server transmits the uncompressed requested videos
to the current CA-vBS through the backhaul link.
Consequently, the requested video can be fetched from
the network entities, including current vBSs, other vBSs,
and remote video server o. We denote the video sharing
decision of cooperative edge caching system as Y =
Wolib e Bite T,veV,le BUo,ic {1,2}}, where
yffl: () € {0, 1} is a binary variable to represent whether
the current vBSs of physical BS b retrieve the video v;
from the network entity / or not.

2) Video Delivery Phase: Upon fetching the requested
video shared by network entities, the current vBSs pro-
vide the requested video services to users over the access
link by making the decisions on communication and
computation resource allocation. If the current CA-vBS
has fetched the requested video without compression,
the current CA-vBS delivers the required video directly
to the user over the access link. Alternatively, if the

current CO-vBS has fetched the compressed version of
the requested video, it conducts transcoding procedures
before transmitting the required video to the user. Note
that choosing which current vBS to finish video sharing
and delivery process depends on current cache status,
system operative cost and user delay, which will be
introduced in detail later.

3) Video Caching Phase: At the end of each time slot,
each vBS refreshes cached uncompressed or compressed
videos from the cloud server under the video caching
decision. In each time slot, the video caching decision
determines which videos should have been cached, i.e.,
cache status, during the next time slot. The caching
decision of the cooperative edge caching system is
denoted as C = {C?Ib € B,t € T}, where Cf’ =
{cfi (v e V,ie {1, 2}} is the caching decision variable
of physical BS b at time slot . c’v’i(t) e {0,1} is a
binary variable to show whether physical BS b caches
the corresponding video v; at the end of time slot ¢ or
not.

C. Delay and Cost Model

We first analyze of the delay and cost within the video
sharing and delivery phase, which can be divided into three
components.

1) Retrieval Delay and Cost: In the video sharing phase,
the retrieval delay of video v in physical BS b is given by

phrw =Y Y Wb (D

leBUo  ie{l,2}

where D’v’;l is the transmission delay that network entity [
delivers the requested video v; to physical BS b. From physical
BS b to network entity / € BUo, the total optic fiber length and
hop counts along the shortest transmission path are denoted
as dp,; and 1, respectively. The transmission delay Df;l can
be expressed by [13]

bt | iR+ dpit it 1€ B

vi T

Moa 7t +dpit,if 1=o0 @
where ¢ are refractive index of fiber, £ is speed of light in the
vacuum, R, is the transmission rate of backhaul link, and Rj,
is transmission rate of wired links among physical BSs.

The retrieval cost of each physical BS is defined as the
migration cost of the requested videos from network entities
to current vBSs [33]. Hence, the retrieval cost of physical BS
b at time slot ¢ can be given as follows:

ELny =YY" > whomnho) 3)

veV ie{l,2} IeBUo

where win’ ; 18 the unit migration price of transmitting videos
between corresponding vBS in virtual edge i of physical BS
b and network entity / € BU o. Note that win’ o > W b Vb€
B,i € {1,2}. This is because the transmission overhead that
the remote video server transmits the requested videos to
vBSs is larger than the transmission overhead among vBSs.
Besides, considering that the size of compressed videos is less

than that of uncompressed videos, the unit migration price of



compressed video is smaller than uncompressed videos’ unit

migration price, that is, wl il > wi I

2) Computation Delay and Cost: The computation delay

and cost are introduced when the retrieval process is performed

in virtual edge 2. The computation delay of user k& who
requests the video v at physical b is given by [34]

Ab
bcom £ = f 2 kv 4
0= ww 0 @)

leBUo

where Ab is the computing density (in CPU cycle/bit)
to transcode the compressed video v, requested by user k
associated with physical BS b, fk (#) is computation resource
of user k, which is allocated by the corresponding CO-vBS of
physical BS b at time slot . The computation cost of physical
BS b depends on the amount of computation resource that the
corresponding CO-vBS consumes to transcode the compressed
videos at time slot ¢, which is calculated by

Elom(® = > wiff () (5)

kE’Cb

where wy is the unit price of the computation resource.
We denote the computation resource allocation decision of
cooperative system as F = {f,f(t)|b eB, ke Ky, teT}

3) Transmission Delay and Cost of Access Link: The last
stage is video transmission from the current vBSs of physical
BSs to their associated users via the downlink of wireless
access network. We use the orthogonal frequency division
multiple access method for each cell’s downlink communica-
tion without intracell interference [35]. The total bandwidth
of the downlink is B,, Hz, which is divided into S subcarriers,
each occupying a bandwidth of B,,/S Hz. Let S = {1, ..., S}
denote the set of subcarriers. The binary variable x,l:y =1
indicates that the subcarrier s is allocated to the user k
associated physical BS b at time slot ¢, otherwise x/’?,s(f) =0.
In addition, we define the set of subcarrier and transmission
power allocation of downlink at slot t as X = {xf’ RIS
Bkele,seSteT}andP {pks(t)|beBke
Kp,s € S,t e T}, where pk (t) is the transmission power
of the user k associated with physical BS b and subcarrier s.
The channel between a physical BS and a user is assumed
to be a Rayleigh fading channel, which is independent and
identical distributed over time. Then, the signal to interference
plus noise ratio (SINR) of user k associated with physical BS
b and subcarrier s at time slot ¢ is given by

b PO O(d®0)"

Vis() = (6)
k.s .0+ BN

where hi!s(t) is the channel gain of the desired transmission
path between user k and its associated physical BS b on
subcarrier s at slot f, which follows a unit-mean exponential
distribution. The path-loss between the physical BS b and user
k is modeled as (d,i’ (t))_a, where d,’: (1) denotes the reference
distance between them in the path loss model, and « is the
path-loss exponent. If’s(t) = Zb/eg\{b}pz‘v(z)hzg(t)(d,l(’/(t))""
is the intercell interference of user k associated with physical
BS b and subcarrier s at time slot ¢. Ny is the power spectral
density of the additive white Gaussian noise.

