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Highlights
Immune cell metabolic reprogramming
plays a pivotal role in the atherogenic
environment, orchestrating a complex
interplay between inflammatory pro-
cesses and metabolic pathways within
the arterial walls.

The signaling properties of certain me-
tabolites play key roles in the immune re-
sponse associated with atherosclerosis.

Metabolic pathways and metabolites are
emerging as promising therapeutic
targets in atherosclerosis, offering novel
avenues for interventions to modulate
immune responses and inflammatory
Atherosclerosis, a chronic inflammatory condition, remains a leading cause of
death globally, necessitating innovative approaches to target pro-atherogenic
pathways. Recent advancements in the field of immunometabolism have high-
lighted the crucial interplay between metabolic pathways and immune cell
function in atherogenic milieus. Macrophages and T cells undergo dynamic
metabolic reprogramming to meet the demands of activation and differentia-
tion, influencing plaque progression. Furthermore, metabolic intermediates in-
tricately regulate immune cell responses and atherosclerosis development.
Understanding the metabolic control of immune responses in atherosclerosis,
known as athero-immunometabolism, offers new avenues for preventive and
therapeutic interventions. This review elucidates the emerging intricate inter-
play between metabolism and immunity in atherosclerosis, underscoring the
significance of metabolic enzymes and metabolites as key regulators of dis-
ease pathogenesis and therapeutic targets.
processes implicated in disease
progression.
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Intersection of immunometabolism and atherosclerosis pathogenesis
Atherosclerosis is a life-threatening chronic inflammation resulting in a wide range of arterial
diseases, such as myocardial infarction and ischemic stroke, and remains the leading cause of
vascular death worldwide [1,2]. Despite successful interventions targeting both traditional and
non-traditional risk factors for atherosclerosis, the high prevalence of the disease highlights the
need for novel approaches toward targeting pro-atherogenic pathways [3].

Endothelial cell dysfunction and inflammatory activation that manifest in lesion-prone areas of the
arteries upset the vascular tone and play a key role in initiation and promotion of atherosclerotic
plaque formation [4]. The vascular endothelium has numerous functions including coordination
of the inflammatory response [5,6]. Lining the inner layer of blood vessels, endothelial cells
serve as the interface between blood and tissues, directly in contact with blood. Consequently,
these cells are vulnerable to damage and inflammation induced by risk factors associated with
atherosclerosis, such as obesity, hypertension, poor nutrition, hypercholesterolemia, smoking,
or diabetes mellitus [7]. This susceptibility is particularly notable in regions of blood vessels
where flow is disturbed, predisposing them to the development of atherosclerotic plaques [8].

Recently, a novel research field termed ‘immunometabolism’ (see Glossary) has provided new
insight into our comprehension of the immune system in both health and disease [9]. Immune cell
metabolic reprogramming, which involves alterations in crucial intracellular metabolic pathways,
such as glycolysis, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation (OXPHOS), the
pentose phosphate pathway (PPP), fatty acid synthesis (FAS) and β-oxidation, and amino acid
metabolism, significantly regulates and shapes immune responses [10,11]. Moreover, metabo-
lites derived from these pathways or from gut microbiota play key roles in the modulation of met-
abolic pathways in immune cells and rewire their proliferation, polarization, and migration to
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Glossary
Anaplerosis: the formation of TCA
cycle intermediates to replenish the
extracted supplies.
Athero-immunometabolism: a study
of the effect of metabolism on the
functional role of immune cells in the
development of atherosclerosis.
Efferocytosis: the process by which
phagocytes internalize and degrade
apoptotic cells.
Ferroptosis: an iron-dependent cell
death that gives rise to lipid peroxidation
and oxidative cell death.
Foam cells: a type of macrophage cell
with a foamy appearance due to the
accumulation of lipid droplets and
cholesterol.
Glutaminolysis: the metabolic
pathway of deamination and
degradation of glutamine, producing
ATP and anabolic carbons.
Immunometabolism: a field of
research that focuses on the study of the
links and crosstalk between cellular
metabolism and immune cell function.
Intimal macrophages: macrophage
cells that differentiate from monocytes
after infiltrating the intima layer of blood
vessels.
Lipogenesis: the metabolic pathway of
fatty acid synthesis from non-lipid
precursors.
Non-ST elevated myocardial
infarction (NSTEMI): a heart attack
without elevation of the ST segment on
an electrocardiogram that happens due
to a partial blockage of an artery and
causes less damage to the heart
muscle.
ST-elevated myocardial infarction
(STEMI): ST is a wave segment on an
electrocardiogram that shows no
electrical activity in normal conditions
and hence is flat. STEMI is a heart attack
that shows a rise in the ST segment of
the wave on the electrocardiogram and
means that the heart muscle is in the
process of dying due to blockage of a
coronary artery.
peripheral tissues [12–14], and hence may represent major players in the modulation of vascular
inflammation in atherosclerosis.

