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Decoding children dental health 
risks: a machine learning 
approach to identifying key 
influencing factors
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Introduction and objectives: This study investigates key factors influencing 
dental caries risk in children aged 7 and under using machine learning techniques. 
By addressing dental caries’ prevalence, it aims to enhance early identification 
and preventative strategies for high-risk individuals.

Methods: Data from clinical examinations of 356 children were analyzed using 
Logistic Regression, Decision Trees, and Random Forests models. These models 
assessed the influence of dietary habits, fluoride exposure, and socio-economic 
status on caries risk, emphasizing accuracy, precision, recall, F1 score, and AUC 
metrics.

Results: Poor oral hygiene, high sugary diet, and low fluoride exposure 
were identified as significant caries risk factors. The Random Forest model 
demonstrated superior performance, illustrating the potential of machine 
learning in complex health data analysis. Our SHAP analysis identified poor oral 
hygiene, high sugary diet, and low fluoride exposure as significant caries risk 
factors.

Conclusion: Machine learning effectively identifies and quantifies dental caries 
risk factors in children. This approach supports targeted interventions and 
preventive measures, improving pediatric dental health outcomes.

Clinical significance: By leveraging machine learning to pinpoint crucial caries 
risk factors, this research lays the groundwork for data-driven preventive 
strategies, potentially reducing caries prevalence and promoting better dental 
health in children.

KEYWORDS

pediatric dentistry, machine learning, risk assessment, predictive analytics, oral 
hygiene, epidemiology of caries, data-driven healthcare

Introduction

The importance of dental health, particularly in children, cannot be overstated. It is a 
critical aspect of overall health and well-being, influencing not just the condition of the mouth 
but also impacting general health, nutrition, and quality of life (Edem, 2018; Sadegh-Zadeh 
et al., 2022). Dental health issues, particularly dental caries, remain one of the most common 
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chronic diseases of childhood, recognized globally as a significant 
public health challenge (World Health Organization, 2013). Despite 
advancements in dental care and awareness, the prevalence of dental 
caries in children, especially those aged 7 and under, continues to be a 
matter of concern (Cascaes et al., 2023; Ashtiani et al., 2024). Dental 
caries is a complex, multifactorial disease characterized by the 
destruction of dental hard tissues. It results from an interplay of 
factors including host resistance, microbial flora, diet, and 
environmental influences (Featherstone, 2000). In children, this 
condition not only causes pain and discomfort but can also lead to 
serious infections, affecting eating and speaking abilities, and 
contributing to days lost from school (U.S. Public Health Service, 
Office of the Surgeon General, National Institute of Dental and 
Craniofacial Research (US), 2000). Moreover, early childhood caries 
can set a trajectory for poor oral health extending into adulthood (Dye 
et al., 2015).

In recent years, there has been a growing emphasis on the early 
identification of children at high risk for dental caries. Early 
identification enables timely intervention, potentially mitigating the 
severity of the condition and improving long-term oral health 
outcomes (Fontana and Zero, 2006; Algarni et al., 2024). This research 
paper aims to contribute to this domain by leveraging the power of 
machine learning. Machine learning offers a novel approach to analyze 
complex datasets, uncover patterns, and predict outcomes (Sadegh-
Zadeh et  al., 2022, 2023). By applying these advanced analytical 
techniques, this study seeks to identify key factors that significantly 
influence the risk of dental caries in children, paving the way for more 
targeted and effective preventive measures.

The integration of ML in healthcare, particularly in dental health 
analysis, represents a paradigm shift in how medical data are processed 
and interpreted. In the realm of dental health, machine learning 
emerges as a pivotal tool, offering unparalleled opportunities in 
understanding, diagnosing, and predicting oral health conditions 
(Sadegh Zadeh and Kambhampati, 2017; Sadegh-Zadeh et al., 2023; 
Younis et al., 2024). This research paper emphasizes the revolutionary 
role of ML in dental health, specifically in analyzing the risks 
associated with dental caries in children. Machine learning’s capability 
to process vast and complex datasets surpasses traditional statistical 
methods, enabling the identification of intricate patterns and 
relationships that may not be apparent otherwise. Key results from our 
study revealed that poor oral hygiene, high sugary diet, and low 
fluoride exposure are significant predictors of dental caries in children. 
Notably, the Random Forest model demonstrated superior 
performance in accurately identifying high-risk individuals, 
showcasing the potential of machine learning to revolutionize 
pediatric dental health strategies. In pediatric dentistry, where factors 
influencing dental caries are multifaceted and interwoven, ML’s 
predictive analytics can be particularly insightful (Khanagar et al., 
2021). It can dissect numerous variables ranging from genetic 
predispositions, dietary habits, oral hygiene practices, and socio-
economic factors, to environmental influences, providing a holistic 
view of caries risk factors (Rekow, 2020).

Furthermore, ML algorithms can personalize risk assessments, 
tailoring them to individual profiles. This personalization is crucial in 
pediatric dental health, where preventive strategies can be significantly 
more effective if customized according to a child’s specific risk factors 
(Wei et  al., 2023). Moreover, ML can aid in early detection and 
intervention strategies, potentially reducing the incidence and severity 

of dental caries in children (Lee et  al., 2018). The application of 
machine learning in dental health not only furthers clinical 
understanding but also enhances decision-making processes. By 
providing data-driven insights, ML empowers healthcare professionals 
to make more informed, accurate, and timely decisions, ultimately 
enhancing patient care and outcomes (Vishwanathaiah et al., 2023). 
In essence, the utilization of machine learning in dental health 
research, as explored in this study, underscores a commitment to 
advancing healthcare through technological innovation. It represents 
a significant stride toward harnessing the power of data science to 
unravel the complexities of dental caries in children, aiming to 
improve both preventive and therapeutic dental healthcare strategies 
(Sadegh-Zadeh et al., 2019; Mahdi et al., 2023).