Hence, the achievable data rate of user k on subcarrier s
associated with physical BS b at time slot 7 is given by

b b
B (Hh] ()
w 10g2 1+ fk,s kl,;v ]
N I (0 + 5No

Based on (7), the total transmission rate of user k associated
with physical BS b over the access link at time slot ¢ is
expressed as

rp (1) = (7)

R0 =) " xp ()rp (1)
seS
The transmission delay that physical BS b delivers video v
to the associated user k depends on the total transmission rate
of user k over the access link and the size of the uncompressed
requested video vy, which is given by
vy

RY(1)
Meanwhile, the transmission cost of physical BS b over the
access link at time slot ¢ can be measured by the usage of

bandwidth and transmission power, which is given by

E,(=)" [wa > oo+ wpp,é(r)} (10)

kekp seS

®)

Dpic(n) = ©)

where wp,, and w, are the prices of unit bandwidth and
unit power, respectively. Moreover, the transmission power
of user k associated with physical BS b is expressed as
pf(t) =D s xfgs(t)pf,s(t) + p{, where p{ is the circuit power
consumption of user k associated with physical BS b.

4) Total Delay and Cost: Based on the above analysis,
the user delay and system operative cost can be obtained.
Specifically, the delay that users obtain the requested videos
is composed of the retrieval delay, the computation delay, and
the transmission delay over the access link. Based on (1), (4),
and (9), the delay of user k associated with physical BS b at
time slot 7 is expressed by

DY) = Y b, (DL 0 + DY 0 + DY)
veV
Thus, the total delay of all users in the proposed cooperative
caching system is denoted as D(1) = ) .5 Zkel@, Di(t).
Correspondingly, we define the total system operative cost
as the operative cost of all physical BSs. The total system
operative cost at time slot ¢ can be expressed as E(f) =
ZbeB E’ (1), where E2(¢) is operative cost of physical BS b.
The operative cost of physical BS b depends on not only
retrieval cost, computation cost and access cost but video
caching cost in the video caching phase. The operative cost of
physical BS b at time slot 7 is modeled as

EP (1) = EL(1) + Eb,, (1) + EL.(t) + E2, (1)

where Eb (1) represents the caching cost of physical BS b at
time slot t. The caching cost of physical BS b is related to
the operations that physical BS b refreshes the videos cached
in its current two vBSs’ storage space. The caching cost of
physical BS b at time slot ¢ is given by

=0 Y c’;,_(z)(l —ch - 1))

veVie{l,2}

12)

13)



where w, is the unit price of video updating, and the sum term
is the number of uncompressed and compressed videos to be
fetched and cached at time slot #, which were not cached at
the time slot (¢t — 1) [36].

D. Problem Formulation

In general, the users tend to obtain the required videos
with minimal delay while the MNQO’s objective is to provide
video services at the least operative cost. From both the
perspectives of users and MNO, this work aims to strike a
balance between the system operation cost and user delay
under the delay constraints of users, which is achieved by
optimizing the video caching, video sharing, communication
and computation resource allocation under the limited storage
space, computation capacity, and communication resource.
The optimization problem is formulated as follows:

T—1
o min | ;0 [8eD(1) + (1 — 8)E()]

st. (Cl): Dy(t) <D}, () Vb,k.t
€2): Y > zuch () <z Vbm

veVie{l,2}
€3): > d®=<1 Vbt
ie{1,2}
(C4) Yol < (e —1) Vv, bit

C5: Y. Y Wo<1 wbi

leBUo ief1,2}

@6 : Yy Y Wo=r{d 4,0

leBUo i€f{1,2} kelCp
Vv, b, t,

CD: Y (<1 Vb,s
kelCp

(C8) 1 Y pp(t) < phax Vb
kelCp

C9: Y f@W<F Vb

kekCp
(C10) : pp (1) =0 Vk,s,b
(C11) : ff () >0 Vk, b
(C12) : 2§ (1), 5.0, y5 (1) € {0, 1}

Vb, k, 1, v, i (14)

where ¢ is the normalized factor to make user delay and
system operative cost in a similar scale, tradeoff factor § €
[0, 1] is used to balance user delay and system operative cost,
where a large § emphasizes the reduction of user delay by
sacrificing the system operation cost. (C1) represents that the
delay of each user can not exceed its allowed delay threshold
denoted by Dz)th(t). (C2) is the cache capacity limitation of
each physical BS. (C3) implies the corresponding CA-vBS
and CO-vBS of each physical BS can not cache the same
video, which can improve the video diversity at the edge. (C4)
specifies the range of network entities from which the current

vBSs can retrieve the requested videos at time slot 7. The range
of network entities refers to the network entities that have
cached the requested videos during the video caching phase
of time slot (¢ — 1). In (C6), we define a function I'(x) that
its function value is 1 if x > 0 and O if x < 0. (C5) and (C6)
ensure that each physical BS selects the most suitable network
entity to retrieve each requested video. (C7) guarantees that
each physical BS could only allocate each subcarrier to at
most one associated user. (C8) limits the maximal transmission
power of physical BS b € B to pﬁlax. (C9) is to ensure
that the computation resource that each CO-vBS consumes
to transcode the compressed videos should not surpass its
corresponding physical BS’s computation capacity. (C10) and
(C11) indicate that the value of the transmission power and
computation resource used by each user is nonnegative. (C12)
ensures binary-valued x’,z’ s, ctv’i 0, ylv’i’l(t).

