
Open Research Online

Citation

Bennaceur, Amel; Ghezzi, Carlo; Kramer, Jeff and Nuseibeh, Bashar (2024). Responsible
Software Engineering: Requirements and Goals. In: Werthner, Hannes; Ghezzi, Carlo;
Kramer, Jeff; Nida-Rümelin, Julian; Nuseibeh, Bashar; Prem, Erich and Stanger, Allison
eds. Introduction to Digital Humanism. Cham: Springer Nature Switzerland, pp. 299–315.

URL

https://oro.open.ac.uk/98412/

License

(CC-BY 4.0) Creative Commons: Attribution 4.0

https://creativecommons.org/licenses/by/4.0/

Policy

This document has been downloaded from Open Research Online, The Open University's
repository of research publications. This version is being made available in accordance
with Open Research Online policies available from Open Research Online (ORO) Policies

Versions

If this document is identified as the Author Accepted Manuscript it is the version after peer
review but before type setting, copy editing or publisher branding

https://oro.open.ac.uk/98412/
https://www5.open.ac.uk/library-research-support/open-access-publishing/open-research-online-oro-policies
https://creativecommons.org/licenses/by/4.0/

Responsible Software Engineering:
Requirements and Goals

Amel Bennaceur, Carlo Ghezzi, Jeff Kramer, and Bashar Nuseibeh

Abstract In this chapter, we provide an introduction to the discipline of require-
ments engineering as part of the software engineering process. We indicate how to
elicit, articulate, and organize the goals of complex software systems as an explicit
expression of the requirements that the proposed or existing software system is
expected to achieve and maintain, including what the system should avoid
performing. We advocate that system requirements goals can and should be used
to explicitly capture, express, and reason about the diverse digital humanism values
which are of concern in socio-technical systems. This is an essential aspect of
responsible software engineering.

1 Introduction

Software is creating a new digital world in which humans live, individually and
socially. This is a large and complex socio-technical system where the boundaries
between digital, physical, and social spaces are increasingly disappearing. Many
activities in such a system are automated, supporting and sometimes replacing
human work and creating new functionalities that did not exist before. Humans
interact with software-enabled agents in their daily life. Software now defines and
administers most of the laws that govern the world. This was observed in the late
1990s by Lawrence Lessig, in his framing of “Code is Law” (Lessig, 2000).

A. Bennaceur (✉) · B. Nuseibeh
The Open University, Milton Keynes, UK

Lero, University of Limerick, Limerick, Ireland
e-mail: amel.bennaceur@open.ac.uk; bashar.nuseibeh@open.ac.uk

C. Ghezzi
DEIB, Politecnico di Milano, Milan, Italy
e-mail: carlo.ghezzi@polimi.it

J. Kramer
Imperial College London, London, UK
e-mail: j.kramer@imperial.ac.uk

© The Author(s) 2024
H. Werthner et al. (eds.), Introduction to Digital Humanism,
https://doi.org/10.1007/978-3-031-45304-5_20

299

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-45304-5_20&domain=pdf
mailto:amel.bennaceur@open.ac.uk
mailto:bashar.nuseibeh@open.ac.uk
mailto:carlo.ghezzi@polimi.it
mailto:j.kramer@imperial.ac.uk
https://doi.org/10.1007/978-3-031-45304-5_20#DOI

Software engineers, who create code, are the demiurges. Although they are respon-
sible for “technical” decisions, the consequences of their decisions go far beyond the
purely technical sphere, often with unintended and unanticipated consequences. At
the same time, legal systems have lagged behind in adapting to technological
changes.

300 A. Bennaceur et al.

How can the implications of socio-technical systems developed by software
engineers be properly considered when systems are conceived and developed?
How can the values and issues of digital humanism drive the software engineering
process? How does that engineering process interact with other processes (political,
normative, etc.) both ex ante—while the system is designed—and ex post, when
systems are deployed and operate?

Engineers have traditionally focused on functional correctness, efficiency, and
scalability of their solutions. By and large, they have ignored fairness, inclusivity,
and deep consideration of the social implications of their solutions. They have
mastered technology and make complex technical decisions, but rarely consider
the consequences of future use and misuse of their products in society.

In this chapter, we advocate that these issues and values must be considered and
explicitly integrated into the software engineering process: in particular, in the
explicit expression of the requirements that the proposed or existing system is
expected to achieve and maintain. This focus on so-called requirements engineering
can provide a bridge between the world in which digital humanism values arise and
the digital machine that software engineers design, build, and deploy in that world.

We begin with an overview of requirements engineering, focusing on ways in
which goals and requirements are elicited from diverse stakeholders and how they
can be explicitly modeled and analyzed. We illustrate how such goal models can be
extended to capture various human values and discuss how they can be analyzed for
the purpose of validation and verification. We conclude with a discussion on a more
responsible software engineering discipline and some suggested exercises to engage
students in the articulation of and reflection on digital humanism goals in software
systems.

2 Requirements Engineering (RE)

RE has been the subject of several popular books and surveys; this section gives a
brief introduction to requirements as a primary basis for sound software engineering.
It also provides relevant references for further exploration of the area.

Responsible Software Engineering: Requirements and Goals 301

2.1 Introduction to RE

Requirements engineering is the branch of software engineering concerned with the real-
world goals for, functions of, and constraints on software systems. It is also concerned with
the relationship of these factors to precise specifications of software behavior, and to their
evolution over time and across software families. (Zave, 1997)

This definition by Zave emphasizes that a new software system is introduced to
solve a real-world problem and that a good understanding of the problem and the
associated context is at the heart of RE. Therefore, it is important not only to define the
goals of the software system but also to specify its behavior and to understand the
constraints and the environment in which this software system will operate. The
definition also highlights the need to consider change, which is inherent in any real-
world situation. Finally, the definition suggests that RE aims to capture and distill the
experience of software development across a wide range of applications and projects.

Although Zave’s definition identifies some of the key challenges in RE, the nature
of RE itself has been changing. First, RE is not specific to software alone but to
socio-technical systems in general, of which software is only a part. Software today
permeates every aspect of our lives, and therefore, one must not only consider the
technical but also the physical, economical, and social aspects. Second, an important
concept in RE is stakeholders, that is, individuals or organizations who stand to gain
or lose from the success or failure of the system to be constructed (Nuseibeh &
Easterbrook, 2000). Stakeholders play an important role in eliciting requirements as
well as in validating them.

