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Abstract
As weather dependence of the electricity network grows, there is an increasing need to
predict the time at which the network peak load will occur. Improving forecasts of peak
hour can lead to more accurate scheduling of generation as well as the ability to use
flexibility to improve system utilisation or defer capital investment. While there are
extensive benchmark models for forecasting electricity demand, their efficacy at fore-
casting the time or shape of the peak remains to be seen. Global forecasting competitions
provide a unique opportunity to compare multiple methodologies under common per-
formance criteria and incentives. The methodology and results are detailed from the Big
Data and Energy Analytics Laboratory Challenge 2022 used by the team ‘peaky‐finders’
and investigates the suitability of using hourly methods to forecast daily peak magnitude,
time, and shape. The resulting approach provides a reproducible ensemble benchmark
against which to evaluate more complex methods. Results indicate that simple regression
techniques can perform well and outperform more complicated methods during seasons
with low hourly variability, however ensemble methods show higher accuracy overall. The
results also highlight the significant impact of extreme weather on forecast accuracy,
demonstrating the importance of forecasting processes that are resilient to extreme
weather.
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1 | INTRODUCTION

Safe operation of the electric grid requires a continuous balance
of supply and demand. In order to achieve this in a reliable,
economic, and clean fashion, load forecasts must be produced
on a variety of time horizons. Forecasts one to 10 years ahead
(long‐term) enable generation and transmission capacity plan-
ning whereas forecasts minutes to weeks ahead (short‐term) are
required for operation of the grid and generation scheduling [1].
A bibliometric search via Web of Science for prior work in the
area of short‐term load forecasting (STLF) using the query
ALL= (short termAND (“load forecasting”) AND (energyOR
electric*)) returned nearly 3000 papers with the growth in
published literature shown in Figure 1.

Despite the significant number of papers, inconsistencies
exist in: (1) the robustness of data used for analysis and

validation, (2) choice of evaluation metrics and (3) models used
for comparison [2]. As a result, despite the numerous publi-
cations, it is difficult to discern the current ‘state‐of‐the‐art’.
That being said there are some clear principles which are
evident: (1) Ensemble models often outperform their indi-
vidual components [3]; and (2) Careful selection of features is
key, including the choice of weather data.

Forecasting competitions provide an effective means over-
come this challenge by assessing the performance of a variety of
methods and approaches on the same data, and aim to provide a
fair comparison of their efficacy and benefit [4]. Even after the
competition, future researchers can use the competition data to
compare their new methods against the competition bench-
marks, further supporting advancement of new methods and
open science. Examples include the 2001 EUNITE competi-
tion [5], and the Global Energy Forecasting Competition

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is
properly cited.

© 2023 The Authors. IET Smart Grid published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.

IET Smart Grid. 2023;1–12. wileyonlinelibrary.com/journal/stg2 - 1

https://doi.org/10.1049/stg2.12152
https://orcid.org/0000-0003-3419-3624
https://orcid.org/0000-0002-5960-666X
https://orcid.org/0000-0001-6114-7880
mailto:d.l.donaldson@bham.ac.uk
https://orcid.org/0000-0003-3419-3624
https://orcid.org/0000-0002-5960-666X
https://orcid.org/0000-0001-6114-7880
http://creativecommons.org/licenses/by/4.0/
https://ietresearch.onlinelibrary.wiley.com/journal/25152947
http://crossmark.crossref.org/dialog/?doi=10.1049%2Fstg2.12152&domain=pdf&date_stamp=2023-12-21


(GEFCOM) series held over 2012, 2014, and 2017 in which
hundreds of competitors from industry and academia have
tackled emerging energy industry forecasting tasks [6]. Com-
petitions have also been held with industry including Western
Power Distribution [7], the IEEE Computational Intelligence
Society in partnership with E.ON [8], and the Day‐Ahead
Electricity Demand Forecasting Competition supported by
BluWave‐ai [3]. However, while many of these competitions
required the development of hourly forecasts of which one of
these hours was the peak, they were not expressly focused on
peak demand magnitude, timing and shape.

For purposes of capacity or adequacy planning, the
magnitude of the peak has been of primary importance [9]. This
was sufficient as most generation was dispatchable, enabling
operators to schedule in such a fashion to account for the un-
certainty in the demand due to socio‐economic and weather
related factors. This has worked well and the annual peak de-
mand often follows a consistent pattern each year, resulting in a
fairly consistent peak hour. Seasonal peak demand has also been
of interest to inform customer billing, such as the charges for
industrial and commercial customers. One example of this is the
use of ‘triads’—‘the three half‐hour settlement periods of
highest demand on the GB electricity transmission system be-
tween November and February (inclusive) each year, separated
by at least 10 clear days’—by the GB transmission system
operator to determine charges for customers based on the their
peak usage [10]. However new technologies and use cases are
requiring the production of forecasts that are more granular
both spatially and temporally as seen in Figure 2 resulting in the

need for evaluation of new methods and approaches. For
example, knowing when the peak occurs can support more
effective decision‐making for energy storage dispatch [11, 12] as
was the focus of the aforementionedWPDPOD data challenge.