A deeper understanding of metabolic reprogramming offers the potential for discovering immu-
noregulatory therapies aimed at preventing or treating metabolic inflammatory disease. In this re-
view, the role of immune cells in atherosclerosis progression and the influence of metabolic
pathways and metabolites on the metabolic adaptation of immune cells in atherogenic milieus
are discussed. Indeed, we focus our discussion on macrophages and T lymphocytes, as these
are the main immune cells whose metabolic contribution to atherosclerosis has been studied.
Nevertheless, we will also touch upon other immune cells.

Steps in plaque formation
Consequent to the initial lesion to the endothelium, both innate and adaptive immune responses
are triggered (Figure 1, Initial lesion). Circulating monocytes infiltrate subendothelial regions upon
binding to adhesion molecules upregulated on the endothelial cells, leading to the accumulation
of intimal macrophages [15] (Figure 1, Fatty streak). Furthermore, disturbed endothelial ho-
meostasis facilitates the transportation and entrapment of low-density lipoprotein (LDL) into the
subendothelial space [16], where it undergoes oxidation and is subsequently taken up by macro-
phages, leading to the development of foam cells (Figure 1, Initial lesion). Additionally, foam cells
derived from vascular smooth muscle cells (VSMCs) exacerbate the vascular inflammatory
response [3,17].

The accumulation of necrotic foam cells, cholesterol crystals, and cellular debris forms the lipid
core of the atherosclerotic plaque (Figure 1, Fatty streak). The consequent upregulation of multi-
ple chemokines and cytokines stimulates VSMCs to undergo proliferation and migration towards
the intima, resulting in the synthesis of extracellular matrix components such as collagen and elas-
tin (Figure 1, Atherosclerotic lesion). This process contributes to the formation of the fibrous cap
and thickening of the arterial wall [18].

Subsequently, the plaques expand as fibrous tissues proliferate, thereby restricting blood flow
(Figure 1, Fibrous plaque). In some cases, the fibrous cap thins because there is a decrease in
the synthesis of extracellular matrix macromolecules, while in other cases, plaques may progress
to accumulate a higher proportion of matrix and a lower proportion of lipid over time. Both types
of plaques eventually culminate in thrombosis, either through plaque rupture or superficial erosion
(Figure 1, Plaque rupture), consequently leading to ST elevated myocardial infarction
(STEMI) or non-ST elevated myocardial infarction (NSTEMI) [19].

Plaque formation and vulnerability are not solely propelled by lipids but also by inflammation
[19,20] (Figure 1, right). Changes in the composition of numerous immune cells, including macro-
phages, dendritic cells, T cells, B cells, mast cells, and neutrophils, as well as the modified release
of cytokines, chemokines, and other bioactive molecules, disrupt the balance between inflamma-
tion and anti-inflammation at plaque formation sites [21]. For instance, vulnerable plaques have
fewer regulatory T cells and more effector T cells compared with stable plaques [22,23].