The core focus of this research paper is anchored in a precise study 
question: “What are the key influencing factors for dental caries risk 
in children aged 7 and under, and how can machine learning effectively 
identify and quantify these factors?” Leveraging a substantial sample 
size of 356 children, this study benefits from heightened statistical 
power and improved potential for generalizability, allowing for robust 
conclusions regarding dental caries risk factors. This comprehensive 
dataset enhances the reliability of our findings and their applicability 
to broader pediatric populations. This question encapsulates the 
purpose of the study, which is to employ advanced machine-learning 
techniques to unravel and quantify the myriad of factors that 
contribute to the risk of dental caries in young children. The pursuit of 
this question is driven by the need to address a critical gap in pediatric 
dental health – the early identification of children at high risk for 
dental caries and the understanding of the multifactorial nature of this 
risk. Traditional approaches to identifying caries risk factors often 
involve simplistic, linear analyses that may not capture the complex 
interactions between various risk determinants (Wu et  al., 2021). 
Machine learning, with its ability to handle large datasets and uncover 
complex, non-linear relationships, offers a more nuanced and 
comprehensive approach to understanding these risk factors (Sadegh-
Zadeh, 2019). The study aims not just to identify the most significant 
predictors of dental caries in children but also to quantify the extent 
of their influence. This understanding is pivotal in developing targeted 
preventive strategies, personalized interventions, and informed 
policymaking in pediatric dental healthcare. The clear articulation of 
the clinical significance of our research findings underscores their 
practical implications. By identifying key risk factors and leveraging 
machine learning for early detection, this study highlights the potential 
to inform targeted interventions and preventive measures aimed at 
significantly improving pediatric dental health outcomes. By 
answering this study question, the research endeavors to contribute a 
significant advancement in the early detection and management of 
dental caries risk, ultimately aiming to improve the dental health 
outcomes of children globally.

Materials and methods

Data collection

The cornerstone of this research involves the meticulous collection 
of pertinent data, sourced exclusively from a private clinic. Prior to 
data collection, explicit consent was obtained from the parent or 
caregiver of each of the 356 pediatric patients, all of whom were aged 
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7 years and under. The data was meticulously gathered through 
comprehensive clinical examinations carried out by seasoned dental 
specialists. The primary data source comprised detailed dental 
records, encompassing clinical evaluations of dental health with a 
particular emphasis on the presence or absence of dental caries. 
Supplementary information was obtained through patient interviews 
and structured questionnaires, administered with full parental or 
guardian consent, which covered aspects such as the children’s dietary 
habits, oral hygiene practices, and family dental history. Additionally, 
insights from healthcare providers, including their notes on patients’ 
overall oral health and hygiene, were seamlessly integrated into the 
dataset to facilitate a comprehensive analysis. The dataset is an 
amalgamation of various types of data, which include:

 1 Patient Records: Demographic information (age, gender), 
medical and dental history, clinical findings from oral 
examinations, and treatment records.

 2 Lifestyle Factors: Dietary habits, particularly sugar consumption, 
fluoride usage, oral hygiene practices (frequency of brushing, 
use of dental care products), and access to dental care services.

 3 Socioeconomic Data: Information regarding the socioeconomic 
background of the children’s families, which may influence 
health outcomes.

 4 Environmental Factors: Data pertaining to environmental 
conditions that could affect dental health, such as water 
fluoridation in the community.

Dataset description

The dataset consists of 21 columns, each representing a different 
attribute. Key columns include ‘Patient Id,’ ‘Fluoride exposure,’ ‘Sugary 
Foods/Drinks consumption,’ ‘Regular dental visits,’ ‘Special needs,’ 
‘Chemo/Radio therapy,’ ‘Eating disorders,’ ‘Medications reducing 
salivary flow,’ ‘Cavitated/Non-Cavitated teeth,’ ‘Carious lesion (Visual/
Radiographically),’ ‘Gingival Bleeding,’ ‘Plaque Index,’ ‘Sealants 
present,’ ‘Proximal Restorations,’ ‘Dental/Orthodontic appliances,’ 
‘Parents’/Carers’ education level,’ ‘Parents’/Carers’ monthly income,’ 
‘Classified Dental Risk,’ ‘Previous Dental Procedures,’ ‘Oral Hygiene 
Practices,’ and ‘Age.’ Each row in the dataset represents a unique 
patient, with the attributes mostly captured as binary (Yes = 1, No = 0) 
or categorical values (e.g., income and education levels), and some 
numerical values (e.g., age, cavitated/non-cavitated teeth count).

This comprehensive dataset was then subjected to machine 
learning analysis, with the aim of identifying and quantifying the key 
factors influencing the risk of dental caries in the pediatric population 
under study. The diversity and depth of the dataset were instrumental 
in enabling a nuanced analysis of the multiple factors contributing to 
dental health risks in children.

Data preprocessing

The data preprocessing stage is critical in preparing the dataset for 
effective machine learning analysis. This process involved several steps 
to ensure the data quality and relevance for the study.

Cleaning Methods:

 1 Handling Missing Data: Initial analysis of the dataset revealed 
missing values in various features. We  addressed this by 
imputing missing values using the median for continuous 
variables and the mode for categorical variables, ensuring 
minimal bias in the dataset.

 2 Outlier Detection and Treatment: Outliers can significantly 
skew results. We  identified outliers using the Interquartile 
Range (IQR) method, particularly in continuous variables like 
age and dietary factors. Outliers were treated either by removal 
or transformation, depending on their impact on the 
overall dataset.

 3 Error Resolution: Discrepancies and inconsistencies in the 
data, such as implausible values or misclassifications, were 
rectified based on clinical expertise and consultation with 
dental specialists.

Feature Engineering Techniques:

 1 Variable Transformation: Certain variables, like frequency of 
dental visits, were transformed into binary or categorical forms 
to better capture their impact on dental health risks.

 2 Creation of New Features: We synthesized new features from 
existing data to enhance the model’s predictive capability. For 
instance, a composite hygiene score was created based on 
factors like brushing frequency and use of fluoride toothpaste.

 3 Dimensionality Reduction: To tackle the issue of high 
dimensionality, we  applied techniques like Principal 
Component Analysis (PCA) where appropriate. This was 
particularly useful in condensing information from variables 
with many categories or levels.

 4 Normalization and Scaling: Continuous variables were 
normalized to ensure uniformity in scale, which is crucial for 
certain machine learning algorithms to function optimally.

These preprocessing steps were vital in refining the dataset, paving 
the way for a more accurate and reliable machine-learning analysis. 
They contributed significantly to the integrity and robustness of the 
subsequent stages of the study.

