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Simple Summary: The protein arginine N-methyltransferase 5 (PRMT5) has been identified as
a promising therapeutic target in various cancers. However, its role in hepatocellular carcinoma
(HCC) development has not yet been investigated. This study aims to understand PRMT5′s impact
on overall survival, signaling pathways, and downstream gene expression using in silico public
databases and our in-house NGS data. Our results revealed an increase in PRMT5 expression in HCC
compared to normal liver tissue, and this elevated expression was associated with poorer patient
outcomes. Analysis of promoter CpG islands and methylation status suggested potential epigenetic
mechanisms driving PRMT5 overexpression in HCC. Pathway analyses found a link between PRMT5
expression and the HIF1α pathway, with Ras-related nuclear protein (RAN) identified as a potential
target of PRMT5 in HCC.

Abstract: Protein arginine N-methyltransferase 5 (PRMT5) has been identified as a potential therapeu-
tic target for various cancer types. However, its role in regulating the hepatocellular carcinoma (HCC)
transcriptome remains poorly understood. In this study, publicly available databases were employed
to investigate PRMT5 expression, its correlation with overall survival, targeted pathways, and genes
of interest in HCC. Additionally, we utilized in-house generated NGS data to explore PRMT5 expres-
sion in dysplastic nodules compared to hepatocellular carcinoma. Our findings revealed that PRMT5
is significantly overexpressed in HCC compared to normal liver, and elevated expression correlates
with poor overall survival. To gain insights into the mechanism driving PRMT5 overexpression in
HCC, we analyzed promoter CpG islands and methylation status in HCC compared to normal tissues.
Pathway analysis of PRMT5 knockdown in the HCC cells revealed a connection between PRMT5 ex-
pression and genes related to the HIF1α pathway. Additionally, by filtering PRMT5-correlated genes
within the HIF1α pathway and selecting up/downregulated genes in HCC patients, we identified
Ras-related nuclear protein (RAN) as a target associated with overall survival. For the first time, we
report that PRMT5 is implicated in the regulation of HIF1A and RAN genes, suggesting the potential
prognostic utility of PRMT5 in HCC.

Keywords: protein arginine N-methyltransferase 5; HIF1α; hepatocellular carcinoma; Ras-related
nuclear protein
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1. Introduction

According to the records of the International Agency for Research on Cancer (IARC), in
2020, primary liver cancer was ranked sixth in incidence and third in mortality rate. The vast
majority, approximately 80%, of primary liver cancer cases are hepatocellular carcinoma
(HCC) [1]. Several risk factors have been associated with HCC, including metabolic liver
diseases, such as nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH),
chronic viral infections, such as hepatitis B virus (HBV) and hepatitis C virus (HCV),
alcohol abuse, inherited diseases, and Aflatoxin exposure [2]. HCC is classified into five
stages, and treatment is determined based on the stage. It begins with resection and liver
transplantation in the early stages, followed by targeted therapy (such as Sorafenib) in the
advanced stages [3,4]. Most of the early-stage cases achieve a 5-year survival rate, and
20–50% of intermediate-stage cases attain a 3-year survival rate. Unfortunately, terminal-
stage patients succumb to the disease within 6 months [5,6]. Therefore, identifying new
diagnostic biomarkers, therapeutic targets, and prognostic markers is critical for diagnosing
and treating the disease at its early-intermediate stages.

Recent studies have suggested that protein arginine N-methyltransferase 5 (PRMT5)
could serve as a potential prognostic and therapeutic biomarker in various cancers, includ-
ing breast, lung, and colorectal cancer [7–9]. PRMT5 functions as a catalytic enzyme that
transfers methyl groups from S-adenosylmethionine (SAM) to arginine residues in multiple
proteins, including histones [10]. Arginine monomethylation or symmetric dimethylation
induced by PRMT5 affects cellular functions by influencing protein activity and stability,
gene expression, and pre-mRNA splicing [11,12]. There is also evidence suggesting that
PRMT5 plays a role in promoting cancer cell growth and proliferation [9,13]. Interest-
ingly, PRMT5 overexpression has been positively correlated with cellular transformation in
various neoplasms, including HCC [14–16]. As a potential molecular target, the PRMT5
inhibitor (GSK3326595) is currently in phase I/II clinical trials for acute myeloid leukemia
(AML) and other cancer types [17,18]. Also, several studies have established PRMT5 as
a reliable prognostic marker for cancers, including HCC [19]. Therefore, investigating
PRMT5 expression at different stages of HCC could provide a hint of whether PRMT5
could also serve as a diagnostic marker of early HCC. Moreover, PRMT5 overexpression in
the liver has been linked to a high-fat diet, which is a risk factor for HCC [20,21].