The long-term optimization problem involves multiple
optimization variables, i.e., video caching, video sharing,
computation resource, subcarrier, and power allocation. Those
variables are deeply coupled in the objective function and con-
straints, which makes this problem nonconvex. Furthermore,
the presence of unknown future information, such as video
popularity and wireless channel state, further complicates
obtaining a long-term global optimal solution. To approach
a long-term optimal solution, employing DRL algorithms is
a viable approach. However, directly using DRL algorithms
to solve the problem may face difficulties in convergence
due to the extensive action space involving five variables. To
address this complicated problem, an efficient two-layer DRL
algorithm is proposed in the following section.

III. SOLUTION BASED ON TWO-LAYER DRL FRAMEWORK

Due to the interdependence of multiple variables, we pro-
pose to decouple problem (14) into two subproblems and
employ a two-layer DRL framework to solve the subproblems
sequentially. The details of each layer are given in the
following two sections.

A. Inner Layer—Joint Video Sharing and Computation
Resource Allocation Subproblem

Under given video caching and communication resource
allocation policy {C, X, P}, the inner subproblem is to min-
imize the weighted sum of system operative cost and user
delay via optimizing video sharing decision and computation
resource allocation variables, i.e.,

T—1
min ;0 [8eD(1) + (1 — 8)E(1)]

st (Cl), (C4)—(C6), (C9), (C11), (C12).  (15)

By analyzing the objective function of problem (15), video
sharing and computation resource allocation decisions at any
time slot # only impact retrieval delay and cost as well as
computation cost and delay in 7. In addition, the constraints
of problem (15) are independent in each time slot. Hence,
optimizing long-term optimization problem (15) can be recast
as optimizing multiple one-shot problems, whose objectives



are to minimize instantaneous retrieval delay and cost as well
as computation cost and delay.

Furthermore, video sharing and resource allocation deci-
sions of each physical BS b in any time slot ¢ (i.e., {Y}, F}})
only affect its own retrieval and computation cost as well as the
retrleval and computation delay of its associated users in ¢, i.e.,

EL,(1), Eby (1), Dy (1) and D™ (1) Vk € K. Meanwhile,
each physical BS makes video sharlng and resource allocation
decisions in each time slot independently. Therefore, the video
sharing and computation resource allocation variables of each
physical BS can be optimized independently. For physical
BS b, the video sharing and computation variables {Y}, F}}
are optimized to minimize its retrieval delay and cost as
well as computation cost and delay under caching state and
communication resource allocation decision at time slot ¢. The
corresponding problem can be reformulated as

min f,IZ,F(t)
Yi, F{
s.t.  (C1), (C4)—(Co6), (C9), (C11), (C12) (16)
where
Kro=> Y| > o
veV leBUo | i€{l,2}
¢
Z 7 v(f)<77b1E +dbl§>81 +wi NULNE
kelCp
O MOt ity | > weesff (0(17)
kelp fk ® kekp
and &7 = 8¢, &5 = 1 — 4. Base on (4), (11), and (17),

it can be observed that the constraint (C1) and the objec-
tive function fY () is related to a fractional term y” OR

Zke K, qk,v(t)([sze )\byv] /fk (#)). Due to the coupling between
Y}, and F} in the fractional term, fl’,” #() and the constraint (C1)
are nonconvex, resulting that problem (16) is difficult to solve.
Hence, we develop an alternating optimization algorithm to
optimize video sharing and computation resource allocation
alternatively. The details of the alternating optimization algo-
rithm are given as follows.

1) Optimization of F[ The computation resource alloca-
tion problem for a given {Y}} from (16) becomes

> [z T &l

K, ke, LveV leBUo

2 1 k Y

fb( )
Zvev ZZEBUO 4qy, v(t)ygil(z)z\/z)‘b

D0 = Lsev a0 (DL 0 + DL )

+ wreafy (t):|

st. (C1):fP) >

Vk, b, t
(C9): Y ff(t) <F Vk.b,t

kelCp

(18)

we can prove that problem (18) is a convex optimization
problem. Specifically, the constraint (Cl) indicates that the
computatlon resource allocation variable fk (1) is nonnegative.
Hence, (1 /fk (1)) and fk (#) are convex functions with respect
to fk (#). Accordingly, the objective function of problem (18)

