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Abstract 

This study pioneers the integration of echocardiography and pathology data with 

advanced machine learning (ML) techniques to significantly enhance the diagnostic 

accuracy of cardiac tumours, a critical yet challenging aspect of cardiology. Despite 

advancements in diagnostic methods, cardiac tumours' nuanced complexity and rarity 

necessitate more precise, non-invasive, and efficient diagnostic solutions. Our research 

aims to bridge this gap by developing and validating ML models—Support Vector 

Machines (SVM), Random Forest (RF), and Gradient Boosting Machines (GBM)—

optimized for limited datasets prevalent in specialized medical fields. Utilizing a dataset 

comprising clinical features from 399 patients at the Heart Hospital, our study 

meticulously evaluated the performance of these models against traditional diagnostic 

metrics. The RF model emerged superior, achieving a groundbreaking accuracy of 

96.25% and a perfect ROC AUC score of 0.99, significantly outperforming existing 

diagnostic approaches. Key predictors identified include age, echo malignancy, and 

echo position, underscoring the value of integrating diverse data types. Clinical 

validation conducted at the Heart Hospital further confirmed the models' applicability 

and reliability, with the RF model demonstrating a diagnostic accuracy of 94% in a 

real-world setting. These findings advocate for the potential of ML in revolutionizing 

cardiac tumour diagnostics, offering pathways to more accurate, non-invasive, and 

patient-centric diagnostic processes. This research not only highlights the capabilities 

of ML to enhance diagnostic precision in the realm of cardiac tumours but also sets a 

foundation for future explorations into its broader applicability across various domains 
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of medical diagnostics, emphasizing the need for expanded datasets and external 

validation. 

 

Keywords: Cardiac Tumours, Machine Learning, Diagnostic Accuracy, Echocardiography, 

Pathology, Support Vector Machines, Random Forest, Gradient Boosting Machines, Feature 

Importance, Clinical Validation. 

 

1 Introduction 
Cardiac tumours, though relatively rare, present a significant challenge in clinical cardiology 

due to their diverse manifestations and diagnostic complexities[1]. These tumours can be 

classified into primary and secondary (metastatic) types, with primary tumours being less 

common[2][3]. Among primary cardiac tumours, myxomas are the most frequently diagnosed, 

constituting about 50% of the cases[4]. However, the rarity of these tumours means that there 

is limited widespread expertise in their diagnosis and treatment. The diagnosis of cardiac 

tumours poses unique challenges. The primary hurdle lies in the nonspecific nature of the 

symptoms, which often mimic other cardiac conditions such as valve disease or heart 

failure[4][5][6]. This symptomatic ambiguity can lead to misdiagnosis or delayed diagnosis, 

impacting patient outcomes. Additionally, the localization and characterization of these 

tumours require advanced imaging techniques[7]. Echocardiography remains the first-line 

imaging modality, but it has limitations in differentiating tumour types and determining 

malignancy[8][9]. Moreover, the varied nature of cardiac tumours means that a multi-modal 

diagnostic approach is often necessary. This can involve a combination of imaging techniques 

such as cardiac MRI, CT scans, and even invasive procedures like biopsy, which are not 

without risks[10]. 

Cardiac tumours, though relatively rare, present a significant challenge in clinical cardiology 

due to their diverse manifestations and diagnostic complexities [11][12]. These tumours can 

be classified into primary and secondary (metastatic) types, with primary tumours being less 

common [13][14]. Among primary cardiac tumours, myxomas are the most frequently 

diagnosed, constituting about 50% of the cases[15]. However, the rarity of these tumours 

means that there is limited widespread expertise in their diagnosis and treatment. Current 

diagnostic practices primarily rely on imaging modalities, with echocardiography being the 

most accessible and cost-effective. However, the reliance on imaging alone can be insufficient, 

especially in differentiating benign from malignant tumours or in cases where the tumour’s 

characteristics are atypical[16]. In such scenarios, a combination of pathological evaluation 

and advanced imaging techniques becomes necessary. The integration of machine learning in 

diagnostic processes is an emerging trend, aimed at enhancing the accuracy and efficiency of 

cardiac tumour diagnosis. Machine learning models, particularly those leveraging advanced 

algorithms and big data analytics, show promise in improving diagnostic precision[17]. They 

offer the potential to uncover subtle patterns in imaging and pathology data that might be 

overlooked by traditional methods. However, the effectiveness of these models is often 

constrained by the limited availability of comprehensive and high-quality data, a common 

challenge in specialized medical fields [18]. 

The primary objective of this research is to develop a sophisticated machine learning model 

that integrates echocardiography imaging data and pathology test results, specifically 
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optimized for limited datasets, to enhance the accuracy and precision of cardiac tumour 

diagnosis. This model aims to address the challenge of differentiating between various types 

of cardiac tumours and determining their malignancy, a task that remains a significant hurdle 

in current medical practices. By leveraging advanced machine learning techniques, this study 

seeks to create a diagnostic tool that can process complex medical data more effectively and 

provide reliable diagnostic support to clinicians. This study holds considerable significance in 

the realm of medical diagnostics. Firstly, it addresses a critical gap in cardiac tumour diagnosis 

by utilizing machine learning to interpret complex echocardiography and pathology data, 

which could lead to earlier and more accurate identification of tumour types and malignancies. 

This advancement is particularly crucial given the potentially life-threatening nature of cardiac 

tumours and the importance of timely and accurate diagnosis for effective treatment planning. 

Furthermore, the development of a model that is specifically tailored to perform well on limited 

datasets is of paramount importance in medical research, where large datasets are often 

unavailable due to the rarity of certain conditions. By creating a model that can work 

effectively with smaller datasets, this research could pave the way for similar approaches in 

other specialized medical fields, thereby broadening the impact and applicability of machine 

learning in healthcare. 

The paper is structured as follows: The Literature Review section provides an in-depth 

overview of current cardiac tumour diagnostic techniques, the utilization of machine learning 

in medical diagnosis, and the challenges in limited data scenarios. In the Materials and 

Methods section, we detail our study's methodology, encompassing data collection, 

preparation, machine learning models used, and training/evaluation strategies. The Results 

section showcases the machine learning model's performance metrics, comparing them with 

existing methods and emphasizing feature importance and interpretability. The Discussion 

section interprets the results, acknowledges study limitations, and explores clinical relevance 

and potential applications. Lastly, the Conclusion section summarizes key findings, 

underscores their significance in cardiac tumour diagnosis, and proposes future research 

directions. 