Previous research documents the role of PRMT5 in regulating key signaling pathways
in HCC, such as the WNT signaling pathway, the ERK signaling pathway, and iron home-
ostasis. For instance, PRMT5 manipulates WNT signaling activity, which enhances HCC
metastases. PRMT5 activates the ERK signaling pathway, which hinders the expression
of B-cell translocation gene 2 (BTG2), which is responsible for G1 to S phase cell cycle
arrest. On the other hand, PRMT5 exhibited a protective role in HCC via inhibiting ferritin
heavy-chain-1 (FTH1) expression which reverses the iron overload process in HCC [22–25].
However, the role of PRMT5 in regulating the Hypoxia-inducible factor 1 alpha (HIF1α)
signaling pathway in HCC has not been previously reported. The HIF1α pathway is in-
volved in HCC proliferation, invasion, metastasis, angiogenesis, and drug resistance [26].
HIF1α is a transcription factor that gets activated under hypoxia condition which is as-
sociated with tumor microenvironment. It plays a crucial role in cancer cell survival by
inhibiting the generation and propagation of reactive oxygen species (ROS) and by blocking
ROS-mediated apoptosis [27–29]. HIF1α pathway inhibition demonstrates a promising
therapeutic strategy for combating HCC progression and enhancing patient outcomes.

In this study, publicly available data from The Cancer Genome Atlas (TCGA) and
Gene Expression Omnibus (GEO) were used to investigate the possible role of PRMT5 in
regulating the expression of key genes in the HIF1α pathway. Furthermore, GEO data were
utilized to assess the capacity of PRMT5 downstream effectors from the HIF1α pathway
to serve as prognostic biomarkers. Our data proposed promoter hypermethylation as a
mechanism that is involved in PRMT5 increased expression in HCC. Our data revealed
an association between PRMT5 upregulation and HIF1α pathway activation, as well as
increased HIF1A gene expression. Also, our data highlight the capacity of PRMT5 in



Biology 2024, 13, 216 3 of 15

regulating RAN gene expression, which is a part of the HIF1α pathway and could serve as
a biomarker for HCC prognosis.

2. Materials and Methods
2.1. In Silico Analysis Using UALCAN Online Portal

The UALCAN in silico tool provides access to Level 3 RNA-seq. The UALCAN web-
site (http://ualcan.path.uab.edu/analysis.html, accessed on 29 October 2022) was used to
profile gene expression in 371 HCC patients compared to 50 normal counterparts using
Cancer Genome Atlas (TCGA) level 3 RNAseq and clinical data [30,31]. In addition, UAL-
CAN was utilized to obtain protein expression analysis via the Clinical Proteomic Tumor
Analysis Consortium (CPTAC) and the International Cancer Proteogenomic Consortium
(ICPC) datasets that represent High-throughput mass spectrometry data of 165 normal
versus 165 HCC patients. The website conducts a Comprehensive Perl Archive Network
(CPAN) to calculate the p-value using a Student t-test.

2.2. Methylation Status of Promoter CpG Islands

The genome data viewer browser allowed the visualization of biological informa-
tion blotted onto the genome in a graph such as CpG islands. A genome data viewer
browser provided by the National Health Institute was utilized to identify the presence
of CpG islands in the promoter of the gene. The UALCAN tool provides promoter region
hypermethylation analysis utilizing TCGA data obtained via Illumina Infinium Human-
Methylation450 BeadChip. Promoter methylation level was evaluated in the UALCAN tool
using TCGA DNA methylation data of 50 normal compared to 377 HCC cases. The website
conducts CPAN to calculate the p-value using a Student t-test.