Metabolic regulation of immune cell function in atherosclerosis
Immune cells rely on a diverse array of metabolic pathways to support their functions and re-
sponses to various stimuli. Glycolysis, the process of breaking down glucose into pyruvate,
plays a central role in providing energy and biosynthetic precursors for rapid immune cell activa-
tion and proliferation [19,20]. OXPHOS, involving the utilization of substrates to produce ATP in
the mitochondria, is crucial for sustaining long-term immune cell functions such as memory
2 Trends in Biochemical Sciences, Month 2024, Vol. xx, No. xx
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Figure 1. Atherosclerosis as a metabolic and chronic inflammatory disease. Damage to endothelial cells results in the
release of adhesionmolecules and the accumulation of intimalmacrophages. The oxidation of LDL and the subsequent formation
of foam cells intensify inflammation and the development of plaques. Plaque advancement occurs through lipid accumulation and
production of extracellular matrix components, resulting in arterial wall thickening and the formation of fibrous caps. Concurrently,
chronic inflammation ensues, as immune cells are recruited to the plaque site, secreting elevated levels of inflammatorymediators.
Finally, plaque rupture leads to clinical complications. Abbreviations: IFN-γ, interferon-gamma; IL-6, interleukin 6; LDL, low-density
lipoprotein; TNF-α, tumour necrosis factor alpha; VSMCs, vascular smooth muscle cells.
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formation [19,20]. Additionally, regulated metabolic pathways of the three main nutrients, includ-
ing carbohydrates, lipids, and amino acids, contribute to the metabolic flexibility of immune cells,
influencing their differentiation, cytokine production, and effector responses [20]. The balance
and coordination of these metabolic pathways are essential for maintaining immune cell homeo-
stasis and mounting effective immune responses [11].

In recent years, research has unveiled the intricate interplay between metabolic pathways and
immune cell function, shedding light on how metabolic reprogramming influences immune
Trends in Biochemical Sciences, Month 2024, Vol. xx, No. xx 3
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responses in health and disease. This dynamic relationship between metabolism and immunity
underscores the pivotal role of metabolic pathways in shaping the outcome of immune responses
and opens new avenues for therapeutic interventions targeting metabolic checkpoints to modu-
late immune cell behavior. In the following section, we delve into the fundamental aspects of me-
tabolism in macrophages and T lymphocytes, exploring howmetabolic rewiring dictates their cell
fate and function in the context of atherosclerosis.

Macrophages
The metabolic reprogramming of macrophages is a dynamic and intricate process that shapes
their activation states and immune functions. Within atherosclerotic plaques, monocyte-derived
macrophages play pivotal roles in multiple facets of disease pathogenesis. Through the uptake
of modified lipoproteins, particularly oxidized LDL, macrophages transform into foam cells, lead-
ing to the accumulation of cholesterol esters and the initiation of plaque formation [24] (Figure 2).
The classical activation of macrophages towards a proinflammatory phenotype promotes plaque
progression by fostering oxidative stress, matrix degradation, and the recruitment of additional
immune cells. Conversely, alternative activation of macrophages towards an anti-inflammatory,
profibrotic phenotype may confer a protective role by promoting tissue repair, resolving
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Figure 2. Immune cell functions in atherosclerotic disease. Immune cells playmultifaceted roles throughout the differen
stages of atherosclerotic plaque development, contributing to both plaque initiation and progression, as well as its resolution o
destabilization. Macrophages are key orchestrators within atherosclerotic lesions and are responsible for the uptake of oxidized
lipoproteins (oxLDL), foam cell formation, and secretion of inflammatory mediators, driving plaque inflammation and
progression. The balance between proinflammatory and anti-inflammatory macrophages critically influences plaque stability
and vulnerability. T lymphocytes, including various subsets such as type 1 T helper (Th1), type 2 T helper (Th2), type 17 T
helper (Th17), and regulatory T cells (Tregs), exert diverse effects on atherosclerosis. Effector T cells promote inflammation
and plaque progression through cytokine production and interaction with macrophages. In some cases, they can have dua
roles. Tregs suppress excessive inflammation and promote plaque stability by exerting immunoregulatory functions. Othe
immune cell populations, including B cells, mast cells, and neutrophils, also contribute to atherosclerotic plaque developmen
and progression through various mechanisms, including antibody production and modulation of inflammatory responses
Abbreviations: APC, antigen-presenting cell; IFN-γ, interferon-gamma; IL, interleukin; LDL, low-density lipoprotein; NETs
neutrophil extracellular traps; TGF-β, transforming growth factor-beta; TNF-α, tumour necrosis factor alpha.
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inflammation, and limiting lesion development [25] (Figure 2). Several studies have highlighted
how changes in metabolism underlie this functional plasticity of macrophages [26].