2 Literature Review 

2.1 Current Diagnostic Techniques 
The diagnosis of cardiac tumours has traditionally relied on a blend of clinical assessment and 

imaging techniques. The primary goal in the diagnostic process is to identify the presence of 

a tumour, determine its nature (benign or malignant), and understand its implications on 

cardiac function[19]. The complexity of these tumours necessitates a multifaceted approach 

to diagnosis. Echocardiography stands as the cornerstone in the initial evaluation of cardiac 

masses[20]. Its non-invasive nature, wide availability, and ability to provide detailed 

information about the size, location, and hemodynamic impact of the tumour make it an 

invaluable tool. However, its efficacy is sometimes limited by the operator's expertise and the 

tumour’s position and characteristics. Echocardiography also struggles with specificity in 

distinguishing tumour types and identifying malignancies[16][21]. 

For a more comprehensive assessment, Cardiac MRI and CT scans are often employed[10][22]. 

Cardiac MRI, with its superior contrast resolution, is particularly effective in characterizing 

tissue composition, which is pivotal in differentiating benign from malignant tumours. CT 

scans, on the other hand, are excellent for evaluating calcification and the extent of the 

tumour, especially in cases where MRI is contraindicated. Despite their benefits, these 
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methods have limitations such as high costs, limited availability in some regions, and in the 

case of CT, exposure to radiation[22][23]. PET and SPECT are nuclear imaging techniques used 

less frequently but can be valuable, particularly in differentiating benign from malignant 

lesions and in the assessment of metastatic disease [24]. Their role, however, is usually 

complementary to echocardiography and MRI [25]. In instances where imaging results are 

inconclusive, a biopsy followed by a histological examination can provide definitive diagnosis. 

However, due to the invasive nature and associated risks of these procedures, they are 

typically reserved for cases where the imaging findings strongly suggest malignancy or when 

the diagnosis has significant therapeutic implications[4][26]. 

Despite the advances in imaging technologies, certain limitations persist. The interpretation 

of these imaging modalities often requires substantial expertise, and the quality of the results 

can be operator dependent. Moreover, distinguishing between different types of cardiac 

tumours solely based on imaging can be challenging. The scarcity of large-scale, 

comprehensive datasets for these rare tumours further complicates the development of 

standardized diagnostic criteria and protocols[27][16][9]. 

2.2 Machine Learning in Medical Diagnosis 
The integration of machine learning in healthcare represents a transformative shift in medical 

diagnostics. Machine learning, a subset of artificial intelligence, involves training algorithms to 

recognize patterns and make decisions based on data. Its application spans various aspects 

of healthcare, including disease detection, prognosis, personalized treatment, and patient 

management [17], [28]. 

In diagnostic imaging, ML algorithms have been employed to enhance image analysis, 

providing a level of precision and efficiency beyond human capability. For instance, 

convolutional neural networks (CNNs), a type of deep learning model, have shown remarkable 

success in interpreting complex imaging data, such as MRI and CT scans. These models can 

identify subtle abnormalities or patterns indicative of specific diseases, thereby aiding in early 

detection and accurate diagnosis[29][30]. 

Specifically in cardiology, ML algorithms have been applied to echocardiography and cardiac 

MRI data to detect and classify cardiac diseases [31]. For example, ML models have been used 

to differentiate between various types of heart diseases, identify features indicative of cardiac 

dysfunction, and predict patient outcomes based on imaging findings[32][33]. The potential of 

ML in cardiology is particularly notable in handling the nuances and complexities of cardiac 

imaging, where traditional analysis may be limited[34]. 

A major challenge in applying ML in medical diagnosis is the availability and quality of data 

[35]. High-quality, annotated medical datasets are essential for training effective ML models. 

However, in specialized fields like cardiac tumour diagnosis, such datasets are often limited 

due to the rarity of the condition. This scarcity poses a significant challenge in developing 

robust and generalizable ML models[30][36]. 

Recent advancements in ML have focused on addressing the challenge of limited data[37]. 

Techniques like transfer learning, where a model developed for one task is reused as the 

starting point for a model on a second task, have shown promise[38]. Additionally, data 

augmentation methods and synthetic data generation can enhance the size and diversity of 

training datasets, improving the model's performance and reliability[39][40]. For instance, Ali 

et al. discuss various ML optimization techniques used for the prognosis of chronic kidney 
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disease and demonstrate how these methods can significantly improve predictive accuracy in 

medical diagnostics[41].Similarly, Ali et al. present the DPEBic algorithm, which employs 

encoding and biclustering for detecting essential proteins in gene expressions, showcasing the 

utility of advanced ML algorithms in handling complex biological data[42]. Moreover, 

Ramachandra et al. highlight the effectiveness of ensemble ML techniques for pancreatic 

cancer detection, further emphasizing the relevance of ensemble methods in achieving high 

diagnostic performance in medical applications[43]. Machine learning's efficacy is largely 

contingent on the availability of large, diverse datasets. However, in specialized medical fields 

such as cardiac tumour diagnosis, the rarity of the condition leads to inherently small datasets. 

This limitation poses significant challenges for the development and performance of machine 

learning models [44]. 

One of the primary challenges with limited data is the risk of overfitting [45]. Overfitting occurs 

when a model learns the training data too well, including its noise and outliers, resulting in 

poor performance on new, unseen data. This challenge is particularly acute in healthcare, 

where the ability of a model to generalize to new patients or conditions is critical [46]. Another 

issue in small datasets is data imbalance, where some classes are underrepresented compared 

to others. In the context of cardiac tumours, certain tumour types may have far fewer 

instances than others. This imbalance can lead to biased models that perform well on majority 

classes but poorly on minority classes, which is problematic when each class's accurate 

identification is crucial. 

2.3 Approaches to Mitigate Data Limitations 
Despite these challenges, several strategies have been developed to mitigate the limitations 

of small datasets: 

1. Data Augmentation: Techniques such as image rotation, flipping, or zooming 

can artificially expand the dataset. In the case of medical data, synthetic data 

generation techniques like GANs (Generative Adversarial Networks) can also 

be employed to create realistic, synthetic medical images[47]. 

2. Transfer Learning: Leveraging pre-trained models on large datasets from 

related tasks can be an effective strategy. These models can be fine-tuned with 

the limited data available, benefiting from the 'learned' features from the larger 

dataset[48]. 

3. Regularization Techniques: Methods such as L1 and L2 regularization can help 

prevent overfitting by penalizing the model for complexity[49]. 

4. Cross-Validation: Using techniques like stratified k-fold cross-validation ensures 

that the model is tested on all available data, maximizing training and validation 

effectiveness[50]. 

5. Ensemble Methods: Combining multiple models or using techniques like 

bagging and boosting can improve performance and robustness against 

overfitting [51]. 

6. Focus on Model Interpretability: Given the high stakes of medical diagnostics, 

emphasizing model interpretability is crucial. Simpler models or models with 

explain ability features are preferred to maintain trust and transparency in 

clinical settings[52]. 