2.3. Kaplan–Meier Patient Survival Analysis

The Kaplan–Meier plotter (https://kmplot.com/analysis/, accessed on 15 December
2022) was used to analyze RNAseq data to identify overall survival (OS), relapse-free
survival (RFS), progression-free survival (PFS), and disease-specific survival (DSS) in 364,
316, 370, and 362 liver cancer patients, respectively [32,33]. A upper quartile cutoff was
used to generate a PRMT5 Kaplan–Meier plotter graph of OS, RFS, PFS, and DSS. A lower
quartile cutoff was used to generate the RAN Kaplan-Meier plotter graph of OS, RFS, PFS,
and DSS. A hazard ratio (HR) of more than 1 was considered as a bad prognosis biomarker,
while an HR of less than 1 was considered as a good prognosis. An upper quartile cutoff
was used to generate a MAPK3 Kaplan–Meier plotter graph of OS, RFS, PFS, and DSS.
Auto select option for the best cutoff value was used to generate an FLT1 and SERPINE1
Kaplan–Meier plotter graph of OS.

2.4. QIAGEN Ingenuity Pathway Analysis (IPA)

Transcriptome data generated by Illumina Novaseq 6000 for PRMT5 knocked down
JHH-7 Cell utilizing a short hairpin RNA (shRNA) were obtained from the Gene Expression
Omnibus (GEO) database (GSE168745) provided by the National Center for Biotechnol-
ogy Information (https://www.ncbi.nlm.nih.gov/geo/, accessed on 30 November 2022).
Significantly altered gene lists were utilized to perform the IPA using the tool provided by
Qiagen to analyze omics data.

2.5. TIMER 2.0

The Tumor Immune Estimation Resource (TIMER) is a database that represents a
molecular cross-talk of tumor and tumor microenvironment. TIMER also allows the detec-
tion of gene expression correlation in multiple cancers. TIMER (https://cistrome.shinyapps.
io/timer/, accessed on 9 January 2023) was used to investigate gene–gene correlations
in 371 specimens of liver hepatocellular carcinoma sourced from Cancer Genome Atlas
(TCGA) [34,35]. Spearman’s rho value was utilized to identify the degree of the correlation

http://ualcan.path.uab.edu/analysis.html
https://kmplot.com/analysis/
https://www.ncbi.nlm.nih.gov/geo/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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between two genes. An R-value between 0 and 0.3 was considered weak positive, 0.3 to 0.7
moderate positive, and 0.7 to 1 strong positive.

2.6. Next-Generation Sequencing (NGS)

RNA was isolated from 12 samples of dysplastic nodules and 7 samples of HCC tumor
tissue. Library preparation was performed using the NEBNext® UltraTM RNA Library Prep
Kit for Illumina®, and sequencing was conducted using Illumina Novaseq 6000. The data
were aligned to the human reference genome sequence (ENSEMBL Homosapiens.GRCh38)
using HISAT2 (hisat2-2.0.2-beta). These data were generated by our co-authors and were
previously published [36]. The Bioconductor limma-voom package was utilized for RNA-
seq data normalization.

2.7. Statistical Analysis

GraphPad Prism 8.4.2 was used to perform an unpaired parametric t-test to calculate
the p-value. Collective data were presented as mean ± SEM. A p-value of <0.05 was
considered to be statistically significant. The SPSS program was used to identify the
distribution of the dataset and to draw the receiver operating characteristic (ROC) curve
utilizing the GEO data set (GSE214846) to assess the gene expression clinical value as a
diagnostic marker.

3. Results
3.1. PRMT5 Is Over-Expressed in HCC and Differentially Expressed in Different Disease Stages

To identify PRMT5 expression in HCC, the UALCAN tool was used to analyze TCGA
RNAseq, Clinical Proteomic Tumor Analysis Consortium (CPTAC), and the International
Cancer Proteogenome Consortium (ICPC) data. In silico analysis showed that PRMT5
is overexpressed in HCC at the RNA and protein levels with p < 0.0001 (Figure 1a,b).
PRMT5 mRNA was significantly overexpressed in all stages of HCC relative to its normal
counterpart; it was very highly elevated in stages II (p < 0.05) and III (p < 0.01) relative to
stage I (Figure 1c). Additionally, transcriptomic data demonstrated a significant increase
in the PRMT5 expression level of HCC compared to dysplastic nodules with p < 0.01
(Figure 1d), indicating a progressive activation of PRMT5 during liver cancer development
and progression.