While the definition of the requirements helps delimit the solution space, the
requirement problem space is less constrained, making it difficult to define the
environment boundary, negotiate the resolution of conflicts, and set acceptance
criteria (Cheng & Atlee, 2007). Therefore, several guidelines are given to define
and regulate the RE processes in order to build adequate requirements (Robertson &
Robertson, 2012). Figure 1 summarizes the main activities of RE:

Elicitation. Requirements elicitation aims to discover the needs of stakeholders as
well as understand the context in which the system-to-be will operate. It may also
explore alternative ways in which the new system could be specified. Several
techniques can be used including (i) traditional data gathering techniques (e.g.,
interviews, questionnaires, surveys, analysis of existing documentation),
(ii) collaborative techniques (e.g., brainstorming, workshops, prototyping), (iii)
cognitive techniques (e.g., protocol analysis, card sorting), (iv) contextual tech-
niques (e.g., ethnographic techniques, discourse analysis), and (v) creativity
techniques (e.g., creativity workshops, facilitated analogical reasoning).

Modeling. The results of the elicitation activity often need to be described precisely
and in a way accessible by domain experts, developers, and other stakeholders. A
wide range of techniques and notations can be used to represent requirements,
ranging from informal to semi-formal to formal (mathematical) methods. The
choice of the appropriate method often depends on the kind of analysis or
reasoning that needs to be performed.

Analysis and Assurance. Requirements quality assurance seeks to identify, report,
analyze, and fix defects in requirements. It involves both validation and verifica-
tion. Validation aims to check the adequacy of the modeled requirements and
domain assumptions with the actual expectations of stakeholders. Verification
covers a wide range of checks including quality criteria of the modeled require-
ments (e.g., consistency).

302 A. Bennaceur et al.

Fig. 1 Main activities of
requirements engineering

2.2 Requirements and Goals

Zave and Jackson (1997) suggest that there are three main kinds of artifacts that
requirements engineers would produce during the RE activities:

• Statements about the domain, describing properties that are true regardless of the
presence or actions of the machine (or software system)

• Statements about requirements, describing properties that the stakeholders want
to be true of the world in the presence of the machine

• Statements about the specification, describing what the machine needs to do to
achieve the requirements

These statements can be written in natural language, formal logic, semi-formal
languages, or indeed some combination of them, and Zave and Jackson are not
prescriptive about that. What is important is their relationship: The specification of
the machine, together with the properties of the domain, should satisfy the
requirements.

Responsible Software Engineering: Requirements and Goals 303

Fig. 2 A sample goal model for the MealPlanning example

To illustrate those notions, let us consider an example of meal planning as a way
to tackle an important and pressing societal problem, food waste. It is estimated that
food waste per capita by consumers in Europe and North America is 95–115 kg/year.
Food waste is often caused by insufficient planning of purchases and consumption
by individuals. Effective strategies to reduce wasteful behavior should require
minimum time and cognitive effort from consumers. The Feed me, Feed me exem-
plar (Bennaceur et al., 2016) describes a system based on the Internet of Things to
support the production, distribution, and consumption of food. We use ideas and
challenges from the Feed me, Feed me exemplar to focus on how our approach can
support individuals in reducing food waste in households.

For example, to avoid food waste, we should plan meals. This can be achieved by
refinements (as illustrated in Fig. 2). The Avoid[FoodWaste] goal is refined into
sub-goals and associated domain properties. A goal in this model is defined as a
prescriptive statement that the system should satisfy through the cooperation of
agents such as humans, devices, and software. Goals may refer to services to be
provided (functional goals) or quality of service (soft goals).

Achieve[MealPlan] is a functional goal, while MaximiseNutrition is a soft goal.
While functional goals can be satisfied or not, soft goals are often optimized.
Keywords such as Achieve, Maintain, and Avoid are used to characterize the
intended behaviors of the goals and can guide their formal specification.

Domain properties are descriptive statements about the environment. For exam-
ple, Food Information Available is a domain property. An important relationship is
that the goal Avoid[FoodWaste] can be satisfied through Achieve[MealPlan] and
MaximiseNutrition assuming Food Information Available.

Besides describing the contribution of sub-goals (and associated domain proper-
ties) to the satisfaction of a goal, refinement links are also used for the
operationalization of goals and assigning them to (software) agents. For example,
MealPlanner is responsible for satisfying the goal Achieve[MealPlan].

Finally, Conflict links are used to represent obstacles to the satisfaction of goals.
For example, UserFoodPreferences may hinder the satisfaction of
MaximiseNutrition. Reasoning about obstacles enables risk analysis of the goals
by eliciting properties that may obstruct the satisfaction of goals.

304 A. Bennaceur et al.

Hence, RE is grounded in the real world; it involves understanding the environ-
ment (domain) in which the system-to-be will operate and defining a detailed,
consistent specification of the software system-to-be. This process is incremental
and iterative as illustrated in Fig. 2.

Zave and Jackson specify five clear criteria for this process to complete:

• Each goal has been validated with the stakeholders.
• Each domain property has also been validated with the stakeholders.
• The goal does not constrain the environment or refer to the future.
• There exists a proof of the satisfaction of goals.
• The goals and domain properties are consistent.

2.3 The Need for Human-Centered Values

The essence of RE is a good understanding of problems, which includes analyz-
ing the domain, communicating with stakeholders, and preparing for system
evolution. However, techniques such as machine learning, automated composi-
tions and interactions, and creativity disrupt the traditional models of software
development and call for quicker, if not immediate, response from requirements
engineering. Moreover, the social underpinning and the increasing reliance on
software systems for every aspect of our life call for better methods to understand
the impact and implications of software solutions on individuals and society as a
whole.

For example, several pressing global problems such as climate change and
sustainability engineering as well as increasingly important domains such as user-
centered computing and other inter- and cross-disciplinary problems challenge
existing processes and techniques. It is no longer enough to understand the needs
of stakeholders and the constraints of the environments in which a software system is
deployed; we also need to understand the values of the stakeholders and understand
the broader impact of deploying software solutions. In the next section, we move to
values and their interaction with requirements.

3 Values We Live By: Eliciting, Articulating,
and Organizing Goals

Digital humanism argues for adopting a broader framework where, besides the
technical perspective, multiple perspectives (including ethical, social, legal, politi-
cal, and economic) are considered when developing systems that have an impact on
individuals and society.

Recent work has promoted the need to consider ethics and values during the
development of software systems (Whittle, 2019). As outlined by Mougouei et al.

(2018), “people are demanding that practitioners align technologies with human
values.” Some approaches have been proposed to assess and study values in software
engineering (Winter et al., 2019), to incorporate social values in software design
patterns (Hussain et al., 2018), and to measure the impact of values in requirements
engineering activities (Perera et al., 2021). Values are well studied in human-
computer interaction and information systems (Cockton, 2004).

Responsible Software Engineering: Requirements and Goals 305

For RE, this means rethinking the world in terms of broader and changing
stakeholders, their needs, and their values. It also means rethinking the notion of
requirements satisfaction to incorporate values and the inevitability of failure and
change. Some of the challenges of doing so stems from the subjectivity and
uncertainty of values. Values are subjective and depend on the diverse viewpoints
of stakeholders because different stakeholders describe value requirements differ-
ently. As a result, they have different and sometimes contradictory requirements. For
example, if we consider the value of fairness, serving a protected group with priority
can promote fairness in society, but, at the same time, it may seem discriminatory to
others. Values are uncertain and are often better understood once the software
solution is deployed. For example, awareness of gender bias in data may lead to
the deployment of existing equality policies, and their impact and consequences are
better understood once deployed.

