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Abstract—This paper introduces a novel Collaborative Si-
multaneous Localization and Mapping (CSLAM) framework,
enhanced with a Histogram of Oriented Gradients (HOG) de-
scriptor, to improve Inter-Map Loop Closure Detection. Our
framework stands out by integrating a convolutional neural
network-based loop closure detection, employing the HOG de-
scriptor for enhanced illumination robustness, and utilizing
collaborative mapping from multiple robotic agents for refined
pose estimations and mapping precision. Tested in diverse real-
world fields, particularly for landmine detection, the framework
demonstrates superior robustness and accuracy, outperforming
the existing CCM-SLAM model. Additionally, it incorporates
a transformation matrix from visual SLAM for LiDAR Point
Clouds correction, showcasing its efficacy in 3D mapping and
localization in GNSS-denied settings. Our results indicate that
incorporating the CALC descriptor within a CSLAM system sig-
nificantly enhances loop closure detection and mapping precision,
marking a significant step forward in autonomous cooperative
navigation and mapping in challenging environments

Keywords—visual SLAM, dynamic environment, pose estima-
tion, robot vision systems

I. INTRODUCTION

Positioning, Navigation, and Mapping (PNM) play a vital
role in high-risk operations, where the level of risk is greatly
increased and the margin for error is unusually small. In
hazardous situations, such as those encountered during dis-
aster response, search and rescue and defense operations, the
importance of rapid, accurate and reliable PNM is self-evident.
When traveling through unknown and dangerous terrain, de-
veloping precise and safe routes is key to ensuring mission
safety and success. In such a high-risk environment, the
ability to independently develop offline and real-time mission
plans becomes critical. Visual simultaneous localization and
mapping (SLAM), with its capability to construct detailed 3D
maps and estimate camera ego-motion, significantly enhances
PNM capabilities by providing dynamic insights into unknown
environments.

Visual SLAM is a key technique that has been receiving
significant interests from computer vision, robotics, and aug-
mented reality communities [1], [2], [3]. With one or multiple
video cameras, visual SLAM can be used for estimating the
ego motion of the camera itself and reconstructing the 3D map
of the usually unknown environments. Both the ego motion
and the 3D map are critical to marker-less augmented reality,
autonomous navigation for robotics. Comparing with SLAM

techniques using other sensors like LiDAR [4], a visual SLAM
system uses video cameras which are usually light, cheap,
and contains rich visual information, and is more suitable for
platforms of low cost and limited payload. However, visual
SLAM also faces challenges such as sensitivity to dynamic
lighting conditions, susceptibility to motion blur, and the need
for high computational resources, which can sometimes limit
its efficacy [5].

With state-of-the-art SLAM systems having reached sub-
stantial robustness and accuracy in the centimeter range for
single-robot applications, multi-robot systems have been gain-
ing growing popularity in numerous scenarios, ranging from
search-and-rescue applications [6] to digitization of archeo-
logical sites [7]. Increasing the robustness of the system by
sharing information amongst the participants, boosting the
efficiency of a mission by dividing up a task or enabling
tasks otherwise impossible for a single robot are only some
of the advantages a team of robots easy to offer. At the
same time, SLAM systems designed for multiple agents
have gained significant interest. Historically, much of this
research centered on utilising range sensors, such as lasers
and sonars, for multi-agent SLAM [8]. These early systems
leveraged relative measurements, both in terms of range and
bearing, between different agents to estimate the collective
state of all participating entities. With the rapid advancement
and increasing robustness of monocular visual SLAM, the
logical progression has been to explore its application to
multi-camera setups, especially those involving a team of
independently moving cameras. Implementing Collaborative
SLAM enhances the PNM capabilities of individual agents
by pooling spatial insights and compensating for individual
limitations, ultimately leading to a richer, more detailed, and
more accurate mapping and localization process.

This paper focuses on using collaborative robotics technol-
ogy to effectively navigate through high-risk areas. Robots
working collectively can enhance the ability to assess, adapt
and act in complex situations, extending range and increasing
the precision of operations. Through collaborative efforts,
robots can share information and insights, enabling greater
situational awareness and more effective decision-making
processes. By employing Collaborative SLAM (CSLAM),
this paper aims to enable robots to jointly build coherent
and unified maps without Global navigation satellite system



(GNSS) while positioning themselves within these maps. This
not only facilitates accurate map loop detection, but also
facilitates the synchronization of diverse data sets, allowing
harmonious integration of individual robot perceptions into a
unified environmental understanding.