Exploratory data analysis (EDA)

In the study EDA was a crucial initial phase, setting the stage for 
in-depth machine learning analysis. EDA began with computing 
descriptive statistics to grasp the basic characteristics of the data, 
including central tendencies and variabilities. Distribution analysis 
of continuous variables, such as age and dietary factors, was 
conducted using histograms and box plots, providing insights into 
data spread and skewness. To understand inter-variable 
relationships, correlation matrices were generated, crucial for 
pinpointing potential predictors for dental caries. EDA also involved 
identifying patterns and anomalies, which included examining 
trends and outliers. A variety of visual tools like scatter plots, heat 
maps, and bar charts were employed to offer a visual comprehension 
of these statistical analyses. The tools and software used in this 
phase were pivotal in streamlining the process and enhancing the 
accuracy of our findings. Python, with its extensive libraries such as 
Pandas, NumPy, Matplotlib, and Seaborn, served as the primary 
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tool for data manipulation, numerical calculations, and 
visualization. Advanced analytics and machine learning tasks were 
handled using the scikit-learn platform. This comprehensive 
approach in the EDA phase ensured a robust foundation for the 
subsequent application of machine learning algorithms, guiding the 
study toward meaningful insights into the factors influencing dental 
health risks in children.

Feature selection

In the research the feature selection process was critical to ensure 
the effectiveness and accuracy of the machine learning models. The 
criteria for feature selection were based on both statistical significance 
and clinical relevance. The goal was to include variables that not only 
showed a strong statistical association with the risk of dental caries but 
also held significant clinical value in understanding and predicting 
dental health risks in children. This dual-focus approach was crucial 
to maintain the balance between a data-driven model and practical 
clinical applicability.

Several methods were employed for feature selection to achieve 
this balance. Firstly, correlation analysis was conducted to identify 
features that were strongly correlated with the outcome variable 
(caries risk). Features with very low correlation were initially 
considered for exclusion, as they were less likely to contribute 
meaningful information to the model. However, clinical relevance was 
also taken into account, ensuring that important health indicators 
were not overlooked merely based on their statistical correlations. 
Furthermore, we  utilized more sophisticated techniques such as 
Recursive Feature Elimination (RFE) and feature importance scores 
from preliminary machine learning models like Random Forest and 
Decision Trees. These methods provided a data-driven approach to 
rank the features based on their contribution to model accuracy. The 
RFE method, in particular, was useful in iteratively refining the feature 
set to identify the most impactful variables. Lastly, to ensure 
robustness, the selected features were evaluated for multicollinearity 
to prevent redundancy and overfitting in the models. This 
comprehensive feature selection process played a pivotal role in 
enhancing the predictive power of the machine learning algorithms, 
ensuring that they were equipped with the most relevant and 
significant variables to decode the dental health risks in 
children effectively.

Model building

The model building phase was pivotal in extracting meaningful 
insights from the dataset. Given the complexity and multifactorial 
nature of dental caries in children, a range of machine learning 
algorithms were selected to ensure a comprehensive analysis. The 
choice of algorithms included Logistic Regression, for its 
interpretability in medical research; Decision Trees and Random 
Forests, for their ability to handle nonlinear relationships; and 
Gradient Boosting Machines (GBM) and XGBoost (Extreme Gradient 
Boosting), known for their high performance in classification tasks. 
Each of these algorithms has unique strengths in pattern recognition 
and predictive modeling, making them well-suited for analyzing the 
intricate factors influencing dental health risks.

The training process involved several key steps to ensure the 
effectiveness of the models. Initially, the dataset was divided into a 
training set and a test set, following the standard practice of maintaining 
a separation between data used for model learning and data used for 
evaluation. The training set was used to fit each model, enabling the 
algorithms to ‘learn’ from the data. During this phase, hyperparameter 
tuning was performed using techniques like Grid Search to find the 
optimal settings for each model. This step was crucial to enhance model 
performance and prevent issues like overfitting or underfitting. To 
ensure the models were robust and generalizable, they were validated 
using a subset of the data not used in training, allowing us to assess their 
performance and predictive capabilities accurately. The combination of 
diverse algorithms and a meticulous training process was instrumental 
in developing reliable models capable of identifying and quantifying the 
key factors associated with the risk of dental caries in young children.

Model evaluation

The evaluation of machine learning models in the study was 
meticulously conducted using a comprehensive suite of metrics. 
Accuracy was used to gauge the overall correctness of the models, while 
precision assessed the correctness of positive predictions, crucial in the 
clinical context of identifying high dental risk cases. Recall, or sensitivity, 
measured the model’s ability to capture all actual high-risk cases, a 
critical factor in healthcare applications to avoid missed diagnoses. The 
F1 score, a harmonic mean of precision and recall, served as a balanced 
metric for assessing the models’ overall performance, especially 
important in scenarios demanding a trade-off between false positives 
and false negatives (Sadegh-Zadeh et al., 2023). These metrics provided 
a multi-dimensional perspective on model performance, highlighting 
their strengths and weaknesses in various aspects of prediction.

Explainable model analysis using SHAP

To enhance the interpretability of our machine learning models, 
we employed SHAP (SHapley Additive exPlanations) analysis. SHAP 
values provide a unified measure of feature importance, allowing us to 
understand the contribution of each feature to the model’s predictions. 
The SHAP analysis was conducted for the Random Forest model, which 
demonstrated superior performance in our preliminary evaluations. 
We computed SHAP values for the entire dataset to identify the global 
importance of features and generated visualizations, including summary 
plots and dependence plots, to illustrate these impacts. Additionally, 
force plots were created for individual predictions to demonstrate how 
specific features influenced the model’s output for particular instances.

Results

Overview of findings

The research study yielded significant findings that contribute to 
the understanding of dental health risks in children aged 7 and under. 
The machine learning models developed and tested in this study were 
successful in identifying and quantifying several key factors that 
influence the risk of dental caries in this demographic. One of the 
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primary findings was the identification of strong predictors for dental 
caries risk. These included poor oral hygiene practices, frequent 
consumption of sugary foods and drinks, limited fluoride exposure, 
and certain socio-economic factors. The models effectively quantified 
the extent of influence these factors had on the likelihood of 
developing dental caries. For instance, children with poor oral hygiene 
and high sugar intake were found to be at a significantly higher risk. 
Similarly, factors like regular dental visits and proper fluoride usage 
were inversely related to caries risk, highlighting their protective role.

The performance of the machine learning models was noteworthy. 
The Random Forest model, in particular, demonstrated exceptional 
accuracy and precision, making it a valuable tool for predicting dental 
health risks. The models’ ability to process complex datasets and 
identify nuanced relationships between various risk factors was a 
testament to the power of machine learning in healthcare research. 
These results provide a data-driven foundation for developing targeted 
dental health interventions and preventive strategies. They also offer 
valuable insights for healthcare providers, enabling them to identify 
high-risk patients more accurately and tailor their recommendations 
more effectively. Overall, the study’s findings represent a significant 
step forward in pediatric dental health research, offering promising 
avenues for improving dental health outcomes in children.

