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Predictive microbiology is a rapidly evolving feld that has gained signifcant interest over the years due to its diverse application in
food safety. Predictive models are widely used in food microbiology to estimate the growth of microorganisms in food products.
Tese models represent the dynamic interactions between intrinsic and extrinsic food factors as mathematical equations and then
apply these data to predict shelf life, spoilage, and microbial risk assessment. Due to their ability to predict the microbial risk, these
tools are also integrated into hazard analysis critical control point (HACCP) protocols. However, like most new technologies,
several limitations have been linked to their use. Predictive models have been found incapable of modeling the intricate microbial
interactions in food colonized by diferent bacteria populations under dynamic environmental conditions. To address this issue,
researchers are integrating several new technologies into predictive models to improve efciency and accuracy. Increasingly,
newer technologies such as whole genome sequencing (WGS), metagenomics, artifcial intelligence, and machine learning are
being rapidly adopted into newer-generation models. Tis has facilitated the development of devices based on robotics, the
Internet of Tings, and time-temperature indicators that are being incorporated into food processing both domestically and
industrially globally. Tis study reviewed current research on predictive models, limitations, challenges, and newer technologies
being integrated into developingmore efcient models. Machine learning algorithms commonly employed in predictive modeling
are discussed with emphasis on their application in research and industry and their advantages over traditional models.

1. Introduction

Food safety efectively refers to all measures to guarantee
that only food suitable for human consumption is passed
on to the human population. Generally, this includes
strategies, policies, and legislation to protect food from
microbial, chemical, physical, and allergenic contamina-
tion during food production, distribution, and consump-
tion [1]. Globally, food pollutants such as heavy metals,
mycotoxins, molds, antibiotics, and pesticide residues are

becoming increasingly prevalent [2]. Te burden of food-
borne diseases remains signifcant with an estimate 600
million illnesses and 420,000 deaths annually [3]. More-
over, the landscape of food safety is evolving due to
changing dietary patterns, the industrialization of food
production, and the efects of climate change. Tese factors
present new challenges in combating food-borne in-
fections, leading to a rapid increase in cases of foodborne
diseases that have adverse efects on public health and the
global economy [4].
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Moreover, the landscape of food safety is evolving due to
changing dietary patterns, the industrialization of food
production, and the efects of climate change. Tese factors
present new challenges in combating foodborne infections,
leading to a rapid increase in infectious diseases that have
adverse efects on public health and the global economy [4].

Globally, food safety measures have evolved signifcantly
to protect consumers on a large scale. In the 19th century,
the recognition of the germ theory of disease prompted
a shift toward prioritizing sanitation and animal health,
leading to the establishment of enhanced safety standards for
dairy products. Tese advancements quickly permeated
other sectors of the food industry [5]. Te rise of in-
dustrialization and mass food processing industries
underscored the importance of public health measures
aimed at guaranteeing the safety of food consumed by the
public. Today, rigorous screening protocols are in place to
mitigate microbial hazards (such as pathogenic microbes,
metabolites, and mycotoxins), chemical hazards (including
heavy metals, pesticides, and carcinogens), as well as al-
lergens and physical hazards like sharp objects [6–9]. Bi-
ological hazards pose the most signifcant threat among
these, often leading to devastating outbreaks [10]. According
to a review by Lee and Yoon [11], norovirus is associated
with the highest number of foodborne morbidities per year
globally. It is followed by Campylobacter, Salmonella, and
Listeria monocytogenes. Also, a WHO report showed that
foodborne bacteria illnesses were seen to have more prev-
alence than viral and parasitic diseases [12].

Historically, classical food safety measures employed
a hazard-based approach relying heavily on a routine in-
spection of processing facilities and end-product sampling
[13, 14]. However, these techniques are highly fallible due to
their subjective nature. Hazard-based meat inspection
techniques, for example, are based on physical inspection of
animal carcasses by incision and palpation to observe for
signs of internal organ pathology and lymphadenopathy,
which can indicate foodborne pathogens [15, 16]. However,
this methodmay not be efective in detecting diseases such as
colibacillosis, campylobacteriosis, or prion-related diseases
(e.g., Bovine spongiform encephalopathy) or early infection
[17, 18]. Furthermore, invasive practices such as palpation
and incision of carcasses are currently being discouraged in
most developing countries in favor of a risk-based approach
due to their potential to cause cross-contamination of
foodborne pathogens [19].

Another hazard-based approach to food safety is the end
testing of food products [20]. However, this presents several
challenges; frst, it is a reactive rather than a proactive ap-
proach; in other words, this method is used to detect mi-
crobial contamination rather than prevent it from occurring
in the frst place. Second, negative results (indicating no
microbial contamination) do not guarantee that the product
is entirely free from contamination [21]. Moreover, this
method, which is predominantly carried out through mi-
crobial culture techniques based has limited sensitivity and is
limited by the microbial load present; consequently, the
absence of a particular microbe during testing does not
necessarily mean they were never present or will not appear

later. Due to their limited sensitivity, culture-based methods
of end testing are also prone to false positives and false
negatives and are currently being replaced, or in some cases,
augmented by molecular detection methods (such as whole
genome sequencing) which are more accurate [22]. Hazard-
based end testing of food is also labor intensive and costly
due to the expenses associated with the technique and the
potential losses incurred upon detecting microbial
contamination [23].

Moreover, relying solely on a hazard-based approach can
be impractical and unsustainable. Strict enforcement of this
approach may prohibit essential and nutritious foods if they
contain naturally occurring toxins, such as genotoxic hy-
drazines in mushrooms, glycoalkaloids in tomatoes and
potatoes, and hydrocyanic acid in cassava. Furthermore,
traditional food processing methods like frying potatoes
have been linked to producing carcinogens such as acryl-
amide. Banning these food items and cooking techniques
outright may be unrealistic, particularly in developing
countries. Such a ban could signifcantly disrupt food
availability and consumption [24].

As part of measures towards overcoming these chal-
lenges with hazard-based approaches, the World Trade
Organization (WTO) and the Codex Alimentarius Com-
mission (CAC), in collaboration with diferent public health
bodies and national governments, came up with a regulatory
risk-based framework on food hygiene, processing, and
practices in the food industry. Te Codex Alimentarius
Commission was founded in 1963 as an intergovernmental
body under the Food and Agriculture Organization United
Nations and theWorld Health [25]. During the 19th and 20th
sessions of the CAC in 1991 and 1993, the decision was taken
to base food safety decisions on risk assessment; the com-
mittee also accepted a recommendation to harmonize
standard-setting methodologies. Te drafting of the Codex
Alimentarius document on “Guidelines for the application
of the Hazard Analysis Critical Control Point (HACCP)
system” (Codex, 1993) and the subsequent edition, “Hazard
Analysis and Critical Control Point System and Guidelines
for its Application” [26] played a key role in the adoption of
HACCP protocols in food safety globally [27, 28].

Towards the end of protecting consumers, a risk analysis
framework prescribing regulations such as the Appropriate
Level of Protection (ALOP) and the Food Safety Objective
(FSO) was developed. Te ALOP, also known as ALR
(Acceptable Level of Risk), is a concept used in risk analysis
to establish the appropriate level of protection against
hazards in food production and ensure the safety of food for
human consumption. It is described as “the level of pro-
tection deemed appropriate by the member establishing
a sanitary or phytosanitary measure to protect the human,
animal, and plant life or health within its territory” [29]. Te
determination of the ALOP or ALR is based on a combi-
nation of scientifc knowledge and expert judgment, taking
into account factors such as the severity and likelihood of
harm, the availability and efectiveness of risk mitigation
measures, societal values, and expectations, as well as epi-
demiologic surveillance data on the occurrence and distri-
bution of foodborne illnesses.