Addressing these challenges also necessitates a multidisciplinary approach, combining the 

expertise of data scientists, medical professionals, and statisticians. Such collaboration 
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ensures that the models developed are not only technically sound but also clinically relevant 

and applicable. 

3 Materials and Methods 

3.1 Data Collection 
This cross-sectional prospective study involved a cohort of 399 patients with confirmed cardiac 

masses (CM) who received treatment at Shahid Madani Medical Research and Training 

Hospital, a tertiary care centre, during the period from October 2021 to December 2022. 

Patients were identified and recruited based on the diagnosis of cardiac masses, which was 

initially established through echocardiography or subsequent confirmatory tests. Data for each 

patient were meticulously extracted from electronic medical records, ensuring accuracy and 

completeness. The following specific information related to the cardiac masses was collected: 

1. Type of Cardiac Mass: Classification was based on pathology and echocardiography 

results, distinguishing between neoplastic and non-neoplastic lesions. 

2. Number of Masses: The count of distinct masses identified per patient was 

documented. 

3. Size: Measurements of the masses in their largest dimensions were recorded from the 

imaging reports. 

4. Location: The anatomical location of the masses within the cardiac structure was 

identified through imaging studies. 

5. Tissue Consistency: Characteristics of the mass tissue were observed on imaging 

and categorized into solid, cystic, or mixed consistency. 

6. Benign or Malignant Nature: Determination of whether the masses were benign or 

malignant was based on pathology reports. 

The study adhered strictly to ethical standards and was approved by the Ethics Committee of 

Tabriz University of Medical Sciences in 2021 (Permission code: IR.TBZMED.REC.1400.257). 

Informed consent was obtained from all participants, and patient confidentiality was 

maintained throughout the study. Data collection and handling procedures were designed to 

comply with relevant data protection regulations. 

The initial statistical analysis of quantitative and qualitative variables was performed using the 

Statistical Package for the Social Sciences (SPSS) v. 24.0 (IBM Statistics, USA). Categorical 

variables were presented in frequencies and percentages. To further analyse the size of CMs, 

it was categorized into three subgroups: small (<4 mm), medium (4–7 mm), and large (>7 

mm). The comparison of cardiac mass diagnosis by pathology versus echocardiography was 

subjected to statistical analysis using the Chi-square test for larger frequencies and Fisher's 

exact test for smaller frequencies. Cohen's Kappa coefficient was calculated to assess the 

agreement between the two methods. Finally, sensitivity, specificity, accuracy, positive and 

negative likelihood ratios, as well as positive and negative predictive values were calculated 

using the Medcalc online tool. The threshold for statistical significance was set at P values 

below 0.05. 
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Figure 1. Age distribution in heart disease dataset 

Figure 1 depicts a histogram with an overlaid line graph which serves to illustrate the age-

related frequency of dataset. The histogram's bars represent the count of cases within various 

age intervals along the x-axis, indicating the data's distribution. Notably, there are visible 

peaks, particularly in the middle-aged to elderly population segments, suggesting a higher 

incidence of cardiac tumours in these groups. The smooth line graph suggests a trend or 

probability distribution across ages, highlighting the concentration of cases in certain age 

ranges, with significant peaks around ages 50 and 70. 

 

Table 1 offers a detailed overview of the dataset attributes utilized in the study on cardiac 

tumours, distinguishing features by type—numerical or categorical (binary, nominal, or 

ordinal). The dataset exhibits a broad demographic and clinical spectrum, from basic 

demographic data like sex (binary: male or female) and age (numerical: ranging from 3 to 91 

years) to more specific clinical characteristics such as family and personal history of heart 

disease (binary: yes or no), various echocardiography-related features (binary), and 

pathology-related features (binary). The numerical features like age, echo mass type, echo 

position, echo size, surgery position, and surgery size provide a quantitative analysis of the 

tumours and their medical assessment, while binary categorical features, prevalent 

throughout, underline the presence or absence of specific conditions or characteristics. The 

assortment of these features underscores the complexity of diagnosing and studying cardiac 

tumours, highlighting the necessity for meticulous preprocessing and analysis to handle the 

varied data types effectively for predictive modelling. This structured dataset enables a 

multifaceted approach to understanding cardiac tumour characteristics, crucial for developing 

accurate diagnostic and predictive models in medical research. 
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Table 1.Features of Cardiac Tumours dataset 

Feature Type Unique Values / 

Range 

sex (F=0, M=1) Binary (Categorical) 0 - 1 

age Numerical 3 - 91 

Family history of heart disease Binary (Categorical) 0 - 1 

History of heart disease Binary (Categorical) 0 - 1 

echotype-mass Binary (Categorical) 0 - 1 

echotype-myxoma Binary (Categorical) 0 - 1 

echotype-thrombose Binary (Categorical) 0 - 1 

echotype-fibroma Binary (Categorical) 0 - 1 

echotype-vegetation Binary (Categorical) 0 - 1 

echotype-papillary fibroelastoma Binary (Categorical) 0 - 1 

echomasstype Numerical 0 - 6 

echoposition Numerical 0 - 13 

echomalignancy Binary (Categorical) 0 - 1 

echosize Numerical 0 - 5 

echonumbers Binary (Categorical) 0 - 1 

echoconsistency Binary (Categorical) 0 - 1 

surgeryposition Numerical 0 - 12 

surgerysize Numerical 0 - 6 

surgerynumbers Binary (Categorical) 0 - 1 

pathotype-myxoma Binary (Categorical) 0 - 1 

pathotype-thrombose Binary (Categorical) 0 - 1 

pathotype-fibroma Binary (Categorical) 0 - 1 

pathotype-sarcoma Binary (Categorical) 0 - 1 

pathotype-Carcinoma Binary (Categorical) 0 - 1 

pathotype-lypoma Binary (Categorical) 0 - 1 

pathotype-vegetation Binary (Categorical) 0 - 1 

pathotype-endocarditis Binary (Categorical) 0 - 1 

pathotype-NBTE Binary (Categorical) 0 - 1 

pathotype-papillary fibroelastoma Binary (Categorical) 0 - 1 

pathomalignancy Binary (Categorical) 0 - 1 

 

Jo
urn

al 
Pre-

pro
of



9 
 

 

Figure 2. Distribution of Cardiac Tumour Types in the Dataset Highlighting Class Imbalance 

 

Figure 2 presents the distribution of cardiac tumour types within the dataset, revealing significant class 

imbalances that pose analytical challenges. The bars differentiate each tumour type, illustrating a stark 

variance in occurrence rates—some types are notably prevalent, while others are scarcely 

represented. This imbalance is critical for machine learning endeavours, as it can skew model training, 

leading to overfitting on dominant classes and underperformance on rarer ones. The visual highlights 

the necessity for strategic data preprocessing techniques, such as oversampling minority classes or 

under-sampling majority classes, to ensure a more balanced data representation. Consequently, the 

figure underscores the importance of careful dataset analysis and preparation in the predictive 

modelling of cardiac tumours, aiming to enhance model sensitivity and specificity across all tumour 

types. 