The debate has long focused on principles and codes of conduct for considering
values in software systems. However, it is increasingly moving to tools and pro-
cesses for implementing those values and principles in practice. While awareness of
the potential issues is increasing at a fast rate, the software/requirements engineering
community’s ability to take action to mitigate the associated risks is still in its
infancy. There is still a need to close the gap between principles and practices for
engineers to apply ethics at each stage of the development pipeline and to signal to
researchers where further work is needed. In other words, we need methods to move
from “what” values to embed to “how” those values can be embedded in software
systems. This section provides some direction toward achieving this goal.

3.1 Values and RE Activities

Let us first review the RE activities with humanistic values in mind.
Elicitation. Social scientists, ethicists, philosophers, policymakers, technologists,

and civil society have been involved in a debate around what is necessary to enable
society to capitalize on the opportunities of software systems while ensuring fair and
ethical decision-making is maintained. Participatory design aims to elicit the values
of multiple stakeholders by following several steps, which include:

– Involving actual users for eliciting value concerns
– Using personas to consider/assume user values
– Using prototypes to analyze assumptions about values
– Using diversity in members selected from various stakeholder groups
– Focusing on cultural sensitivities
– Being considerate of language needs of different stakeholder groups
– Developing empathy with users, emulating their experiences
– Building an atmosphere of trust for stakeholders to voice their opinions
– Applying user feedback to improve mock-ups and prototypes

306 A. Bennaceur et al.

In addition to continual engagement with stakeholders and practitioners, reflec-
tion on practices and the impact of the developing software systems is equally
important. The Self-Reflection Tool of the Responsible Research and Innovation
(RRI)1 framework helps practitioners consider the societal and ethical issues that
may be involved with technology. Learning by doing underpins the AREA (Antic-
ipate, Reflect, Engage, and Act) approach to RRI. This means that professional and
social responsibility is best developed through experience and reflective practice.
The guidelines for such practices include:

1. Involving a wide range of actors and people in practice, deliberation, and
decision-making. This strengthens democracy and broadens sources of expertise,
disciplines, and perspectives.

2. Envisioning impact and reflecting on the underlying assumptions, values, and
purposes to better understand how the developed systems shape the future. This
yields valuable insights and increases the capacity to act on what we know.

3. Communicating in a meaningful way the methods, results, conclusions, and
implications to enable public scrutiny and dialogue. This benefits the visibility
and understanding of the developed systems.

4. Being able to modify modes of thought and behavior, overarching organizational
structures, in response to changing circumstances, knowledge, and perspectives.
This aligns action with the needs expressed by different stakeholders.

Modeling. In Value-Based Requirements Engineering (Thew & Sutcliffe, 2018),
values are seen as personal attitudes and beliefs which influence functional and
non-functional requirements. There is evidence of human values being treated as
software requirements, specifically as soft goals or non-functional requirements
(Barn, 2016). In values-first software engineering, Ferrario et al. (2016) argue that
complex wicked problems such as sustainability should be treated as soft goals, not
as functional requirements. Nurwidyantoro et al. (2022) postulate that
non-functional requirements can be seen as a subset of human values and propose
to classify human values and align them to system values. They found system value
themes, such as efficiency and usability, similar to non-functional requirements.

1 https://rri-tools.eu/. Accessed 10 April 2023.

https://rri-tools.eu/

Responsible Software Engineering: Requirements and Goals 307

Fig. 3 Dimensions to
consider for eliciting and
operationalizing values

Assurance. Operationalizing values is defined as “the process of identifying
human values and translating them to accessible and concrete concepts so that
they can be implemented, validated, verified, and measured in software” (Shahin
et al., 2022). It is common for stakeholders to gain a better understanding of their
values as they experience, reflect, and learn more about them (Gentile, 2010).
However, elicitation and modeling approaches focus on early stages of the devel-
opment process, with little attention given to the satisfaction of values in deployed
software systems (Shahin et al., 2022). Software solutions can help stakeholders
articulate, measure, and reflect on their values while they are experiencing the
software. Values@Runtime (Bennaceur et al., 2023) deal with uncertainty by
delaying some decisions until software is in operation. It adopts an adaptive process
to engage stakeholders and to support learning about models of stakeholders’ values.
It provides values instantiation as a means of representing the concrete actions that
stakeholders associate with values (Hanel et al., 2017). This framework supports
values operationalization in terms of (i) representation, instantiation, and monitoring
of values and behavior; (ii) understanding existing mismatches between values and
users’ behavior based on analysis; and (iii) recommending ways to align values and
behavior as well as reflecting on the recommendations.

Hence, eliciting and operationalizing values involves three dimensions (see
Fig. 3):

• People, through the adoption of a human-centered view and participatory design
as well as involving a diversity of stakeholders and teams

• Artifacts, by making explicit value statements and engineering systems for
diverse stakeholders

• Processes, by linking values between requirements and implemented software and
by being transparent and open to accountability about implementation practices and
mindful of project impact and following current standards and regulations

308 A. Bennaceur et al.

3.2 Values and Goals

Let us consider the example of fairness when food shopping (Farahani et al., 2021).
The high-level goal is Achieve[FairShopping] and might be refined in multiple
ways—see Fig. 4.

For example, when the domain property AbundantStock holds, then the goal is to
maximize Products Sold, which can be operationalized by allowing users to buy as
many products as they want/need. When the domain property Limited Stock holds,
then there needs to be a choice between two goals: Achieve[EquitableAccess] by
prioritizing protected groups or Achieve[EqualAccess] by limiting the maximum
amount of product per shopper without distinction between shoppers. While not
mutually exclusive, the choice is driven by consideration of multiple stakeholders,
e.g., supermarkets’ willingness to implement different procedures, government’s
willingness to support protected groups, and public acceptance of prioritizing
protected groups. For example, prioritizing a protected group can be perceived as
fair for some people, but at the same time, it may seem discriminatory to others. In
other words, a goal model can help highlight the stakeholders involved when making
value-sensitive choices, e.g., fair for whom or who is responsible for the choice. The
goal model helps highlight and contrast alternative operationalization of values.

Emotions can be used as proxy to values and leveraged to design inclusive
processes (Hassett et al., 2023). For example, the Supermarket might want the
stakeholder group, Vulnerable Shopper (e.g., older person or person with special
needs), to feel Cared for, which then leads to prioritizing protected groups.