2 International Journal of Microbiology
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Te Food Safety Objective (FSO) is a metric that de-
scribes themaximal threshold of amicrobial hazard in a food
at the point of consumption; it was designed to translate the
ALOP into practical measures for stakeholders in food
manufacturing and distribution [1, 30]. Maximal threshold
hazard levels at other points on the food processing chain are
called performance objectives (POs) [31]. Other regulatory
standards developed in line with the risk-based safety ap-
proaches include GAP (good agricultural production
practices), GHP (good hygiene practices), GMP (good
manufacturing practices), and HACCP [32].

Adopting risk-based approaches in food safety has
shifted objectives towards preventing hazards rather than
relying solely on inspection-based methods [33]. Tis shift
acknowledges the importance of proactively identifying and
mitigating risks to food safety. While these approaches have
contributed to improved food safety globally, there is
a growing recognition of the need for increased efciency,
precision, and accuracy in food safety practices [34]. As
a result, researchers are turning to mathematical microbial
modeling to complement existing methods [35]. Predictive
microbiology, in particular, has emerged as a valuable tool.

Microbial predictive modeling involves using mathe-
matical models to predict the growth and behavior of mi-
croorganisms in food products under diferent
environmental conditions [36]. Tis feld of study is focused
on developing models that can help food manufacturers and
regulators understand how microorganisms respond to
changes in factors such as temperature, pH, water activity,
and other environmental conditions. Te objective is to
utilize this knowledge in forecasting the potential growth of
harmful foodborne microorganisms and to predict the
potential growth of harmful microorganisms that can cause
foodborne illness [37, 38]. Predictive microbiology is
established on the notion that the behavior of microor-
ganisms, however complex, can be simulated and efectively
reproduced in nonbiological models by applying mathe-
matical and computational principles [35]. By utilizing
mathematical models, predictive microbiology enables the
identifcation of microorganisms of interest and provides
insights into microbial ecology, sources of contamination,
and potential contamination points. Predictive modeling
plays a crucial role in ensuring food safety by allowing food
manufacturers and regulatory agencies to anticipate and
control the growth and behavior of microorganisms in food
products. Te goal of predictive microbiology is to provide
tools that can be used to design food processing and
preservation strategies that can help reduce the risk of
foodborne illness and improve the safety and quality of food
products.

Te application of predictive microbiology has found its
way into diverse areas of food microbiology, such as analysis
of food formulation processes and their efect on shelf life,
evaluation of processing operations, and hazard analysis
critical control point (HACCP).

Currently, the advancement of modeling techniques in
food safety is heavily infuenced by the integration of arti-
fcial intelligence (AI) and other cutting-edge technologies,
such as whole genome sequencing [39, 40]. Machine

learning algorithms such as random forest models and
support vector machines (SVM) are becoming integral
components of these evolving models [41, 42]. Whole ge-
nome sequencing (WGS) technologies, alongside genomics
and other omics-based methods, generate vast amounts of
high-throughput data. Tese data serve as invaluable re-
sources for training models using various AI algorithms
[43]. By harnessing the power of AI, researchers can ef-
fectively analyze and interpret complex datasets to derive
meaningful insights. Tese sophisticated modeling tools fnd
applications across diverse domains within food safety,
notably in risk assessment and management.

Te use of predictive models in food safety complements
risk-based safety approaches; it also has several advantages
over traditional microbiological testing, including the
following.

Enhanced speed and accuracy: predictive models can
quickly and accurately predict the growth and behavior of
microorganisms in food products, allowing for faster and
more accurate risk assessments and decision-making.

Improved risk assessment: predictive models can pro-
vide more detailed and accurate risk assessments of food
products, helping to identify potential hazards and develop
efective control measures.

Cost savings: using predictive models can reduce the
need for expensive and time-consuming microbiological
testing, saving both time and money.

Optimization of food processing and preservation
methods: predictive models can optimize food processing
and preservation methods, ensuring that food products are
safe, high quality, and have a longer shelf life.

Tis review aims to provide a comprehensive overview of
the feld of predictive microbiology and its applications in
improving food safety. It also addresses current limitations
and challenges in this feld and explores emerging trends and
approaches, including the use of new technologies such as
genomics and metagenomics.

1.1. Factors Afecting Microbial Growth in Food. During the
preharvest stage, food crops are vulnerable to contamination
in the feld [44]. Tis can happen through contact with
waterborne pathogens during irrigation, exposure to soil-
borne pathogens present in manure, or contact with wild-
life such as migratory birds [45]. Te harvest stage is another
critical point where contamination can occur. Food crops are
susceptible to contamination as they are picked by workers,
who may introduce pathogens through improper handling
practices [46]. Postharvest processes, including trans-
portation, processing, distribution, and preparation, also
present opportunities for microbial contamination. Food can
come into contact with soil, air, and waterborne microor-
ganisms during these stages, increasing the risk of contam-
ination [45]. In animal-based foods like beef, microbial
contamination can originate from high microbial loads
present in the cattle gut [47]. During carcass preparation,
there is a risk of transferring these pathogens to skeletal
muscle, further emphasizing the importance of stringent
hygiene practices throughout the food processing chain [48].

International Journal of Microbiology 3
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Most foods provide an ideal nutrition source for micro-
organisms [49]. Generally, factors infuencingmicrobial growth
in food are classifed into intrinsic and extrinsic factors. In-
trinsic factors are physicochemical characteristics inherent to
the food, such as composition, pH, water activity, oxidation-
reduction potential, and biological structures. On the other
hand, extrinsic factors encompass environmental conditions
surrounding the food, including temperature, relative humidity,
gaseous environments, and competitor microorganisms [49].

Intrinsic factors play a pivotal role in microbial growth
dynamics. Foods of plant or animal origin possess biological
components that act as barriers against microbial invasion
and colonization. Examples include the tough testa and
shells of certain seeds and nuts and the thin membrane
found in eggs. In addition, readily available nutrient sources
in food signifcantly infuence microbial proliferation.
Bacteria typically require simple sugars and free amino acids
for metabolism, favoring their growth in nutrient-rich en-
vironments [50]. Conversely, microbial growth can be
hindered by natural antimicrobial substances such as bac-
teriocins, allicins, and eugenol [51]. Extremes of pH, such as
highly alkaline or acidic conditions, also deter bacterial
growth as most bacteria thrive within a narrow pH range
compared to molds and yeasts [52].

Considering the water activity requirements of microbes,
it is notable that most bacteria are halophiles (salt loving).
Gram-negative bacteria typically exhibit a greater afnity for
water than Gram-positive bacteria, molds, and yeasts.
Consequently, fast-growing bacteria are often the primary
spoilers of fresh foods with high water content [50].

Moreover, additional factors infuencing bacterial
growth in food encompass implicit factors related to the
microbes, including interactions between diferent microbial
species colonizing the food. Tese interactions may involve
difering nutrient utilization, stress thresholds, and the
production of chemicals that modulate the growth of other
microorganisms. Processing factors, such as heating, cool-
ing, and drying treatments, also signifcantly afect food
composition and microbial ecology. Ultimately, a complex
interplay between all the factors above dictates microbial
growth dynamics in food systems [53].

2. Principles of Predictive Microbiology

Te basic principle of predictive microbiology is anchored
on the knowledge that microbial growth and survival can be
simulated in mathematical models.

Te efectiveness of mathematical growth models is
afected by diferent criteria. More excellent resolution and
predictive relevance can be achieved by reducing the number
of parameters under analysis. Furthermore, a mechanistic
approach assessing few meaningful parameters allows for
more phases of microbial growth to be covered and con-
sequently increases the model’s accuracy [54].