For utilities, growth in solar PV generation can shift the
peak hour later in the day. This has required updates to tariffs,
and re‐education of consumers to encourage use of energy
during times when it is more plentiful [13]. Examples of the
significance of this shift can be seen at a regional level in Cali-
fornia where historical data shows that the annual peak time for
the California Independent System Operator has shifted from
roughly 15:30 (1998–2000) to 17:00 (2020–2022) [14]. There
have also been opportunities created for generation owners and
distributed energy resource (DER) service providers to predict
the day and time at which the peak will occur, enabling them to
dispatch resources to maximise economic gains [11].

Demand response and critical peak pricing programs
introduced some value from knowing the time at which the peak
was expected, as this information enabled more effective pro-
grams [15]. However, efforts to decarbonise the energy sector
are elevating the importance of knowing the time at which the
peak occurs to support decision‐making for battery charging
and discharging. While there are established forecasting
methods and metrics for the prediction of electricity demand,
the evaluation of these methods for peak hour prediction re-
mains nascent. Research in this area includes using weather
probability to predict the top k peak days [15], and ensemble
machine learning to predict peak days and the peak hour on
those days [16]. Authors in Ref. [17] have also introduced a
toolkit designed to support comparison of such methods.
Recently it was demonstrated in Ref. [18] that fusion of daily
peak and half‐hourly forecasts could improve the accuracy of
demand forecasts, offering improvements of over 10% during
peak hours for forecasts from the individual household to dis-
tribution substation level. However, these publications all used
differing datasets, limiting the ability to directly compare the
relative performance of methods. Furthermore, across existing
works on peak load forecasting, there is a lack of consistency in
the metric used for evaluation, and the horizon that is being
evaluated. For example, error metrics for evaluation differ
across works and include precision and/or recall [15–17], ac-
curacy [16], mean squared error [11] or continuous ranked
probability score [18]. The toolkit presented in Ref. [17] pro-
vides some first steps towards a means to unify evaluation and
enable comparison, but is mostly focused on monthly and daily
peak prediction rather than the magnitude, hour and daily shape.
While it does include one model for peak hour forecasting
(Long Short Term Memory—LSTM) the implementation uses
demand from the prior 7 days to predict day ahead peak hour
which may not always be available.

To address this gap in the established literature, a forecasting
competition, the Big Data and Energy Analytics Laboratory
(BigDEAL) Challenge 2022 (BDC22) was held fromNov‐–Dec
2022 to provide a platform through which to evaluate methods
for forecasting the magnitude, time, and shape of electricity
demand. While forecasting competitions can provide benefit
to the participants, the publication of methods from the

F I GURE 1 Growth in short‐term load forecasting literature.

F I GURE 2 Forecasts are becoming more granular, requiring research
and development of new metrics and methods.
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competitors provides a mechanism via which to enable the
wider field to reproduce and evaluate future methods. To that
end, this paper reflects the following contributions: (1) Pre-
sentation of the methodology used by our team ‘peaky‐finders’
which finished fourth overall, and third in the track focused on
the magnitude of peak demand. (2) Discussion of lessons learnt
as a result of the competition which can further benefit prac-
titioners and researchers in the field.

The economic value of improvements to the accuracy of
peak timing may lead some end‐users to develop bespoke
forecasting methods for this application. However, as short
term forecasting is often done already on an hourly basis, the
time of the peak is already inherently predicted without
requiring development of an additional method. Therefore,
this paper proposes a methodology to extract forecasts of the
peak hour and shape from traditional hourly forecasts that can
provide a benchmark against which to measure the benefit of
more complex methods. Lessons learnt from the forecasting
competition that point to several areas for future research to
further enhance forecasts of the peak hour.

The rest of the paper is structured as follows: Sections 2
and 3 present the competition's data and methodology. The
modelling results and discussion are given in Sections 4 and 5.
Finally Section 6 presents the conclusions and areas for future
research.

2 | PEAK FORECASTING
COMPETITION

BDC2022 had a theme of peak load forecasting and was
organised by academics from UNC Charlotte. The competition
began with a qualifying match from 31 October to 10
November 2022; 121 contestants from 27 countries formed 78
teams to take part [19]. The match was divided into three tracks
whereby teams were tasked to provide ex‐post forecasts of
hourly loads, daily peak magnitude, and timing of daily peaks.
Our team, ‘peaky‐finders’ finished above ‘Shreyashi's Recency
Benchmark’ in all three tracks, and therefore was invited to
compete in the final match alongside 13 other teams and three
individuals.

2.1 | Final match structure

For the Final match, teams were tasked to produce ex‐ante
daily peak load forecasts for six rounds for three U.S. local
distribution companies (LDC). Historical data over the 3 year
period from 2015 to 2017 was provided for training alongside
historical actual temperature from six weather stations. In
contrast to the qualifying match (and much of the forecasting
literature) the competition used day‐ahead temperature fore-
casts for each of the rounds making the results more relevant
to real‐world application. Actual data from the prior round and
temperature forecasts for the next round were released every
3–5 days. The time‐frame and data for each of the six rounds is
shown in Table 1.