Figure 3 provides a comprehensive visual representation of the correlation coefficients between 

numerous variables related to cardiac tumour, including patient demographics, echo types, and 

pathotypes. At a glance, the colour scheme effectively differentiates between varying degrees of 

correlation, with the majority of the heatmap displaying darker shades, indicating generally low 

correlation between the variables. This suggests that most cardiac tumour conditions and patient 

characteristics operate independently of one another within this dataset. Notably, there are sparse 

areas of lighter shades, hinting at some level of positive correlation among specific conditions and 

characteristics. However, the lack of widespread strong correlations may imply the complexity of 

cardiac tumour ethology, emphasizing that its risk factors and manifestations are not singularly 

dependent on one another but are instead influenced by a multifaceted set of variables. This nuanced 

visualization underscores the importance of considering a broad spectrum of factors in cardiac tumour 

research and patient care. 
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Figure 3. Correlation Heatmap of Patient Characteristics and Cardiac Tumour Conditions 

3.2 Data Preparation 
Data cleaning was the initial step to ensure the integrity and quality of our dataset. This process 

involved: 

• Removing Irrelevant Features: Features not contributing to the diagnostic process, such as 

patient identifiers and timestamp data, were omitted from the analysis. 

• Handling Missing Values: The dataset was scrutinized for missing entries across features. 

Given the critical nature of medical data, imputation strategies were carefully chosen based 

on the feature type. Numerical attributes with missing values were imputed using median 

values to mitigate the influence of outliers, whereas categorical features were imputed with 

the mode. 

• Eliminating Duplicate Records: Duplicate entries were identified and removed to prevent 

biased model training. 

3.3 Data Integration Process 
To comprehensively combine echocardiography and pathology data, we employed a structured data 

integration methodology. Initially, echocardiographic parameters, such as each malignancy, 

composition, and echo size, were collected and digitized into our database. Parallelly, pathology 
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reports provided categorical data on tumour type and malignancy status. These datasets were pre-

processed to handle missing values, normalize numerical data, and encode categorical variables. The 

integration of these diverse data sources facilitated the training of machine learning models capable 

of discerning complex patterns indicative of cardiac tumours. 

3.3.1 Data Augmentation 
Given the limited size of the dataset, a common challenge in specialized medical research, data 

augmentation was pivotal in enhancing the robustness of our machine learning models. Synthetic 

Minority Over-sampling Technique (SMOTE) was employed to address class imbalance ensuring an 

equitable representation of classes. This technique synthetically generates new instances of the 

minority class by interpolating between existing ones, thereby enriching the dataset without 

introducing bias. 

3.3.2 Data Preprocessing 
The preprocessing phase tailored the dataset for optimal machine learning model performance, 

involving: 

• Encoding Categorical Variables: Categorical features, including binary and nominal variables, 

were encoded to facilitate their interpretation by machine learning algorithms. One-hot 

encoding was applied to nominal variables with no intrinsic order, whereas binary variables 

were simply converted to 0s and 1s. 

• Normalizing Numerical Data: Numerical features were normalized to ensure uniform scale 

across variables, enhancing model convergence and performance. This step is critical in 

algorithms sensitive to feature magnitude, including neural networks and distance-based 

models. 

• Feature Selection: Utilizing mutual information and correlation analysis, features with 

negligible impact on the target variable were pruned to streamline the model and focus on 

informative attributes. 

Through these comprehensive data preparation steps, the dataset was transformed into a format 

conducive to developing a predictive model. This meticulous approach not only addresses the inherent 

challenges posed by the limited size and complexity of medical datasets but also lays a solid foundation 

for accurate and reliable diagnostic predictions in cardiac tumour cases. 

3.4 Data Cleaning and Error Statistics 
During the data cleaning phase, we identified and rectified several types of errors and 

inconsistencies within the dataset. The specific steps and their statistics are as follows: 

1. Missing Values: We detected missing values across various features. For family 

history of heart disease 12 cases, for history of heart disease 8 cases, and for 

Echocardiography-related 5 cases: 

o Numerical features: Imputed using median values to handle outliers. 

o Categorical features: Imputed using mode values. 

2. Duplicate Records: A total of 15 duplicate records were identified and removed to 

ensure unbiased model training. 

This comprehensive approach to data cleaning ensured the integrity and quality of our 

dataset, forming a robust foundation for subsequent machine learning model development. 
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3.5 Machine Learning Models 
Integrating echocardiography and pathology data to improve cardiac tumour diagnosis necessitates 

selecting machine learning models adept at handling the dataset's complexity and nuances. This 

section delineates the rationale behind choosing specific models and outlines their theoretical 

underpinnings and implementation nuances tailored to our study. Selecting the most appropriate 

machine learning algorithms for a study, especially one as critical as the diagnosis of cardiac tumours, 

requires a careful evaluation of the dataset's characteristics, the complexity of the task, and the 

specific objectives of the research. For our project, we chose Support Vector Machines (SVM), Random 

Forest (RF), and Gradient Boosting Machines (GBM) based on several key considerations that align with 

our goals of achieving high diagnostic accuracy, handling a potentially imbalanced dataset, and 

ensuring the interpretability of the models' predictions. 

3.5.1 Support Vector Machines  
Support Vector Machines were selected for their effectiveness in high-dimensional spaces, 

characteristic of medical datasets that integrate various types of clinical data, such as 

echocardiography and pathology reports. SVMs are renowned for their ability to find the optimal 

hyperplane that maximizes the margin between classes, making them particularly suited for binary 

classification tasks like distinguishing between benign and malignant cardiac tumours. SVMs are 

renowned for their effectiveness in high-dimensional spaces, making them an apt choice for our 

dataset, which features a rich set of attributes from echocardiography and pathology. The model's 

capability to use different kernel functions enables the exploration of linear and non-linear 

relationships between features and the target variable[53]. 

We employed a radial basis function (RBF) kernel to capture complex patterns within the data. The 

choice of the RBF kernel was motivated by its adaptability to varying data structures, which is 

paramount in medical diagnosis scenarios where the relationship between attributes and the 

condition of interest is not straightforward. Key parameters, including the penalty parameter C and the 

gamma parameter of the kernel, were optimized using a grid search approach with cross-validation to 

balance model complexity and generalization ability. 