2.1. Microbial Growth Models. Te growth curve of most
foodborne bacteria typically exhibits the following four
distinct phases: an initial lag phase characterized by minimal
or no detectable growth, followed by an exponential (log)
phase marked by rapid cell division, then a plateau phase
where growth stabilizes, and fnally, a mortality phase where
conditions become unfavorable for further growth [55].

Microbial models are classifed based on a number of
diferent criteria. Tey can be grouped into kinetic and
probabilistic models based on the expected microbial
response; empirical and mechanistic models based on the
method of analysis; and primary, secondary, and tertiary
models based on the dependent variable assessed
[29, 56, 57].

2.1.1. Primary Models. Primary models assess bacterial re-
sponse over time to specifc conditions. Typically, these
models aim to describe microbial growth using as few pa-
rameters as possible [58]. Primary models may be empirical,
rate growth models, inactivation or survival models, or
a combination thereof. Examples include the Gompertz and
Buchanan models [59]. Tese models evaluate a discrete
number of intuitive parameters, such as the relative growth
rate, initial population size, and asymptotic population size.
However, they may be unable to assess all microbial growth
phases or account for variables such as prolonged lag
phases [54].

Te Gompertz equation is commonly written
mathematically as

L�A+Cexp {−exp [B(T∼MI]} [60].
It describes an asymmetric sigmoidal curve.
L� log+ of bacteria count in colony forming units(cfu);

t� time in hours;A∼ asymptotic log count with a decrease in
time indefnitely; C is asymptotic log count with an in-
defnite increase in time; M is the time at the maximal
growth rate; and B is the relative growth rate at time M.

Tis model has been used by the Food MicroModel
consortium and the Pathogen Modelling Program (PMP)
group in the UK and the US, respectively [61]. Te model,
however, is limited in its ability to describe the exponential
phase. It also overestimates parameter values [62–64].

Te Buchanan model:

log(N) �

log(N) (t≤ r),

log N0(  + μmax (t − r) r< t< tm( ,

log(Nmax) t≥ tm( .

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(1)

τ � τi + tm i � 1, 2, · · · , N, (2)

μmax �
log Nmax(  − log N0( 

tm − τ
. (3)

4 International Journal of Microbiology
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Equations (1)–(3) express assumptions by the model in
simulating growth. Te Buchanan model assumes that there
is zero growth during the lag phase, and growth during the
exponential phase increases linearly with time and specifc
growth in the plateau phase is zero.

Te Buchanan model was developed based on the fol-
lowing three assumptions: (1) during the lag phase, the
specifc growth rate is zero; (2) during the exponential phase,
the logarithm of the bacterial population increases linearly
with time; and (3) during the stationary phase, the specifc
growth rate is zero [65]. It is also regarded as a very simple
model, making it very popular for microbiological
modeling [65].

2.1.2. Secondary Models. Secondary models analyze the
factors infuencing the kinetic parameters identifed by
primary models. Tey establish the relationship between
primary model parameters and intrinsic and extrinsic fac-
tors such as temperature and pH [66].While primarymodels
focus on estimating changes in microbial population over
time and observing specifc responses such as growth rate
and lag phase, secondary models assess the impact of in-
trinsic and extrinsic factors of the food on these responses
[29]. Several secondary models have been developed to
evaluate the lag phase and growth rate concerning one or
more environmental or physicochemical factors [58, 67].
Examples of secondary models include the response surface
(RS) models and Arrhenius models [68]. A response surface
model in predictive microbiology is a mathematical model
used to describe the relationship between multiple in-
dependent variables (factors) and a response variable, typ-
ically microbial growth or survival, in a complex
environment [69]. Response surface models (RSMs) are
crucial in predictive microbiology. Tey help us understand
how diferent factors such as temperature, pH, and humidity
afect microbial growth or survival [70, 71]. Tese models
show how these variables work together, impacting the
microorganisms’ environment. RSM works by mapping out
a multidimensional space to predict outcomes based on
various factors. It involves conducting experiments where
these factors are varied systematically and then using math
and statistics to build a model representing the response
across all the experiments [72]. Tis model’s surface guides
us to fnd the best conditions for controlling microbial
growth or death. In predictive microbiology, RSM is used to
fne-tune food storage and safety. It helps fnd the right mix
of conditions, such as temperature and moisture, to prevent
harmful microbes from growing in food. For example, RSM
can help determine the exact temperature and humidity
levels needed to prevent pathogen growth in food
products [70].

2.1.3. Tertiary Models. Tertiary models are algorithm-run
software packages combining primary and secondary
models with a Graphic User Interface (GUI), making them
userfriendly for amateur modelers. Tey are primarily used
in the food industry and research to consolidate fndings
from primary and secondary models. Te Unifed Growth

Prediction Model (UGPM) software is an example of
a tertiary model based on Baranyi Roberts’s primary and
temperature-dependent secondary models [73].

2.2. Empirical and Mechanistic Models

2.2.1. Empirical Models. Empirical models are pragmatic,
rigid models in which relationships between diferent pa-
rameters are put forth as mathematical equations, usually in
frst or second-degree polynomial mathematical relation-
ships [58, 68]. In an empirical model, predictions are made
without considering variables such as physicochemical pa-
rameters capable of infuencing the outcomes of predictions.
An example is the quadratic response surface used by Gibson
et al. [74].

2.2.2. Mechanistic or Deterministic Models. Mechanistic or
deterministic models are established on theories and allow
interpretation of the response in terms of known phe-
nomena and processes. Tese models typically contain fewer
parameters, ft the data better, and describe the response
better. Tey are also known to extrapolate more efectively
and are preferable to empirical models [66].

2.3. Kinetic and Probabilistic Models

2.3.1. Kinetic Models. Kinetic models determine the ex-
pected response rates (growth or death). Tey are used to
predict concentration levels associated with a certain level of
microbial strain and thus characterize risk (infection or
intoxication-associated risk) [58]. Examples are the Gom-
pertz and square root models, which describe rates of re-
sponse, such as lag time, specifc growth rate, and maximum
population density, or inactivation/survival models that
describe destruction or survival over time [75–78].

2.3.2. Probability Models. Probability models, on the con-
trary, are associated only with the probability of growth or
toxin production and do not predict the rate at which this
occurs [79, 80]. Tey are used to show the absolute limit of
microbial growth within specifc environments and dem-
onstrate stress threshold levels, which may limit growth but
ultimately permit it [79, 80].

2.4. Applications of Predictive Microbiology in Food Safety

2.4.1. Quality Control of Food Products. Predictive micro-
biology can be applied to validate the efectiveness of mi-
crobial inactivation processes such as drying, heat treatment,
and refrigeration. Food processing industries producing
yogurt, milk, wine, and sous-vide processed products re-
quire strict adherence to specifc refrigeration temperature
and heat treatment [81–83]. However, these treatment
processes are often inadequate or improperly managed,
leading to microbial growth. In the dairy industry, for in-
stance, the insufciency of heat treatments solely as the
control measure against fungal spore germination has been

International Journal of Microbiology 5

 8472, 2024, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1155/2024/6612162 by T

est, W
iley O

nline L
ibrary on [21/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



highlighted; this is due to the ability of some spore-forming
fungal pathogens to survive pasteurization or thrive at low
temperatures. Organisms such as Bacillus sporothermourans
are known to survive the ultrahigh temperatures reached
during heat treatments [84, 85]. Several research studies on
cold chains have also revealed severe noncompliance with
regulations at distribution, retail, and storage with the fnal
consumer. Tis, therefore, necessitates the need for quality
control points along the food chain.

