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Abstract
By incorporating full flexibility and enabling the quantification of
crucial parameters such as binding free energies and resi-
dence times, methods for investigating protein-ligand binding
and unbinding via molecular dynamics provide details on the
involved mechanisms at the molecular level. While these ad-
vancements hold promise for impacting drug discovery, a
notable drawback persists: their relatively time-consuming
nature limits throughput. Herein, we survey recent imple-
mentations which, employing a blend of enhanced sampling
techniques, a clever choice of collective variables, and often
machine learning, strive to enhance the efficiency of new and
previously reported methods without compromising accuracy.
Particularly noteworthy is the validation of these methods that
was often performed on systems mirroring real-world drug
discovery scenarios.
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Introduction
The study of ligand binding and unbinding processes

provides thermodynamic and kinetic insights that can be
used in drug discovery [1,2]. On the one hand, thanks to a
low computational cost, standard docking tools can
www.sciencedirect.com
predict bound poses for entire libraries in a limited
amount of time. On the other hand, these methods only
provide a coarse estimation of binding energies and a
limited understanding of the dynamic processes of pro-
tein e ligand interactions due to several well-known

limitations: ligand conformational sampling is only
performed within the boundaries of a predefined binding
pocket, receptor flexibility is only partially explored, and
scoring functions are based on very simplified heuristics
[3e6]. Molecular dynamics (MD) simulations can be
applied to obtain a more detailed exploration of the
conformational space [7e11]. However, MD suffers, in
turn, from a key drawback: an extensive sampling of high
energy states would require exceedingly long trajec-
tories, making the study of rare events impractical [12].
To overcome this issue, an assortment of enhanced

sampling methods has been developed [13e16]. These
methods accelerate the sampling of rare events by
modifying potential energy functions or introducing
biasing forces, in order to decrease barriers height, thus
making efficient kinetic and thermodynamic quantita-
tive predictions possible [12,17]. Enhanced sampling
protocols have been thoroughly reviewed elsewhere
[18e22]. In particular, case studies involving systems of
pharmacological interest have been recently reported
[23e25]. In general, the application of MD-based pro-
tocols to large datasets remains challenging due to longer

calculation times and difficulties in obtaining a fully
automated setup. The advantages and disadvantages of
using these methods compared to docking are summa-
rized in Figure 1.

Here, we aim at providing an overview of the most
recent updates concerning the development or the
application of MD-based methods to study ligand
binding and unbinding events.
Recently reported molecular dynamics-
based methods for studying ligand binding
and unbinding
CF-SMD
Constant force steered molecular dynamics (CF-SMD)
is a protocol to evaluate dissociation rates for protein-

ligand complexes [26,27]. In multiple runs, a constant
force is applied along a collective variable (CV) until a
dissociation event is observed. In each iteration, a
Current Opinion in Structural Biology 2024, 87:102871
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Figure 1

Schematic representation of the main advantages and disadvantages of using standard ligand docking (on the left) versus enhanced sampling methods
for studying ligand binding and unbinding (on the right).

2 New Concepts in Drug Discovery (2024)
distinct value of the constant force is applied. The
dissociation time devoid of applied bias is estimable
through extrapolation from a function that optimally
interpolates dissociation time against applied force,
employing Bell’s and DHS models [28,29]. Utilizing
both models, the method returns a prediction of the

dissociation time within a range bounded by lower (Bell)
and upper (DHS) limits. While predicting absolute
values for the kinetic constants remains a challenging
task, the method is very effective for ranking relative
dissociation times among different systems [26].

MMVT-SEEKR2
In SEEKR2, kinetic and thermodynamic constants are
estimated by studying target-ligand binding and un-
binding events through Markovian milestoning with
Voronoi tessellation (MMVT) [30]. This approach re-
quires defining a CV, such as the distance between the
center of mass (COM) of the ligand and the COM of the

binding site residues. Voronoi cells are established as
concentric spheres expanding along the CV. Initial
structures within each cell are generated by gradually
extracting the ligand from the binding site using steered
molecular dynamics (MD) while applying a harmonic
restraint until reaching the outermost cell. Subse-
quently, MMVT simulations are conducted within each
cell until convergence is achieved, with trajectories
confined within the cell boundaries through reflective
boundary conditions. Notably, no external bias is intro-
duced during this phase. Thanks to the concurrent use of

multiple partitions, SEEKR integrates both MD and
Brownian dynamics (BD) approaches, exploiting MD
when explicit solvent and full molecular flexibility are
required, while resorting to BD when molecules can be
treated as semi-rigid objects in implicit solvent. Ulti-
mately, MMVT returns the ligand residence time while
generating a free energy profile for the unbinding event.
Current Opinion in Structural Biology 2024, 87:102871
The protocol was efficiently applied to predict and rank
the residence times of a series of JAK2 and JAK3 in-
hibitors [31].