3.2. PRMT5 Is a Promising Disease Progression Marker for HCC

We next evaluated the correlation between PRMT5 expression and patient survival.
High expression of PRMT5 significantly correlated with poor overall survival p < 0.05,
relapse-free survival with p < 0.05, and progression-free survival with p < 0.05, except
disease-specific survival with p > 0.05 in HCC patients (Figure 2a–d). The capacity of
PRMT5 to serve as a disease progression marker ROC curve was also evaluated by compar-
ing HCC versus normal adjacent tissues using the GSE214846 dataset. This type of analysis
revealed that the area under the curve is 81.5%, sensitivity 73.8%, and specificity 89.2%,
with a cutoff value of 5 (Figure 2e). This highlights the capability of PRMT5 to serve as a
biomarker in HCC.
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Figure 1. PRMT5 expression in HCC. (a) PRMT5 expression in HCC clinical samples compared to
normal tissue counterpart using RNA seq dataset, TCGA data, UALCAN tool. (b) PRMT5 expression
in HCC clinical samples compared to normal tissue counterpart using clinical proteomic tumor
analysis consortium (CPTAC) data, UALCAN tool. (c) PRMT5 expression in different stages of HCC
compared to normal tissue counterpart using RNA seq dataset from TCGA data, UALCAN tool.
(d) transcriptome data of PRMT5 expression in 12 samples of dysplastic nodules and 7 samples of
hepatocellular carcinoma. * p < 0.05, ** p < 0.01, and **** p < 0.0001.
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Figure 2. Correlational analysis of PRMT5 expression versus HCC patient survival. (a) PRMT5
expression versus overall patient survival (OS). (b) PRMT5 expression versus relapse-free survival
(RFS). (c) PRMT5 expression versus progression-free survival (PFS). (d) PRMT5 expression versus
disease-specific survival (DSS). (e) ROC curves for PRMT5 expression at adjacent normal versus HCC
tissue utilizing the GSE214846 dataset.



Biology 2024, 13, 216 7 of 15

3.3. PRMT5 Promoter Is Hypomethylated in HCC

To confirm the presence of CpG islands in the promoter region of the PRMT5 gene,
the Genome data viewer browser was used. An 872-nucleotide long cytosine- and guanine-
rich domain present at NC_000014.9 [22,929,030–22,929,901] chromosome 14 that contains
promoter region of PRMT5 gene was identified (Figure 3a). PRMT5 promoter methylation
status was assessed using the publicly available tool. The results showed a significant
hypomethylation at the promoter region of PRMT5 in HCC (p < 0.0001) patients com-
pared to normal counterparts, especially in early HCC stages (p < 0.0001) (Figure 3b,c).
Indicating the role of epigenetic hypomethylation of PRMT5 promoter region in PRMT5
overexpression in the early stage of HCC.
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to normal tissues counterpart as per the TCGA database, UALCAN tool. (c) PRMT5 promoter
methylation level at different stages of HCC compared to normal tissue counterpart as per the TCGA
database, UALCAN tool., ** p < 0.01, and **** p < 0.0001.
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3.4. PRMT5 Knockdown Manipulates the Activity of the HIF1α Pathway

To investigate the pathways related to PRMT5 expression, transcriptomic analysis of
the PRMT5-silenced JHH-7 HCC cell line was performed using IPA (−log (p-value) = 6.6).
PRMT5 depletion significantly reduced the expression of genes involved in the HIF-1α
pathway (Figure 4a). In that, HIF1A gene expression showed a moderate positive correlation
with PRMT5 expression in HCC patients with p < 0.0001 (Figure 4b). The detailed IPA visual
pathway is shown in Supplementary Figure S1, showing that PRMT5 silencing helped in
the deactivation of HIF-1α via reduced expression of key genes such as MAPK3 (ERK1/2)
and ribosomal S6 kinase B2 (RPS6KB2 or p70S6Kb). Also, inhibition of angiogenesis and
blood vessel maturation pathways was evident as a decreased expression of the vascular
endothelial growth factor receptor 1 (FLT1) and the plasminogen activator inhibitor-1
(SERPINE1) (Supplementary Figure S1). PRMT5 showed a significant (p < 0.0001) but
weak positive (r < 0.3) correlation with FLT1 and SERPINE1 (Supplementary Figure S3a,c).
It is worth noting that FLT1 and SERPINE1 expression were not significantly associated
with overall survival according to Kaplan–Meier patient survival analysis (Supplementary
Figure S3b,d). PRMT5 inhibition also reduced the expression of Ras-related nuclear protein
(RAN) (Supplementary Figure S1). Collectively, these data indicate that PRMT5 enhances
the expression of genes involved in tumor progression via HIF-1α pathway activation.
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versus HIF1α expression.