A study by Gougouli et al. [86] demonstrated that
microbial growth in yogurt, evidenced by signs like
mycelial formation, is signifcantly infuenced by variables
such as warehousing duration, storage temperature, and
microbial strain. Consequently, predictive models capable
of anticipating fungal growth by analyzing these factors
are highly valuable in the dairy industry. Tese models can
enhance quality control measures by integrating them
into the fnal testing of yogurt products for fungal growth
before market release. In such applications, predictive
models aid in determining optimal conditions for the
growth of various microbial species in end-product
challenge testing.

It is essential to recognize that diferent microbial
contaminants have varying conditions permissive for
growth. Terefore, the selection of environmental con-
ditions during end-challenge tests cannot be made arbi-
trarily without a solid scientifc basis, as these can lead to
false negative tests and inadvertent marketing of con-
taminated products. Other predictive models in the dairy
industry have modeled the infuence of parameters such as
temperature, pH, water activity, and inoculum size on the
growth of Listeria monocytogenes in milk as well as the
growth of Yersinia enterocolitica in Camembert-type
cheese [87].

2.4.2. Risk Assessment and Management. Risk assessment is
a systematic, scientifc method designed to calculate human
risk associated with exposure to foodborne risks [26]. It
comprises the following four sequential stages: hazard
identifcation, exposure assessment, hazard characterization,
and risk characterization [88, 89]. Data from MRA are
heavily utilized in developing policy-making and legislation
for the most relevant foodborne pathogens [25].

Conventional methods for risk assessments of food
products and additives are deterministic [90].Tey are based
on the assumption that estimated parameters are constants,
while these parameters are variables, and their measure-
ments are uncertain. Consequently, discrepancies between
challenge tests and laboratory assays lead to compromised
decisions when deterministic approaches are utilized alone
in decision-making. Hence, more sensitive methods, such as
predictive modeling, are necessary. By applying predictive
models in the food industry, microbial hazards can be es-
timated from production to fnal consumption [91]. In-
formation from these models can then be utilized in guiding
decisions such as determining acceptable levels of microbial
exposure and necessary actions to minimize risk to the fnal
consumer [20].

A study was conducted by Pouillot and Lubran. [92] to
assess the efectiveness of diferent established predictive
models in quantitative risk assessment of listeriosis from
contaminated cold-smoked salmon and the growth of
L. monocytogenes. In this study, parameters such as the
initial log10 concentration of L. monocytogenes temperature
fuctuation in a cooling device and storage duration were
monitored using the dose-response model for invasive lis-
teriosis developed by [89].

Pr (illness|D)� 1− exp (−rD), and D�C× 10Xend
With r as the probability of illness after ingesting one

L. monocytogenes (number of organisms), the dose-response
r was deemed r� 1.06×10−12 (based on data from an FAO
report on population susceptibility).

D is the predicted dose of L. monocytogenes per serving.
Xend (log10 cfu/g)� concentration of L. monocytogenes in

the cold-smoked salmon after storage.
Te fnal output of themodel was calculated usingMonte

Carlo simulation as

(i) R � 1/n
n
i�n(1 − exp(−r × C × 10Xend,i )).

Diferent models, including the Buchananmodel and the
Baranyi model, were assessed.Te result of the study showed
the importance of accurately measuring bacterial growth in
determining risk and the signifcance of selecting an ap-
propriate primary growth model. Te study also revealed the
efect of diferent parameters on the estimated risk. Pa-
rameters such as the maximum achievable population
density and lag phase were seen to be important in risk
estimation.

Te study also highlighted the gap between predictive
microbiology models and current models being used in
microbial risk assessment, as well as the difculty in selecting
appropriate models.

MicroHibro is an example of a predictive microbiology
modeling software for evaluating spoilage and pathogenic
microbes in the food industry. It provides estimates on the
exposure level and associated risk. Te software utilizes
a Predictive Microbiology Model Database (PMDB), in-
corporating parameters such as growth, inactivation,
transfer, and dose-response models. Estimating food mi-
crobial risk is done in MicroHibro by describing steps in the
food chain using four microbial processes (growth, in-
activation, transfer, and partitioning). It then estimates the
microbial load and prevalence in the food of interest [93].
Other risk assessment tools that have been developed in-
clude the Dairy Products Safety Predictor, Food Spoilage
and Safety Predictor, Listeria Meat Model, and FDA-
iRISK [94].

2.4.3. HACCP (Hazard Analysis and Critical Control Point)
Systems. Hazard Analysis and Critical Control Point
(HACCP) is a food safety system designed to identify and
prevent potential problems throughout food production,
distribution, and consumption.

It employs a systematic approach to identify pathogens
in raw materials and processing entry points, implement
appropriate methods for their elimination, and detect
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potential issues with the fnished product resulting from
improper handling. Predictive food microbiology plays
a crucial role in implementing the HACCP concept.

Te application of Quantitative Microbial Risk Assess-
ment (QMRA) is essential in hazard analysis by evaluating
potential microbial hazards in the food chain and de-
termining critical control points (CCPs) and critical limits
(CL). Predictive models can also be developed to evaluate
systems established to monitor CCPs and verify the efec-
tiveness of the HACCP system. Tese models can predict
CCPs by determining levels for diferent parameters that
permit microbial growth. In addition, they estimate various
levels of microbial behavior to suggest permissible levels and
thresholds for critical limits. Hence, integrating HACCPs
with predictive models has excellent potential in decision-
making [88].

In a study by Cassin et al. [95]; Monte Carlo simulation
was used together with data frommicrobiological analysis in
a dose-response analysis to predict the risk of hemolytic
uremic syndrome (HUS) from Escherichia coli O157: H7
from beef hamburgers. Te study modeled the pathogen
behavior through processing, handling and fnal con-
sumption and the determined the risk of the illness in
diferent age groups. Te authors then went on to assess the
efectiveness of diferent mitigation strategies and critical
control points in storage temperature control, preslaughter
screening, and cooking temperature. From their results, the
probability of illness was reduced through a strategy aimed
at minimizing the bacteria growth during retail storage
through accurate temperature monitoring. However, the
authors also acknowledged the limitation of uncertainties in
hygiene during individual operations during processing,
production and handling. Te authors were also unable to
model certain steps in the production, processing, ham-
burger distribution, and consumption during the study. For
instance, not all bacteria that survive the cooking process
would be infective after. Also, the probability of HUS cannot
be totally ascribed to dose.

2.4.4. Shelf-Life Determination. Traditional microbiological
methods for determining shelf life are often time consuming,
requiring substantial bacterial cell growth before overt
spoilage reactions become apparent. Alternatively, newer
methods may require advanced and expensive equipment.
However, knowledge gained from predictive modeling of
microbial behavior in food provides a robust foundation for
developing devices capable of monitoring food shelf life
throughout warehousing, transport, distribution, and
retail sales.

Accurate shelf-life prediction models must fulfll several
requirements, including identifying spoilage reactions (SRs)
such as slime production, color changes, and ofensive odors.
Tey must also identify the specifc microorganisms (SSOs)
responsible for these spoilage reactions and analyze the
spoilage domain (SD), which refers to the environmental
conditions permitting the growth and function of a partic-
ular SSO. Developing and validating a shelf-life prediction
model involve experiments demonstrating the spoilage

organisms, reactions, and domain. Subsequently, modeling
microbial behavior within this domain is crucial for de-
termining the “minimum spoilage level,” i.e., the concen-
tration of SSO required to cause product rejection. Notably,
spoilage organisms’ metabolic activities, rather than their
numbers alone, play a signifcant role in determining
spoilage [96].