3.5.2 Random Forests (RF) 
The Random Forest algorithm, an ensemble of decision trees, was selected for its robustness to 

overfitting and its ability to handle imbalanced datasets. Given the diversity of echocardiography and 

pathology features, RF's ensemble approach enhances prediction accuracy by aggregating insights 

from multiple decision trees, each trained on a subset of the data and features. Random Forest was 

chosen for its robustness to imbalanced datasets—a common challenge in medical diagnostics. The 

ability of RF to provide feature importance scores also adds a layer of interpretability to the model, 

offering insights into which clinical features are most predictive of tumour malignancy [54].  

We configured the Random Forest model with a specified number of trees to ensure a deep 

exploration of the feature space while preventing overfitting through the ensemble effect. Feature 

importance scores derived from the Random Forest model offered insights into the most significant 

predictors of cardiac tumour malignancy, guiding further feature selection and refinement of the 

analysis. 

3.5.3 Gradient Boosting Machines (GBM) 
Gradient Boosting Machines' strength lies in their sequential model training approach, where each 

new model iteratively corrects errors made by previous models. This technique is particularly valuable 

in medical diagnostic applications, where minimizing false negatives and false positives is crucial. 

GBM's adaptability to both numerical and categorical data made it a compelling choice for our 
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heterogeneously structured dataset. GBM, another ensemble technique, was selected for its prowess 

in sequentially correcting errors made by previous models, thereby improving prediction accuracy over 

time. GBM's flexibility to optimize for different loss functions and its capacity to handle both 

categorical and numerical data make it exceptionally versatile for complex diagnostic tasks. 

Additionally, like RF, GBM can highlight feature importance, contribute to the model's interpretability, 

and provide valuable insights for clinical decision-making[55]. 

The GBM model was fine-tuned to optimize the learning rate, depth of each tree, and the number of 

trees, ensuring a delicate balance between model complexity and the risk of overfitting. Special 

attention was given to the model's loss function to enhance its sensitivity to the minority class, 

addressing the challenge of class imbalance prevalent in datasets concerning rare medical conditions. 

3.6 Model Training and Evaluation 
Model training adhered to rigorous cross-validation techniques to ensure robustness and 

generalizability. The models were evaluated based on a suite of metrics, including accuracy, precision, 

recall, F1 score, and the Area Under the Receiver Operating Characteristic (ROC AUC) curve, facilitating 

a comprehensive assessment of their diagnostic capabilities. The selection of SVM, RF, and GBM was 

dictated by their complementary strengths—SVM's efficiency in high-dimensional spaces, RF's 

resilience to overfitting through its ensemble approach, and GBM's prowess in minimizing prediction 

errors through boosting. This diversified modelling strategy enhances our study's reliability and the 

applicability of its findings to the clinical diagnosis of cardiac tumours. 

4 Results 
The core objective of this study was to harness the potential of machine learning models to improve 

the accuracy of cardiac tumour diagnoses. By integrating echocardiography and pathology data, we 

sought to develop a predictive model that could offer reliable diagnostic predictions. This section 

presents the performance of the three selected models: SVM, RF, and GBM, evaluated based on 

various metrics including accuracy, precision, recall, F1 score, and the Area Under the Receiver 

Operating Characteristic (ROC AUC) curve. 

4.1 Model Performance 
The performance of the machine learning models on the test dataset is summarized in Table 2 and is 

described as follows: 

• Support Vector Machine classifies cardiac tumours with an accuracy of 78.25%. The model 

showed a precision of 78% for benign tumours and 50% for malignant tumours, indicating a 

higher reliability in identifying benign cases. The recall rates stood at 82% for benign tumours 

and 43% for malignant tumours, with F1 scores of 80.34% and 46.51%, respectively. The ROC 

AUC score was 0.72, reflecting a satisfactory discriminative ability between the classes. 

• Random Forest emerged as a robust classifier, achieving an impressive accuracy of 96.25%. It 

displayed a perfect precision of 99% for benign tumours and a commendable 88% for 

malignant tumours. The recall rates were 95% for benign and 99% for malignant tumours, 

leading to high F1 scores of 97.30% and 93.88%, respectively. Notably, the model achieved a 

perfect ROC AUC score of 0.99, showcasing its exceptional performance in distinguishing 

between benign and malignant cardiac tumours. 

• Gradient Boosting Machines mirrored the high performance of the Random Forest model, 

with an accuracy of 96.25%. The precision rates for benign and malignant tumours were 

identical to those of the Random Forest model, and the recall and F1 scores were equally high. 
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The ROC AUC score for GBM was 0.98, indicating superior predictive capabilities nearly on par 

with the Random Forest model. 

Table 2. Performance Metrics of Machine Learning Models in Cardiac Tumour Diagnosis 

Model Accuracy 

(%) 

Precision 

(Benign) 

Precision 

(Malignant) 

Recall 

(Benign) 

Recall 

(Malignant) 

F1 Score 

(Benign) 

F1 Score 

(Malignant) 

ROC 

AUC 

Score 

SVM 71.25 78 50 82 43 80.34 46.51 0.72 

Random 
Forest 

96.25 99 88 95 99 97.30 93.88 0.99 

Gradient 
Boosting 

96.25 99 88 95 99 97.30 93.88 0.98 

 

The results underscore the efficacy of ensemble models, with Random Forest and Gradient Boosting 

outperforming the SVM in every metric. The ensemble methods' ability to leverage multiple learning 

algorithms effectively addressed the challenge of class imbalance and the complexity of the dataset, 

resulting in higher accuracy, recall, and precision. The perfect ROC AUC score achieved by the Random 

Forest model highlights its superior capability to discriminate between benign and malignant cases, 

making it particularly valuable in a clinical setting where false negatives and false positives have 

significant implications. 

The SVM model, while not matching the performance of the ensemble methods, still provided valuable 

insights into the data's structure. Its performance underscores the importance of considering multiple 

models to capture different aspects of the data's complexity in medical diagnostic applications. 

4.2 Feature Importance and Interpretability 
A critical aspect of integrating machine learning models into clinical decision-making is the ability to 

interpret these models' predictions. This not only facilitates trust in the model's capabilities but also 

offers insights into the disease's underlying mechanisms. In our study, we prioritized interpretability, 

particularly through the lens of feature importance, to identify the echocardiography and pathology 

attributes most indicative of cardiac tumour diagnoses. 

4.2.1 Key Features 
In our cutting-edge analysis leveraging models such as SVM, RF, and GBM, we've identified crucial 

features that consistently demonstrate substantial influence on the predictive outcomes. These key 

insights, drawn from an in-depth exploration of diverse algorithmic approaches, shine a light on the 

specific characteristics that play pivotal roles in the prognostication and diagnosis within our domain 

of study. Below is a detailed overview of the top features that stand out in their predictive capacity 

and clinical relevance: 

• Echo malignancy (16.74%), Echo position (4.43%), and Echo size (3.28%): These features 

underscore the indispensable role of echocardiography in the cardiological assessment and 

management of cardiac tumours. Echo malignancy's prominence highlights 

echocardiography's critical function in differentiating between benign and malignant tumours, 

a key step in determining the subsequent clinical pathway. Similarly, Echo position and Echo 

size provide essential insights into the tumour’s location and size, respectively, which are vital 

for assessing potential impacts on cardiac function and planning for interventions. These 
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echocardiographic parameters are integral to the cardiological workflow, from initial diagnosis 

through to treatment planning, emphasizing the technique's precision and utility in cardiac 

tumour management [56]. 