Fig. 4 A sample (emotional) goal model for the fair food shopping example

Responsible Software Engineering: Requirements and Goals 309

4 Toward Responsible Software Engineering: DigHum
Goals in the Life Cycle

In this section, we discuss how the principles of digital humanism may guide the life
cycle of socio-technical systems: from the conception and development of a system,
to its operation in the real world, to its continuous evolution.

4.1 Requirements and Other Activities

The first and most important step consists of understanding and articulating the
requirements. The previous two sections shed light on this crucial activity, through
which developers assume explicit responsibility with respect to the system under
development. Through goal models, they express a contract with stakeholders and
future users, which states what the system is expected to achieve. Traditionally,
software engineers are educated to focus on goals that refer to the functionalities and
expected behaviors to be provided by the system and on technical qualities, like
efficiency (e.g., average response time of certain transactions), portability of the
implementation on different architectures, or security (e.g., guaranteed restricted
access to certain data or functionalities). In our context, however, requirements also
reflect the general humanistic values, modeled as explicit goals to be met by the
future system. For example, fairness is explicitly modeled as a goal to achieve in the
context of the food shopping example.

Eliciting and articulating these goals is critical, but also quite difficult and highly
context dependent. The technical skills possessed by software engineers alone may
fall short. Not only stakeholders and user representatives must be involved, but also
experts from other domains—like philosophy (ethics), history, social sciences,
economics, or law—may have a lot to say in order to understand goals, analyze
and resolve conflicts, and prioritize among them, but also to anticipate possible uses
(or misuses) of socio-technical systems in the real world. Depending on the specific
system being developed, a deliberative process needs to be put in place, which gives
voice to different viewpoints and then responsibly leads to decisions that inform all
subsequent development steps.

Requirements are a prerequisite for design and implementation (Fig. 5). These are
technical steps that lead to a functioning socio-technical system. Design is respon-
sible for defining the software architecture, i.e., decomposing a system into compo-
nents and deciding how different components interact and communicate.
Implementation is responsible for producing an executable system, often through a
combination of programmed parts, libraries, and software frameworks.

However, requirements also permeate many parts of the systems development
process. During system design, requirements are used to inform decision-making
about different design alternatives. During system implementation, requirements are
used to enable system prototyping and testing. Once the system has been deployed,

requirements are used to drive acceptance tests to check whether the final system
does what the stakeholders originally wanted. In addition, requirements are reviewed
and updated during the software development process as additional knowledge is
acquired and stakeholders’ needs are better understood.

310 A. Bennaceur et al.

Fig. 5 Crucial relationship
between requirements and
other activities

Each step of the development process may lead to the definition of additional
requirements through a better understanding of the domain and associated con-
straints. Therefore, there is a need to consider requirements, design, and architecture
concurrently, and this is often the process adopted by software engineers.

4.2 Software Processes

Different process models can be followed to guide development, ranging from
top-down (waterfall) processes to bottom-up and iterative processes. Waterfall
processes are monolithic and sequential: they try to strictly enforce completion of
the requirements phase before proceeding to the design phase, which must itself be
completed before moving to implementation. Strict sequential ordering of phases is
only suitable for highly structured systems that operate in well-defined, formalizable,
and highly stable contexts. It is not suitable for ill-defined and unstable settings as is
the case in most socio-technical systems, where humans play a fundamental role.
More flexible—iterative and incremental—life cycles, such as the popular process
models which fall under the term agile processes, are almost always adopted for the
latter kind of systems. Agile processes, which envision the development of system
increments, e.g., via sprints in the SCRUM agile methodology (Schwaber & Beedle,
2002), appear as a suitable setting to accommodate the necessary deliberations
through which digital humanism-inspired requirements can be explored and then
guide development. The chapter by Zuber et al. in this book provides deeper insights
into how agile development methods are inherently suitable for embedding digital
humanism values into software systems.

Responsible Software Engineering: Requirements and Goals 311

4.3 Validation and Verification

Two other important activities need to be carried out during development: verifica-
tion and validation (V&V). The two terms shed light on two complementary kinds of
assurances. Validation is the assurance that the system meets the needs of the
customer and other identified stakeholders. It often involves acceptance and suit-
ability with external customers. Verification is the assurance that the system com-
plies with its specification. The two terms would of course be synonyms if
specifications were exhaustive and complete. This is almost inevitably impossible
in practice. In addition, as we discuss next, the needs of customers and other
stakeholders continuously evolve, and therefore, an upfront complete specification
is impossible to realize.

V&V is itself not a stage of system development, but rather a cross-cutting
activity that permeates all development steps. Requirements are continuously veri-
fied and validated as they are elicited and formalized; likewise, architectures and
implementation increments are subject to V&V. Delivery of (partial) applications for
real use presupposes an adequate level of V&V to check compliance with specifi-
cations, including possible existing regulations, and adherence to users’ needs. It is
also possible to design systems in a way that these checks are made automatically by
the system while it operates, at run-time (run-time V&V).

V&V is practiced through two complementary approaches: systematic reasoning
and testing. Systematic reasoning tries to analyze the artifacts under development to
prove that the stakeholders’ expectations are met by affirming that violations of those
expectations are impossible. Testing develops experiments that try to bring the
system into desirable and undesirable states, to collect empirical evidence that the
system being developed can be delivered for practical use. The two approaches are
complementary, since exhaustive testing is impossible to achieve and tools to assist
in systematic reasoning do not scale up to large systems.

4.4 The Running System

The life cycle of an application does not end when it is deployed. Most systems, and
especially those successfully used in practice, are subject to continuous evolution,
traditionally called maintenance. New requirements may arise from real use,
pre-existing requirements may need to be adapted due to new insights gained
while the system has been in use, opportunities for improvements may be discov-
ered, and errors or other problematic situations that evaded V&V may show up
during execution. To support evolution, specifically designed monitors may be
implemented in the deployed applications to perform run-time V&V, checking for
the insurgence of potential risks, violations of desirable policies, or mishaps.

Many ethical questions arise here, such as who is “fairer,” a technical system
or a human? How transparent must a decision by a technical system be that

312 A. Bennaceur et al.

5 Conclusions

In this chapter, we have explained the central role of requirements engineering in the
software engineering process of software production and evolution. We have
explained why we advocate requirements specifications and goals as the most
promising and pragmatic technique to explicitly express the societal and digital
humanism values which are so crucial to sound and responsible software engineer-
ing of socio-technical systems. This includes not just what the system should achieve
but also what it should avoid performing. Some form of continuous monitoring of
the running system will be needed to support assessment as part of responsible
software engineering. This will also require that software engineers are involved in
outreach activities regarding the global effects of their products: to assess impact,
use, and abuse. As mentioned, experts in other disciplines (social scientists, lawyers,
etc.) will also need to be involved, not just at the elicitation stage but also when the
system is deployed and running. This diversity of stakeholders is becoming more
and more important as systems are embedded in society.