The upregulation of glycolysis in proinflammatory macrophages supports their effector functions,
such as phagocytosis, the production of reactive oxygen species (ROS), and the increase in interleu-
kin (IL)-6 and IL-1β, as a consequence of dimerization and nuclear translocation of pyruvate kinase
M2 (PKM2) [27]. The PPP is also upregulated, thus supporting the generation of metabolic interme-
diates, nucleotides, amino acids, and ribose, which contribute to a proinflammatory phenotype
[28–30]. Furthermore, the TCA cycle is truncated, leading to accumulation of citrate and succinate
[29], with the latter being linked with regulation of IL-1β [31]. In accordance with this metabolic repro-
gramming, it has been shown that macrophages within plaques exhibit heightened expression of
glycolytic enzymes, leading to elevated levels of metabolites derived from both glycolysis and the
PPP, including citrate, fumarate, and succinate [32]. Fatty acid metabolism also plays a significant
role inmacrophage function, linking FAS to atherosclerosis progression via inflammasome activation,
epigenetic modifications, and immune responses [33,34]. FAS is involved in macrophage polariza-
tion, and it has been reported that ATP citrate lyase (ACLY), an enzyme catalyzing a key initial step
in FAS, is upregulated in inflammatory macrophages in human atherosclerotic plaques [35]. In addi-
tion, deletion of fatty acid synthase (Fasn) reduces plaque formation in ApoE–/– mice [34]. By con-
trast, anti-inflammatory macrophages exhibit a preference for OXPHOS, an intact TCA cycle, and
rely on mitochondrial respiration and fatty acid oxidation (FAO) to generate ATP and sustain long-
term repair and regenerative processes, with potential anti-atherosclerotic effects [29,36] (Figure 3).

The metabolic rewiring of macrophages extends beyond energy production to the utilization of
specific nutrients andmetabolic intermediates to regulate immune responses. Argininemetabolism
is a prime example of how metabolic pathways dictate macrophage polarization. Proinflammatory
macrophages express inducible nitric oxide synthase (iNOS), which converts arginine to nitric oxide
(NO) and citrulline, promoting a proinflammatory phenotype. Furthermore, anti-inflammatory mac-
rophages upregulate arginase-1, which converts arginine to urea and ornithine, favoring tissue re-
pair and immunoregulatory functions [37]. Questions have been raised over whether iNOS is
indeed upregulated in circulating or infiltrating human M1 macrophages (differing from what is
seen in murine macrophages), and the main source of iNOS seems to be tissue-resident macro-
phages [38]. In a recent study, it has been shown that in anti-inflammatory macrophages, the con-
version of arginine, derived from apoptotic cells, into ornithine and then putrescine promotes
efferocytosis, the process of clearing apoptotic cells, which aids in the resolution of atherosclero-
sis [39].Moreover, glutaminemetabolism influencesmacrophage activation, with glutamine serving
as a critical substrate for the production of inflammatory cytokines and NO, and is associated with
the development of atherosclerotic lesions [40]. Glutaminolysis is also implicated in the polariza-
tion of macrophages towards the anti-inflammatory phenotype, and it has been reported that en-
hanced α-ketoglutarate (αKG) is important for the activation of this type of macrophage through
engagement of FAO and Jmjd3-dependent epigenetic reprogramming [41]. Furthermore, it has
been reported that glutaminase (GLS) 1-mediated glutaminolysis plays a crucial role in promoting
the clearance of apoptotic cells by macrophages, and impaired macrophage glutaminolysis in-
creases atherosclerosis [42]. Finally, changes in intracellular iron metabolism within macrophages
are intricately linked to macrophage polarization, the production of inflammatory mediators, and
ferroptosis, all of which collectively influence the advancement of atherosclerosis [43].

T lymphocytes
T cells, a crucial component of the adaptive immune system, undergo metabolic reprogramming
to support both protective and pathogenic processes, modulating the balance between immune
activation and tolerance, inflammation, and tissue repair within atherosclerotic plaques. Unlike the
Trends in Biochemical Sciences, Month 2024, Vol. xx, No. xx 5
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Figure 3. Metabolic pathways in macrophages in atherosclerosis. Macrophages play a central role in atherosclerotic
plaque development and progression, exhibiting distinct metabolic phenotypes that influence their inflammatory status and
functional properties. Proinflammatory macrophages, which are prevalent in advanced atherosclerotic lesions, undergo
metabolic reprogramming characterized by enhanced glycolysis, activation of the pentose phosphate pathway (PPP), and
increased fatty acid synthesis (FAS). These metabolic adaptations, together with increased ferroptosis, fuel the production
of proinflammatory cytokines, reactive oxygen species (ROS), and damage-associated molecular patterns (DAMPs)
exacerbating local inflammation and promoting plaque instability. By contrast, anti-inflammatory macrophages, typically
found in early-stage lesions and during plaque regression, show a metabolic preference for oxidative phosphorylation
(OXPHOS), the tricarboxylic acid cycle (TCA), and fatty acid oxidation (FAO). This metabolic profile, together with increased
efferocytosis, support an anti-inflammatory phenotype, promoting tissue repair and resolution of inflammation within the
plaque microenvironment. Abbreviations: ACLY, ATP citrate lyase; ACOD1, aconitate decarboxylase 1; α-KG, alpha-