Numerous predictive models have been developed for
shelf-life studies in the food industry. Examples include
models for predicting shelf life in yogurt by Mataragas et al.
[97]; minced beef by Limbo et al. [98]; and Nutri cereal baby
food by Rasane [99]. In addition, studies have focused on the
impact of specifc bacteria on spoilage in particular foods,
such as Pseudomonas on pork and poultry by Bruckner et al.
[100] and lactic acid bacteria on cooked ham by
Kreyenschmidt [101]. Tese predictive models enhance food
quality and safety by providing insights into the factors
infuencing shelf life and potential spoilage mechanisms.

2.5. Limitations of Predictive Models. Models provide many
benefts in the decision-making process. However, it must be
kept in mind that they are simplifed representations of
complex biological processes at best. Terefore, predictions
based on model results should be made cautiously, con-
sidering previous experiences and other microbial ecological
factors for which the models may not fully account. For
instance, it is crucial to understand that models can only be
extrapolated for values within the experimental ranges to
which they were formulated, especially for parameters like
temperature or water activity. Tis limitation arises because
models, particularly empirical ones, are derived from ftting
observed data and may only partially simulate actual mi-
crobial behavior. Research by Fakruddin et al. [68] also
reports that specifc models may predict faster growth rates
compared to actual real-life scenarios. Tis discrepancy has
been attributed to the development of most models using
laboratory media, reducing their predictive relevance in the
food industry even though they are validated in foods [102].
Practitioners in the food industry have also highlighted the
incompatibility of models developed under stable envi-
ronmental conditions in evaluating real-life products that
experience fuctuating conditions of changing temperature,
pH, and water activity. Moreover, predictive models cannot
consider all the variables that afect food spoilage and mi-
crobial growth [103]. Most models evaluate just one or more
parameters involved in food spoilage [104].

Researchers have also highlighted several more specifc
challenges, such as the prediction of the lag phase. Te lag
phase is a period of adjustment with little or no bacteria
multiplication. Modeling this phase of bacterial growth has
been challenging due to the variable length and the minimal
level of microbial growth [103]. Population kinetics factors,
like the lag phase and growth rate, are not easily predicted in
rapidly evolving, complex ecosystems such as that of natural
food. Modeling the shelf life of fsh and seafood has also been
difcult due to the scarcity of data on changes in fsh mi-
crobial response after subjecting them to temperature
changes during the lag and/or the exponential phase.

International Journal of Microbiology 7
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Terefore, applicable and accurate models for quantitative
microbial risk assessment in seafood are unavailable [105].

Other limitations with the use of predictive models
include the inability of models to model intraspecies di-
versity, the efect of natural food structure complex, as well
as the efect of nutrient depletion and buildup of toxic
bacteria waste in the medium [106, 107].

2.5.1. Te Role of Industry Stakeholders in the Adoption of
Predictive Models. Industry stakeholders applying modeling
in food safety need to be informed of the predictive limits of
models before making inferences. Tus, proposed models
must be backed up with evidence showing a track record of
valid predictions to aid adoption.

Table 1 outlines the role of AI, whole genome sequencing
(WGS), and metagenomics in developing more efcient and
accurate predictive models.

3. Challenges and Future Directions

Most microbial models are simplistic, primarily describing
observable changes in response to environmental dynamics.
While these models have proven efective in predicting
parameters such as growth or inactivation rates within
optimal temperature ranges, their ability to model complex
phenomena like lag phases and adaptive responses remains
questionable. Consequently, there is a growing need for
more versatile and mechanistic next-generation models that
integrate cellular information to unravel complex microbial
behavior [109, 120].

Newer modeling approaches should prioritize un-
derstanding the behavior of individual cells to comprehend
the dynamics of entire populations more accurately. Recent
studies have emphasized the signifcance of individual cell
heterogeneity as a signifcant source of variability [121, 122].
Given that food contamination can occur with very low
numbers of pathogenic bacteria, understanding the mech-
anisms of individual cell behavior is crucial for robust
microbial risk assessment [123, 124].

To address these challenges, research is underway on
stochastic individual cell modeling based on systems biology
approaches. Tese studies have revealed the variation of
bacterial cells within a clone and the association between
gene expression and phenotypic expression [125].

Next-generation models must also analyze complex
interactions such as intraspecies diversity found in spore-
forming bacteria and their relevance in risk assessment. Tis
characteristic has not been adequately modeled in current
approaches [126].

3.1. Integration of Predictive Microbiology with Other
Technologies. Advances in whole genome sequencing
(WGS) technologies, genomics, and metagenomics are
revolutionizing pathogen detection, characterization, and
identifcation in the feld of food safety, giving rise to an
emerging feld known as foodomics [39, 127]. Furthermore,
proteomics and metabolomics methods are being applied in
detecting bacterial toxins and mycotoxins in foodstufs,

making omics-based tools a vital aspect of risk assessment
methods and food safety surveillance in the 21st century.Te
integration of WGS in surveillance programs has been ap-
plied in resolving outbreaks of listeriosis and Salmonellosis
that previously would not have been detected [128–130]. By
applying WGS technologies in predictive microbiology,
researchers have access to details such as serotype, virulence
factors, antimicrobial resistance genes, and genetic varia-
tions such as single nucleotide polymorphisms (SNPs)
[39, 118]. Tis enables more precise risk assessment that
better translates microbial genotype into difering clinical
outcomes [131]. For instance, Shiga toxin-producing
Escherichia coli is associated with diferent clinical out-
comes ranging from diarrhea to hemolytic uremic syndrome
(HUS) and other chronic sequelae. Applying WGS tech-
nologies in risk assessment makes it possible to link diferent
hazards with particular clinical outcomes accurately
[118, 132]. Tis was carried out in a study by Pielaat et al.
[133] in which molecular data from WGS were applied to
characterize hazards from Escherichia coli O157: H7 [134].

In addition, metagenomics can be used to study the
interactions between microorganisms in a community [116].
Microbial communities are complex systems, and one mi-
crobe’s behavior can infuence others’ behavior. By using
metagenomics to study these interactions, it is possible to
develop more sophisticated predictive models that take into
account the dynamics of microbial communities.

Another tool with massive potential for integration into
current predictive modeling systems is artifcial intelligence
and machine learning (ML) technology. Te process of
developing a predictive model generates large datasets that
often cannot be analyzed using conventional statistical tools.
Artifcial intelligence andmachine learning tools can be used
to analyze large datasets and identify cryptic patterns and
correlations. Artifcial Intelligence, therefore, makes it
possible to develop more sophisticated and accurate models
that consider multiple factors that infuence microbial
growth and behavior. Several scientifc reports have been
written on the application of AI in this feld [40, 43].

Machine learning is a subset of artifcial intelligence
focused on developing more efcient machines by in-
tegrating algorithms that enable them to learn from available
datasets. Machine learning algorithms learn over time and
are being employed in a holistic approach towards risk
prediction due to their ability to consider complex genetic
variations and interactions [135]. Tey allow for the eval-
uation of individual parameters and their interactions with
other variables, which are vital in assessing strain diversity
and the diferences in observed phenotypic outcomes [136].
Microbial risk assessment incorporating these algorithms
can capture changes in genetic constitution with time and
consequently aid in faster identifcation of new strains with
novel virulence characteristics [131]. It would also help in
resolving limitations associated with predictive models.
Machine learning algorithms are more fexible and dynamic
than conventional predictive microbiology models as they
do not require rigid formulas linking microbial parameters
and observed features in food [137]. Algorithms employed in
ML can discern complex relationships between input data
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and, from thence, make predictions [131].Terefore, they do
not rely on additional theories or mechanisms (as in
mechanistic or empirical predictive models). AI is trained
with large datasets, too many parameters to learn complex
relationships, making it possible to predict even without
clearly understood mechanisms accurately [137].

Machine learning models have also been shown to be
more adept at exploring complex interactions among input
features (e.g., growth kinetic parameters, type of pathogen,
and sublethal injury rate) with fewer parameters [114].