2.2 | Performance metrics

Past literature and competition discussions have demonstrated
the importance of metrics on forecast evaluation, and that the
method used can highly depend on the desired metric. As there
is not an established set of performance metrics for peak time
forecasting, the organisers of the competition selected the
following metrics.

2.2.1 | Track 1—Magnitude

The error metric for this track (M) is calculated as the Mean
Absolute Percentage Error (MAPE) as given in Equation (1).

M ¼
1
n

Xn

d¼1

j
Lpkd � L̂

pk
d

Lpkd
j ð1Þ

where Lpkd and L̂
pk
d are the actual and estimated peak load on a

given day d; and n represents the number of days in the
evaluation period.

2.2.2 | Track 2—Timing

The error metric for this track (T) is the weighted sum of
absolute errors with cap calculated as

T ¼
Xn

d¼1

wdΔt ð2Þ

where Δt ¼ jt
pk
d � t̂

pk
d j and the weights wd are

wd ¼

8
>><

>>:

Δt, if Δt ≤ 1

2, if 2 ≤Δt ≤ 4

10, otherwise

: ð3Þ

2.2.3 | Track 3—Shape

First the 24 hourly load forecasts of each day will be nor-
malised by the peak forecast of that day to obtain the shape of
that day. The same was done for the actual load. The sum of

TABLE 1 Structure of BDC 2022 final match.

Months covered Date provided Submission deadline

Round 1 Jan–Feb 16‐Nov‐22 20‐Nov‐22

Round 2 Mar–May 21‐Nov‐22 23‐Nov‐22

Round 3 Jun–Jul 24‐Nov‐22 27‐Nov‐22

Round 4 Aug 28‐Nov‐22 30‐Nov‐22

Round 5 Sep–Oct 01‐Dec‐22 04‐Dec‐22

Round 6 Nov–Dec 05‐Dec‐22 07‐Dec‐22

DONALDSON ET AL. - 3
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absolute errors is then calculated during the 5‐h peak period
(peak hour þ/� 2 h) of every day

S ¼
Xn

d¼1

X2

k¼� 2

jstpkd þk,d
� ŝtpkd þk,d

j ð4Þ

where s and ŝ represent the normalised actual and estimated
load at a point in time divided by the actual peak load of that
day, and k represents the 5 h surrounding the peak.

Data cleansing was not performed, however one notable
anomaly in the historical data is discussed in detail in Sec-
tion 4.1. The historical data for the case studies is illustrated
Figure 3a,b, showing the load time series and load‐temperature
relationship, respectively.

3 | METHODOLOGY

This section presents the approach used by the peaky‐finders
in BDC2022 along with the underlying theoretical founda-
tion with an overview presented in Figure 4.

3.1 | Explanatory variable creation

The explanatory variables we used throughout the competition
can be grouped into four areas:

1. Linear Trend—to capture any longer term change in the
demand

2. Calendar Effects—Hour, Day of the Week, and Month
were all used as categorical variables to reflect seasonal
differences in demand

3. Holiday Variables—Indication of whether a day was a
holiday or not as holidays can influence the demand. All
holidays were treated uniformly.

4. Temperature terms including lagged, rolling average and
smoothed temperature

In practice, utilities can evaluate meteorological forecasts
and build models to correct any systematic biases that may be
present; however, only historical weather data was provided for
the competition for model development. Therefore it was not
possible to evaluate the accuracy of the weather forecasts being
provided ahead of the first round. To account for the possible
error in the forecast, three temperature scenarios were produced
and three corresponding demand forecasts were generated using
these scenarios and averaged to form a final demand forecast.
When creating temperature scenarios for projecting future de-
mand, one method to model the most likely weather conditions
is a shifted date approach as described in Ref. [20] whereby the
temperature values are shifted forward and backwards by a
certain number of days to generate a range of temperature
scenarios to use for forecasting. This approach was applied in
Ref. [21] when creating forecasts for the sizing of non‐wires
alternatives and other temperature resampling approaches
have also been proposed in Refs. [22, 23] to generate probabi-
listic forecasts.

While this competition did not require a probabilistic
output, given the use of forecast temperature values, a shifted
time approach based on Ref. [20] was used to account for un-
certainty in the actual temperature. A new set of features was
created by shifting the forecast temperature forward and
backward by 1 h resulting in three distinct feature matrices for
each hour: F(Tt� 1), F(Tt), and F(Ttþ1). A forecast is produced
using each set of features and then the resulting three forecasts
are averaged to produce a single output. These time shifted
versions will be referred to by appending ‘� T’ to the corre-
sponding forecasting model name.

3.2 | Forecasting models

Two main model families were used to produce the forecasts
for our team. First, a Multiple Linear Regression (MLR) model

F I GURE 3 Plots illustrating some of the main properties of load time
series, such as annual seasonality and temperature response. F I GURE 4 Overview of the approach.
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based on the vanilla benchmark with recency used in GEF-
COM 2017 [6, 24] and BFCom2018 [25]. The logarithm of the
load (L) at time t is given by

logðLtÞ ¼ β0 þ β1D�H þ β2M þ β3M � Tt

þ β4M � T
2
t þ β5M � T

3
t þ β6H � Tt

þ β7H � T
2
t þ β8H � T

3
t

ð5Þ

where D is day of the week; H is hour; M is month; and T is
temperature. Additional variables from the list above were also
incorporated as additional linear predictors, and the regression
parameters are estimated via ordinary least squares.