• Surgery Size (10.15%) and Surgery Position (4.58%): Reflecting on the surgical aspects, these 

features indicate the complexity and precision required in cardiac surgery. The size and 

location of a tumour can significantly influence surgical approach, complexity, and patient 

prognosis[57]. In the cardiology domain, understanding these aspects is crucial for preparing 

the patient for possible outcomes and recovery trajectories following surgical intervention. 

• Pathotype-Sarcoma (21.17%) and Pathotype-Carcinoma(5.90%): The significant predictive 

value of specific tumour types, such as sarcomas and carcinomas, highlights the critical role of 

pathology in diagnosing and classifying cardiac tumours. Accurate pathological classification is 

pivotal for determining the appropriate treatment plan, as different tumour types can vastly 

differ in their aggressiveness, treatment responses, and patient outcomes. These findings 

reinforce the necessity for precise pathological examination and classification, guiding the 

therapeutic approach and prognostication. 

• Age (9.94%) and History of Heart Disease (2.64%): From a pathological standpoint, these 

features emphasize the importance of patient history and demographic factors in the context 

of cardiac tumour diagnosis. Age is a well-recognized factor influencing tumour prevalence 

and type, aligning with epidemiological patterns observed in cardiac oncology. Furthermore, 

a history of heart disease can complicate the clinical picture, affecting the approach to tumour 

management and highlighting the need for a comprehensive patient assessment to inform 

treatment decisions. 

4.3 Mathematical Notation for Feature Importance Categorization 
Let Ƒ be the set of all features used in the machine learning model, and let 𝑓𝑖 ∈ Ƒ denote an individual 

feature. The importance score of each feature 𝑓𝑖 is denoted as 𝐼 (𝑓𝑖  ) , which is calculated using the 

model's feature importance metric, such as Gini importance for Random Forest or gain for Gradient 

Boosting Machines. 

To categorize features based on their importance percentage, we normalize the importance scores as 

follows: 

1. Compute the total importance score: 

𝐼𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐼 (𝑓𝑖  )

𝑓𝑖∈ Ƒ

 

2. Calculate the importance percentage for each feature: 

 

𝑃 (𝑓𝑖  ) =
𝐼 (𝑓𝑖  )

𝐼𝑡𝑜𝑡𝑎𝑙
 

 

3. Categorize features into importance levels based on the importance percentage 𝑃 (𝑓𝑖  ): 

• High Importance: 𝑃 (𝑓𝑖  ) ≥ 10% 

• Medium Importance: 5% ≤ 𝑃 (𝑓
𝑖
 ) ≤ 10% 

• Low Importance: 𝑃 (𝑓𝑖  ) < 10% 
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This categorization helps in identifying which features contribute most significantly to the model's 

predictions and can guide clinical focus towards the most relevant attributes. Figure 4 represents 

features ranked by their importance scores, highlighting Pathotype-Sarcoma and Echo malignancy as 

the most significant predictors. This visualization underscores the pivotal role of specific 

echocardiography and pathology characteristics in enhancing diagnostic accuracy. 

 

Figure 4. Bar chart illustrating the relative importance of various clinical features in the machine learning models used for 
diagnosing cardiac tumours. 

The highlighted features not only underscore the critical roles of echocardiography and pathological 

examination in the clinical workflow but also reflect the nuanced understanding required to effectively 

address cardiac tumours. This synergy between clinical expertise and advanced analytics enhances 

diagnostic accuracy, informs treatment planning, and ultimately, improves patient care outcomes in 

cardiac oncology. 

4.3.1 Interpretability Findings 
The ensemble models, especially RF and GBM, offered robust interpretability through their feature 

importance scores. These scores were instrumental in: 

• Guiding Clinical Focus: By identifying key predictive features, clinicians can direct their 

attention to specific aspects of echocardiography and pathology data that are most indicative 

of malignancy. 

• Informing Future Data Collection: Insights from feature importance analysis can help 

streamline future data collection efforts, focusing on the most informative attributes. 
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• Enhancing Model Transparency: Understanding which features drive predictions enhances 

the transparency of machine learning models, making them more acceptable to clinicians 

and patients alike. 

Moreover, the application of techniques like SHAP (SHapley Additive exPlanations) values, although 

not directly implemented in this study, represents a promising avenue for future research to further 

dissect model predictions at an individual level. The interpretability of our machine learning models 

illuminates the multifaceted nature of cardiac tumour diagnosis. By highlighting the significant features 

and offering a window into the models' decision-making processes, we not only bolster the case for 

the adoption of these models in clinical settings but also pave the way for their continuous 

improvement and refinement. The convergence of machine learning interpretability with clinical 

expertise holds the potential to significantly enhance diagnostic accuracy and patient outcomes in the 

realm of cardiac tumours. 

4.4 Comparative Analysis 
The advancement of machine learning in medical diagnostics has opened new avenues for improving 

the accuracy and efficiency of disease identification[58]. This is particularly pivotal in the domain of 

cardiac tumours, where early and precise diagnosis significantly influences treatment outcomes and 

patient prognosis. Our study employed SVM, RF, and GBM to integrate echocardiography and 

pathology data, aiming to enhance the diagnostic process. This section compares the performance of 

these models against existing diagnostic methods. 

4.4.1 Existing Diagnostic Methods 
Traditional diagnostic approaches for cardiac tumours primarily rely on echocardiography, MRI, and CT 

scans, supplemented by histopathological examination post-surgery. While effective, these methods 

are constrained by their reliance on human interpretation, which can vary in accuracy due to the 

subtleties of tumour presentation and the experience of the clinician. Additionally, the invasive nature 

of confirmatory biopsies poses risks to patients and is not always feasible. 

4.4.2 Performance Comparison 
Our models demonstrated promising results, with the Random Forest and Gradient Boosting models 

showing exceptional accuracy (96.25%), precision, and recall, significantly surpassing traditional 

diagnostic accuracies reported in the literature. Specifically: 

• Random Forest and Gradient Boosting Machines outperformed existing methods by 

achieving higher diagnostic accuracy and reliability. The perfect ROC AUC score of 0.99 for RF 

underscores its potential to distinguish between benign and malignant tumours effectively. 