Data visualization

Figure  1 presents a histogram overlaid with a line graph, 
illustrating the distribution of age in our study dataset. The x-axis 
denotes age, which ranges from 2 to 7 years, and the y-axis represents 
the count of individuals for each age. The histogram displays varying 

frequencies, with the highest count at age 2, a reduction at age 3, a 
slight increase at age 4, a decrease again at age 5, followed by a 
progressive increase at age 6 and the second highest count at age 7. The 
line graph, which seems to trace the mean or median, dips after age 2, 
rises slightly at age 4, dips again at age 5, and gradually ascends 
through ages 6 and 7. This suggests a bimodal distribution with peaks 
at the ages of 2 and 7, indicating that these ages have higher 
representations in this population.

Figure 2 depicts a correlation matrix heatmap, which is a graphical 
representation of the correlation coefficients between a set of variables. 
Each cell in the heatmap shows the correlation coefficient between two 
variables, ranging from −1 to 1, with −1 indicating a perfect negative 
correlation, 0 indicating no correlation, and 1 indicating a perfect 
positive correlation. The colors vary from blue to red, with blue 
signifying negative correlation and red signifying positive correlation. 
Notably, the variable ‘Class (High Risk = 2, Moderate Risk = 1, Low 
risk = 0)’ shows strong positive correlations with factors like ‘Visible 
Plaque’ and ‘Previous Dental Procedures,’ suggesting these are 
significant in assessing the risk of dental caries. Conversely, there is a 
notable negative correlation with ‘Regular dental visits,’ indicating that 
regular visits to the dentist may be  associated with a lower risk 
classification. The heatmap provides a comprehensive overview, 
allowing for quick identification of relationships between variables, 
which can be pivotal for further analysis and decision-making.

In this study, K-Means Clustering was employed to discover 
natural groupings within the dataset, which comprised a multitude of 
variables related to dental health in children. The rationale for using 
this unsupervised learning technique was to unveil inherent, possibly 
hidden, subgroups based on similarities across the dataset that might 
not be immediately obvious. Such subgroups could represent distinct 

FIGURE 1

Histogram and trend line showing the bimodal age distribution in the study.
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patterns of risk factors, behavior, or demographic characteristics that 
contribute to dental health outcomes. By identifying these clusters, the 
study aimed to enhance the understanding of the diverse and complex 
nature of dental health risk profiles, enabling more personalized and 
targeted preventive measures. The clustering could potentially reveal 
specific risk profiles that are more prone to dental caries, providing a 
nuanced approach to risk assessment beyond traditional 
broad categories.

The Elbow Method is a heuristic used in determining the optimal 
number of clusters in a dataset for K-Means clustering. The method 
involves plotting the Within-Cluster Sum of Squares (WCSS) against 
the number of clusters and looking for the ‘elbow point,’ where the rate 
of decrease in WCSS sharply changes, indicating that adding more 
clusters does not significantly improve the fit of the model. Figure 3 
shows a clear elbow at 3 clusters, where the WCSS curve starts to 
flatten, suggesting that increasing the number of clusters beyond this 

point will not yield substantially better modeling of the data. Choosing 
3 clusters is therefore optimal as it represents a point of diminishing 
returns where the benefit of additional clusters is outweighed by the 
simplicity of the model. This approach balances complexity with 
interpretability, ensuring that the clusters are meaningful and not just 
a product of overfitting the model to the data.

Table 1 summarizes the average values of various dental health-
related factors for three distinct clusters identified using K-Means 
clustering, following the Elbow Method which determined three as the 
optimal number of clusters. Cluster 0 is characterized by high fluoride 
exposure, regular dental visits, and a lower prevalence of cavitated or 
non-cavitated lesions, suggesting a group with good preventive dental 
practices and lower caries risk. Cluster 2, while similar to Cluster 0 in 
terms of dental visits, lacks fluoride exposure and has a moderate 
occurrence of cavitated lesions and carious lesions, indicating a potential 
area for improved dental care interventions. Cluster 1 stands out with 

FIGURE 2

Correlation matrix heatmap of dental health risk factors in children – the heatmap visualizes the correlation between various dental health-related 
variables, highlighting the key factors that may influence the risk of dental caries in children.
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the highest consumption of sugary foods/drinks, absence of regular 
dental visits, the highest rates of cavitated and carious lesions, and teeth 
extractions due to caries in the last 36 months, as well as the highest 
mean class risk and the most previous dental procedures, suggesting this 
group is at the highest risk for dental health issues. The parents’ 
education and monthly income are also lowest in Cluster 1, which might 
indicate a socioeconomic component to the risk. Overall, the clustering 
effectively segments the population into low, moderate, and high dental 
health risk profiles based on observable characteristics and behaviors.

Figure 4 showcases the result of applying Principal Component 
Analysis (PCA) for the purpose of dimensionality reduction in the 
visualization of clusters derived from K-Means clustering. PCA 
reduces the complexity of the data by transforming the original 
variables into a new set of variables, the principal components, which 
are uncorrelated and ordered by the amount of variance they capture 
from the data. In the plot, each dot represents a patient’s data, color-
coded by the cluster (0, 1, or 2) it belongs to, plotted along the first two 
principal components which encapsulate the most significant variance 
within the dataset. The necessity of such a visualization lies in its 
ability to simplify multidimensional data into a 2D space, making it 
possible to observe the natural groupings and separations between 
different clusters. From the visual, it can be inferred that Cluster 0 
(red) and Cluster 2 (green) are more distinct from each other, while 
Cluster 1 (blue) is more spread out, indicating variability within the 
cluster and possible overlap with the other clusters, which could 
signify more nuanced relationships within those data points.

Table 2 presents p-values from a series of Chi-Square tests conducted 
to assess the independence of various categorical variables in relation to 
the risk of dental caries in children. The extremely low p-values for 
factors such as ‘Cavitated/Non-Cavitated’ and ‘Carious lesion (Visual/
Radiographically)’ (both at 5.99e-71) indicate a very strong association 
with the presence of caries, rejecting the null hypothesis of independence. 