Second, a Gradient Boosting Machine (GBM) was devel-
oped using a combination of the explanatory variables
mentioned above and again the logarithm of the load was used
as the target variable. Reference material is provided by Refs.
[26, 27]. Prior research also demonstrates GBM to be effective
for STLF [28, 29]. Here we use Gradient Boosting Trees,
which comprise multiple decision trees that are combined to
generate predictions [30]. For each decision tree, the input
space is split into disjoint regions and each observation is
assigned to the corresponding ‘leaf’ of the tree. Divisions be-
tween regions are selected to minimise some cost function
measuring the fit between individual observations and a pre-
dictions computed based on the all observations assigned to a
given leaf. This allows decision trees to capture non‐linear
relationships and interactions between input variables effi-
ciently. New trees are added to improve the prediction of the
model fit by minimising the negative gradient of the loss
function from the model's previous iteration. The learning
relationship is governed by several hyper‐parameters, such as
the number of trees (stopping criterion), the maximum number
of splits in a single tree, and a learning rate that controls the
contribution of each new tree to the model.

Finally, in addition to the individual MLR and GBM based
models, a series of ‘ensemble’ models are produced by taking
the average of the output of individual MLR and GBM models.
These ensemble models are referred to using the abbreviation
‘ENS’. Table 2 provides further detail of each of the ensemble
models considered.

Other families of models may be considered for this task
and have been widely reported in the literature. Classical time
series methods were considered, for example, but the organi-
sation of the competition into rounds prevented use of these
methods due to lagged demand observations not being avail-
able. There is also large literature on deep learning for load
forecasting, however, given the modest volume of training data
available, weakness of these models in past forecasting com-
petitions, and less experience from the team with these models,
we did not consider applying them.

3.3 | Peak forecast production

For the competition, each of the above models was developed
to produce an hourly forecast, before re‐sampling the peak

values from each day to generate the daily peak forecast. Given
the focus on only the time around the peak hour, a matrix of
weights was generated for the training data to penalise the
model more significantly for errors made during peak time.
Two weighting approaches were evaluated. The first was to
weight the training data proportional to the overall daily load.
The second was to use a Gaussian kernel Nðxjμ; σ2Þ where x
is the hour, μ is the peak hour, and σ2 is set at 1.5 h. The value
of σ2 was selected heuristically for the competition but pre-
liminary evaluations during the competition suggested larger
values may not be as effective. These methods will be referred
to as ‘L’ for the load based weighting and ‘W’ for Gaussian
based weighting when describing the models. An example of
each of these methods applied to a single day can be seen in
Figure 5.

3.4 | Model selection across rounds

This section describes the models used for each round, the
model selection process, and any rationale for changes. Given
the reduction in training data in comparison to the qualifier, we
used fewer explanatory variables to avoid over‐fitting. Of the
six overall weather stations, we used the MLR in Equation (5)
to identify the weather stations that yielded the lowest MAPE
for each LDC. Hyper‐parameter tuning was performed for
each model during the qualifying match; however, given the
limited time for the final match optimal hyper‐parameter se-
lection was not repeated for each round and a fixed set of
features was used. Further description of the model and
rationale is given below for each round and Table 3 presents
the models used for each round across all three tracks. Hyper‐
parameters are given in Section 4.

TABLE 2 Description of individual and ensemble models evaluated.

Model GBM included MLR included Temp. shift Weight

GBM Y ‐ ‐ ‐

GBM‐T Y ‐ Y ‐

MLR ‐ Y ‐ ‐

MLR‐T ‐ Y Y ‐

MLR‐L ‐ Y ‐ Load

MLR‐W ‐ Y ‐ Pk

MLR‐TL ‐ Y Y Load

MLR‐TW ‐ Y Y Pk

ENS Y Y ‐ ‐

ENS‐L Y Y ‐ Load

ENS‐W Y Y ‐ Pk

ENS‐T Y Y Y ‐

ENS‐TL Y Y Y Load

ENS‐TW Y Y Y Pk

DONALDSON ET AL. - 5
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3.4.1 | Rounds 1, 3, and 4

Hourly forecasts were generated using the GBM and MLR
models then averaged to form a single forecast. The process
was repeated two additional times with the temperature values
shifted forward by 1 h and backward by 1 h. Then the average of
these three forecasts (� 1/0/þ1) was taken to produce the final
forecast for Track 3. The peak magnitude and hour of peak for
Tracks 1 and 2, were selected from this hourly forecast.

3.4.2 | Round 2

For this round we hypothesised that shifting the temperature
forward and backward might be contributing to increased error
for Track 2 and 3 and excluded it for this round. However, we
were not evaluating the forecast using the exact scoring metrics
from Track 2 and 3, and unfortunately we would have per-
formed better had we remained with the methodology from
Round 1 (ENS‐T) rather than ENS; 7% better in Track 2 and
0.7% better in Track 3 as shown in Tables 5 and 6.