We believe that this extension of traditional software engineering to include
humanistic values is essential to cope with complex socio-technical systems. It
will inevitably require further research, practice, and education to refine the tech-
niques, to gain further empirical evidence and experience, and to ensure dissemina-
tion to the profession.

Discussion Questions for Students and Their Teachers
In the following hypothetical projects work together with colleagues from different
disciplines and with different backgrounds, to articulate the Digital Humanism goals
and overall requirements to be reached by a hypothetical socio-technical system,
understanding potential conflicts, and mitigating potential risks, including misuse.

Consideration should also be given to what should be automated and what is left
to humans to perform and also whether it is possible to ascertain whether or not the
resulting system is compliant with the specified goals and explicit values.

1. Hypothetical Project 1: Citizen Forensics
The police are overstretched, criminality is on the rise, . . . how can citizens

participate in deterring crime and helping the police (and each other) detect anti-
social incidents and solve crime.

Hints/issues: you could explore risk and issues around surveillance (before or
after incidents), harassment, privacy, citizen-police relations, and information
sharing. . .A resource: https://www.citizenforensics.org

2. Hypothetical Project 2: Technology in the Courtroom
It’s not easy to be a judge. . . It is necessary to assess as correctly as possible

whether an offender will recidivate, what sentence is appropriate for the particular
offense, whether or not the sentence should be suspended, and much more.

Wouldn’t it be great if technology could make judgments easier?

https://www.citizenforensics.org

supports a court ruling? Is such a system more of a science fiction fantasy à la
Minority Report or an actual chance to counter prejudices, perception biases, or
even racist tendencies among judges?

Responsible Software Engineering: Requirements and Goals 313

Here are some papers and articles about this topic:
https://link.springer.com/content/pdf/10.1007/s10506-022-09310-1.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-

algorithm
https://link.springer.com/article/10.1007/s10506-022-09312-z
https://scholarship.law.umn.edu/mlr/58/
Proposed by: Anna Dhungel

3. Hypothetical Project 3: My Truth, Your Truth
Since the corona pandemic, I don’t recognize some of my friends. Through

some social media forums, they have become vaccination opponents, mask
deniers, and world conspirators.... How can social media be made social and
responsible again without immediately giving the feeling of living in a “dictator-
ship of opinion”?

Hint: The following article gives a brief introduction into the democratic roles
of news recommender systems: https://doi.org/10.1080/21670811.2019.
1623700.

Proposed by: Kian Schmalenbach and Eva Gengler

Learning Resources for Students
1. Van Lamsweerde, A., 2009. Requirements engineering: From system goals to

UML models to software (Vol. 10, p. 34). Chichester, UK: John Wiley & Sons.
The book presents a systematic method to elaborate complex system models,

analyze them, and derive software specifications from them. The method is
known as KAOS (Keep All Objectives Satisfied). The goal models in this chapter
used notations and formalisms from this book.

2. Brey, P. and Dainow, B., 2021. Ethics by design and ethics of use in AI and
robotics. The SIENNA project-Stakeholder-informed ethics for new technologies
with high socioeconomic and human rights impact.

The document provides guidance for including ethical principles and pro-
cedures into the design and development processes of AI systems.

3. IEEE Standard Model Process for Addressing Ethical Concerns during System
Design, in IEEE Std 7000–2021, vol., no., pp.1–82, 15 Sept. 2021, doi: https://
doi.org/10.1109/IEEESTD.2021.9536679.

The standard establishes a set of processes by which engineers and technolo-
gists can include consideration of ethical values in system design and
development.

4. Guszcza, J., Danks, D., Fox, C., Hammond, K., Ho, D., Imas, A., Landay, J.,
Levi, Ma., Logg, J., Picard, R., Raghavan, M., Stanger, A., Ugolnik, Z., Woolley,
A., Hybrid Intelligence: A Paradigm for More Responsible Practice (October
12, 2022). Available at SSRN: https://ssrn.com/abstract=4301478 or https://doi.
org/10.2139/ssrn.4301478.

https://link.springer.com/content/pdf/10.1007/s10506-022-09310-1.pdf
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://www.propublica.org/article/how-we-analyzed-the-compas-recidivism-algorithm
https://link.springer.com/article/10.1007/s10506-022-09312-z
https://scholarship.law.umn.edu/mlr/58/
https://doi.org/10.1080/21670811.2019.1623700
https://doi.org/10.1080/21670811.2019.1623700
https://doi.org/10.1109/IEEESTD.2021.9536679
https://doi.org/10.1109/IEEESTD.2021.9536679
https://ssrn.com/abstract=4301478
https://doi.org/10.2139/ssrn.4301478
https://doi.org/10.2139/ssrn.4301478

314 A. Bennaceur et al.

The paper presents the hybrid intelligence paradigm, aimed at supporting a
more responsible practice, through simultaneous consideration of machine capa-
bilities and human psychology, behaviors, needs, and values in the development
of AI-based systems.

Acknowledgments This work was supported by the Engineering and Physical Sciences Research
Council [grant numbers EP/V026747/1 and EP/R013144/1] and Science Foundation Ireland [grant
number 13/RC/2094\P2].

References

Barn, B. S. (2016). Do you own a Volkswagen? Values as non-functional requirements. In Human-
centered and error-resilient systems development: IFIP WG 13.2/13.5 joint working conference,
6th international conference on human-centered software engineering, HCSE 2016, and 8th
international conference on human error, safety, and system development, HESSD 2016,
Stockholm, Sweden, August 29-31, 2016, Proceedings 8 (pp. 151–162). Springer.

Bennaceur, A., McCormick, C., Galán, J. G., Perera, C., Smith, A., Zisman, A., & Nuseibeh,
B. (2016). Feed me, feed me: An exemplar for engineering adaptive software. In Proceedings of
the 11th international symposium on software engineering for adaptive and self-managing
systems (pp. 89–95).

Bennaceur, A., Hassett, D., Nuseibeh, B., & Zisman, A. (2023). Values@ runtime: An adaptive
framework for operationalising values. In Proceedings of the 45th IEEE/ACM international
conference on software engineering—software engineering in society track.

Cheng, B. H., & Atlee, J. M. (2007). Research directions in requirements engineering. Future of
software engineering (FOSE'07), (pp. 285–303).

Cockton, G. (2004). Value-centred HCI. In Proceedings of the third Nordic conference on human-
computer interaction (pp. 149–160).

Gentile, M. C. (2010). Giving voice to values: How to speak your mind when you know what’s right.
Yale University Press.

Farahani, A., Pasquale, L., Bennaceur, A., Welsh, T., & Nuseibeh, B. (2021). On adaptive fairness
in software systems. In 2021 International symposium on software engineering for adaptive and
self-managing systems (SEAMS) (pp. 97–103). IEEE.