3.5. PRMT5 Expression Is Positively Correlated with MAPK3, and RAN Genes as a Key Regulator
in HCC

To further understand the relationship between PRMT5 and the HIF1α pathway, the
possibility that PRMT5 could be involved in the regulation of the key HIF1α pathway
was investigated. In silico analysis was performed to address this point, with RAN and
MAPK3 as the genes that were significantly co-expressed with PRMT5 in HCC patients,
the genes that correlated with worse prognosis, and genes that were downregulated upon
PRMT5 depletion were shortlisted (Supplementary Figure S2). The MAPK3 gene was signif-
icantly upregulated in HCC patients with early, intermediate, and late stages of the disease
(p < 0.0001) (Supplementary Figure S4a,b). Also, a moderate positive correlation be-
tween PRMT5 and MAPK3 was observed in HCC (p < 0.0001) (Supplementary Figure S4c).
MAPK3 overexpression was significantly associated with HCC patient overall survival (OS)
(p < 0.001) and disease-specific survival (DSS) (p < 0.05). However, it is not linked
to relapse-free survival (RFS) (p > 0.05) or progression-free survival (PFS) (p < 0.05)
(Supplementary Figure S5a–d).
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Further analysis showed increased expression of the RAS-related nuclear protein
(RAN) in HCC clinical samples both at the transcriptomic and protein levels (p < 0.0001)
(Figure 5a,b). TCGA data showed a higher expression of RAN in stages 2 (p < 0.05) and 3
(p < 0.001) than in stage 1 (Figure 5c). A significant upregulation of RAN gene expression in
HCC tissue versus dysplastic nodule was detected using NGS data (p < 0.05) (Figure 5d).
Furthermore, a moderate positive correlation between PRMT5 and RAN was detected
in HCC patients (Figure 5e). To investigate the prognostic and diagnostic value of RAN
gene expression, a survival curve, and a ROC curve analysis were performed. RAN
overexpression was remarkably linked to poor overall survival (OS), relapse-free survival
(RFS), progression-free survival (PFS), and disease-specific survival (DSS) in HCC patients
(Figure 6a–d). ROC analysis of the GSE214846 dataset showed that the area under the curve
is 86.2%, and both sensitivity and specificity are 86.2% with a cutoff of 65 (Figure 6e).
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4. Discussion

Our analysis of the data has unveiled a notable pattern of PRMT5 overexpression,
specifically in hepatocellular carcinoma (HCC). This overexpression is not uniform but
exhibits a gradual increase as the disease progresses through various stages. HCC’s
progression is well-documented to follow a stepwise sequence, initiating from regenerative
nodules within the liver parenchyma and gradually evolving into dysplastic nodules
(DNs). These DNs are known to possess cellular abnormalities that indicate a higher risk of
developing into fully formed HCC lesions. Our findings highlighted the distinct elevation
of PRMT5 levels in HCC compared to dysplastic nodules, indicating a significant role
for PRMT5 in the step-by-step advancement of HCC. This observation underscores the
potential of PRMT5 as a key player in the intricate process of HCC development. The
gradual increase in PRMT5 expression across different stages of HCC progression suggests
a dynamic involvement of PRMT5 in driving the malignant transformation of liver cells.
Moreover, understanding this progressive upregulation of PRMT5 in HCC sheds light
on the molecular mechanisms underlying the transition from pre-neoplastic lesions to
fully established HCC. This insight is crucial for identifying potential therapeutic targets
aimed at disrupting the pathways influenced by PRMT5, thereby impeding or reversing the
progression of HCC. Further investigations into the specific interactions and downstream
effects of PRMT5 in HCC development are warranted to fully comprehend its role and
therapeutic implications in combating this aggressive form of cancer.