Algorithm 1: Binary Search-Based Method for the
Lagrange Multiplier

Input: Give a big enough 9 (t) initialize BIOW(t) =0,

Gb(t) = M, set success = False;
Output: Optimal value of the Lagrange multiplier 67*(7);
while NOT success do
Calculate H? (6% (1)) according to (20);
if 0 < H?(8"(t)) < A then
Obtain the optimal computation resource
allocation with given YL and accuracy level Aj,
set success = True;
Ise if H’(6%(1)) < O then
6 Halve the searching region according to

b (O+6L (1)
00 () = 0°(1), 0b(r) = 10—

B W N -

o

7 else
Halve the searching region according to

ob  (O+6L (1)
0L, (1) = 08 (1), 00(r) = o

9 end
10 end

remains convex due to the convexity of convex functions’
linear combination. In addition, (C1) and (C9) are all lin-
ear. Therefore, problem (18) is convex with respect to F}.
Consequently, the optimal solution of computation resource
allocation at time slot ¢ is obtained by using Lemma 1.
Lemma I: The optimal computation resource allocation
solution for problem (18) meets the following condition:

o = max{of o, o0 (19)
where
b1 :

(/J)b(t) _ ZVEV ZIEBUO Yva (t)qz,v(t)szglkzv

k wrey + 6% (1)

bW l(r)z 1

b ZVEV ZIGBUU qk,v( )yvz ( )sz k.v

() =

DY (0 = Loer @, 0 (DL 0 + D))

and 6°(f) > 0 is a Lagrange multiplier, which is determined
by the equation Zkelchf,f(t) =F
Proof: Please see Appendix A. |
By substituting (19) into Yy, fE() = F, it is difficult
to derive analytically 0”(r). To get the optimal value of 6°(r)
numerically, we define a function with respect to 6% (1), which
is given by

H (") = F= " [Brost® + (1= B0)et 0] @0

kE’Cb

where ﬂk @®» = 1if d)k O = ¢ b(t) and ﬁk @®» = 0
otherwise. Since qbk (f) monotonically decreases with 0L (1),
H’(0%(1)) is monotonically decreasing function with respect
to 62(¢). It is obtained that the low bound of #%(¢) is 0 from
Lemma 1. A binary search method (Algorithm 1) is proposed
to obtain the optimal value of 6”(r) numerically within initial

searching region [0, up(t)] Begin with the value Qb(t)



(S OEN oo (1/2), we 1terat1vely calculate the H®(6° (1))
and the computatlon resource fk () for current value 6°(¢).
The searching region is divided in half, with the larger half
preserved if H?(0%(r)) < 0, and the smaller half retained
if Hb (Gb (1)) > Aj. Once the given precision requirement
(i.e., Ap) is satisfied, the searching will be terminated. By
substituting the optimal value of the Lagrange multiplier 6*(r)
into (19), the optimal computation resource allocation Fb is
obtained with given Y.

2) Optimization of YZ: Given F}, problem (16) is noncon-
vex with respect to yelrl(t). To this end, we relax the value of
yl‘f;l (#) to the interval of [0, 1]. Accordingly, problem (16) is
recast as
min
Yt

@
b

st. (C1), (C4) — (C6),

(C12):0 < y5'(0) <1 Vb, 1 v,i 1)
where
Fo=3 > | 2 wo
veV leBUo | i€{l,2}

¢
Z 7 v(f)<77b IE + dp, lg) 1+ wmmb 1€)

kelCp

V21

22
fk() (22)

+5 0> a0

kelCp

It is observed from (21) that the objective function and
constraints are all linear. Therefore, the optimal video sharing
decision for each physical BS can be directly obtained via
convex optimization toolkit, such as CVXPY [37]. Note that
the relaxation can be regarded as a cooperative transmission
among network entities, where the set of network entities is
denoted by {/|y%/(1) 0 VI € BU o). To illustrate, a partial
video sharing indicator yljlfl (1) # 0 means that network entity /
transmits the portion yf,’;l (¢) of the video v; to current vBS b at
time slot . After the cooperative transmission among multiple
network entities in the video sharing phase, the current vBS
b receives the complete requested video v;, and subsequently
transmits the requested video v; to its associated users in the
video delivery phase.

Combining the solutions for Ff and Yf , problem (16) can be
addressed via an alternative optimization method. Specifically,
by updating the solutions for Fﬁ’ and Yﬁ’ at each iteration d, we
can obtain the optimal video sharing and computation resource
allocation until the decrease in objective of problem (16) falls
below a threshold A;. The detailed procedure for solving
problem (16) are summarized in Algorithm 2. It is noted that
the inner optimization problem (16) can be infeasible if the
user delay constraint (C1) is not satisfied by performing the
joint decision of video caching and communication resource
allocation. The infeasibility issue can be solved by introducing
a penalty mechanism in the outer layer algorithm, which is
detailed in the next section.

Algorithm 2: Alternating Optimization Algorithm for
Video Sharing and Computation Resource Allocation

Input: Initialize the video sharing decision Y{)’I, set the
iteration number d = 1 and accuracy level A»,.
Output: Video sharing variables Y:) and computation
resource allocation decisions F},;
1 while [fy < (1) — 7 (0] < Az do
2 Solve problem (18) for given YZ’ (d), and obtain the
optimal computation resource allocation FZ @ by
using Lemma 1 and Algortihtm 1;

3 Solve problem (21) for given FZ (d), and get the

optimal video sharing strategy YZ’ @+ via convex
optimization solvers;

4 Update d =d + 1;

5 end

B. Outer Layer—YVideo Caching and Communication
Resource Allocation Subproblem

By fixing Y and F, problem (14) can be recast as outer sub-
problem (23). The outer subproblem is to select which videos
are cached at vBSs and allocate communication resource to
users with the objective of minimizing the long-term weighted
sum of user delay and system operative cost, i.e.,

T-1

D [8e1D@) + (1 — 8)e2E(1)]
=0
s.t. (Cl), (C4)—(C6), (C9), (C11), (C12).