Ferrario, M. A., Simm, W., Forshaw, S., Gradinar, A., Smith, M. T., & Smith, I., (2016). Values-
first SE: Research principles in practice. In Proceedings of the 38th international conference on
software engineering companion (pp. 553–562).

Hanel, P. H., Vione, K. C., Hahn, U., & Maio, G. R. (2017). Value instantiations: The missing link
between values and behavior?. Values and behavior: Taking a cross cultural perspective
(pp. 175–190).

Hassett, D., Bennaceur, A., & Nuseibeh, B. (2023). Feel it, code it: Emotional goal modelling for
gender-inclusive design. In Requirements engineering: Foundation for Software Quality: 29th
international working conference, REFSQ 2023, Barcelona, Spain, April 17–20, 2023, pro-
ceedings (pp. 324–336). Springer Nature.

Hussain, W., Mougouei, D., & Whittle, J. (2018). Integrating social values into software design
patterns. In Proceedings of the international workshop on software fairness (pp. 8–14).

Lessig, L., (2000). Code is Law. Harvard Magazine. https://www.harvardmagazine.com/2000/01/
code-is-law-html.

Mougouei, D., Perera, H., Hussain, W., Shams, R., & Whittle, J. (2018). Operationalizing human
values in software: A research roadmap. In Proceedings of the 2018 26th ACM joint meeting on
European software engineering conference and symposium on the foundations of software
engineering (pp. 780–784).

https://www.harvardmagazine.com/2000/01/code-is-law-html
https://www.harvardmagazine.com/2000/01/code-is-law-html

Responsible Software Engineering: Requirements and Goals 315

Nurwidyantoro, A., Shahin, M., Chaudron, M. R., Hussain, W., Shams, R., Perera, H., Oliver, G., &
Whittle, J. (2022). Human values in software development artefacts: A case study on issue
discussions in three android applications. Information and Software Technology, 141, 106731.

Nuseibeh, B., & Easterbrook, S. (2000). Requirements engineering: A roadmap. In Proceedings of
the conference on the future of software engineering (pp. 35–46).

Perera, H., Hoda, R., Shams, R. A., Nurwidyantoro, A., Shahin, M., Hussain, W., & Whittle,
J. (2021). The impact of considering human values during requirements engineering activities.
arXiv Preprint. 2111.15293.

Robertson, S., & Robertson, J. (2012). Mastering the requirements process: Getting requirements
right. Addison-Wesley.

Shahin, M., Hussain, W., Nurwidyantoro, A., Perera, H., Shams, R., Grundy, J., & Whittle,
J. (2022). Operationalizing human values in software engineering: A survey. IEEE Access,
10, 75269–75295.

Schwaber, K., & Beedle, M. (2002). Agile software development with Scrum. Prentice Hall.
Thew, S., & Sutcliffe, A. (2018). Value-based requirements engineering: Method and experience.

Requirements Engineering, 23, 443–464.
Winter, E., Forshaw, S., Hunt, L., & Ferrario, M. A. (2019). Advancing the study of human values

in software engineering. In 2019 IEEE/ACM 12th international workshop on cooperative and
human aspects of software engineering (CHASE) (pp. 19–26). IEEE.

Whittle, J. (2019). Is your software valueless? IEEE Software, 36(3), 112–115.
Zave, P. (1997). Classification of research efforts in requirements engineering. ACM Computing

Surveys (CSUR), 29(4), 315–321.
Zave, P., & Jackson, M. (1997). Four dark corners of requirements engineering. ACM transactions

on Software Engineering and Methodology (TOSEM), 6(1), 1–30.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter's Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter's Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.2139/ssrn.4301478

	Preface
	Contents
	Part I: Background
	Humanism and Enlightenment
	1 Introduction
	2 Digitalization: Age of the Enlightenment 2.0 or the Counter-Enlightenment?
	3 What Does Humanism Mean and Where Does the Term Come From?
	4 Education as a Humanistic Ideal Has Two Components: One Theoretical and One Practical
	5 Why Is the Enlightenment so Important for Humanism?
	6 Conclusions
	References

	Philosophical Foundations of Digital Humanism
	1 Introduction
	2 The Humanist Practice of Attributing Responsibility and the Conceptual Connection Between Responsibility, Freedom, and Reason
	3 Conclusions
	3.1 Theoretical Implications of Digital Humanism
	3.1.1 Rejection of Mechanistic Paradigm: Humans Are Not Machines
	3.1.2 Rejection of the Animistic Paradigm: Machines Are Not (Like) Humans

	3.2 Practical Implications of Digital Humanism

	References

	Evolution of Computing
	1 Introduction
	2 Prehistory
	3 Computers as Calculators
	4 Computers and Communications
	5 Computing as a Science
	6 Hardware ``Laws´´
	7 Personal Computers
	8 Natural Interfaces
	9 The Internet
	10 Mobile Computing
	11 Machine Learning
	12 Big Data and Cloud Computing
	13 Security and Privacy
	14 Conclusions
	References

	The Digital Revolution in a Historical Perspective
	1 Introduction
	2 Renaissance, Reformation, Printing, and Ships, 1440-1648
	3 The French Revolution, Steam Power, and the Industrial Revolution, 1769-1945
	4 The Collapse of Communism and Information Technology, 1973-2023
	5 Conclusions
	References

	The Social Responsibilities of Scientists and Technologists in the Digital Age
	1 Introduction
	2 On the Social Responsibilities of Scientists in the Atomic Age
	3 Fast Forward to the Digital Age
	3.1 General Elements of the Social Responsibility of Scientists and Technologists
	3.2 Societal Impacts of Digital Technologies and the Sustainable Development Goals

	4 Governance, Public Values, and Fairness in Digital Ecosystems
	5 Conclusions
	References

	Digital Transformation Through the Lens of Intersectional Gender Research Challenges and Needs for Action
	1 Introduction
	2 Intersectional Gender Research, Feminist Theory, and Digital Technology
	2.1 Intersectional Gender Research
	2.2 Feminist Theory and Epistemologies
	2.3 How Gender and Technology Interact

	3 Conclusions
	References

	No Digital Citizens Without Digital Humanism
	1 Introduction
	2 The Challenge: Cognitive Machines
	3 The Social Impact of Digital Technology
	4 An Example: The European Approach to Digital Education
	5 Priorities in Education
	6 Conclusions
	References

	Digital Transformation, Digital Humanism: What Needs to Be Done
	1 Introduction
	2 Some Notes on Informatics
	3 The Web, Its Impact, and Transformation
	4 ``The System Is Failing´´
	5 Digital Humanism and the Vienna Manifesto
	6 The Digital Humanism Initiative
	7 Research and Innovation Roadmap
	8 Conclusions
	References