II. METHODOLOGY

A. Convolutional Autoencoder for Loop Closure

The convolutional autoencoder for loop closure (CALC) ar-
chitecture is a cutting-edge approach to identifying inter-agent
trajectory loops [5]. This system leverages the capabilities of
the convolutional neural network and HOG feature, especially
when processing images from multi-agents such as SUGV and
LUGV with differing viewpoints. At its core, the loop closure
detection (LCD) employs the CALC model to extract global
HOG features from the input images.

Figure 1 showcases the CALC neural network architecture
designed for generating compact and reliable feature descriptor
for visual loop closure, leveraging the principles of autoen-
coders and HOG for its unique design. The network accepts
grayscale images of 120x160 pixels as input, which undergoes
a transposition operation to rearrange its dimensions. The
architecture comprises three main convolutional layers. The
first layer uses 64 filters of size 1x5x5, followed by a ReLU
activation, max pooling, and local response normalization
(LRN). The second convolutional layer employs 128 filters
of size 64x4x4, accompanied by similar post-processing steps
as the first layer. The final convolutional layer utilizes 4 filters
of dimensions 128x3x3, subsequently activated by a ReLU
function. The output from this layer is then flattened from a
3D tensor into a 1D tensor, making it suitable to be used as
a descriptor with 1064 dimensions.

To bolster efficiency and ease of use in the LCD module,
the CALC model is transposed into the Open Neural Network
Exchange (ONNX) format, streamlining the process of image
descriptor extraction.

1) Synchronization of Image and CALC Descriptor: The
LCD module is not only responsible for detecting loop closure
but also for extracting the CALC descriptor, which is used to
facilitate the matching of loop closure candidates, replacing the
ORB-BoW. Each image (or frame) has its local ORB features,
as well as global CALC features. Since the CALC descriptor
and the image are published on different topics, they need to
be synchronized before proceeding to the tracking stage. The
synchronization between images and the CALC descriptor, as
implemented in CSLAM, ensures the synchronous association
of images with their corresponding CALC descriptors, even
in asynchronous delivery scenarios. This is essential for main-
taining data integrity and ensuring accurate tracking outcomes.

The system continuously receives images from cameras and
CALC descriptors, potentially in an asynchronous manner.
Therefore, a mechanism is needed to ascertain that every
image is processed with its pertinent descriptor. The absence of
a synchronized association could lead to incorrect processing
and compromised SLAM outcomes.

Upon the receipt of an image, the system first checks if
its corresponding CALC descriptor is already available. If the
descriptor is unavailable, the image is temporarily stored in
a buffer, denoted as mImageBuffer, pending its descriptor’s
arrival. Conversely, when an ONNX descriptor is received, the
system checks the mImageBuffer to ascertain if the associated
image is already buffered. If the image is located, the system
immediately associates the image with its descriptor.

The architecture also incorporates a reset feature, allowing
the entire system to be refreshed, clearing both the image
buffer and descriptor associations. This feature is essential for
maintaining the system’s robustness, especially in scenarios
where realignment or recalibration is necessitated.

The proposed association mechanism in CSLAM assures
that each image is coupled with its correct CALC descriptor.
This unique pairing is fundamental for achieving precise and
feature-rich tracking in the SLAM system.

B. Image Masking for Enhanced Tracking

In the area where image depicts a wide low contrast
grassland or goundroad, which takes up about half the image
size, with trees in the distance, and a blue sky overhead.

• ORB features not work as well in low contrast scenes
like grasslands or ground roads, especially when these
take up a large part of the image.

• Many of the features could be getting detected on the
non-informative grassland or groundroad area, leaving
fewer features for the more informative parts of the scene
(houses, trees).

• The environment contains many repetitive or similar
patterns (like rows of trees or identical houses), this can
cause incorrect feature matches, leading to errors in pose
estimation.

As we know which regions of the image are less informative
, we create a mask to avoid detecting features in those regions.
A mask is simply a binary image, where the regions of interest
are marked as ”1” (or white) and the regions we want to ignore
are marked as ”0” (or black). We create a mask that only
considers the upper half region where the trees are. The ORB
detector then only detects features within this region. By doing
so, we get enough high quality ORB features to detect and
describe keypoints in images.

In order to further improve the tracking performance, the
parameters for the ORB extractor and the tracking are also
reasonably set. Based on the image scene as described above
we also need to adjust other parameters to improve the number
of feature matches. First of all, given the image contains
large homogeneous areas (trees and shadows), increasing the
number of features could help. This is because there might be
fewer detectable features in these areas.