MLTSA
In 2022, Badaoui et al. described an enhanced sampling
protocol that characterizes the free-energy profile of
ligand unbinding [32]. The method utilizes an iterative

strategy to identify key molecular features relevant to
the unbinding process. In this way, an aprioristic
approach to the CV definition is not required. CVs are
dynamically determined and adapted as the ligand
advances along the unbinding trajectory. First, a stan-
dard MD simulation is carried out to establish an initial
set of CVs based on interatomic distances and to
determine the required bias. These CVs and the bias
are then iteratively updated as the distance between
the ligand and the protein increases. When all ligand-
protein contacts are lost, the process halts. Subse-

quently, the finite-temperature string method is uti-
lized to generate a converged free energy profile and to
estimate a reliable transition state ensemble [33]. A
machine learning (ML)-based transition state analysis
is hence applied to identify relevant molecular de-
scriptors, which can be used in rational molecular
design. In detail, downhill unbiased simulations are
initiated near the identified transition state and clas-
sified as “in” or “out”, depending on the final state
(bound or unbound), that is achieved. From these
trajectories, a set of CVs is selected to train a ML

model. Two ML approaches were used for validation: a
multilayer perceptron and a gradient boosting decision
tree. Both techniques could efficiently predict the
trajectory outcome and identify key features that drive
the ligand through the binding or unbinding event.
The protocol was successfully applied to study a kinase
and a G-Protein-Coupled Receptor (GPCR) [32,34].
www.sciencedirect.com
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LiGaMD2
Gaussian accelerated molecular dynamics (GaMD)
evolved from accelerated MD (aMD) [35e38]. The
original idea behind aMD was to enable extensive
conformational sampling required for describing free
energy surfaces of complex systems within a feasible
timeframe using standard hardware [39]. A harmonic
boost is applied to the potential energy of the system to
enhance the conformational sampling. The boost is only
applied when the potential energy is beneath a certain
threshold and its amplitude is continuously updated

according to the difference between the threshold and
the potential energy at each timestep during the
simulation. In this way, the boosted energy surface re-
sults smoothened while maintaining the original shape.
In GaMD, the boost follows a Gaussian distribution,
which, reducing statistical noise, allows a more accurate
recovery of the original free energy landscape by
cumulant expansion to the second order [39]. Derived
from GaMD, the Ligand Gaussian accelerated molecular
dynamics (LiGaMD) implementation is specifically
tailored for exploring protein-ligand interactions [40]. In

LiGaMD, users have the option to specify whether to
apply the boost solely on the potential energy of the
nonbonded interactions of the ligand or on both the
potential energy of the nonbonded interactions of the
ligand and the total potential energy of the system [40].
In the recently reported LiGaMD2, the possibility to
selectively boost both the ligand and the binding site
residues was introduced. This approach enhances per-
formance, particularly for systems featuring buried li-
gands and closed binding pockets, and it has been
successfully validated on the T4 lysozyme [41].

BiKi Hydra
BiKi Hydra is a tool originally developed to characterize
the energetic profile and persistency of water molecules
in binding pockets [42]. Since hydration is critically
important in determining the thermodynamics and ki-
netics of protein-ligand (un)binding, building upon BiKi
Hydra’s framework, a CV based on dehydration (dehy-
dration bias) was developed [43]. By tuning the local
hydration of binding partners, this bias helps overcoming
the dehydration barrier, thus increasing the probability of
observing successful native binding events in a short
amount of simulated time. The techniquewas efficiently

applied to accelerate the binding of an inhibitor against
Src kinase from an unbound, solvated state. In detail,
multiple short-length simulations were performed. Un-
biased simulations were used to establish a baseline,
and predictably, no binding event was observed. When
the dehydration bias was only applied to the ligand, this
would systematically get in proximity of the binding
pocket, but the actual bound conformation could never
be recovered. When the bias was applied to both the
ligand and the binding site, the crystallographic pose
could be recovered in at least one run. The binding event

was in line with that observed thanks to microsecond-
www.sciencedirect.com
long unbiased MD simulations, as reported by Shan
et al. [44]. Eventually, another attempt was made,
initially biasing the ligand and forcing partial dehydration
in the binding pocket only at a later stage (delayed bias).
In this case, true binding events increased, but together
with false positives, suggesting a propensity of the
delayed bias to generate artifacts. The advantage of this
technique is that the dehydration bias is mild: it selec-

tively desolvates targeted regions while minimally
disrupting the water network. Upon reaching a prede-
termined dehydration threshold, the bias is automati-
cally deactivated. In this way, the system reverts to an
unbiased state when, after crossing the dehydration en-
ergetic barrier, the ligand reaches the binding site.