3.4.3 | Round 5

In round 5 we introduced a kernel‐based weighting scheme to
give greater weight to more recent training samples. This was
used only for the regression model, as the GBM imple-
mentation we used was not compatible with weights. We
decided to exclude the GBM models for Track 3 as the per-
formance of the MLR only model was better than the com-
bined model with the GBM, and were being beat by the
recency benchmark in Rounds 3 and 4. One other realisation
was made after submitting our forecast for this round, that we
had inadvertently excluded the August 2018 data from the
training for the final model (as typically the prior round's data
was used as a validation set for the model).

3.4.4 | Round 6

For this round the weather appeared more similar to Rounds 1
and 2. During these rounds, there were often a mix of peak
hours in the morning and the evening, and therefore our
weighting approach had to be altered to better reflect periods
of high loading that may not be in proximity to the actual peak.
We used this updated weight for the regression model for
Track 3. However we only used it for Track 3 as when eval-
uating it using some of the prior rounds, we saw weighting
yield much higher error in Track 2 and only marginal gains in
Track 1.

4 | RESULTS

The approach was programed via R [31], making use of the
following libraries/packages: dplyr [32], tibbletime [33], readxl
[34], lubridate [35], Metrics [36], data.table [37], gbm [26], zoo
[38], and tis [39]. Code is available at https://github.com/
DLDonaldson/BigDEALChallenge2022_peakyfinders to re-
produce this approach. This section explores and compares the
models used throughout the competition on the full set of
data.

For the MLR model results presented in this paper the
following features were used as inputs into the MLR model
given in Equation (5): Trend, Hour, Month, Weekday, Holiday,
Weekday � Hour, third order polynomials of Temperature (T ),
lagged temperature (Tlag1, Tlag2, Tlag3, Tlag6), averaged tem-
perature (Tsma1), smoothed temperature (Tes995, Tes99), and
those polynomials crossed with Hour and Month. For the
GBM model the following features were added: lagged tem-
perature (Tlag4, Tlag5, Tlag9, Tlag12, Tlag15, Tlag18, Tlag21, Tlag24),
averaged temperature (Tsma2, Tsma3) and the cross effects were
removed, and only first order terms of each variable were
included. The following hyperparameters were also set: distri-
bution = ‘Laplace’, n.trees = 2000, n.minobsinnode = 300,
interaction.depth = 3, bag.fraction = 0.8, shrinkage = 0.1, cv.
folds = 5.

TABLE 3 Models used for each round of the competition.

Models considered in ensemble

Track 1 Track 2 Track 3

Round 1 MLR‐T, GBM‐T MLR‐T, GBM‐T MLR‐T, GBM‐T

Round 2 MLR‐T, GBM‐T MLR, GBM MLR, GBM

Round 3 MLR‐T, GBM‐T MLR‐T, GBM‐T MLR‐T, GBM‐T

Round 4 MLR‐T, GBM‐T MLR‐T, GBM‐T MLR‐T, GBM‐T

Round 5 MLR‐TW, GBM‐T MLR‐TW, GBM‐T MLR‐TW

Round 6 MLR‐T, GBM‐T MLR‐T, GBM‐T MLR‐TL, GBM‐T

F I GURE 5 Comparison of the weighting approaches for an example
day in January.
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4.1 | Track 1

The aim of Track 1 was to produce forecasts of the daily peak
load for each of the three LDCs. This was the highest per-
forming track for the peaky‐finders, placing 3rd overall and 1st
in Round 3. The results for each round are shown in Table 4.
The impact of ensembling, temperature shifting, and weighting
each played a role in improving the overall forecast perfor-
mance. Firstly, the individual GBM and MLR models were
compared to the ensembled model. Results across each of the
rounds indicate that ensembling approaches performed best
overall, with the exception of the period from June to August.
When considering the overall the shifted‐time approach to
handle the temperature forecast error, benefits were marginal
prior to considering the weighting methods. However a similar
benefit was not observed for the weighted approach, where a
single temperature series yielded better performance overall.

During the competition, the weighting methods were not
developed until later rounds, and therefore were not imple-
mented until Round 5. Unfortunately, this was the only round
in which using the weighted methods resulted in worse per-
formance. As a result, the approach for round 6 reverted back
to the standard model, where continued use would have
instead reduced the MAPE from an average of 4.19%–4%.
Overall across all rounds, the use of ENS‐TW would have
improved the team performance by 0.07%. Fundamentally, the
use of the weighting factor gives a higher priority to the per-
formance of the model in the hours surrounding the daily
peak. Therefore, the performance of the model in other hours
is sacrificed in order to achieve this objective and model

selection should be based on the bespoke error metric
considered rather than the overall hourly error.

One significant anomaly in the results was observed in the
performance during round 5. This round in particular included
a significant disturbance in the load data caused by a hurricane
that struck the area causing power outages, and therefore a
reduction in load. Data for the load during this period and the
corresponding disruption to the load‐temperature relationship
can be seen in Figures 6 and 7.