C. Replacement of BoW with CALC Descriptor

The Bag-of-Words (BoW) model is a simplified representa-
tion used to transform raw image data to vectors (in this case,
feature vectors) that capture the relevant aspects of the images
for the task at hand, such as matching images or recognizing



Fig. 1. The neural network architecture of the CALC model.

places. In CCM-SLAM [9], when a new image comes in, ORB
features are extracted, and the BoW model is used to represent
these features as a vector. This BoW vector is then compared
with vectors from previous images to identify possible matches
or recognise known places. The DBoW2 library is used to
implement the BoW model and perform the comparison.

In our proposed methodology, we’ve enhanced the conven-
tional ORB-BoW based keyframe matching technique with a
preliminary check using global descriptors derived from an
CALC model. This hybrid approach aims to reduce compu-
tational overhead and improve the accuracy of matching by
filtering out dissimilar keyframes at an early stage.

The process initiates by extracting ONNX descriptors for a
pair of keyframes. A cosine similarity measure is then used to
gauge the likeness between these global descriptors. If the sim-
ilarity doesn’t exceed a predefined threshold, the keyframes are
immediately deemed dissimilar, and the function terminates.
This early exit mechanism ensures that only keyframes with a
high likelihood of containing corresponding features proceed
to the more computationally intensive ORB matching stage.
Upon surpassing the initial similarity check, conventional
ORB matching ensues. For each descriptor in the reference
keyframe, we seek the closest descriptor in the target keyframe
using the Hamming distance. To filter out ambiguous matches,
we implement Lowe’s ratio test, comparing the distance of the
best match to that of the second-best. Matches satisfying this
criterion are stored, and if orientation consistency is deemed
crucial, a histogram-based approach is used to retain matches
with the most common orientation differences.

In the CSLAM system, we transitioned from the ORB-BoW
(Bag-of-Words) approach, favouring the CALC-based descrip-
tor for its real-time performance and enhanced reliability. The
places where the traditional ORB-BoW has been replaced are
enumerated as follows:

• Keyframe Matching Inter-Map: We use the CALC de-
scriptor for rapid matching between keyframes across
different maps. This ensures a more seamless integra-
tion of separate mapped areas. Intra-Map: Similarly, for
keyframes within the same map, the CALC descriptor
facilitates swift and accurate matching, outperforming the
traditional ORB-BoW.

• Verification Before Sim3 Transformation Prior to es-
timating the Sim3 (Similarity in 3D) transformation
between the current KeyFrame and a potential loop-
closing KeyFrame, we utilise the CALC descriptor for
secondary verification. This step ensures that the chosen
KeyFrame pairs are genuine candidates for loop closure,
thus potentially reducing the number of false positives.

• Tracking Phase In the tracking phase of reference
keyframe, we use CALC descriptor matching instead

of ORB matching to find candidate for the reference
keyframe. If a substantial number of matches are found,
we proceed to establish a Perspective-n-Point (PnP)
solver.

By integrating the CALC descriptor in these key com-
ponents, we aim to leverage its superior performance in
comparison to generic, off-the-shelf networks. The streamlined
CALC module ensures that the descriptor extraction remains
efficient and conducive to real-time operations.

D. Integrated System

Figure 2 illustrates the cohesive integration of CALC-LCD
and CSLAM. In this configuration, the CALC module within
CALC-LCD processes frames from both SUGV and LUGV,
employing global features extraction to facilitate loop closure
detection. When a loop closure is detected, it activates CSLAM
to merge the maps generated by individual xUGVs. After map
fusion, CSLAM continuously checks for intra-map closures
within the unified map, refining the poses of the single agents
and the associated MapPoints accordingly.

Crucially, the transformation matrix derived from visual
SLAM plays an integral role in adjusting the pose of the laser
point cloud gathered by the individual xUGVs. This fine inte-
gration and refinement process ultimately results in the system
producing correct poses of individual agents, coordinated and
refined maps, and finely tuned laser point clouds, enhancing
the overall consistency and accuracy of the integrated system.

Let’s take an in-depth look at the transformation process of
laser point clouds. In order to correct the laser point cloud
data, we need to transform it from the laser sensor’s coordi-
nate frame to the camera’s coordinate frame, then apply the
CSLAM loop closure correction matrix, and finally transform
it back to the laser sensor’s coordinate frame.

For each point pLiDAR in the point cloud, use the extrinsic
matrix TCL to transform it to the camera’s coordinate frame:

pCamera = TCL × pLiDAR (1)

where TCL is the fixed transformation relationship between
the camera and the laser sensor. Then apply the loop closure
correction matrix T :

p′Camera = T × pCamera (2)

where p′Camera is the corrected point cloud in the camera
coordinate and T is the CSLAM loop closure correction
matrix.