While previous studies have explored the role of PRMT5 in HCC, transcriptional
activation of PRMT5 in HCC has not been examined. Multiple transcription factors have
been implicated in PRMT5 overexpression in different cancer subtypes, including nu-
clear transcription factor Y (NF-Y) in prostate cancer, nuclear factor kappa B (NF-κB) in
diffuse large B-cell lymphoma, and the fused MLL-1 protein in acute myeloid leukemia
(AML) [37–39]. Additionally, epigenetic alterations, such as N-alpha-acetyltransferase 40
(NAA40)-induced acetylation, have been reported to contribute to PRMT5 overexpression
in colorectal cancer [40]. DNA methylation, a heritable epigenetic alteration, occurs due to
DNA methyltransferase (DNMTs) activity adding a methyl group to cytosine [41]. DNA
methylation plays a crucial role in gene expression modulation by hindering the binding of
transcription factors to DNA [42]. Our study suggests DNA hypomethylation as a potential
cause of PRMT5 overexpression in the early stage of HCC. However, other mechanisms
could influence PRMT5 expression in later stages, such as histone modifications and tran-
scription factors. Indeed, identifying PRMT5 promoter CpG islands hypermethylation in
HCC cell lines in vitro is crucial in addition to validation in patient biopsy samples.

The HIF1α pathway is a critical signaling pathway involved in the development and
progression of HCC [43,44]. Under hypoxic conditions, HIF1α stabilizes and translocates
to the nucleus, where it induces the expression of genes involved in glucose metabolism,
angiogenesis, and cell proliferation [45]. HIF1α is often overexpressed in HCC, promoting
tumor growth, metastasis, and drug resistance, with increased expression associated with
poor patient outcomes [26]. Our data shed light on a positive relationship between PRMT5
and HIF1α expression as well as HIF1α pathway activity. Even though some of the previous
work proposed a protective role of PRMT5 in HCC, our data indicated inhibition of HIF1α
signaling upon targeting PRMT5. Therefore, we emphasize the previous data that identify
PRMT5 as a promising therapeutic target in HCC [22–25]. Indeed, testing the therapeutic
capacity of PRMT5 inhibitors against HCC via clinical trials is pivotal.

Furthermore, we identified the role of PRMT5 in regulating the expression of potential
biomarker genes involved in the HIF1α pathway. Our results revealed a correlation between
PRMT5 expression and two such biomarkers, MAPK3 and RAN. Previous studies discussed
PRMT5′s role in modulating the activity of ERK in glioblastoma neurospheres and lung
cancer, with ERK being encoded by the MAPK3 gene [46,47]. Our study also showed a
positive correlation between PRMT5 and MAPK3 gene expression in HCC patients and the
JHH-7 HCC cell line.
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RAN is a small GTP-binding protein crucial for RNA and protein transport through
the nuclear membrane [48]. It plays a role in microtubule polymerization and mitotic
spindle formation, thus impacting the cell cycle [49]. RAN has been implicated in tumor
progression and metastasis in various cancer subtypes, such as breast and pancreatic
cancer, where it affects proliferation and apoptosis [49,50]. RAN has also been considered
a potential therapeutic target in certain cancers [51]. Its expression in cancer has been
linked to epigenetic regulation, such as long noncoding RNA LINC00858 in gastric cancer
and microRNAs (MiR-802) in colorectal cancer [52,53]. Furthermore, RAN expression has
been correlated with promoter hypomethylation in HCC and suggested as a potential
prognostic marker [54]. Our data supported these findings, indicating RAN as a prognostic
biomarker. This study establishes a positive correlation between PRMT5 and the RAN
gene through co-expression analysis in HCC patients and investigation of RAN expression
upon PRMT5 knockdown in the HCC cell line, suggesting a regulatory effect of PRMT5 on
RAN. It is worth investigating whether the PRMT5 regulatory effect is due to epigenetic
modulation, where it is capable of inducing histone symmetric demethylation, or due
to alternative splicing. Chromatin immunoprecipitation assay targeting PRMT5 unique
histone modifications such as H4R3me2s and H3R8me2s and RNAseq-based alternative
splicing analysis could expand the knowledge of PRMT5-induced expression regulation
of RAN [9]. We propose RAN and PRMT5 as promising disease progression biomarkers
for HCC, with higher specificity (>80%) compared to alpha-fetoprotein (AFP), which has
a histological specificity of 70.4% [55]. Immunohistochemistry screening of RAN and
PRMT5 expression in HCC tissue is warranted, along with further investigations involving
a larger sample size population. Additionally, we illustrate the significant difference in RAN
expression between DN and HCC and report variable expression across different disease
stages. Indeed, expanding the experiment into a larger sample size would allow further
generalization of our hypothesis. RAN translocate HIF1α into the cytoplasm, contributing
to cancer progression in mitochondria [27–29]. Understanding the mechanism of action in
which RAN contributes to HCC pathogenesis will strengthen the knowledge and pave the
way for further research in this field. Therefore, PRMT5 and RAN could be a promising
diagnostic marker for early-stage HCC and allow early detection of the disease, which is
correlated with better patient outcomes.