4.2 | Track 2

The aim of Track 2 was to predict the hour in which the peak
demand occurs. The number of days are different across each

TABLE 4 Results from Track 1 with the best performing model indicated in bold and underlined and the model used in the competition shaded in yellow.

Model

Time period/Round

Average

Model information

Train
2015–
2017

Jan–
Feb

Mar–
May

Jun–
Jul Aug

Sep–
Oct

Nov–
Dec

GBM
included

MLR
included

Temp.
shift Weight

GBM 2.61% 6.18% 4.96% 5.00% 3.34% 7.68% 4.40% 5.26% Y ‐ ‐ ‐

GBM‐T 2.54% 6.10% 4.93% 4.89% 3.30% 7.66% 4.34% 5.21% Y ‐ Y ‐

MLR 3.35% 5.41% 5.31% 4.91% 3.69% 8.20% 4.34% 5.31% ‐ Y ‐ ‐

MLR‐T 3.33% 5.44% 5.34% 4.89% 3.71% 8.21% 4.32% 5.32% ‐ Y Y ‐

MLR‐L 3.11% 5.25% 5.22% 4.74% 3.53% 8.31% 4.14% 5.20% ‐ Y ‐ Load

MLR‐W 3.10% 5.43% 5.24% 4.60% 3.51% 8.47% 4.49% 5.29% ‐ Y ‐ Pk

MLR‐TL 3.08% 5.28% 5.25% 4.75% 3.57% 8.30% 4.12% 5.21% ‐ Y Y Load

MLR‐TW 3.16% 5.35% 5.19% 4.59% 3.49% 8.48% 4.42% 5.25% ‐ Y Y Pk

ENS 2.77% 5.23% 5.01% 4.74% 3.48% 7.65% 4.20% 5.05% Y Y ‐ ‐

ENS‐L 2.66% 5.15% 5.00% 4.69% 3.42% 7.74% 4.13% 5.02% Y Y ‐ Load

ENS‐W 2.50% 4.97% 4.92% 4.68% 3.38% 7.79% 4.03% 4.96% Y Y ‐ Pk

ENS‐T 2.74% 5.18% 5.03% 4.72% 3.47% 7.66% 4.19% 5.04% Y Y Y ‐

ENS‐TL 2.63% 5.10% 5.01% 4.67% 3.41% 7.74% 4.10% 5.01% Y Y Y Load

ENS‐TW 2.47% 5.03% 4.93% 4.67% 3.36% 7.83% 4.00% 4.97% Y Y Y Pk

F I GURE 6 Unexpected event shown in the load for Round 5
(highlighted in red).
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round, and therefore normalisation is performed by dividing
the total error metric for the round by the number of days in
that round. This enables comparison of the performance from
one round to another. The results are provided in Table 5.
Performance reveals the ability to predict the time within 1–2 h
of the true time on average. Improvement was also observed
from the shifting of temperature. Even after weighting, models
including shifts in temperature were optimal for three of the
six rounds.

In this round, the decision‐making regarding the model to
use yielded improvements to forecast performance in one
round (Round 5) and worse performance in another (Round 2).
Overall this variation netted out and the overall average of the

ensembled methods demonstrates close performance (varia-
tion from 1.37 to 1.41). However, the error varies significantly
across rounds due to some time of year having days with
multiple periods (making it difficult to detect which will be the
peak) and others with a clear single peak. This can be seen in
Figure 8 where one day has a clear peak at hour 18, whereas
another day has a peak at hour 20, and another hour with
almost the same magnitude 8 h earlier.

Seasonal challenges result when trying to anticipate peak
hour. This is a result of the underlying variability in peak hour.
Similar effects may be observed with growth in solar photo-
voltaic generation. Understanding the link between this vari-
ability and the accuracy of forecasting approaches can provide
insight into the reliability of peak related scheduling or energy
optimisation efforts.

F I GURE 7 Same unexpected event. The data overall is shown in
black, round 5 in blue, and the data for September 14–17 (The dates of a
hurricane which hit the United States) shown in red.

TABLE 5 Results from Track 2 with the best performing model indicated in bold and underlined and the model used in the competition shaded in yellow.
The Error metric has been normalised by the number of days in each round to enable ease of comparison of model performance across rounds.