(Figure legend continued at the bottom of the next page.
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classical view on atherosclerosis that sees macrophages as the dominant immune force, recent
evidence from mass cytometry studies on human coronary arteries revealed that T cells outnum-
ber macrophages in human carotid artery plaques [44]. This is in striking contrast to plaques in
mice, in which the overall proportion of T cells is lower [45]. This suggests a much larger role of
T lymphocytes in the pathogenesis of atherosclerosis than what decades of research in the
field, largely driven by mouse-based research, had foreseen until recently.

The intracellular metabolism of T cells is tightly regulated to meet the energetic and biosynthetic
demands associated with their activation, proliferation, differentiation, and effector functions,
and regulates their contribution to disease progression [46].

Upon encountering antigens, naive T cells undergo a metabolic switch from a quiescent state
sustained by OXPHOS [47] to an activated state marked by increased glycolysis, a hallmark of
metabolic reprogramming in T cell activation [48,49] (Figure 4). This metabolic reprogramming
contributes to the increased expression of glycolysis and PPP genes, including those encoding
solute carrier family 2 member 1 (SLC2A1), solute carrier family 2 member 3 (SLC2A3), hexoki-
nase 2 (HK2), hexokinase 3 (HK3), aldolase (ALDOA), enolase 1 (ENO1), 6-phosphogluconate
dehydrogenase (6PGD), transketolase (TKT), and transaldolase (TALDO1), as well as the master
regulators hypoxia inducible factor 1 subunit alpha (HIF1A) and MYC, in atherosclerotic plaques
[50]. In addition, it has been shown that T cells in plaques overexpress pyruvate dehydrogenase
kinases (PDKs), which are associated with upregulation of inflammatory pathways [51]. In the
same study, the authors reported that targeting the PDK-pyruvate dehydrogenase (PDH) axis
with the small-molecule PDK inhibitor dichloroacetate in ApoE−/−mice reshaped the immune sys-
tem towards an anti-inflammatory phenotype, thus reducing vascular inflammation and athero-
genesis, and promoting plaque stability. The shift towards aerobic glycolysis facilitates rapid
production of ATP [52] and synthesis of metabolic intermediates necessary for T cell proliferation
and effector functions [53,54]. Effector T cells, such as cytotoxic CD8 T cells and type 1 T helper
(Th1) cells, favor glycolysis to support their rapid proliferation and effector responses. The in-
creased glycolytic metabolism is usually accompanied by anaplerosis, in order to replenish
TCA cycle intermediates. In patients with high-risk plaques, the levels of amino acids such as glu-
tamine and serine are reduced compared with low-risk plaques, suggesting increased
anaplerosis [50]. Recently, it has been reported that homoarginine reduces atherosclerosis in
mice through a modulation of T cell actin cytoskeleton, leading to reduced proliferation and cell
migration [55]. Furthermore, indoleamine 2,3-dioxygenase (IDO), which catalyzes the degrada-
tion of tryptophan in the kynurenine pathway, can counteract disease progression by promoting
de novo FoxP3+ regulatory T cell (Treg) expansion [56]. Regulatory T cells andmemory T cells ex-
hibit a preference for OXPHOS to maintain immunosuppressive functions and long-lasting im-
mune memory, respectively [57]. The balance between effectors and Tregs is also influenced
by FAS, and it has been shown that inhibition of acetyl-CoA carboxylase 1 (ACC1) impairs the for-
mation of human andmouse type 17 T helper (Th17) cells and promotes the development of anti-
inflammatory Foxp3+ Treg cells [58]. As mentioned earlier, T cell activation also induces the PPP
to produce building blocks for nucleotide and amino acid synthesis, alongside NADPH, which is
crucial for maintaining reduced glutathione levels and sustaining lipid biosynthesis [59]. In parallel,
T cells also rely on other metabolic pathways, such as glutamine metabolism, to fuel their activa-
tion and effector functions, highlighting the complex interplay between nutrient utilization and im-
mune responses in T cells [60]. Cholesterol signaling during atherosclerosis has been shown to
ketoglutarate; ARG1, arginase 1; CPT1, carnitine palmitoyltransferase I; CytC, cytochrome C; GLUT1, glucose transporter 1
IDO, indoleamine 2,3 dioxygenase; iNOS, inducible nitric oxide synthase; LDH, lactate dehydrogenase; NO, nitric oxide; Nrf2
nuclear factor erythroid 2-related factor 2; PKM2, pyruvate kinase M2; Tf, transferrin.
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Figure 4. CD4 T cell metabolic profiles in the disease microenvironment. T cells undergo significant metabolic
reprogramming within the context of atherosclerosis. Proinflammatory (effector) T cells, such as type 1 T helper (Th1) and type
17 helper (Th17) cells, exhibit a metabolic preference for glycolysis, pentose phosphate pathway (PPP) activation, and fatty acid
synthesis (FAS), facilitating their proinflammatory functions and cytokine production. These metabolic pathways provide the
necessary energy, cofactors, and biosynthetic precursors to sustain the heightened metabolic demands associated with T cell
activation and effector responses. Conversely, regulatory T cells (Tregs), which possess anti-inflammatory and athero-
protective properties, display a metabolic profile characterized by oxidative phosphorylation (OXPHOS) and fatty acid oxidation
(FAO), together with increases in tryptophan (Trp) metabolism and the mevalonate pathway (MP). This metabolic signature
supports the suppressive functions of Tregs, contributing to the maintenance of immune tolerance and attenuation of
atherosclerotic inflammation. Abbreviations: ACC1, acetyl-CoA-carboxylase 1; CPT1, carnitine palmitoyltransferase I; LKB1,
liver kinase B1; PDH, pyruvate dehydrogenase; PDK, pyruvate dehydrogenase kinase; PKM2, pyruvate kinase M2.
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alter T cell function, with increased levels of cholesterol promoting atherosclerosis progression
through the conversion of Treg cells into effector T cells (Teff) cells [61,62].