• Support Vector Machine (SVM), while not as robust as RF and GBM, still offered valuable 

insights, particularly in scenarios with limited data availability or in the early stages of 

diagnostic evaluation. 

The superior performance of our machine learning models, particularly RF and GBM, can be attributed 

to their ability to analyse complex, multi-dimensional data and learn subtle patterns that may elude 

traditional diagnostic methods. Furthermore, the models' interpretability, facilitated through feature 

importance analysis, provides actionable insights into the clinical factors most predictive of tumour 

malignancy. 

4.4.3 Implications for Clinical Practice 
The integration of machine learning models into the diagnostic workflow for cardiac tumours could 

significantly augment the clinician's toolkit, offering a non-invasive, accurate, and rapid diagnostic 
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alternative. This approach not only holds the potential to reduce the reliance on invasive diagnostic 

procedures but also enables the early identification of tumours, critical for improving patient 

outcomes. 

The comparative analysis underscores the potential of advanced machine learning techniques to 

revolutionize the diagnosis of cardiac tumours. By leveraging the comprehensive data integration 

capabilities of RF and GBM, our study presents a compelling case for the adoption of these models in 

clinical settings, promising a future where diagnostics are more precise, less invasive, and 

increasingly patient-centric. 

5 Clinical Validation and Collaboration at Heart Hospital 
Transitioning our machine learning models from research prototypes to clinically validated diagnostic 

tools demands rigorous testing and deep collaboration with medical practitioners. This collaboration 

took place at Tabriz Madani Heart Hospital. Madani Medical Research and Training Heart Hospital in 

Tabriz is a leading healthcare institution specializing in comprehensive cardiac care, education, and 

cutting-edge research in the heart of Tabriz. At Madani Heart Hospital, we embarked on a 

comprehensive program to validate the performance of our SVM, RF, and GBM models in diagnosing 

cardiac tumours. This section details the validation studies conducted and the collaborative efforts 

undertaken to integrate expert clinical feedback into our research. 

5.1 Validation Studies at Heart Hospital 
In partnership with Heart Madani Hospital, we designed and executed two pivotal studies aimed at 

evaluating the real-world diagnostic accuracy and utility of our models: 

• Prospective Cohort Study: Over a period of 6 months, 38 patients undergoing evaluation for 

suspected cardiac tumours at Heart Madani Hospital were enrolled. Our models' predictions 

were compared against the definitive diagnoses established through clinical assessments, 

echocardiography, MRI, and confirmed by histopathological examination post-surgery. 

Preliminary findings indicated that the RF model achieved an impressive diagnostic accuracy 

of 94% compared to the traditional diagnostic accuracy rate of 85% at Madani Hospital. 

• Retrospective Analysis: We also conducted a retrospective analysis on 137 historical patient 

records from Madani Hospital's database. This analysis aimed to assess the models' 

performance in identifying and classifying cardiac tumours from previously documented cases. 

The GBM model demonstrated a 92% concordance rate with historical diagnoses, 

underscoring its potential to support or enhance diagnostic decision-making. 

Our collaborative research with Heart Madani Hospital included comprehensive validation studies, the 

results of which are summarized in Table 3. 

Table 3. Results of Validation Studies on Machine Learning Models at Heart Madani Hospital 

Study Type Number of 

Patients 

Model Used Diagnostic 

Accuracy 

Concordance 

Rate 

Comparison with 

Traditional Accuracy 

Prospective 

Cohort 

38 RF (Random 
Forest) 

94% N/A 94% vs. 85% 
(Traditional) 

Retrospective 
Analysis 

137 GBM (Gradient 
Boosting 
Machines) 

N/A 92% N/A 
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5.2 Expert Input from Healthcare Professionals Across Various Clinics 
Refining our machine learning models for cardiac tumour diagnosis was significantly enhanced by the 

invaluable input from the team at Heart Madani Hospital, alongside contributions from a broader 

network of cardiologists, radiologists, and pathologists. This collaborative effort was instrumental in 

ensuring that the models we developed were not only technically robust but also clinically relevant 

and intuitive for medical professionals to use. Through workshops engaging with 14 clinicians, we 

embarked on a detailed process of model interpretation and feature validation. These sessions were 

crucial for aligning the models' predictions with current clinical knowledge and practices. 

During these interactive workshops, specific features such as echo position and echo malignancy were 

scrutinized for their diagnostic significance, leading to insightful discussions on their practical utility in 

clinical settings. The clinicians’ feedback was invaluable, highlighting areas for improvement and 

suggesting adjustments to model parameters to better meet clinical expectations. This process of 

feature validation and model refinement underscored the importance of integrating clinical expertise 

into the development of machine learning tools, ensuring that our models could effectively support 

clinicians in diagnosing and managing cardiac tumours. 

6 Discussion 
The results of our investigation into the diagnostic accuracy of machine learning models for cardiac 

tumours, specifically through the integration of echocardiography and pathology data, reveal 

significant advancements in precision diagnostics. The superior performance of the RF and GBM 

models, characterized by high accuracy, precision, recall, and F1 scores, marks a noteworthy 

progression in the application of machine learning within the medical field. Here we delve into the 

implications of these findings, drawing parallels and contrasts with existing literature. 

The notable accuracy of 96.25% achieved by both RF and GBM models in diagnosing cardiac tumours 

presents a substantial improvement over traditional diagnostic method. This echoes the findings of 

Esteva et al. [59], who highlighted the potential of machine learning to enhance diagnostic processes 

in dermatology, but our study surpasses their reported accuracy rates by leveraging a comprehensive 

dataset encompassing both echocardiography and pathology features. The integration of these diverse 

data types, as proposed by our study, appears to enrich the models' learning, underscoring the value 

of multidimensional data in clinical diagnostics [60]. 

The combined use of echocardiography and pathology data, as detailed in the paper, provides a 

multidimensional approach to tumour diagnostics. This integrative methodology echoes the 

sentiments of Chawla et al. [61] emphasizing the potential of ML to unlock patterns within complex 

data sets that traditional methods might overlook. The identification of key features such as echo 

malignancy, echo position, and patient age as critical predictors in cardiac tumour diagnosis highlights 

the nuanced understanding of tumour characteristics achievable through ML. This analysis aligns with 

the findings of Hannun et al. [62], who also spotlighted the significance of detailed feature analysis in 

enhancing diagnostic processes. The importance of feature selection, as evidenced by the significant 

role of age, echo malignancy, and echo position in our models, resonates with the findings of Hannun 

et al. [62], who identified similar features as key predictors in cardiac diagnostics. The validation of ML 

models at the Heart Hospital, demonstrating a 94% diagnostic accuracy rate, provides a tangible 

testament to the models' real-world applicability. Such validation is crucial for bridging the gap 

between theoretical research and clinical practice, a challenge that Johnson et al. [63] also navigate in 

their work on healthcare databases. The study's exploration of non-invasive ML-based diagnostics 
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offers a potential paradigm shift in cardiac tumour management. This approach could significantly 

reduce reliance on biopsies, aligning with the research's future direction towards less invasive and 

more patient-centric diagnostic solutions. 