min
C.X,P
(23)

By analyzing the objective of problem (23), the current deci-
sions on video caching and communication resource allocation
{C’, X", P’} impact not only the current user delay D(r) and
system operative cost E(f) but also affect the future state, i.e.,
D(t+ 1) and E(t + 1), forming a sequence decision problem.
In addition, the video caching and communication resource
allocation decisions of each physical BS b {C}, X}, P} } impact
user delay and operative cost of other physical BSs, i.e., DZ/ ©)
and EY (1), b € B\{b}, which is caused by video sharing
and spectrum resource interference among physical BSs. The
above analysis suggests that the cooperative caching and
dynamic communication resource allocation in multiple cells
resemble a stochastic game. Consequently, we reformulate
problem (23) as a stochastic game and use the MADDPG
algorithm to solve it [38], [39].

Hence, a tuple of G =< B, S, {Ap}pen, O, P, R,y > is
defined for the stochastic game, where 5 = {1,2,...,B} is
the set of B agents. Each physical BS b is regarded as agent b.
S is the state space of the entire cooperative caching system.
Ay is the action space of physical BS b, which is a set of all
possible actions of physical BS b. A = A x Ay x --- x Ap is
joint action space of all agents. O is the observation set of all
agents. In each time slot, each agent b € B makes its action
decision aj € Aj based on local observation 02 of system
state s’ € S, thereby forming a joint action of all agents, i.e.,

= {a|,a), ..., a}}. After taking the joint action a’, system
state changes from current state s' = {0}, 0}, ..., 0p} to next



state s’ = {ot!, 0;“, ..., 051}, P denotes the transition

probablhty function among dlfferent states. Considering that
the objective of problem (23) is to minimize the weighted sum
of total user delay and system operative cost, all agents have
the same reward function, R:S x A — R, y € [0, 1] denotes
the discount factor. For each physical BS, the observation,
action and reward are formulated as:

Observation: The observation space of BS b at slot
contains the channel states, users’ requests and video caching
decision in the edge at the last time slot, i.e.,

o, = (h° (1), h%,(r), ¢°(r), DY (1), CP(r — 1)} (24)

where h?(7) is the set of the channel gain hi’ ;O and hﬁ’n(t) is
the set of interference channel gain of users, q’ (1) is the set
of users’ request for videos, D AGES {D h(t)le € Kp} is the
set of users’ delay requirement at time slot t,and Cb(t—1) is
the set of video caching decision at last time slot # — 1 in of
CA-vBS b and CO-vBS b.

Action: Consistent with the decision variables in the
problem (23), the action set includes the caching deci-
sion variables, subcarrier and power resources allocation
variables, i.e.,

al, = {C}, X}, P}. (25)

To maintain continuous action space required by the
MADDPG algorithm, the binary variables {C}, X} } are relaxed
to continuous variables ranging from O to 1. Note that Each
agent checks the selected actions, and then modifies any
actions violating the constraints of problem (23). Specifically,
if some of actions Cj, and X} violate caching decision indicator
and subcarrier allocation constraints (C3), (C7), agent b
will reserve one caching decision indicator or one subcarrier
allocation indicator and modify the conflicting actions as zero.
For the convenience of analysis, the storage space constraint
of each physical BS (C2) is transformed as the maximum
number of videos that its corresponding CA-vBS and CO-vBS
can cache [40]. Assume that each CA-vBS can cache up to V]
uncompressed videos and the storage space of each CO-vBS is
V, uncompressed videos. If the selected Cf) does not meet the
storage space constraint of each vBS, the value of some cache
actions will be replaced by zero to ensure that constraint (C2)
is not violated. Besides, some of the selected actions PZ will
be modified to the low values to satisfy the transmission power
constraints (C8), (C10) if they are not within the limitation
range of transmission power.

Reward: The reward function should assess how the actions
taken impact the performance of the system [41]. In this
system, we minimize the long-term total user delay and system
operative cost while satisfying users’ delay requirements. If
user delay exceeds the maximum tolerable delay, these actions
are regarded as detrimental to the system’s performance and
the agent should face penalties. Therefore, the reward function
is designed to include both the optimization objective of
problem (23) and a penalty function 7, (), which is defined
based on the constraint (C1), i.e.,

0 =33 op(Dhu® — DY)
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Fig. 3. Proposed algorithm framework. There are B agents in the outer layer,
and the actor network of each agent makes decisions about video caching
and communication resource allocation ah 1= {C’ X P’ } according to local
observation 0}7 Then, the alternating optimization method in the inner layer
generates the video sharing and computational resource allocation decisions
al, = {Y},F}} based on the current state o}, and the action a}, .

where o, is the penalty coefficient for not satisfying the
maximum tolerable delay for users. Note that the penalty
mechanism not only guides the agents to take actions ensuring
the existence of feasible solutions to the inner optimization
problem but also encourages agents to take actions reducing
user delay. At time slot #, the immediate reward for agent b is
expressed as

r(t) = —=061D(@) — (1 — 8)&2E() + rp(D). (26)

Therefore, the expectation of the long-term discounted
cumulative reward of each agent is defined as

J4) = Eu[rO) +yr() + 72 1@ 44y T = 1)]

where p is the policy of actor in agents. By utilizing the
system-wide performance as the immediate reward function
for each agent, cooperation is promoted among the agents.