Furthermore, metabolic intermediates and signaling pathways serve as critical regulators of T cell
function and immune responses. For instance, mammalian target of rapamycin (mTOR) signaling
integrates environmental cues, such as nutrient availability and cytokine signals, to orchestrate T
8 Trends in Biochemical Sciences, Month 2024, Vol. xx, No. xx
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cell metabolism and differentiation [63]. Moreover, metabolites like lactate, acetate, and itaconate
can modulate immune responses, inflammation, and immunometabolism in T cells, highlighting
the multifaceted roles of metabolic intermediates in regulating T cell immunity [64,65]. More spe-
cific links between such metabolites and atherosclerosis are discussed in the next sections.

Other immune cells
The field of athero-immunometabolism is in its infancy, and if there is some initial evidence of
the role of metabolic reprogramming of macrophages and T cells in atherosclerosis, almost
nothing has been published so far for other immune cells.

Metabolite control of the immune response in atherosclerosis
Metabolites have been rediscovered over the past decade to be not mere intermediates of me-
tabolism but as having signaling properties [66]. They can organize entire networks of crosstalk
within and across tissues both in physiology and disease, such as succinate signaling in liver in-
flammation and muscle adaptation to exercise, or the lactate generated by glia in response to
growth factors signaling a conducive environment for neuronal axon growth [67]. The role of
some metabolites in atherosclerosis is only beginning to surface and is described later.

Lipid signaling
Lipids were initially recognized as structural components of cellular, organelle, and nuclear mem-
branes. Recently, however, lipids and their metabolites have been increasingly acknowledged as
key players in intricate signaling pathways that modulate immune cells in multiple ways, including
their response to pathogens, phagocytosis, and inflammation, with implications in a range of
metabolic diseases [68]. Thus, understanding how lipid metabolism can regulate immune cell
response may be useful for potential therapies [69].