T =

[
R t

s
0 1

]T
(3)
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Fig. 2. The integration of CALC-LCD and CSLAM

Finally, use the inverse of the extrinsic matrix T−1
CL to

transform the point back to the LiDAR’s coordinate frame:

p′LiDAR = T−1
CL × p′Camera (4)

In equation (3), the top-left 3×3 block is the rotation matrix
R, which is a matrix used to perform a rotation operation
in a three-dimensional space. The top-right 3 × 1 block is
the translation vector t divided by the scale s, where t is a
component of a transformation that represents the shift of a
point in three-dimensional space and s is used to represent a
uniform scaling factor applied to the 3D points. The bottom
row is [0 0 0 1].

The rotation matrix R is a 3×3 orthogonal matrix with the
property that its transpose is also its inverse:

RT = R−1 (5)

RTR = I (6)

where RT is the transpose of the rotation matrix, I is the 3×3
identity matrix. R has the following structure, each element
of R is the dot product of the rotated basis vectors and the
original basis vectors.

R =

r11 r12 r13
r21 r22 r23
r31 r32 r33

 (7)

The translation vector t is a three-dimensional vector:

t =
[
tx ty tz

]
(8)

where tx, ty , tz are the shifts along the x, y, and z axes
respectively.

Our methodology integrates a Histogram of Oriented Gra-
dients (HOG) descriptor within a CSLAM framework, en-
hancing loop closure detection and mapping precision. Key

advantages include improved robustness in diverse environ-
ments and accuracy through collaborative mapping. However,
limitations include potential reduced effectiveness in low-
visibility conditions and computational demands for real-time
processing.

III. EVALUATION

In this section, two different scenarios are tested with the
Open Field and one scenario is tested with the Marketplace.
We use the odometry of the xUGV as the external source of the
xUGV’s pose, which comes from the positioning of the single
xGUV. We then apply CALC-CSLAM to optimise the pose of
the xUGVs and compare it with CCM-SLAM (referred to as
CSLAM in later sections). For evaluation, we use the Absolute
Pose Error (APE), often referred to as absolute trajectory
error, to measure the estimated trajectory of CSLAM and
CALC-CSLAM against the external odometry source alone.
Corresponding poses are directly compared between estimate
and reference given a pose relation. Then, statistics for the
whole trajectory are calculated.

1) Open Field: Based on the available data, we use
the raw grey image and an external pose estimation
source—specifically, the ZED camera’s odometry from each
single xUGV—instead of relying on CSLAM’s and CALC-
SLAM’s internal tracking function.

Figure 3 displays the trajectories optimised by CSLAM
and CALC-CSLAM using the ZED camera’s odometry as an
external pose source following inter-map loop closure detec-
tion and map fusion. As can be observed, the results indicate
that when collaborative SLAM system incorporates the ZED
camera’s odometry, it generates more accurate poses than ZED
odometry itself. The estimated trajectories of CSLAM and
CALC-CSLAM align well with the ground truth from RTK
GPS. Among them, the two xUGVs from the CALC-CSLAM
group exhibits better performance.

2) Marketplace: Similar to the Open Field scene, we select
two sub-trajectories of Marketplace scene, representing two



Fig. 3. Comparison of estimated trajectories in an Open Field for scenario 1.
’CSLAM-1’ and ’CSLAM-2’ represent the trajectories of two distinct xUGVs
using CSLAM, while ’CALC-CSLAM-1’ and ’CALC-CSLAM-2’ represent
the trajectories of two xUGVs using CALC-CSLAM. All trajectories utilize
the same external pose estimation source (ZED Odometry) and are aligned
with the ground truth provided by RTK GPS.

Fig. 4. Comparison of estimated trajectories in an Open Field for scenario 2.
’CSLAM-1’ and ’CSLAM-2’ represent the trajectories of two distinct xUGVs
using CSLAM, while ’CALC-CSLAM-1’ and ’CALC-CSLAM-2’ represent
the trajectories of two xUGVs using CALC-CSLAM. All trajectories utilize
the same external pose estimation source (ZED Odometry) and are aligned
with the ground truth provided by RTK GPS.

Fig. 5. Comparison of estimated trajectories in the Marketplace. ’CSLAM-
1’ and ’CSLAM-2’ represent the trajectories of two distinct xUGVs using
CSLAM, while ’CALC-CSLAM-1’ and ’CALC-CSLAM-2’ represent the
trajectories of two xUGVs using CALC-CSLAM. All trajectories utilize the
same external pose estimation source (ZED Odometry) and are aligned with
the ground truth provided by RTK GPS.

single xUGVs. Each small dataset last for about 40 seconds
and they have overlap in partial area which is helpful for inter-
map loop closure detection. It’s evident from the figure that
there’s an overlap between the two sub-trajectories, especially
around the 8-10m mark on the East axis and around -4m on
the North axis. These overlaps are beneficial, as they can be
used for inter-map loop closure detection. However, due to the
significant difference in view direction, the overlap around -
4m on the North axis (11m on the East axis) will not generate
loop closure.