	Part II: Digital Humanism: A System´s View
	A Short Introduction to Artificial Intelligence: Methods, Success Stories, and Current Limitations
	1 Introduction
	2 Methods of AI
	2.1 Symbolic AI
	2.2 Machine Learning
	2.3 Combination of Methods

	3 Reflections
	3.1 AI4Good
	3.2 Is ChatGPT a Tipping Point?
	3.3 Pressing Issues

	4 Conclusions
	References

	Trustworthy Artificial Intelligence: Comprehensible, Transparent and Correctable
	1 Introduction
	2 Problems with Data-Intensive Machine Learning: Unfairness, Biases and Missing Robustness
	3 Explainable Artificial Intelligence: Comprehensibility of Machine-Learned Models
	4 Third-Wave AI Methods: Hybrid, Comprehensible and Correctable
	5 Conclusions
	References

	Are We in Control?
	1 Introduction
	2 Fear
	3 Pushback
	4 Information Flood
	5 Digital Creationism
	6 Coevolution
	7 Regulation
	8 Feedback
	9 Actions
	10 Conclusions
	References

	AI @ Work: Human Empowerment or Disempowerment?
	1 Introduction
	2 Algorithmic Decision Systems
	3 How ADS Impact Decision Outcomes
	4 How ADSs Change Work
	4.1 Assignment of Tasks to Roles
	4.2 Self-Assessment, Self-Efficacy, and Human Competences
	4.3 Human Oversight and Accountability

	5 Conclusions
	References

	The Re-enchanted Universe of AI: The Place for Human Agency
	1 Introduction
	2 Questioning Our Assumptions: What ChatGPT Is and What It Does
	3 Technologies as Agents of Change: The Externalization of Knowledge Operations
	4 They Are Like Us: The Re-enchanted Universe of AI
	5 Redefining Human Agency
	6 Conclusions
	References

	Aesthetic Aspects of Digital Humanism: An Aesthetic-Philosophical Analysis of Whether AI Can Create Art
	1 Introduction
	2 Aesthetics Is the Study of the Subject of Art, and Kant Is One of Its Most Influential Representatives
	3 According to the KAA, There Is No Art Without (Artistic) Freedom
	4 What Is the State of the Art in Art-Making AI?
	5 Can AI Create Art from an Aesthetic-Philosophical Standpoint?
	6 Conclusions
	References

	Approaches to Ethical AI
	1 Introduction
	2 Ethical AI
	2.1 Can AI Be Ethical?

	3 Approaches to Ethical AI
	3.1 Ethical AI Frameworks
	3.2 Philosophical Principlism
	3.3 Challenges and Limitations of Ethical Frameworks

	4 From Principles to Practice
	4.1 Further Research Directions

	5 Conclusions
	References

	Artificial Intelligence and Large-Scale Threats to Humanity
	1 Introduction
	2 AI and the Climate Crisis
	3 AI and Nuclear Deterrence
	4 Militarization of AI and Nuclear Defense Modernization
	5 Responsibilities of AI Stakeholders and Large-Scale Threats to Humanity
	6 Conclusions
	References

	Promises and Perils in Moralizing Technologies
	1 Introduction
	2 Conceptual Framework
	3 Moralizing Technologies
	4 Exploring the Promises and Perils of Moralizing Technologies
	5 Conclusions
	References

	The Road Less Taken: Pathways to Ethical and Responsible Technologies
	1 Introduction
	2 Human-Adjacent Computing
	3 Human-Aware Computing
	4 Human-Centered Computing
	4.1 Thinking About Technology and People
	4.2 Development Objectives
	4.3 Participants
	4.4 Ethical and Responsible Computing and the Socio-technical System
	4.5 From Technology Development to Sociotechnical System Orchestration

	5 Conclusions
	References

	Bridging the Digital Divide
	1 Introduction
	2 Short History of the Efforts to Bridge the Digital Divide
	3 The Digital Divide Through a Decolonial Lens
	4 Requirements for a Human-Centered Approach
	5 Combining Action Research, Design Science, and Ethics Perspective
	6 Tiballi: A Case Study of AI and Data Science for Farmers in Ghana
	7 Discussion on Critical and Societal Issues
	8 Conclusions
	References

	Responsible Software Engineering: Requirements and Goals
	1 Introduction
	2 Requirements Engineering (RE)
	2.1 Introduction to RE
	2.2 Requirements and Goals
	2.3 The Need for Human-Centered Values

	3 Values We Live By: Eliciting, Articulating, and Organizing Goals
	3.1 Values and RE Activities
	3.2 Values and Goals

	4 Toward Responsible Software Engineering: DigHum Goals in the Life Cycle
	4.1 Requirements and Other Activities
	4.2 Software Processes
	4.3 Validation and Verification
	4.4 The Running System

	5 Conclusions
	References

	Governance for Digital Humanism: The Role of Regulation, Standardization, and Certification
	1 Introduction
	2 Background to AI Principles, Regulation, and Standards
	2.1 The Principles
	2.2 The Role of Regulation
	2.3 The Standards
	2.4 The Role of Standards and Certification
	2.5 What Is AI (and Data) Governance and Why Is It Necessary?
	2.6 Key Areas for Any Responsible AI Governance Operating Model
	2.7 Accountability
	2.8 Algorithmic Bias
	2.9 Transparency
	2.10 Ethical Privacy

	3 Application of the Principles and the Governance Operational Model
	4 Use Case: Wiener Stadtwerke (The IEEE CertifAIEd Framework for AI Ethics Applied to the City of Vienna, 2021)
	5 Assessment of Wiener Stadtwerke´s Email Classification System
	6 Conclusions
	References

	Value-Sensitive Software Design: Ethical Deliberation in Agile Development Processes
	1 Introduction
	2 Codes of Conduct and Software Development
	3 Ethical Deliberation
	4 Individual Responsibility of the Software Engineer
	5 Agile Software Development
	6 Ethical Deliberation in Agile Processes
	7 Example
	7.1 Ethical Deliberation: Disclosive Contemplation
	7.2 Ethical Deliberation: Weighing Contemplation and Sprint Planning
	7.3 Ethical Deliberation: Applicative Contemplation to the Increment
	7.4 Ethical Deliberation: Sprint Review and Sprint Retrospective

	8 Conclusions
	References

	Humans in the Loop: People at the Heart of Systems Development
	1 Introduction
	2 People as Creators of Software Systems
	2.1 Specialists such as Software Engineers
	2.2 Non-specialists such as Domain Experts

	3 People as Users of Software Systems
	3.1 Taking Account of Users and What They Do
	3.2 Software Use Influences Future Development

	4 People in Partnership with Software Systems
	5 Conclusions
	References

	Resilience: The Key to Planetary and Societal Sustainability
	1 Introduction
	2 Economists and Engineers Focus on Efficiency
	3 A Storm, Long Trains, a Plague, and Some Bad Software
	4 Just-in-Time Manufacturing
	5 The Price of Anarchy
	6 Free Trade
	7 Why Sex Is Best
	8 The Crisis of Democracy
	9 Lessons from the Internet
	10 Conclusions
	References

	How Blockchain Technology Can Help to Arrive at Fair Ecosystems and Platforms
	1 Introduction
	2 Fairness
	2.1 Unfair Behavior
	2.2 Toward a Notion of Fairness

	3 Digital Business Ecosystems and Platforms
	4 Toward Fairer Ecosystems and Platforms
	4.1 Legislation
	4.2 Fair Governance by Design
	4.3 Fair Governance

	5 Fair Governance Using Blockchain Technology
	5.1 Blockchain Technology
	5.2 The Governance Paradigm and Blockchain
	5.3 Is Blockchain Fair?