Similarly, ‘Regular dental visits,’ ‘Oral Hygiene Practices,’ and ‘Sugary 
Foods_Drinks’ show highly significant p-values, suggesting these factors 
are also closely linked to caries outcomes. Even socioeconomic 
indicators like parents’ income and education levels show significant 
associations, pointing to broader determinants of dental health. The 
variable ‘Age’ shows a p-value just below the standard threshold of 0.05, 
suggesting a weaker, yet statistically significant, association. Conversely, 
‘Special needs’ yields a p-value (0.058) just above the threshold, implying 
that the evidence for its association with dental caries risk is not as 
strong as for the other variables. The necessity of performing these 
Chi-Square tests lies in their ability to validate or refute potential 
dependencies between these risk factors and dental caries outcomes, 
which is critical for understanding the dynamics of dental health in this 
population and for informing targeted preventive strategies.

Interpretation of model outputs

Table  3 reflects the performance metrics of various machine 
learning algorithms used to predict dental health risks in children. The 
metrics include Accuracy, Precision, Recall, F1 Score, and the AUC 
from ROC analysis. Logistic Regression and Naive Bayes show the 
highest Accuracy, Precision, Recall, and F1 Score, all at 0.95, with an 
AUC of 0.97, indicating excellent model performance across all fronts. 
This suggests that these models have a high rate of correctly predicting 
both positive and negative instances of dental caries and maintain a 
balance between precision and recall in their predictions. The high 
AUC values for both models also indicate a high true positive rate and 
a low false positive rate across various threshold settings.

The Decision Tree, Random Forest, Gradient Boosting, and 
XGBoost models display slightly lower performance in comparison, 
with all metrics slightly below 0.93. AdaBoost slightly outperforms these 

FIGURE 3

Elbow method for optimal cluster selection – this graph displays the within-cluster sum of squares (WCSS) against the number of clusters for K-Means 
clustering. The ‘elbow’ at 3 clusters indicates the optimal balance between model complexity and clustering performance, where additional clusters do 
not significantly contribute to the improvement of the model.
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models with an accuracy, precision, recall, and F1 score of 0.93, and an 
AUC of 0.95, suggesting it is better at classifying the instances correctly. 
The Support Vector Machine (SVM) model shows strong performance 
with all metrics at 0.94 and an AUC of 0.96, indicating its robustness in 
classification. Overall, the consistency of high scores across different 
models reflects the quality of the dataset and the suitability of machine 
learning methods for this type of health risk prediction. However, the 
Logistic Regression and Naive Bayes models stand out, suggesting that 
for this particular dataset, simpler models may be just as effective, if not 
more so, than more complex ensemble methods.

Figure  5 shows the ROC curve, which is a graphical plot that 
illustrates the diagnostic ability of binary classifiers. A ROC curve is 
created by plotting the True Positive Rate (TPR) against the False Positive 
Rate (FPR) at various threshold settings. The curves of different colors 
represent different machine-learning models used for classification. The 
closer the curve follows the left-hand border and then the top border of 
the ROC space, the more accurate the test. Ideally, a model with perfect 
prediction has a curve that passes through the top left corner of the plot, 
indicating a 100% true positive rate and a 0% false positive rate.

From the visual provided, it seems that all the models have 
performed well, with curves closely hugging the top left corner, 
which indicates a high true positive rate and a low false positive 
rate. Models like Logistic Regression, SVM, and Naive Bayes, which 
are typically less complex, seem to perform comparably to more 
complex models like Random Forest and XGBoost, based on the 
overlap of their curves. This suggests that, for this particular dataset 
and prediction task, the simpler models are providing strong 
predictive performance. Such an outcome could imply that the 
underlying pattern in the data does not require the more complex 
decision boundaries that ensemble methods or SVMs can capture, 
or it could be indicative of a well-behaved feature space where linear 
separability is sufficient.

Figure  6 depicts the grid search results for hyperparameter 
tuning of a Logistic Regression model, showing the mean test score 
(accuracy) plotted against the regularization strength parameter ‘C’ 
on a logarithmic scale. The plot compares the accuracy of two 
regularization penalties, L1 and L2, across a range of ‘C’ values. The 
blue line for the L1 penalty shows an increase in accuracy as ‘C’ 
increases, stabilizing after a ‘C’ value of around 10^-1. The L2 
penalty, represented by the orange line, demonstrates a similar 
pattern but reaches stability more gradually and at a slightly lower 
accuracy level than the L1 penalty. This indicates that for the L1 
penalty, there is a specific range of ‘C’ where the model’s performance 
is maximized before it plateaus, suggesting that beyond this point, 
increasing ‘C’ yields no significant benefit. The L2 penalty, while 
following a similar trajectory, suggests a broader range of ‘C’ values 
that result in high model accuracy.

The necessity of this visualization lies in its ability to guide the 
selection of hyperparameter values that yield the best model 
performance. It is evident from the graph that there is an optimal 
range for ‘C’ where the model is neither underfit nor overfit to the 
training data. The selected best hyperparameters, {‘C’: 
0.03359818286283781, ‘penalty’: ‘l2’}, with a high mean accuracy 
score of approximately 0.968, indicate that the L2 penalty at this ‘C’ 
value offers a strong balance between bias and variance, making it 
the most suitable model for this analysis. This hyperparameter 
tuning is crucial to refining the model to achieve the highest 
predictive performance when applied to unseen data.T
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Feature importance analysis

Figure 7 represents a feature importance analysis from a Logistic 
Regression model used to determine key factors affecting dental 
health risks. The length and direction of each bar signify the 

importance and type of impact (positive or negative) that each feature 
has on the likelihood of dental health risks, such as cavities or carious 
lesions. In this context, importance scores can be interpreted as the 
strength of the association of each feature with the target variable, 
which, for this study, is likely the presence of dental caries.

The most influential factors appear to be  ‘Cavitated/
Non-Cavitated’ and ‘Carious lesion (Visual/Radiographically),’ which 
have the highest negative importance scores, suggesting that as these 
conditions are more prevalent, the risk of adverse dental health 
outcomes increases. The negative scores for ‘Visible Plaque’ and 
‘Previous Dental Procedures’ follow the same trend. Conversely, 
features like ‘Oral Hygiene Practices,’ ‘Regular dental visits,’ and ‘Age’ 
exhibit positive associations, implying that better oral hygiene and 
regular dental care are linked to a decrease in the risk of dental health 
issues and the risk changes as children age.

The visualization underscores the necessity of considering a wide 
range of factors when assessing dental health risks. The importance 
scores are essential for clinicians and policymakers to identify and 
prioritize risk factors in both clinical and public health settings. 
Interventions can be tailored based on these findings to target the 
most significant factors, such as improving oral hygiene practices or 
increasing the frequency of dental visits, to mitigate the risk of dental 
caries in children.