A study by Lin et al. [114] applying machine learning for
predicting the single-cell lag time of Salmonella enteritidis
after heat and chlorine treatment on single-cell analysis
demonstrates the following. Unlike traditional models,
which need diferent sets of parameters to ft the data for
varying microbes and processing methods, AI model re-
quires only a set of hyperparameters when evaluating the
impact of a sublethal injury on single-cell lag time, making it
possible to build a single model capable of assessing single-
cell variability among diferent pathogens to diferent
treatments; an ideal model for all rather than a model per
pathogen per treatment process [138].

Tese tools have also helped automate food quality
monitoring systems through technologies such as robots,
time-temperature indicators (TTIs), and Internet of Tings
(IoTs) technologies. Trough the integration of predictive
models with artifcial intelligence technologies, robots are
being developed to optimize the handling and storage of
products, reducing the risk of microbial contamination
[139]. Figure 1 illustrates the integration of newer tech-
nologies into predictive modeling. IoTdevices can be used to
monitor and control the temperature and humidity of food
and other products. Time-temperature indicators (TTIs) are
devices that monitor the time-temperature history of
a product and provide an indication of the degree of mi-
crobial growth. By integrating these technologies into cur-
rent predictive models, it is possible to monitor and
maintain the conditions required for the safe storage and
distribution of products. Predictive models are developed to
ensure that conditions are optimized for food safety, while
artifcial intelligence technologies help to add human-like
awareness and decision-making in product design [140].

3.2. Machine Learning Algorithms Commonly Employed in
PredictiveModeling. Many diferent ML algorithms, such as
gradient boosting regression tree (GBRT), artifcial neural
network (ANN), random forest (RF), support vector re-
gression (SVR), and logit boost (LB), are commonly used
[114, 141]. Table 2 shows the application of diferent ma-
chine learning algorithms that have been used with varying
levels of success.

3.2.1. Random forest. Tis algorithm derives its name from
the approach towards data selection and decision-making.
Generally, a random forest algorithm works by integrating
multiple decision trees into a single ensemble of models
based on the principle that the aggregation of multiple
models should perform better than a single one. Te

algorithm randomly selects input variables and observations
from provided data, from which it then generates individual
decision trees. Te fnal result, hence, is an aggregation of
multiple trees for regression. Random forest algorithms have
shown suitability in predictive microbiology due to their
accuracy with classifcations and regression analysis and
suitability in assessing causality between parameters and
efects; RF also considers the signifcance of variables in
handling data. It is also rather easy to use and understand
due to the small number of parameters to optimize (count of
decision trees and independent variables per split) [154].
Random forest (RF) methods, particularly nonlinear vari-
ations, are highly efective in modeling parameters that lack
a linear correlation, making them suitable for a wide range of
applications in predictive microbiology and food safety. For
example, RF models have been successfully applied in
predicting heavy metal concentrations in Turbot muscle and
liver tissues with an accuracy of up to 70% [155].

In many cases, microbial interactions in food involve
numerous variables, posing challenges for specifying logistic
regression models with optimal biologically relevant forms
and interactions [156]. RF models ofer a solution by ef-
fectively handling complex interactions and large datasets,
such as those encountered in food spoilage studies. For
instance, Chen et al. [157] utilized RF models to predict
quality changes in Pacifc white shrimp across a temperature
range of −20°–4°C, showcasing their utility in food preser-
vation research. In this study, RF models and Arrhenius
models were compared to determine specifc markers of
Pacifc white shrimp quality. Te RF models were seen to
have lower error rates with values of 0.15%–1.24% (pH),

Robotics

Whole genome
sequencing and
metagenomics Predictive

Microbiology

Internet of
things

Time-
temperature

indicators

Artificial
intelligence

Figure 1: Integration of newer technologies into predictive
modeling. WGS and metagenomics help to understand the
abundance and diversity of microbial communities present in food
samples. Data generated by these tools are then analyzed by ar-
tifcial intelligence (AI) and machine learning (ML), leading to the
development of accurate, sophisticated algorithms that are being
utilised in the development of robots, time-temperature indicators,
and internet of things (IoTs) devices. Image sources: Arthur Shlain;
dDara TH; rukanicon ID; icon scout IN; WiStudio TH.
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0.21%–2.82% (thiobarbituric acid), 0.09%–2.51% (total
sulfhydryl content), 0.60%–11.84% (Ca2+-ATPase activity),
and 0.01%–4.76% (total viable counts). Te Arrhenius
models were shown to have error rates of 0.33%–2.07%,
0.49%–19.84%, 1.73%–23.28%, 2.49%–36.32%, and 11.90%–
37.94%, respectively.

Furthermore, RF models have been applied in predicting
meat spoilage by integrating metabolome data from various
analytical and imaging instruments, demonstrating their
versatility in handling diverse types of data [41]. Similarly,
Astuti et al. [158] utilized RF models trained on gas sensor
array data from fresh chicken meat and E. coli-contaminated
chicken meat to predict contamination and spoilage based
on shelf time, achieving remarkable precision rates of up to
99.25% and 98.42%, respectively.

3.2.2. Support vector Machines (SVMs). SVMs are highly
efective, fexible, holistic machine learning algorithms that
can perform linear or nonlinear regression and classifcation
tasks [159, 160]. Support vector regressions (SVRs) are an
important branch of SVM applied specifcally to regression
problems [161]. SVM algorithms are based on a “kernel
trick,” a technique that implicitly maps data inputs into
high-dimensional spaces and draws a “hyperplane” between
them. Basically, it draws a margin between difering data
classes. Using the kernel trick technique, the hyperplane is
drawn in a way that takes data points as close as possible to it
while also maximizing the distance between the margin and
the classes, hence minimizing the classifcation error
[162, 163]. Te hyperplane is a line (an interface) between
two datasets. SVMs can fnd the most suitable line de-
lineating the two datasets by using linear optimization [163].
Terefore, it can maximize the margin in the high-
dimensional space. Tey are good at handling outliers
and are most efcient with well-diferentiated data param-
eters.Tey are specially used for classifcation and regression
challenges. It is, however, limited by poor efectiveness in
handling large and noisy datasets [164, 165]. Despite this,
they have been successfully applied in various areas of food
safety, including risk assessment in dairy production and
prediction of contamination in food samples.

For example, Ma et al. [166] utilized SVMs for risk
assessment in dairy production, demonstrating the model’s
ability to process large datasets efciently. Bonah et al. [167]
employed SVM hyperparameter optimization in combina-
tion with data from an electric nose to develop a model
capable of predicting Salmonella typhimurium contamina-
tion in fresh pork samples. Similarly, Zhang et al. [42]
trained an SVM model on historical monitoring data to
assess and predict the risk during the transportation and
refrigeration of strawberries.

3.2.3. Artifcial neural Networks. Artifcial neural netwoks
employs machine learning techniques that simulate the neural
pathway of the brain. A basic neural network starts with an
input layer of neurons (representing input such as temperature
or water activity in a microbiological model), which activates
neurons in hidden layers, which then activates neurons in the

output layer (depicting predictions from nonlinear activation
functions in hidden layers). Each hidden layer contains a net-
work of multiple neurons (also known as nodes or units), the
basic unit of computation [168]. Te neurons are a logistic
regression unit that receives multiple numeric inputs (from
other nodes or an external source) and computes one numeric
output.Te neuron output is computed by a nonlinear function
called the activation function. If the weighted sum of the inputs
exceeds an internal threshold value within the neuron, the
output is activated; otherwise, it is inactivated.