	6 Conclusions
	References

	Introduction to Security and Privacy
	1 Introduction
	2 Basic Concepts and Definitions
	2.1 Methods
	2.1.1 Encryption
	2.1.2 Authentication
	2.1.3 Authorization and Access Control
	2.1.4 Compartmentalization

	2.2 Risk Management
	2.2.1 BIA
	2.2.2 PIA

	3 Critical Discussion
	4 Simple To-Dos for Users and Companies
	5 Conclusions
	References

	Part III: Critical and Societal Issues of Digital Systems
	Recommender Systems: Techniques, Effects, and Measures Toward Pluralism and Fairness
	1 Introduction
	2 Recommender Systems: Concepts and Practices
	3 Recommender Systems as a Threat to Pluralism and Fairness?
	4 Beyond Accuracy: Diversity, Novelty, and Serendipity
	5 Fairness
	6 Human- and Value-Centered Recommender Systems
	6.1 Psychology-Informed Recommender Systems
	6.2 Value-Oriented Recommender Systems
	6.3 Embodiment in Recommender Systems
	6.4 Trust in Recommender Systems
	6.5 Socially Responsible Designs

	7 Conclusions
	References

	Bias and the Web
	1 Introduction
	2 Bias
	3 Engagement Bias: Wisdom of the Few
	4 Data Bias
	4.1 Information Bias
	4.2 Biases in Language
	4.3 Bias in Visual Data

	5 Algorithmic Bias and Fairness
	5.1 Bias in Language Modeling
	5.2 Bias in Computer Vision
	5.3 Bias in Recommendations
	5.4 Developer Biases

	6 Biases in User Interaction
	7 The Vicious Cycle of Bias
	8 Conclusions
	References

	Copyright Enforcement on Social Media Platforms: Implications for Freedom of Expression in the Digital Public Sphere
	1 Introduction
	2 Why Should Social Media Platforms Be Governed in a Manner That Promotes Democratic Discourse?
	3 How Can Content Moderation on Social Media Platforms Undermine Freedom of Expression?
	4 How Can the EU Legal Framework on Online Copyright Enforcement Undermine Democratic Discourse on Online Platforms?
	5 Proposals for Reform
	5.1 Enhanced Regulatory Supervision
	5.2 Fundamental Rights as an External Balancing Mechanism
	5.3 The Need for a Paradigm Shift?

	6 Conclusions
	References

	On Algorithmic Content Moderation
	1 Introduction
	2 What Is Algorithmic Content Moderation
	3 Technical Approaches to Content Moderation
	4 Societal Challenges
	5 Conclusions
	References

	Democracy in the Digital Era
	1 Introduction
	2 Democracy in the Digital Era
	3 Empowering the Good
	4 Guarding Against the Bad
	5 Conclusions
	References

	Are Cryptocurrencies and Decentralized Finance Democratic?
	1 Introduction
	2 The Sovereign Individual
	3 Welcome to the Web3 World
	4 Why Did the Crypto Market Tank in May 2022?
	5 Are Crypto and DeFi Democratic?
	6 Conclusions
	References

	Platforms: Their Structure, Benefits, and Challenges
	1 Introduction
	2 Platforms
	3 Platform Structure
	4 Network Effects and Value
	4.1 User Value for One-Sided and Two-Sided Networks (with User Types 1 and 2)

	5 Platform Openness
	5.1 Access to Demand-Side Use (as a Consumer)
	5.2 Access to Extend Platform (Supply Side)
	5.3 Access to User Provision (e.g., Android and Apple Devices)
	5.4 Access to Change Technology/Contracts (Decision-Making)

	6 Platform Governance
	7 Platform Growth and Power
	8 Conclusions
	References

	Work in a New World
	1 Introduction
	2 What Kind of ``Digitalization´´?
	3 The Traditional View: Adjustments to the Status Quo
	3.1 Productivity
	3.2 Labor Market Adjustments
	3.3 Skills

	4 The Historical Perspective: An Entirely New World of Work?
	5 Conclusions
	References

	Digital Labor, Platforms, and AI
	1 Introduction
	2 Key Concepts in Platform Labor for AI
	2.1 Digital Piecework
	2.2 Unpaid Labor
	2.3 Toxic and Exhausting Labor
	2.4 Colonial Circuits
	2.5 ChatGPT as Case Study

	3 Possible Solutions and Interventions
	4 Conclusions
	References

	Sovereignty in the Digital Age
	1 Introduction
	2 International Relations
	3 Sovereignty
	4 Strategic Autonomy
	5 Digital Technology and Sovereignty
	6 Policies for Sovereignty in the Digital Age
	7 Conclusions
	References

	The Threat of Surveillance and the Need for Privacy Protections
	1 Introduction
	2 Basic Concepts and Basic Definitions
	3 Methods
	4 Critical Reflection
	5 Conclusions
	References

	Human Rights Alignment: The Challenge Ahead for AI Lawmakers
	1 Introduction
	2 Main Part: Basic Concepts/Definitions/Methods and Critical Reflection
	2.1 Universal Guidelines for AI
	2.2 The OECD AI Principles/the G20 AI Guidelines (2019)
	2.3 The UNESCO Recommendation on AI Ethics
	2.4 The EU AI Act
	2.5 The Council of Europe AI Convention
	2.6 Challenges Ahead

	3 Conclusions

	European Approaches to the Regulation of Digital Technologies
	1 Introduction
	2 Overview of EU Platform Regulation
	2.1 The Starting Point: GDPR
	2.2 Regulating Platforms´ Societal Power: Digital Services Act (DSA)
	2.3 Regulating Platforms´ Economic Power: Digital Markets Act (DMA)
	2.4 Regulating Platforms´ ``Oil´´ I: Data Governance Act
	2.5 Regulating Platforms´ ``Oil´´ II: Data Act Proposal
	2.6 Regulating Platforms´ ``Tools´´: AI Act Proposal

	3 Digital Humanism in European Platform Regulation
	3.1 Fundamental Rights in EU Platform Regulation
	3.2 Freedom of Choice/Freedom of Contract

	4 Conclusions
	References