5. Conclusions

In conclusion, the data presented in this study strongly suggested a positive correlation
between PRMT5 expression and various pro-cancer pathways, notably the HIF1α pathway
in HCC. The intricate analysis conducted revealed compelling evidence indicating that
PRMT5 may play a role in activating the HIF1α pathway, potentially through the MAPK3
(ERK1/2) signaling cascade. This activation mechanism could significantly contribute
to the enhanced growth and metastatic potential observed in HCC cells with elevated
PRMT5 expression levels. Furthermore, our findings point towards a directly proportional
relationship between PRMT5 and the RAN gene, a pivotal component within the HIF1α
pathway. The identification of RAN as a potential diagnostic biomarker underscores the
clinical relevance of understanding PRMT5′s involvement in HCC pathogenesis. However,
it is essential to acknowledge that our study represents a stepping stone in unraveling
the complex molecular interactions underlying the PRMT5-HIF1α pathway axis in HCC.
Further in-depth research is warranted to fully elucidate the precise mechanisms through
which PRMT5 activates the HIF1α pathway and to decipher the functional consequences
of this activation. These insights are crucial for developing targeted therapeutic strategies
aimed at disrupting the PRMT5-driven pathways implicated in HCC progression, ulti-
mately improving patient outcomes and treatment efficacy in combating this aggressive
form of liver cancer.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biology13040216/s1. Supplementary Figure S1: PRMT5 expression
positively correlates with HIF1α signaling pathway. IPA visual diagram of the HIF1α pathway
illustrates the location and predicted changes in the pathway molecules in the HHJ-7 cell line
upon PRMT5 knockdown. Differentially expressed genes are marked purple. Green color refers
to decrease expression while red color refers to increased expression. Molecular activity variations
are highlighted orange for activation and blue for inhibition. Supplementary Figure S2: filtration
criteria of HIF1α signaling pathway genes controlled by PRMT5 expression to identify potential
biomarkers. Supplementary Figure S3: Correlation of angiogenesis related genes expression vs.
PRMT5 expression and patient survival in HCC. (a) Spearman’s rank correlation coefficient of PRMT5
versus FLT1 expression (b) FLT1 expression versus overall patient survival (OS) (c) Spearman’s
rank correlation coefficient of PRMT5 versus SERPINE1 expression (d) SERPINE1 expression versus
overall patient survival (OS). Supplementary Figure S4: Expression and correlation of MAPK3 vs.
PRMT5 in HCC. (a) MAPK3 expression in HCC compared to normal tissue counterpart. (b) MAPK3
expression in different stages of HCC compared to normal tissue counterpart. (c) Spearman’s rank
correlation coefficient of PRMT5 expression and MAPK3. Supplementary Figure S5: Correlational
analysis of MAPK3 expression versus HCC patient survival. (a) MAPK3 expression versus overall
patient survival (OS). (b) MAPK3 expression versus relapse-free survival (RFS). (c) MAPK3 expression
versus progression-free survival (PFS). (d) MAPK3 expression versus disease-specific survival (DSS).
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