Te multilayer model makes it very efcient with
nonlinear, complex, high-dimensional relationships be-
tween the input and output. However, ANNs require nu-
merical data; hence, they require a transformation of
categorical data before they can be used. Deep neural net-
works, which consist of multiple hidden layers, have been
used to model the growth limits of Bacillus spp. spores with
accuracy greater than 90% [137].

One advantage of ANNs is their parallel architecture,
which enables fast computation and evaluation of complex
biological processes in food processing operations. Tey
have been successfully applied in modeling diverse food
processes such as extraction, drying, fermentation, dairy
processing, and quality evaluation. For example, Sun et al.
[169] utilized ANNs to monitor the microwave vacuum
drying process of carrots, demonstrating their efectiveness
in food processing applications.

3.2.4. Gradient Boosting Regression Tree (GBRT). Models are
based on the ensemble learning scheme like the random
forest trees [170]. Tese algorithms work by creating mul-
tiple weak models that can be combined into one single
model with strong learning capabilities. Tey are diferent
from conventional boosting algorithms in that the new
predictor of GBRT fts the residuals of the previous pre-
dictor. GBRT algorithms are designed to reduce loss func-
tion by current learner by ensuring that loss function
reduces along with gradients direction; that way, fnal re-
siduals approach zero with continuous iteration, adding up
all the tree results to get the fnal prediction. Like random
forests, Gb are tree based; they process interactions efec-
tively, are robust to outliers, and can select variables
automatically.

In a study by Sheng et al. [171], GBRT models were
trained using multiwavelength data from multichannel in-
frared spectral sensors and broadband infrared (IR) sensors
to predict milk fat and protein content under diferent
conditions accurately. In addition, GBRTmodels have been
developed to predict outbreaks of foodborne diseases by
utilizing data from foodborne disease surveillance studies
[166].

3.2.5. Logit boost (LB) and Stochastic Gradient Boosting.
Tey are part of a boosting family of algorithms developed in
the 1990s [172]. Boosting algorithms function by aggregating
(boosting) several weak classifers (a weak classifer predicts
marginally better than random) into an ensemble with
improved accuracy [173]. A logit boost model was developed
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by Benefo et al. [174], making use of whole genome sequence
data to identify genes associated with Salmonella stress
response in poultry.

3.3. Applications of A.I in Predictive Modeling

3.3.1. Artifcial Intelligence in Modeling Climatic Factors and
Teir Efect on Microbial Ecology. Pang et al. [175] utilized
logistic regression (LR) and random forest (RF) to analyze the
association between weather-related factors and Listeria spp. in
a mixed produce and dairy farm. Climatic factors, including
temperature, precipitation, andwind speed, were considered for
analysis. In both LR and RF models, wind speed and pre-
cipitation were found to play a signifcant role in transmitting
Listeria spp. Tese experiments demonstrate that both models
have good predictive capabilities in analyzing the impact of risk
factors, such as weather, on microbial distribution.

Similarly, a random forest-based predictive model was
developed by Hwang et al. [176] to quantify the relationship
between climatic factors and the presence of Salmonella on
pastured poultry farms. According to their analysis, the soil
model identifed humidity as the most signifcant meteo-
rological variable associated with Salmonella prevalence. In
contrast, the feces model identifed high wind gust speed and
average temperature as the most signifcant. Te developed
models also showed high accuracy with ROC (area under the
curve) values of 0.884 for the soil model and 0.872 for the
feces model.

Xu et al. [177] also developed a random forest predictive
model that evaluated farm practices and processing variables
to identify factors that can reduce the prevalence of Cam-
pylobacter, Salmonella, and Listeria on pastured poultry
farms. In the study, the efect of farm practices on the E. coli
population was used to predict the presence of other
foodborne pathogens within pastured poultry farm envi-
ronment. From the results, the probabilities of identifying
Campylobacter in poultry feces and fecal samples at a very
low concentration of E. coli were 88% and 98%.

3.3.2. Machine Learning Development of Devices for Quality
Control. Direct measurement of a product’s biochemical
quality is cost-inefective and tedious. As an alternative,
time-temperature integration (TTI) has been developed to
evaluate food quality by integrating product temperature
assessment over time. TTIs are portable devices attached to
food products; they assess biochemical interactions in food
and then indicate the remaining shelf life. TTIs assess food
products for breach of temperature threshold and impact on
food quality [178]. Tese tools are being automated to send
warning signs of deterioration indicative of failing storage to
food operators.

Currently, AI is integrated into the Internet of Tings
(IoT) and time-temperature indicators to improve the
characterization and detection of cold chain breaches. It
assists in defning signifcant temperature variations, opti-
mizing the placement of sensors (to accurately monitor the
load in refrigeration equipment), and developing methods
for detecting and characterizing temperature fuctuations.

However, it is crucial to establish well-defned alert
thresholds to ensure optimal food safety and minimize
wastage. Alerts must strike a balance between being strin-
gent enough to prevent food spoilage and lenient enough to
avoid unnecessary disposal of safe food. Achieving this
balance requires careful consideration of various factors,
including the specifc characteristics of the food product,
potential health risks associated with spoilage, and logistical
costs associated with food waste management [179].

do Nascimento Nunes et al. [180] applied neural net-
works to predict the temperature of berries in a pallet after
training them with ambient temperature data. Subsequently,
Badia-Melis. [147] extended this approach to assess fruit
temperature dynamics during refrigeration failure using
data from cold chain breaks in freezing systems. Tese two
studies demonstrated the efectiveness of artifcial neural
networks in evaluating the cold chain (in comparison with
Kriging algorithms and capacitive heat transfer methods).
Tey also highlighted the efect of sensor number and po-
sitioning on results. Results from these studies compared
favorably with results from thermal imaging and were also
shown to be more efective than methods such as Kriging or
capacitive heat transfer.

Other technologies are also being integrated into ML in
food quality control. In a case study by Dourou et al. [146],
machine learning was combined with Fourier-transform
infrared spectroscopy (FTIR) in real-time monitoring of
food microbiota during changing storage conditions. Te
ability of foodborne pathogens (Salmonella in this case) to
thrive and proliferate during prolonged refrigeration was
demonstrated.

3.3.3. Machine Learning in Predictive Modeling of Individual
Cell Heterogeneity. A study by Lin et al. [114] compared the
efectiveness of fourMLmodels (ANN, RF, GBRT, and SVR)
in predicting the single-cell lag time of Salmonella Enteritidis
after heat and chlorine treatment. Te machine learning
models were trained with a dataset comprising the following
selected variables: population lag times (λ), maximum
specifc growth rate (μmax), turbidity detection time (Td),
sublethal injury rate, and log reduction. It was demonstrated
from the study that emerging machine learning models have
the potential to predict the single lag time of foodborne
pathogens by directly learning from data without assuming
underlying mechanisms. Te study also demonstrated the
importance of population lag time and sublethal injury rate
as vital parameters in the single-cell lag time analysis. In-
creasing population lag time could be positively correlated
with a high value of single-cell lag times. Te results also
provide a framework for food operators to understand the
risk from single cells of foodborne pathogens as well as the
growth characteristic of S. Enteritidis single cells after dis-
infection treatment [114].

Increases in the mean and variance of single-cell lag time
and the population lag time of treated cells showed the efect
of external stress on individual cell heterogeneity. Generally,
external stress (in this case, from disinfection and heat
treatments) is known to play a signifcant role in increasing
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individual cell heterogeneity [115]. A comparison of the four
models was also made, with ANN shown to have the most
accurate prediction of the four models, followed closely by
RF. In this study, GBRT and SVR had suboptimal pre-
dictions. SVR’s unsuitability to handle noise may be re-
sponsible for its underperformance [181, 182].