C. Proposed Algorithm

Combining the above-given inner and outer layers, we
design a two-layer MADDPG method to solve the cooper-
ative caching problem (14). The two-layer architecture of
the proposed algorithm is shown in Fig. 3. In the outer
layer, the actor network of each agent makes decisions about
communication resource allocation and video caching based
on local observation in a decentralized manner. For agent b,
we denote the neural network parameters of the online ne/twork
and target network in the actor network as Gl‘f and 9“ and
the correspondmg parameters in the critic network are denoted
as Qb and Qb At time slot #, the actor network makes video
caching and communication resource allocation decisions
aj, = {C}, X}, P}} based on current local observation o}, i.e.,

al, = (o}l6f") + N @)

where N, is exploration noise.
Then, an alternating optimization method in the inner layer
of agent b generates the video sharing and computation



resource allocation decisions aj, = (Y], F}} based on the
current state and the action aj | . Note that each agent may make
communication resource allocation decisions {X],P}} that
enable the transmission delay of access link to be greater than
users’ maximum tolerate delay, i.e., Dz’“c(t) > D,lz’th(t). In this
case, there is no feasible solutions to the inner optimization
problem (16), and we can not calculate reward. To address this
issue, we will set the variable Dz’ac(t), and substitute Dz’ac(t)
for Di’“c(t) in the constraint (C1) of inner optimization
problem (16), ensuring there are feasible solutions to the
inner optimization problem (16). Accordingly, we obtain video
sharing and computation resource allocation decisions. A joint
decision set of agent b aj {a],,a},} can be obtained.
The environment gives a reward and state transition as the
feedback after taking joint actions of all agents. Afterward, the
experience memory D stores all agents’ current experience,
which can be represented by <s',a’, 7, s't!>. The storage
size of the experience memory D is Mp, which is located at
the cloud computing center. During the training phase, both
the actor network and critic network of each agent are trained
by utilizing a mini-batch of M samples from the experience
memory. The parameter of each agent’s actor network is
updated by the following policy gradient:

V(_)ét.](uel;:) = Eg a1~D [V%‘u(oy&é‘)

0
Va;)Q(sl, atl, e a%|9h )|321=M(02|9£)1|' (28)

The critic network of each agent in the outer layer is trained
to assess the joint decision by estimating the Q-values based
on global information. The critic online network of agent b is
updated by minimizing its own loss function, i.e.,

(QQ) Ey g sf+1~D|:rh+VQ9 ( g1 a’1+1,_..

+1 _ ObQ t )2
ap >|af;l-| (0;}4-1‘9#) o (S y Ay, .., 33)
(29)
where aZH = {ajt! altl).

For agent b, based on the soft update rule, the parameters
of the target network for both the actor network and critic
network are updated by gradually tracking the corresponding
online networks [42], i.e

6 — 0! + (1 —1)o)
0g « 62 + (1 - 162

(30)
€2y

where t is the update rate of target networks. The proposed
algorithm is encapsulated in Algorithm 3. Considering that
the cloud computing center has a significant computational
advantage, the training process of all agents’ neural networks,
including the actor network and critic network, is completed
at the cloud computing center in an offline model. After
sufficient training, the cloud computing center transmits the
training models to all agents (i.e., physical BSs) via high-
speed backhaul links. Each physical BS is equipped with the
trained actor network, which generates joint policies for video
caching, sharing, and delivery based on local observation.

Algorithm 3: Proposed Algorithm

Input: Users’ request for videos and corresponding delay
requirement, channel state and the current video
caching status at each BS, i.e., 0{);
Output: The video caching, communication resource

allocation, video sharing and computation
resource allocation decisions {C’, X!, P!, Y!, F'};

1 Initialization: Initialize actor and critic networks

(9“, Gl’f ,HbQ , QQ Vb € B) and the experience memory;

for episode= {1 2,...,E} do

Reset environment and obtain the initial observation

0 according to (24);

for slot t ={1,2,...,T} do

5 > Experience generation

For each agent b, choose the action according to

(27). Obtain the video caching and

communication resource allocation decision

321 = {C’,X’ P’}

7 Obtain the video sharing and computation

resource allocation decisions aj, = {Y}, F}} by

using Algorithm 1;

Execute joint decision a’ = {a],a},, Vb € B};

Receive the reward ' and obtain the new

observation 0’;

W N

10 Store the transition < o, a’, r’, o't > into
experience memory;
11 for agent b ={1,2,...,B} do
12 Sample randomly a mini-batch of M,
transitions from the experience memory;
13 Update the critic online network by
minimizing the loss function in (29);
14 Update the actor online network by the policy
gradient in (28);
15 end
16 Update target network actor and critic for each
agent in (30) and (31).
17 end
18 end

IV. SIMULATION RESULTS AND DISCUSSION

This section evaluates the performance of our proposed
algorithm based on the simulation results. The simulation
experiments are conducted in a cellular network with four
physical BSs, i.e., B = 4. There are different video popularity
distributions within the coverage area of each physical BS. We
assume that the video popularity follows a Zipf-like distribu-
tion. Similar to [32] and [43], the video popularity is modeled
as a finite Markov state transition model, which includes four
states {oy1, 02, 043, 0ya} with different parameters that can
indicate the skewness of popularity, i.e., A1 =0.8, A, =0.9,
A3 =1.0, A4 =1.2. The popularity of video v with parameters
Ajis p(’) =2/ 3/, i"®. We denote the probability that
Vldeo popularity transfer from state o,, to state o,; as Py,
where P,; € {0.2,04} Vu,j € {1,2,3,4}). To assess the
performance of video caching decision, we define the cache