Model

Time period/round

Average

Model information

Train
2015–
2017

Jan–
Feb

Mar–
May

Jun–
Jul Aug

Sep–
Oct

Nov–
Dec

GBM
included

MLR
included

Temp.
shift Weight

GBM 1.08 1.45 1.25 1.14 1.52 1.83 2.17 1.56 Y ‐ ‐ ‐

GBM‐T 1.04 1.46 1.20 1.15 1.52 1.68 1.95 1.49 Y ‐ Y ‐

MLR 1.13 1.65 1.17 1.19 1.18 1.86 2.20 1.54 ‐ Y ‐ ‐

MLR‐T 1.11 1.51 1.09 1.15 1.10 1.85 2.19 1.48 ‐ Y Y ‐

MLR‐L 1.09 1.73 1.12 1.09 1.15 1.84 2.07 1.50 ‐ Y ‐ Load

MLR‐W 1.72 2.45 1.43 0.99 1.22 2.01 2.75 1.81 ‐ Y ‐ Pk

MLR‐TL 1.05 1.69 1.14 1.09 1.24 1.87 2.13 1.53 ‐ Y Y Load

MLR‐TW 1.71 2.11 1.41 1.01 1.27 1.83 2.75 1.73 ‐ Y Y Pk

ENS 0.99 1.18 1.16 1.04 1.27 1.84 2.00 1.41 Y Y ‐ ‐

ENS‐L 0.95 1.10 1.11 1.03 1.24 1.82 1.91 1.37 Y Y ‐ Load

ENS‐W 1.09 1.44 1.11 1.05 1.31 1.67 1.93 1.42 Y Y ‐ Pk

ENS‐T 0.99 1.17 1.07 1.04 1.30 1.77 1.96 1.39 Y Y Y ‐

ENS‐TL 0.95 1.20 0.98 1.07 1.28 1.80 1.96 1.38 Y Y Y Load

ENS‐TW 1.07 1.43 1.08 1.03 1.28 1.63 1.86 1.38 Y Y Y Pk

F I GURE 8 Differences in daily load shape across 2 days.
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To track how much difference there is in the peak hour
from one day to the next across the region of interest, the
monthly standard deviation in peak hour is used. For the re-
gion of interest, there is a significant difference across seasons
with the monthly standard deviation in peak hour ranging
from roughly 1 hour in the summer months to six in winter
months as shown in Figure 9. The performance across rounds
also varies with the period from March to July resulting in the
least error overall. In some rounds with little variation Rounds
3 and 4, simple MLR based methods yielded the highest ac-
curacy. This was evidenced in the competition where the
benchmark model outperformed many of the competitors in
these rounds. In this Track, similar benefits of ensembling with

rounds 1, 2, and 4–6 showing improvements from the shifts in
temperature.

4.3 | Track 3

In this round similar findings as prior Tracks were seen as far
as the model performance. The overall results for each of the
methods for Track 3 can be found in Table 6. First, overall, the
ensemble methods outperformed the methods reliant on a
single approach. Second, there was limited difference between
the average performance of the ensemble models over the 6
rounds. However, what is not apparent is the significance of a
shift in the daily shape metric. Finally, larger differences occur
in the natural variation over the year than in between the
different models. This track was the lowest performing round
for the ‘peaky‐finders’ and the only track in which the team
scored below the recency benchmark.

5 | DISCUSSION

5.1 | Forecast evaluation metrics

With new areas of forecasting come new metrics. Where over
time standards and methods of performance have been
developed around acceptable ‘MAPE’ or other demand fore-
casting metrics, work remains to be done to link the forecast

F I GURE 9 Data for all three local distribution companies shows the
peak hour varies much more significantly in winter than summer.

TABLE 6 Results from Track 3 with the best performing model indicated in bold and underlined and the model used in the competition shaded in yellow.
The Error metric has been normalised by the number of days in each round to enable ease of comparison of model performance across rounds.

Model

Time period/round

Average

Model information

Train
2015–
2017

Jan–
Feb

Mar–
May

Jun–
Jul Aug

Sep–
Oct

Nov–
Dec

GBM
included

MLR
included

Temp.
shift Weight

GBM 0.089 0.119 0.108 0.102 0.098 0.121 0.172 0.120 Y ‐ ‐ ‐

GBM‐T 0.084 0.115 0.103 0.102 0.095 0.112 0.168 0.116 Y ‐ Y ‐

MLR 0.085 0.127 0.103 0.085 0.075 0.102 0.173 0.111 ‐ Y ‐ ‐

MLR‐T 0.081 0.122 0.101 0.087 0.077 0.101 0.173 0.110 ‐ Y Y ‐

MLR‐L 0.081 0.119 0.101 0.085 0.076 0.099 0.164 0.108 ‐ Y ‐ Load

MLR‐W 0.090 0.156 0.099 0.085 0.082 0.102 0.162 0.114 ‐ Y ‐ Pk

MLR‐TL 0.077 0.116 0.098 0.087 0.078 0.099 0.163 0.107 ‐ Y Y Load

MLR‐TW 0.089 0.144 0.094 0.086 0.080 0.097 0.158 0.110 ‐ Y Y Pk

ENS 0.077 0.109 0.096 0.087 0.082 0.101 0.165 0.107 Y Y ‐ ‐

ENS‐L 0.075 0.106 0.096 0.087 0.083 0.101 0.161 0.105 Y Y ‐ Load

ENS‐W 0.074 0.110 0.092 0.086 0.083 0.100 0.154 0.104 Y Y ‐ Pk

ENS‐T 0.075 0.107 0.095 0.090 0.082 0.099 0.165 0.106 Y Y Y ‐

ENS‐TL 0.074 0.104 0.095 0.090 0.082 0.099 0.160 0.105 Y Y Y Load

ENS‐TW 0.072 0.106 0.091 0.089 0.082 0.096 0.153 0.103 Y Y Y Pk
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metric to the business decisions that would be affected by
metrics for peak hour forecasting. This is true not only for this
competition, but for the larger field as the separation of per-
formance metrics from the business decisions being informed
can result in wasted model development efforts and subopti-
mal use of resources.