SHAP analysis results

The SHAP analysis provided valuable insights into the importance 
and influence of various features on the model’s predictions.

FIGURE 4

Visualization of dental health risk clusters using PCA – this scatter plot illustrates the clusters obtained from K-Means clustering following 
dimensionality reduction through PCA, highlighting the separation and grouping of patient data into three distinct risk profiles based on dental health 
factors.

TABLE 2 Chi-Square test p-values for categorical dental health variables 
– this table shows the p-values resulting from Chi-Square tests, 
evaluating the independence of various dental health-related variables.

Index p-value

Cavitated/non-cavitated 5.98e-71

Carious lesion (visual/radiographically) 5.98e-71

Regular dental visits 2.42e-42

Oral hygiene practices 1.35e-38

Sugary foods_drinks 4.06e-37

Previous dental procedures 4.23e-36

Visible plaque 7.08e-35

Teeth extracted due to caries within the past 

36 months

3.82e-25

Fluoride exposure 1.27e-17

Parents’/carers’ monthly income 1.91e-15

Parents’/carers’ education 2.58e-15

Age 0.0005

Special needs 0.058

The results highlight statistically significant associations between these factors and the 
presence of dental caries in children.
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 1 Summary Plot: The SHAP summary plot (Figure 8) illustrates 
the overall importance of each feature. Features such as 
“Fluoride exposure,” “Sugary Foods/Drinks consumption,” and 
“Regular dental visits” were identified as the most influential 
factors affecting the risk of dental caries in children.

 2 Dependence Plot for Fluoride Exposure: The SHAP 
dependence plot (Figure 9) for “Fluoride exposure” shows the 
relationship between this feature and its impact on the model’s 

predictions. The plot indicates that higher fluoride exposure is 
associated with a reduced risk of dental caries.

 • Force Plots for Individual Predictions: SHAP force plots 
(Figures  10–14) were generated for individual predictions to 
illustrate the specific contribution of each feature. These plots 
help in understanding how various factors combine to influence 
the model’s output for specific cases.

TABLE 3 Comparative performance metrics of machine learning models in dental health risk prediction – the table displays a summary of performance 
metrics for various machine learning algorithms applied to predict dental health risks in children.

Index Accuracy Precision Recall F1 score AUC

Logistic regression 0.95 0.95 0.95 0.95 0.97

Decision tree 0.92 0.92 0.92 0.92 0.95

Random forest 0.92 0.92 0.92 0.925 0.96

Gradient boosting 0.92 0.92 0.92 0.92 0.96

AdaBoost 0.93 0.93 0.93 0.93 0.95

XGBoost 0.92 0.92 0.92 0.92 0.97

SVM 0.94 0.94 0.94 0.94 0.96

Naive Bayes 0.95 0.95 0.95 0.95 0.97

Metrics include Accuracy, Precision, Recall, F1 Score, and AUC, with Logistic Regression and Naive Bayes demonstrating the highest overall performance.

FIGURE 5

ROC curve comparison of machine learning models for dental health risk prediction – the figure illustrates the ROC curves for various machine 
learning models, demonstrating their performance in classifying dental health risks. The close proximity of the curves to the top-left corner indicates 
high accuracy across all models, with minimal distinction in the area under the curve (AUC) metrics.
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Figure 10 illustrates the individual prediction for a specific 
instance, showing how each feature contributes to the final model 
output. In this plot, the base value represents the average model 
prediction, while the f(x) value indicates the predicted probability 
for this specific case. Key features impacting the prediction are 

highlighted, with their contributions visualized as red (positive 
impact) and blue (negative impact) bars. Positive impacts drive 
the prediction toward a higher risk category, while negative 
impacts reduce the predicted risk. In this figure, the presence of 
“Cavitated/Non-Cavitated” teeth, with a value of 2, significantly 

FIGURE 6

Comparison of L1 and L2 regularization effects on logistic regression accuracy – this graph illustrates the impact of varying the regularization strength 
‘C’ on the accuracy of Logistic Regression models with L1 and L2 penalties, highlighting the optimal ‘C’ value range for model stabilization.

FIGURE 7

Feature importance scores from logistic regression in dental health risk analysis – this bar chart visualizes the importance scores of various features 
derived from a Logistic Regression model, indicating their association with dental health risks in children. Features related to the presence of caries and 
oral hygiene practices are among the most significant predictors of dental health outcomes.
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increases the risk prediction, as shown by the large red bar. Other 
influential features include “Sugary Foods/Drinks (Yes = 1, 
No = 0)” and “Carious lesion (Visual/Radiographically)” which 
also push the prediction toward higher risk. Conversely, features 
like “Regular dental visits (Yes = 1, No = 0)” and “Oral Hygiene 
Practices” have a minimal negative impact, slightly reducing the 
predicted risk.

Figure 11 demonstrates the contributions of various features to 
the model’s output, with a base value indicating the average prediction 
and an f(x) value showing the specific prediction for this instance. In 
this plot, “Cavitated/Non-Cavitated” teeth and “Carious lesion 
(Visual/Radiographically)” are the primary features pushing the 
prediction toward a higher risk, as indicated by the red bars. Both 
features have a value of 2, significantly contributing to the increased 

FIGURE 8

SHAP summary plot showing the global importance of features in predicting dental caries risk.

FIGURE 9

SHAP dependence plot for “Fluoride exposure” illustrating its impact on the model’s predictions. The x-axis represents whether fluoride exposure was 
present (Yes  =  1, No  =  0), and the y-axis shows the SHAP values, indicating the contribution of this feature to the prediction.
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risk of dental caries. On the other hand, the presence of “Sugary 
Foods/Drinks (Yes = 1, No = 0)” and “Regular dental visits (Yes = 1, 
No = 0)” act as protective factors, as shown by the blue bars, decreasing 
the predicted risk. The resulting f(x) value of 0.01 suggests that, despite 
the high values for cavitated and carious lesions, the other features 
combined have managed to keep the overall risk relatively low. This 
balance of positive and negative contributions provides a clear, 
interpretable view of how the model arrived at its prediction for this 
particular case.