TABLE 11
SYSTEM PARAMETERS

Parameter | Value Parameter | Value

% 100 Pl 40 W

S 40 Pe 0.1 W

K 16 R, 150 Mbps

By 30 MHz Ry 100 Mbps

No -99 dBm Zo, [1,2] Mbits

) 0.6 Dy [0,1] s

F 10 Gigacycle/s p 0.33

Wha 1073 b 1000 cycle/bit

wy 0.8x 107 %/cycles | my.0 12

Wp 20 /W b, b’ {1,2,3}

¢ 1.5 dy.o 13 km

13 3 x 10% m/s dy 259.8m

€ 1000 Wi o 100

op 300 Woy o 50

Vi 3 w2, 1

Va 7 w,, 4 2

E 500 100
TABLE II1

HYPERPARAMETER OF PROPOSED ALGORITHM

Parameter Value
Actor hidden layers 2
Critic hidden layers 2
Actor hidden units 64
Critic hidden units 64
Learning rate of actor 0.001
Learning rate of critic 0.001
Discount factor 0.9
Minibatch size 96
Optimizer Adam

hit rate of physical BS b at time slot ¢ as

b
ey Lokek, Lt 2y i Db = 1)
Yvey Ly =1

The other simulation parameters are summarized in Table II,
and the primary simulation environment settings of the
proposed algorithm are concluded in Table III.

In addition, to reflect the advantages of our proposed joint
optimization scheme, we compare it with different benchmark
schemes, which are listed as follows,

1) Proposed Scheme With Different Caching Methods: We
consider three caching strategies to replace the caching
scheme in the proposed scheme, including the random-
cache (RC) scheme, the least frequently used (LFU)
scheme, and no video compression in proposed scheme
(NVCQO). In the RC scheme, the caching decisions for
each CA-vBS and CO-vBS are randomly selected. In the
LFU scheme, the videos with the least requested times
will be replaced in CA-vBSs and CO-vBSs. There are
no CO-vBSs in the system and each CA-vBS only can
cache uncompressed videos in the NVC scheme. In the
above three schemes, the policies about video sharing
and delivery keep the same as the proposed scheme,
where the communication resource allocation policy is
still determined by the MADDPG algorithm.

hit, (1) =
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Fig. 4. Convergence performance for proposed algorithm under different
numbers of users.

2) Independent MADDPG With Proposed Video Sharing
and Computation Resource Allocation Strategies
(IMADDPG): In this solution method, agents only
have local observations from the environment and
make caching and communication allocation decisions
independently of each other, with the goal of
maximizing the sum of the delay of local users and
operative cost instead of the overall system reward.

3) Random Communication Resource Allocation With
Proposed Video Caching, Video Sharing and
Computation Resource Allocation Strategies (R-
Com): Each vBS allocates randomly subcarriers and
transmission power to its associated users. The caching
decision and communication resource allocation policy
remain consistent with the proposed scheme.

4) Proposed Scheme With Noncooperative Caching (NCC)
Mechanism: In this scheme, the process of video sharing
between different vBSs is not considered while video
caching and delivery policies remain the same as the
proposed scheme.

Fig. 4 illustrates the convergence performance with varying
numbers of users. We employ a total of 50000 algorithm
iterations, calculated by multiplying 100 episodes and 500 time
steps. From Fig. 4, we can see that the proposed algorithm
can achieve a relatively stable reward value after about 7500
training iterations. It can also be observed that there are some
minor fluctuations in reward values, which are caused by
each agent’s exploration in action space and the time-varying
video popularity. In addition, the reward value is impacted
by the number of users. With an increasing number of users,
the reward value decreases. This phenomenon is explained
by (26), where both delay and cost values, comprising the
main components of the reward, grow as the number of users
increases.

Fig. 5 presents a comparison of the reward under five
different cache methods. It is observed that when the learning
process becomes stable, our proposed scheme outperforms
the other caching methods, by converging to a larger reward
value. This is because our proposed scheme can adjust caching
decisions along with video sharing, computation and commu-
nication resource allocation according to the time-varying user
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preference. Meanwhile, RC neglects the cooperation cache
among VBSs, resulting in a low-cache hit rate and high-
video delivery delay, which are crucial components affecting
the reward. Compared with the proposed scheme, IMADDPG
converges to a lower reward because it relies on local
observations, prioritizing local video popularity and neglecting
cooperative caching between vBSs. Additionally, LFU demon-
strates a relatively high-reward value as it leverages historical
information about video popularity from the previous episode.
Nevertheless, LFU exhibits a wider fluctuation range of reward
due to its inability to learn the video popularity distribution
and promptly adapt to time-varying user preferences like our
proposed scheme. NVC exhibits low-video diversity and cache
hit rate at the edge, attributed to caching fewer videos due to
the absence of video compression. This can explain why NVC
has the lowest reward value.