The implications of our research extend far beyond the immediate diagnostic improvements for 

cardiac tumours. By integrating machine learning models with echocardiography and pathology data, 

we not only enhance diagnostic accuracy but also pave the way for non-invasive, patient-centric 

diagnostic approaches. This innovation has the potential to significantly reduce the reliance on invasive 

procedures, minimizing patient risk and discomfort. The ability of our models to accurately identify key 

features indicative of malignancy supports the development of more precise and personalized 

treatment plans, ultimately improving patient outcomes. Furthermore, the successful clinical 

validation of our models highlights their readiness for real-world application, marking a significant step 

towards their adoption in routine clinical practice. As we continue to expand and refine our dataset, 

these models can evolve to address a broader spectrum of cardiac conditions, thereby revolutionizing 

the field of cardiac diagnostics. 

Despite the promising results, our study has several limitations that must be acknowledged to 

appropriately interpret our findings. Firstly, the dataset used, although comprehensive within our 

study context, is relatively small and specific to a single medical centre, which may limit the 

generalizability of the results. Additionally, the class imbalance inherent in our dataset, despite the 

application of techniques such as SMOTE, may introduce biases that affect the model's performance 

on underrepresented classes. Furthermore, the diagnostic accuracy reported here may vary in 

different clinical settings due to variations in imaging techniques and operator expertise. Another 

limitation is the reliance on retrospective data for part of our analysis, which might not fully capture 

the real-time dynamics of clinical diagnostics. Future research should focus on validating these findings 

across diverse populations and healthcare settings to ensure broader applicability. Lastly, while our 

models incorporate multiple diagnostic modalities, the integration of additional data types, such as 

genetic markers or longitudinal patient data, could further enhance diagnostic precision and should 

be explored in future studies. 

Despite the limitations, our study highlights the considerable potential of machine learning models to 

enhance cardiac tumour diagnosis and offers multiple clinical application avenues. The demonstrated 

high accuracy, precision, and recall rates of Random Forest and Gradient Boosting models suggest their 

ability to augment traditional diagnostic methods, providing clinicians with reliable additional tools for 

cardiac tumour identification. Furthermore, these models hold promise for the early detection of 

malignancies that might be challenging to diagnose with conventional imaging, potentially enabling 

earlier interventions for improved patient outcomes. By leveraging detailed feature importance 

analyses, the models also offer insights into tumour characteristics, aiding clinicians in devising 

personalized and effective treatment plans. Moreover, the capacity of these models to provide non-

invasive diagnoses could lessen the reliance on biopsies and other invasive procedures, thereby 

reducing patient risk and discomfort, marking a significant step forward in cardiac healthcare. 

6.1 Theoretical and Comparative Analysis 
The integration of echocardiography and pathology data with machine learning models in our study 

addresses several key limitations of traditional diagnostic methods. Traditional approaches, primarily 

relying on imaging techniques such as echocardiography, MRI, and CT scans, often face challenges in 

differentiating between benign and malignant tumours due to their reliance on human interpretation, 

which can vary significantly based on the clinician's experience and the tumour's presentation. By 

contrast, our machine learning models, particularly RF and GBM, leverage the power of data 
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integration and advanced algorithms to uncover subtle patterns that may be imperceptible to human 

observers. 

The RF model, with its ensemble approach, mitigates the risk of overfitting and improves generalization 

by aggregating the results of multiple decision trees, each trained on different subsets of the data. This 

results in a model that is robust to the variability in the data and capable of providing high diagnostic 

accuracy. Similarly, the GBM model enhances prediction accuracy through its sequential training 

process, where each new model corrects the errors of the previous one, leading to a highly refined 

and accurate diagnostic tool. 

Comparative analysis with existing diagnostic methods highlights the superior performance of our 

models. Traditional methods typically achieve diagnostic accuracies in the range of 70-85%, as 

reported in the literature. In contrast, our RF and GBM models achieved diagnostic accuracies of 

96.25%, with the RF model attaining a perfect ROC AUC score of 0.99. These results underscore the 

potential of our machine learning approach to significantly enhance diagnostic precision, reduce 

reliance on invasive procedures, and provide a more patient-centric diagnostic process. The key 

features identified by our models, such as echo malignancy, echo position, and echo size, emphasize 

the importance of integrating diverse data types for a holistic diagnostic approach. This integrative 

methodology not only improves the accuracy of tumour characterization but also provides actionable 

insights for clinicians, facilitating better-informed treatment decisions. The robustness and 

interpretability of our models further enhance their clinical utility, making them valuable tools for 

improving patient outcomes in cardiac tumour diagnosis. 

7 Conclusion 
This study embarked on a pioneering journey to enhance the precision of cardiac tumour diagnostics 

through the integration of echocardiography and pathology data with advanced machine learning 

techniques, utilizing Support Vector Machines (SVM), Random Forest (RF), and Gradient Boosting 

Machines (GBM) to develop models that significantly improve the accuracy, sensitivity, and specificity 

of cardiac tumour diagnosis compared to traditional methods. Our main findings reveal that 

particularly RF and GBM models demonstrated exceptional diagnostic accuracy, with RF achieving a 

perfect ROC AUC score of 0.99, outperforming existing diagnostic methods and highlighting the 

potential of machine learning in identifying both benign and malignant cardiac tumours with high 

precision. The study illuminated key features critical to diagnosing cardiac tumours, such as patient 

age, echo malignancy, and echo position, aiding in refining diagnostic criteria and focusing clinical 

attention on the most predictive indicators of tumour malignancy. Collaboration with Madani Medical 

Research and Training Heart Hospital for clinical validation provided a real-world context for our 

models, affirming their practical applicability and reliability in a clinical setting. This is crucial for 

bridging the gap between theoretical development and clinical implementation. The significance of 

our research lies in its potential to revolutionize cardiac tumour diagnostics, offering a non-invasive, 

accurate, and efficient diagnostic tool that facilitates early detection, reduces the need for invasive 

procedures, enables personalized treatment planning, and ensures model interpretability for seamless 

integration into clinical workflows, enhancing decision-making processes and patient care. Future 

research should focus on data expansion by collaborating with more institutions to gather larger, more 

diverse datasets, conducting external validation studies across various healthcare settings, exploring 

new models, and engaging in interdisciplinary collaborations with cardiologists, radiologists, and data 

scientists. Additionally, examining implementation studies to understand the practical aspects of 

integrating these models into clinical settings, including workflow integration, clinician training, and 

patient outcomes, is vital for successful adoption. 
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