Figures 3, 4, and 5 qualitatively demonstrate how Collab-
orative SLAM, either CSLAM or CALC-CSLAM, improves
the localization of a single xUGV, while Table I provides
a quantitative summary of their performance, based on the
average results from five trials.

Table I gives a clear comparison of the performance metrics
(RMSE, MEAN, and STD) of different SLAM techniques
against an external odometry baseline. It shows that both
CSLAM and CALC-CSLAM significantly reduce the RMSE
(Root Mean Square Error) and MEAN of APE compared to
using external odometry only, with reductions of more than
90% in all tested scenarios. This indicates that both algorithms
are much more accurate in estimating the trajectory than
the baseline provided by external odometry of single xUGV.
CALC-CSLAM significantly enhances the performance of
simultaneous localization, especially in low-contrast scenes
where SLAM algorithms often struggle due to lack of dis-
tinctive features to track and map.

CALC-CSLAM consistently outperforms CSLAM in terms
of RMSE and MEAN of APE across all tested scenarios, as



TABLE I
ABSOLUTE POSE ERROR (APE) STATISTICS OF THE ESTIMATED TRAJECTORY OF CALC-CSLAM COMPARED WITH CSLAM

RMSE(m) MEAN (m) STD (m)
Dataset External

odometry
only

CSLAM CALC-
CSLAM

External
odometry
only

CSLAM CALC-
CSLAM

External
odometry
only

CSLAM CALC-
CSLAM

Open
Field
scenario 1

5.271 0.142 0.054 4.456 0.124 0.057 2.760 0.075 0.025

Open
Field
scenario 2

4.254 0.298 0.113 3.838 0.277 0.095 2.304 0.118 0.043

Marketplace 3.228 0.214 0.081 2.826 0.189 0.075 1.549 0.063 0.032

evident from the data in Table I. Specifically, CALC-CSLAM
reduces the RMSE by about 60% compared to CSLAM,
indicating a substantial improvement in trajectory estimation
accuracy. Moreover, when examining the STD values, we
observe that CALC-CSLAM not only minimizes errors but
also maintains a stable performance across a range of envi-
ronments. This consistent accuracy, observed in both Open
Field and Marketplace scenarios, underscores the robustness
of the CALC-CSLAM approach.

The superior performance of CALC-CSLAM can be at-
tributed to its integration of descriptors extracted by Convolu-
tional Neural Networks (CNNs). These descriptors encapsulate
key geometric data, offering resilience against changes in
illumination. The use of CNNs, trained on a diverse dataset,
allows for better resistance against visual variations such as
shifting lighting conditions, shadows, and occlusions. This
advantage is further accentuated by the ability of CNNs to
identify and leverage more distinctive features than ORB,
leading to enhanced matching and alignment in collaborative
SLAM scenarios. However, it’s worth noting that the com-
putational demands of CNNs render the system slower than
when using the ORB feature extractor, potentially narrowing
its applicability in certain situations like embedded systems.

The framework, while effective, faces challenges in low-
visibility scenarios and requires significant computational
resources. Future improvements could focus on enhancing
visibility resilience, optimizing computational efficiency, and
integrating additional sensing methods like thermal imaging
or radar to overcome these limitations.

IV. CONCLUSIONS

Our research demonstrates significant improvements in
multi-agent loop closure detection and collaborative mapping
through the use of a collaborative SLAM framework and a
convolutional neural network-based descriptor. The CALC-
based CSLAM system excels in inter-map merging and op-
timizing the pose and map points of single xUGVs, especially
in GNSS-denied environments. Replacing the ORB-BoW with
the CALC descriptor has notably enhanced loop closure
detection, highlighting the effectiveness of deep learning in
Positioning, Navigation, and Mapping systems. Collaborative

mapping from multiple agents has also refined pose estima-
tions.

Comparative evaluations against CCM-SLAM show our
system’s superiority in trajectory estimation. Additionally,
using visual SLAM-derived transformation matrices for Li-
DAR point cloud correction has improved 3D mapping and
localization accuracy. Tests in varied environments like open
fields and marketplaces confirm the system’s robustness and
adaptability. Future work will focus on leveraging corrected
laser point clouds for better pose estimation
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