Figure 12 illustrates how various features contribute to the 
model’s output, with the base value representing the average 
model prediction and the f(x) value indicating the predicted 
probability for this instance. In this plot, several features push the 
prediction toward a higher risk of dental caries, as indicated by 
the red bars. Notably, “Parents’/Carers’ monthly income 
(High = 2, Medium = 1, Low = 0)” has a significant positive 
contribution, along with “Visible Plaque (Yes = 1, No = 0)” and 
“Regular dental visits (Yes = 1, No = 0).” These factors collectively 
drive the prediction toward a higher risk. Other influential 
features include “Carious lesion (Visual/Radiographically)” and 
“Cavitated/Non-Cavitated” teeth, which also contribute positively 
to the risk. The f(x) value of 0.96 suggests a very high probability 
of dental caries risk, indicating that the combination of these 
factors significantly outweighs any protective effects.

Figure 13 provides a clear visualization of how different features 
influence the model’s output, with the base value representing the 

average model prediction and the f(x) value showing the specific 
prediction for this case. In this plot, “Carious lesion (Visual/
Radiographically)” and “Cavitated/Non-Cavitated” teeth are the 
primary factors pushing the prediction toward higher risk, as 
indicated by the red bars. Both features have high values, significantly 
contributing to the increased risk of dental caries. Conversely, several 
features act as protective factors, reducing the predicted risk. Notable 
among these are “Sugary Foods/Drinks (Yes = 1, No = 0),” “Regular 
dental visits (Yes = 1, No = 0),” and “Previous Dental Procedures,” as 
shown by the blue bars. These factors collectively counterbalance the 
positive contributions, leading to a final f(x) value of 0.00, indicating 
no risk.

Figure 14 illustrates the contributions of various features to 
the model’s output, with the base value representing the average 
prediction and the f(x) value indicating the specific prediction 
for this instance. In this plot, “Age” and “Sugary Foods/Drinks 
(Yes = 1, No = 0)” are the primary factors pushing the prediction 
toward higher risk, as shown by the red bars. Notably, the feature 
“Age = 2.0” has a significant positive contribution, indicating that 
this age group is associated with a higher risk of dental caries. 
Conversely, several features act as protective factors, reducing the 
predicted risk. These include “Cavitated/Non-Cavitated = 0.0” 
and “Carious lesion (Visual/Radiographically) = 0.0,” as indicated 
by the blue bars. These factors collectively counterbalance the 
positive contributions, resulting in a final f(x) value of 0.02, 
indicating a very low risk.

FIGURE 10

SHAP force plot for an individual prediction showing the contribution of each feature to the model’s output. Positive contributions (in red) increase the 
predicted risk of dental caries, while negative contributions (in blue) decrease it. The most significant features in this instance are “Cavitated/Non-
Cavitated” teeth and “Sugary Foods/Drinks,” which drive the prediction toward a higher risk category.

FIGURE 11

SHAP force plot for an individual prediction showing the contribution of each feature to the model’s output. Positive contributions (in red) increase the 
predicted risk of dental caries, while negative contributions (in blue) decrease it. Key features include “Cavitated/Non-Cavitated” teeth and “Carious 
lesion (Visual/Radiographically),” which drive the prediction toward a higher risk, while “Sugary Foods/Drinks” and “Regular dental visits” reduce the 
predicted risk, resulting in a low overall prediction probability.
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Discussion

The SHAP analysis confirms the significant impact of features 
such as fluoride exposure, sugary food and drink consumption, and 
regular dental visits on dental health outcomes in children. These 
findings are consistent with existing literature and highlight the need 
for targeted preventive measures in these areas. The use of SHAP 
values enhances the interpretability of the machine learning models, 
providing clear insights into how each feature influences predictions. 
This can help clinicians and policymakers to better understand the 
risk factors and develop more effective intervention strategies.

The individual force plots illustrate the potential for personalized 
dental health interventions by identifying the specific factors 
contributing to an individual’s risk. This can lead to more tailored and 
effective preventive measures. The integration of SHAP analysis into 
the research provides a robust framework for understanding the 
influencing factors behind dental health risks in children. By offering 
both global and individual explanations, SHAP values enhance the 
transparency and trustworthiness of machine learning models, 
ultimately supporting better decision-making in pediatric dental 
health care.

The interpretation of results from this study aligns with and 
contributes to the existing body of literature on pediatric dental 
health. The findings corroborate the widely reported assertion that 
poor oral hygiene practices and high consumption of sugary foods 
and drinks are significant contributors to the development of dental 
caries in children. This is consistent with the literature that underscores 
the role of diet and hygiene in the etiology of caries (Touger-Decker 

and Van Loveren, 2003). While these findings align with established 
medical knowledge, our study uniquely quantifies the impact of these 
factors using advanced machine learning techniques. This approach 
not only confirms the significance of poor oral hygiene, high-sugar 
diet, and low fluoride exposure but also provides a precise 
measurement of their relative importance, enhancing the granularity 
of our understanding. By leveraging machine learning, we offer a 
more nuanced analysis that can inform more targeted and effective 
prevention strategies.

The negative association between regular dental visits and dental 
health risks highlighted by the Logistic Regression model echoes the 
importance of preventive dental care as established in previous 
research (Dye et al., 2004). The influence of socioeconomic factors, 
such as parents’ education and income, found to be significant in our 
study, also aligns with existing evidence that suggests a link between 
socio-economic status and oral health outcomes (Moysés, 2012). The 
impact of such socioeconomic determinants emphasizes the need for 
public health interventions that address broader social and economic 
barriers to health care. Additionally, the role of age as a factor in dental 
health risks observed in this study invites further examination. While 
age is often considered in relation to the progression of dental caries, 
our analysis suggests that changes in oral hygiene habits as children 
grow could also be a factor, which is a perspective supported by some 
longitudinal studies (Tan et al., 2021).

The study’s employment of machine learning to identify key 
influencing factors demonstrates the potential of these analytical 
methods in advancing dental research, offering a more nuanced 
understanding of risk factors compared to traditional statistical 

FIGURE 12

SHAP force plot for an individual prediction showing the contribution of each feature to the model’s output. Positive contributions (in red) increase the 
predicted risk of dental caries, while negative contributions (in blue) decrease it. Key features driving the prediction toward a higher risk include 
“Parents’/Carers’ monthly income,” “Visible Plaque,” and “Regular dental visits,” resulting in a high overall prediction probability of 0.96.