Fig. 6 depicts the performance of the proposed scheme in
terms of the average cache hit rate under different cache size of
vBSs. Here, the average cache hit rate is defined as the average
value of the cache hit rate of all BSs hity (). From Fig. 6(a), we
observe average cache hit rates of all caching schemes increase
with the expansion of the cache space in CA-vBSs. This is
because user requests are more likely to be satisfied by CA-
vBSs that can cache more uncompressed videos with larger
cache capacity. Furthermore, the proposed scheme consistently
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holds the advantage in average cache hit rate compared to all
other caching methods. Compared with other caching methods,
the high-average cache hit rate achieved by our proposed
scheme is attributed not only to learning the changing mode
of users’ preference but facilitation of enhanced cooperation
among all vBSs. There are some similar trends and characteris-
tics regarding the average cache hit rate in Fig. 6(b) except for
NVC. The average cache hit rate of NVC remains unchanged
as the cache size of CO-vBSs increases due to the absence of
CO-vBSs for caching compressed videos in the NVC scheme.
In addition, from Fig. 6, we can see that both the increasing
of cache space for CA-vBSs and CO-vBSs can achieve high-
cache hit ratio. However, it may not be feasible if MNO would
like to provide more video services with users at the edge by
only increasing the cache space of CO-vBSs. This is because
the CO-vBSs can not serve users if the computing resource of
CO-vBS is not sufficient to transcode compressed videos.

Fig. 7 focuses on average delay and cost versus the number
of users K under the five different schemes. For our proposed
scheme, the average delay and cost arise almost linearly with
the increasing of K. The behind reasons are explained as
follows.

1) A higher number of users indicates more video requests.
While the number of users is increasing, the probability
that current vBSs have cached all the requested videos
will reduce, and the current vBSs are more likely to fetch
the request videos from other vBSs even remote video
server. Therefore, retrieval delay De*’e(t) and retrieval
cost E? (¢) will rise up.

2) A higher number of users also implies more traffic loads.
With the extension of the number of users, the current
vBSs consume more spectrum resource and power to
transmit more videos to users via access link, thereby
leading to the increasing of transmission cost in the
access link EP.(r). Given the limited communication
resource within vBSs, the surge in the number of users
inherently leads to the increase of the transmission delay
in the access link Dz:‘v’”(t).

For the other four schemes, there are similar variations in
average delay and cost. However, the four baseline schemes
all perform worse than the proposed scheme. Specifically,
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the average delay and cost of NCC surpass those of the
other schemes, because NCC has no video sharing mechanism
among vBSs and each vBS can only acquire videos that are not
cached in local cache space from remote video server, resulting
in the increasing of total user delay and system operative cost
due to higher backhaul-link delay and larger retrieval cost.
When K surpasses 20, the R-Com scheme achieves the highest
average delay. This is because it can not adjust an effective
communication resource allocation strategy as the number of
users increases under limited spectrum and power resource,
thereby contributing to the fast growth of the transmission
delay of access link and average delay of R-Com. Therefore, in
the case of limited communication resource and cache capacity
at the edge, the MNO should adopt our proposed scheme,
which reduces average delay and saves more cost than the
other four schemes.

Fig. 8 presents the average delay and cost versus the tradeoff
factor § of five schemes. The increasing of tradeoff factor §
means that the problem focuses more on user delay instead
of system operative cost. It is consistent with the results
of Fig. 8, where the average delay decreases and average
cost arises with the increment of §. This result indicates the
reduction in average delay is accompanied by the increase of
the average system operative cost, which proves that there is
a tradeoff, controlled by §, between average delay and cost. It
is noteworthy that the average delay and cost of the proposed
scheme are always lower than that of the above four schemes.
Specifically, the proposed scheme can reduce the average user
delay by nearly 11% and save 14.5% in system operative
cost than the best two baselines (LFU and IMADDPG). The
improvement verifies the proposed scheme’s effectiveness in
making joint decisions related to cooperative caching, video
sharing, computation, and communication allocation under
different tradeoff factor §.

V. CONCLUSION

In this work, we investigated cooperative edge caching
of videos relying on video compression while considering
video sharing and delivery. With the goal of minimizing
user delay and system operative cost, we formulated an

optimization problem while satisfying users’ delay require-
ments by jointly optimizing decisions on video caching, video
sharing, communication, and computation resource allocation.
To address the problem’s complexity, we decomposed it into
two subproblems: 1) the joint video sharing and computation
resource allocation subproblem and 2) the joint video caching
and communication resource allocation subproblem. Then, we
proposed a two-layer DRL algorithm, integrating an alternat-
ing optimization method at the inner layer and MADDPG at
the outer layer, to solve these two subproblems. Simulation
results verified the convergence of the proposed algorithm and
indicated that the proposed algorithm can reduce the average
user delay and system operative cost by distributively making
video caching and sharing policies and managing the avail-
able communication and computation resources. Additionally,
our proposed scheme achieved a superior tradeoff between
average users’ delay and operational cost compared to bench-
mark schemes, reducing over 11% user delay and saving
14.5% system operative cost under different tradeoff factor
settings.

APPENDIX
PROOF OF LEMMA 1

Since problem (18) is convex with respect to F., Karush—
Kuhn-Tucker (KKT) conditions are employed to derive the
optimal solution of the computation resource allocation at
time slot z. The Lagrangian function of problem (18) is
written as

v e’kbv
LFL00) =Y Y Y g, 0 5
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Accordingly, the KKT conditions of problem (18) are given

as follows:
t
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The optimal solution of the computation resource allocation
satisfies the KKT conditions (33). By solving the above
equations and inequalities of (33) and (19) is obtained. In
addition, the value of Lagrange multiplier #°(z) is related to
the equation ) ;. K, f,g’ (t) — F = 0. The proof is completed.
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