5.2 | Temperature error

One of the issues that our team sought to deal with was the
impact of errors in temperature forecasts on load forecast
accuracy. The results demonstrate that the approach provided
incremental benefits across all three rounds. However, the
computational cost was tripled due to the need to calculate
three times the number of forecasts. With advance knowledge
of the types and magnitude of the forecast temperature error,
other approaches to make the forecasting process more robust
to temperature errors would be of benefit. Due to the time
limitations in the competition the shifts in hour were limited to
�1 however similar to the evaluation of the number of lags to
use in Ref. [24] empirical determination of the most suitable
shifts in temperature could be done. Another alternative
approach could be to create a single synthetic temperature
series with which to forecast rather than combining the fore-
cast results. Furthermore, in practice the availability of
ensemble forecasts may provide a better means to account for
uncertainty in weather parameters.

5.3 | Competition decision making

One of the most significant challenges that arose during the
competition was selecting the forecast model to use for each
round. Upon the completion of the round and the receipt of
the actual data, there was a relatively short time period in which
the decision had to be made to continue with the existing
approach, or try to further improve the forecasting perfor-
mance. Such adjustments to the models used did not always
improve forecast performance. For example, decisions on the
forecasting methodology based judgmentally on prior rounds
led to selection of sub‐optimal models for Rounds 2 (lack of
temperature correction), and 6 (lack of weighting in Tracks 1
and 2). Another example is that the choice to use the weighting
approach in Round 5 for Track 1 resulted in reduced perfor-
mance and therefore the weighting was not used for Track 1 in
Round 6 (thought it would have provided benefit). Ultimately,
forecaster judgement of when to implement a new model
(evaluated based on historical data) will always carry some risk
of reduced performance when exposed to new data. This
highlights the benefit of a causal understanding of how
changes in forecast model lead to improved forecast perfor-
mance. If better understanding of the underlying reason why
features or models better perform (as opposed to ‘the metric
improved by xx%’) can be gained then forecasters can have
more confidence that they will continue to provide benefit in
the future.

5.4 | Relevance of competition to practice

Large‐scale forecasting competitions can provide valuable
insight into the performance of forecasting methods and serve
to compare newly proposed methods with established state‐of‐
the‐art, and to show that these methods work in practice. They
can also promote emerging challenges and stimulate research
activity, as in the case of daily peak load forecasting, which has
received relatively little attention in the academic literature to
date. Predicting the timing of daily peak load is certainly distinct
from classical time series prediction, though we did not treat is
as such here. For example, others have addressed the property
that there is, by definition, exactly one peak each day via ordinal
regression [18] and cardinal points [40, 41]. However, forecast
users may be interested in other definitions of peaks. We saw
examples of days with two distinct peaks in this competition;
both may be relevant to energy system operation. It may even be
preferable to integrate the forecasting and decision‐making
process, as was demonstrated for peak shaving using battery
energy storage in Ref. [12]. The competition set‐up prevented
the use of recent observations and therefore classical time series
methods, so the potential benefits of these methods could not
be studied.

Unusual or previously unseen conditions are of particular
interest to forecast practitioners as they can introduce sub-
stantial uncertainty and may have a large impact on energy
systems. The BDC22 included a period affected by a hurricane,
which disrupted power supplies and reduced electricity load
substantially for several days. This event was unpredictable
following a strategy of ‘learning from data’ (competition data at
least) as nothing like it was present in the provided historic data.
In practice, the operational forecasters would have been well
aware of the inclement weather and able to make adjustments to
their forecasts, perhaps even based on past experience of similar
events. Competitors in BDC22 may also have been aware of this
particular hurricane, which hit the organisers' home state, or
discovered it after noticing the unusual temperature data, and
been able to make adjustments. We are therefore sceptical as to
the relevance and benefit of including such events in ex‐post
competitions with limited explanatory data and suggest that
future forecasting competitions aim to recreate the reality of
operational forecasting where such events are concerned.

6 | CONCLUSION

This paper presents the approach used by the team ‘peaky‐
finders’ to predict the hourly magnitude, time, and shape of the
peak load using an ensemble of MLR and GBM models. The
results indicate that hourly models for forecasting electricity
demand provide reasonable performance when identifying the
time of the peak. As the volatility grows, the ability of a single
approach to predict the time and magnitude of the demand
remains feasible. However, more bespoke additions such as the
proposed weighting scheme can be used to increase accuracy
for the hour of peak. However, this necessitates the production
and maintenance of several disparate forecasts which increases
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complexity. Therefore, utilities must identify the sensitivity of
their scheduling and dispatch decisions to these factors in
order to determine the point at which bespoke modelling is
required, for example, should days be considered as containing
just one or multiple peaks? Calculating and tracking the vari-
ability of peak hour over time is one useful metric by which
utilities can evaluate the need for bespoke peak hour fore-
casting model development. As this work presents the out-
comes of the BDC2022 forecasting competition, which
included data from one region of the United States, future
work should evaluate the performance of similar methods on
diverse data from multiple regions of the world to investigate
the differences that seasonality and load composition have on
the performance of peak load forecasting methods.
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