FIGURE 13

SHAP force plot for an individual prediction showing the contribution of each feature to the model’s output. Positive contributions (in red) increase the 
predicted risk of dental caries, while negative contributions (in blue) decrease it. Key features influencing the prediction include “Carious lesion (Visual/
Radiographically)” and “Cavitated/Non-Cavitated” teeth, which increase the risk, while “Sugary Foods/Drinks,” “Regular dental visits,” and “Previous 
Dental Procedures” reduce the predicted risk, resulting in a neutral overall prediction probability of 0.00.
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approaches. The utilization of machine learning in this context is 
relatively novel and supports the burgeoning view that these 
techniques can reveal complex patterns in health data (Al Schwendicke 
et al., 2020). Our findings not only reaffirm established knowledge but 
also enhance it by leveraging advanced analytical techniques to 
provide a more granular understanding of dental health risks in 
children. The implications for clinical practice and public health 
policy are significant, suggesting that interventions should 
be  multifaceted, targeting individual behaviors, broader 
socioeconomic factors, and leveraging predictive analytics for early 
identification and intervention.

The significance of the findings of this study extends well beyond 
the analytical realm, offering actionable insights for dental health 
education and preventive measures. The study’s results underscore the 
crucial role of maintaining proper oral hygiene and reducing sugary 
food and drink intake as cornerstones of preventing dental caries in 
children. This aligns with the recommendations from the American 
Academy of Pediatric Dentistry, which emphasizes the importance of 
establishing a dental home and regular check-ups as part of effective 
early preventive care (Edem, 2018). Incorporating subjective data 
could enhance our understanding of behavioral and psychosocial 
elements that contribute to dental health. For instance, parental 
attitudes toward dental hygiene and their perceived barriers to 
accessing dental care could significantly impact a child’s oral health 
outcomes. Acknowledging these factors could help in developing 
more effective, culturally sensitive preventive strategies. The 
identification of specific, quantifiable risk factors through machine 
learning models highlights the potential for developing personalized 
dental health education programs. For example, the significant role of 
oral hygiene practices suggests that education initiatives should focus 
on the importance of regular brushing and flossing routines, tailored 
messaging about fluoride usage, and the impact of dietary choices on 
dental health. Education campaigns can also be  informed by the 
socioeconomic data, ensuring that they are culturally sensitive and 
accessible to families from diverse backgrounds.

Additionally, the study’s findings can be leveraged to enhance the 
effectiveness of preventive measures. Understanding the link between 
socioeconomic factors and dental health risks, for instance, can lead 
to the implementation of targeted interventions in underserved 
communities, such as school-based dental care programs or subsidized 
dental services. The association of these factors with higher caries risk 
also points to the broader need for systemic change, including policy 
interventions that address the underlying social determinants of 

health. Furthermore, the data-driven approach of this study provides 
a model for how dental health professionals can utilize predictive 
analytics to identify high-risk patients and prioritize early intervention. 
By implementing machine learning techniques in clinical practice, 
dentists and hygienists can better allocate resources, personalize 
patient education, and refine their preventive strategies to address the 
most impactful risk factors identified. The findings of this research can 
inform a more nuanced and effective strategy for dental health 
education and prevention. It encourages the integration of evidence-
based best practices with innovative data analytics to foster an 
environment where preventive care is tailored, accessible, and 
impactful for all children. While our study primarily relied on clinical 
examinations and objective data, we recognize that subjective factors, 
such as parental perceptions of oral health, dietary habits, and access 
to dental care, also play a crucial role in influencing dental caries risk. 
Future research should aim to integrate these subjective measures to 
provide a more comprehensive assessment of risk factors.

While this study provides significant insights, it is not without its 
limitations. A notable limitation is the specific demographics and 
context of our study population, which may restrict the generalizability 
of our findings to other populations. The participants were sourced 
from a private clinic setting, potentially limiting the diversity in socio-
economic status, geographic location, and access to healthcare 
resources. One major constraint is the reliance on cross-sectional data, 
which limits the ability to infer causation from the observed 
associations. This limitation prevents the assessment of temporal 
relationships between risk factors and the development of dental 
caries. Longitudinal data would allow for a more dynamic analysis, 
tracking changes over time and establishing causal links between 
identified risk factors and dental caries. Additionally, the retrospective 
design of the study may introduce inherent biases related to data 
collection, such as recall bias or selection bias. To mitigate these 
limitations, we  ensured a comprehensive data collection process, 
including cross-referencing clinical records with patient interviews 
and structured questionnaires.

Longitudinal data would be  required to establish temporal 
relationships and causality. Additionally, the study’s dataset, although 
robust, may not fully represent the diverse populations affected by 
dental caries, potentially limiting the generalizability of the findings. 
Another limitation is the inherent nature of machine learning models 
that, while powerful, can sometimes obscure the clinical significance 
behind the statistical importance due to their “black box” nature. 
Furthermore, certain relevant factors, such as genetic predisposition 

FIGURE 14

SHAP force plot for an individual prediction showing the contribution of each feature to the model’s output. Positive contributions (in red) increase the 
predicted risk of dental caries, while negative contributions (in blue) decrease it. Key features influencing the prediction include “Age” and “Sugary 
Foods/Drinks,” which increase the risk, while “Cavitated/Non-Cavitated” and “Carious lesion (Visual/Radiographically)” reduce the predicted risk, 
resulting in an overall low prediction probability of 0.02.
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and microbiome composition, were not included in the analysis, 
which could provide a more comprehensive understanding of caries 
risk. The potential impact of such unmeasured variables remains an 
area not addressed in the current research framework. There is also 
the possibility of bias introduced during data collection and the 
classification of some of the predictor variables, which could affect the 
outcome of the feature importance analysis.

Future research should aim to address these limitations by 
incorporating longitudinal study designs that can track the progression 
of dental health over time and establish causative factors more reliably. 
Such longitudinal studies would enable the investigation of how risk 
factors evolve and interact over time, providing deeper insights into 
the causal pathways leading to dental caries. Additionally, future 
studies should aim to include a more diverse demographic to enhance 
the applicability of the findings. This could involve recruiting 
participants from various socio-economic backgrounds, geographic 
regions, and healthcare settings to ensure a broader representation. 
Expanding the dataset to include a broader demographic will enhance 
the diversity and applicability of the findings. There is also a need to 
explore the biological underpinnings of dental caries by including 
genetic and microbiome analyses, which could reveal novel predictors 
of risk and inform targeted prevention strategies. The application of 
machine learning interpretability techniques would be beneficial to 
demystify the decision-making process of the algorithms, aligning 
statistical findings with clinical insights. Additionally, research should 
focus on the development and validation of machine learning models 
in clinical settings to evaluate their practical utility in real-world 
preventive dentistry. Lastly, future studies should consider the 
socioeconomic and behavioral interventions suggested by the 
predictive models and assess their effectiveness in reducing the 
incidence of dental caries, thus moving from predictive analytics to 
actionable health outcomes.
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