Targeted MD for the estimation of drug-target
residence time
Ziada et al. recently presented a protocol based on
reverse targeted MD (TMD�1) that ranks compounds
based on their residence time (RT) [45]. TMD�1 entails
the application of a harmonic constraint to the Root
Mean Square Deviation (RMSD) between the current

position of the ligand and a reference position. The
system evolves towards a target RMSD value, which is set
at a predefined higher value, while the reference position
is gradually modified until the ligand leaves the binding
site. The RT is closely related to the difference between
the energy of the unbinding transition-state and that of
the bound state. However, the total energy added by the
bias includes both: i) the work exerted in pushing the
ligand uphill toward the peaks of the energy barriers, and
ii) the bias employed during descents toward metastable
states. Here, a new function was developed that only

encompasses the former, while ignoring the latter. The
obtained RTscore is assumed to be linearly related to the
natural logarithm of the experimental RT. Using this
approach, the results showed that it was possible to
discriminate among short RT ligands (RT < 1.5 min),
medium RT ligands (1.5 min � RT � 1 h), and long RT
ligands (RT > 1 h). The main advantage of the RTscore
is that it includes all the energy barriers encountered
during the dissociation process, making it possible to
evaluate complex multistep kinetic processes. The other
advantage is the low computational cost that it requires.

In fact, each simulation ran for only 1.5 ns [46].

dcTMD-based Workflows
Dissipationecorrected targeted molecular dynamics

(dcTMD) exerts an external pulling force along a CV by
using a moving distance constrain. The method ac-
counts for deterministic and stochastic dynamics to
model realistic representations of biological systems
[47]. In the work of Wolf et al. Jarzynski’s equality was
used to compute from dcTMD simulations the free
energy profile and the friction field, which were, in turn,
utilized in a numerical integration of the Langevin
equation. Thereby, temperature-boosted Langevin
simulations were run to unveil coarseegrained dynamics
Current Opinion in Structural Biology 2024, 87:102871
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of biological systems and reveal pathwayedependent
kinetics of rare events in reasonable computational
times. The Hsp90einhibitor and trypsinebenzamidine
proteineligand complexes were successfully modeled
by using this method [48]. Using another approach
based on dcTMD, a 2D model (multi-CV) was
employed to assess the binding/unbinding of the
trypsinebenzamidine complex [49]. The pulling force

was applied along one CV, while the system could evolve
independently along the second CV. This strategy was
adopted to capture a more detailed and comprehensive
representation of the system under investigation.
However, Jarzynski’s approximation only holds if the
work exerted on a system follows a Gaussian distribu-
tion. As the system evolves across multiple dimensions
along different reaction coordinates, the aggregate work
distribution might deviate from normality. A theoretical
framework was devised to split the total reaction flux
into multiple pathways. Pathespecific rates were

weighted based on their probability, and then combined
into global binding/unbinding rates, demonstrating the
relative contribution of each rate to the global reaction
rate. Recently, to automatize the process of detecting
reaction pathways, an algorithm based on an unsuper-
vised machine learning method for clustering trajec-
tories was developed. The approach allows the
identification of pathways of transitions between
metastable states in MD simulation, as well as the
characterization of CVs or other underlying factors liable
for protein-ligand binding and unbinding phenomena.

The technique was applied to the streptavidinebiotin
and a A2a adenosine receptor e ligand complexes [50].

TRAM
A recent study reported a Transition�based Reweight-
ing Analysis Method (TRAM) alongside Markov state
models to investigate ligand dissociation processes from
the protein kinase PYK2 [51]. The approach is compu-
tationally efficient as biased and unbiased simulations
are blended. t�Random acceleration molecular dy-
namics (t�RAMD) was used in combination with um-
brella sampling for the detection of dissociation
pathways. TRAM provided computed dissociation rates
within an order of magnitude from experimental data.

Moreover, coarse�graining microstates obtained from
Markov state models into a small number of macrostates
afforded an easy interpretation of the ligand dissociation
mechanism at the molecular level.
Conclusions
The MD-based methods reported in recent years for
studying ligand binding and unbinding share some
common features: i) largely exploiting enhanced sam-
pling, these methods have been developed with effi-
ciency in mind, aimed at returning results in a timeframe
compatible with fast-paced drug discovery projects; ii)
along the same line, the validation of the proposed
Current Opinion in Structural Biology 2024, 87:102871
methods usually goes beyond simple toy models and has
actually been performed on pharmaceutically-relevant
systems, including flexible enzymes and membrane
proteins; iii) like many others, this field is being deeply
impacted by the widespread adoption of machine
learning. Supervised and unsupervised approaches can
both be found in mixed workflows with ML. One limi-
tation of current techniques is related to possible unre-

alistic states of the system generated by methods that
work at high temperatures and/or bias the system’s
energy. In principle, this could limit the accuracy of path
predictions and, thus, the confidence in the gathered
insights for rational drug design. Reasonably, it will soon
be possible to simulate fully flexible binding and un-
binding events, concurrently extracting thermodynamic
and kinetic observables, in large screening campaigns,
approaching the throughput of standard ligand docking
methods. In due time, these methods will provide
actionable insights for the design of new and, possibly,

better compounds and will standardly be employed in
drug discovery workflows.
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