3.3.4. Machine Learning in Predicting Clinical Outcomes
from Foodborne Hazards. Machine learning analysis of data
from whole genome sequencing of foodborne bacteria
pathogens and epidemiological data are being used to
characterize food safety risks and predict clinical outcomes.
In a study by Njage et al. [131], whole genome sequencing of
foodborne Shiga toxigenic Escherichia coli was combined
with four machine learning models, namely, random forests,
support vector machines, and logit boost in hazard char-
acterization and prediction of clinical outcomes from in-
fection. Teir results indicated the signifcance of genotypic
data from WGS in determining clinical outcomes by ana-
lyzing certain predictor proteins. Genetic predictors of
riskier clinical outcomes were shown to include proteins
involved in bacterial attachment, genomic islands, sex-pili
formation, and protein acetylation. Furthermore, the asso-
ciation between clinical outcome and strain characteristics
such as MLST type, lineage-specifc polymorphism assay
(LSPA), stx-subtype, and sublineage type, and demographic
factors such as age and travel were analyzed by ML models.
Clinical outcomes were divided into categories ranging from
diarrhea, bloody diarrhea, hospitalization, and hemolytic
uremic syndrome (HUS).

ML models were trained with a rich dataset comprising
sequences from MLST, specifc polymorphisms (LSPA-6),
and other strain characteristics obtained from STEC
outbreaks.

Te logit boost model was found to be the best-
performing model after comparing its accuracy and simi-
larity with other models.

Te application of machine learning helps to overcome
the challenge posed by high-dimensional data analysis,
which is often required in predicting phenotypic clinical
outcomes from microbial genotypes while also considering
the intricate interactions between genetic factors that defne
disease outcomes.

3.3.5. Artifcial Intelligence in Pathogen Detection and
Growth. Machine learning algorithms have been success-
fully applied in the detection of pathogens (Table 2). A study
by Amado et al. [183] employed a collection of ML algo-
rithms, including random forest, support vector regression,
KNN, NBC, and artifcial neural networks, to detect the
presence of Escherichia coli and Staphylococcus aureus in
beef. Data obtained from emitted gases in meat were used as
the input dataset. Results from this study indicated the
random forest model to be the most accurate in predicting

bacterial contamination. Another study by Tanui et al. [145]
utilized the random forest algorithm, the support vector
machine, the stochastic gradient boosting algorithm, and the
logistic boost algorithm in predicting food sources of lis-
teriosis. Te study made use of multi-locus sequence typing
(MLST) data of Listeria monocytogenes isolates from dairy,
fruits and vegetables, meat, poultry, and seafood [145].
Results linked the bulk of infections (32.5%) to fruits, fol-
lowed by 18.8% in vegetables. Tis study further highlights
the use of genomic data combined with machine learning
based on foodborne-disease tracking. Table 2 shows how
various machine learning algorithms have been applied in
diferent felds to predict the risk of highly pathogenic
organisms.

3.4. Impact of Climate Change on Predictive Microbiology.
Climate change generally plays a key role in the burden of
foodborne pathogens. At several points along the food chain,
changes in weather patterns globally have a signifcant in-
fuence on the emergence of food safety hazards [184]. El-
evated water temperatures caused by global warming have
been linked with increased expression of virulence genes and
faster die of in waterborne bacteria such as pathogenic
Vibrio spp. [185]. Increased antimicrobial resistance has also
been positively correlated with increased local temperature
[186]. Globally, changes in microbial ecology due to climate
change have been associated with changes in the epidemi-
ology of foodborne infections. A study by Bandyopadhyay
et al. [187] showed the association between an increased
incidence of diarrhoea and increased temperature in sub-
Saharan Africa. Specifcally, studies in Ethiopia have dem-
onstrated an increased incidence of diarrhea during the
hotter periods of the year [188].

Te impact of climate change on changing microbial
ecology is readily seen in the dairy industry, where fuctu-
ations in weather patterns are readily associated with
changes in microbial ecology. Te direct impact of global
warming on weather parameters such as temperature and
relative humidity plays a major role in increasing the bio-
diversity of pathogenic microbes in raw milk [189, 190].
Furthermore, warm weather and associated heat stress in
milking cows predispose to mastitis and, consequently,
higher somatic cell counts and altered physicochemical
properties [191]. It is imperative, therefore, that predictive
models be developed with consideration of the impact of
climatic conditions, seasonal fuctuations in climatic vari-
ables, and global warming generally.

A few studies have been carried out on developing
predictive models which factor in the impact of climate
change. Predictive models that incorporate time-series
analysis together with epidemiological data have been
used to forecast the signifcance of environmental temper-
ature in risk assessment of salmonellosis, campylobacteriosis
and listeriosis in Belgium [192]. El-Fadel et al. [193] dem-
onstrated the application of climatic forecasts in building
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Poisson regression models that can measure the correlation
between climatic factors and the incidence of morbidities
due to water- and foodborne pathogens.

4. Conclusion

Te review discussed how predictive models are widely used in
food microbiology to deduce the growth of microorganisms in
food products although these models have some limitations in
modeling complex microbial interactions in food dominated
by diferent bacteria populations. Te integration of new
technologies such as whole genome sequencing (WGS),
metagenomics, artifcial intelligence, andmachine learning and
the use of devices based on robotics, the Internet ofTings, and
time-temperature indicators have, however, been improving
the efciency and accuracy of these models. Te integration of
machine learning models, in particular, has been greatly
benefcial in developing more advanced models. Hence, con-
tinued research and development of these technologies are
essential for improving food safety and reducing the risk of
microbial contamination in food products [194, 195].
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[93] S. C. González, A. Possas, E. Carrasco et al., “MicroHibro: A
software tool for predictive microbiology and microbial risk
assessment in foods,” International Journal of Food Micro-
biology, vol. 290, pp. 226–236, 2019.

[94] F. Tenenhaus-Aziza and M. Ellouze, “Software for predictive
microbiology and risk assessment: a description and com-
parison of tools presented at the ICPMF8 Software Fair,”
Food Microbiology, vol. 45, pp. 290–299, 2015.

[95] M. H. Cassin, A. M. Lammerding, E. C. Todd, W. Ross, and
R. S. McColl, “Quantitative risk assessment for Escherichia
coli O157: H7 in ground beef hamburgers,” International
Journal of Food Microbiology, vol. 41, no. 1, pp. 21–44, 1998.

[96] P. Dalgaard and H. Henrik Huss, “Mathematical modeling
used for evaluation and prediction of microbial fsh spoil-
age,” in Seafood Safety, Processing, and Biotechnology,
pp. 73–89, CRC Press, Boca Raton, FL, USA, 2020.

[97] M. Mataragas, V. Dimitriou, P. N. Skandamis, and
E. H. Drosinos, “Quantifying the spoilage and shelf-life of
yoghurt with fruits,” Food Microbiology, vol. 28, no. 3,
pp. 611–616, 2011.

[98] S. Limbo, L. Torri, N. Sinelli, L. Franzetti, and E. Casiraghi,
“Evaluation and predictive modeling of shelf life of minced
beef stored in high-oxygen modifed atmosphere packaging
at diferent temperatures,” Meat Science, vol. 84, no. 1,
pp. 129–136, 2010.

[99] P. Rasane, A. Jha, and N. Sharma, “Predictive modeling for
shelf-life determination of nutricereal-based fermented baby
food,” Journal of Food Science and Technology, vol. 52,
pp. 5003–5011, 2015.

[100] S. Bruckner, A. Albrecht, B. Petersen, and J. Kreyenschmidt,
“A predictive shelf life model as a tool for the improvement
of quality management in pork and poultry chains,” Food
Control, vol. 29, no. 2, pp. 451–460, 2013.

[101] J. Kreyenschmidt, A. Hübner, E. Beierle, L. Chonsch,
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