Current evidence suggests that a variety of macrophage phenotypes occur in atherosclerotic
plaques, with local lipids and oxidized phospholipids altering their phenotype. Indeed,
atherosclerosis-associated macrophage polarization dramatically affects the lipid-handling
capacity of these cells, underpinned by major transcriptomic changes and altered levels of
lipid-handling proteins [70].

Indeed, lipids and their metabolites are players in intricate signaling pathways that modulate
macrophage responses to pathogens, phagocytosis, ferroptosis, and inflammation. While
lipogenesis is crucial for lipid accumulation and phagocytosis in inflammatory macrophages,
anti-inflammatory macrophages rely on lipid uptake and fatty acid β-oxidation to utilize fatty
acids as their primary energy source (Figure 3). Cholesterol metabolism, regulated by factors
such as sterol regulatory element binding proteins (SREBPs), peroxisome proliferator-activated
receptors (PPARs), and liver X receptors (LXRs), is associated with the cholesterol efflux capacity
and the formation of foam cells [68]. Foam cells, which are targets for atherosclerosis, are asso-
ciated with an increase in inflammatory cytokines. Lipolysis and fatty acid uptake carriers, such as
CD36, also contribute to the production of inflammatory cytokines in a feed-forward loop [71].
Hence, the traditional view that lipid accumulation passively promotes macrophage transition to
foam cells is now being reassessed on the basis of the signaling properties of lipids and the inter-
links between lipid signaling and immune pathways, such as for cytokines production.

Gut microbiota-derived metabolites
Microbial metabolites produced by the gut microbiome can modulate the expression of genes in-
volved in cholesterol metabolism and inflammation, and hence control immune cell activation and
polarization, with consequences for the cardiovascular system [72].
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Short-chain fatty acids produced by the gut microbiome, such as acetate, butyrate, and propio-
nate, can promote anti-inflammatory macrophage phenotypes and reduce atherosclerosis devel-
opment (Figure 3). It was shown that butyrate inhibits monocyte attachment to injured endothelial
cells by decreasing the synthesis of adhesion molecules, such as vascular cell adhesion molecule
1 (VCAM-1) and endothelial–leukocyte adhesionmolecule 1 (E-selectin) [73]. Histone deacetylase
(HDAC) was shown to be the enzymemediating butyrate's repression of monocyte adhesion and
VCAM-1 expression [74].

Haghikia et al. demonstrated that supplementation with propionate reduced total and LDL cho-
lesterol levels in the blood. In ApoE–/– mice fed a high-fat diet, propionate reduced intestinal cho-
lesterol absorption and aortic atherosclerotic lesion area. Propionate acted by increasing the
number of Tregs and IL-10 levels in the intestine, which, in turn, suppressed the expression of
Niemann–Pick C1-like 1 (Npc1l1), a major intestinal cholesterol transporter. Blockade of IL-10 re-
ceptor signaling attenuated the propionate-related reduction in total and LDL cholesterol and
augmented atherosclerotic lesion severity [75]. In future studies, it would be interesting to see
the effect of genetic inhibition of propionate synthesis by the gut microbiome on cardiovascular
health and atherosclerosis. The authors went on to conduct a randomized, double-blinded,
placebo-controlled human study (clinical trial No. NCT03590496). Oral supplementation with
propionate significantly reduced LDL and non-high-density lipoprotein cholesterol levels [75].

Trimethylamine N-oxide (TMAO) produced by the gut microbiome can promote proinflammatory
macrophage phenotypes and contribute to atherosclerosis development. By activating the
farnesoid X receptor (FXR) and its small heterodimer partners, TMAO restricted the production
of bile acid and facilitated the development of aortic lesions in atherosclerosis-prone ApoE–/–

mice [76]. The capacity of TMAO to enhance the expression of CD36, the Class A1 scavenger
receptor, and the cholesterol migration-associated gene ATP binding cassette transporter A1
(ABCA1) resulted in the accumulation of cholesterol in macrophages [77].

Overall, targeting microbial metabolites through dietary interventions, probiotics, or pharmacolog-
ical approachesmay be a potential therapeutic strategy for treating and preventing atherosclerosis.

Itaconate
Itaconate is an intermediate of the Krebs cycle that accumulates in lipopolysaccharide (LPS)-
activated macrophages and initially highlighted for its antimicrobial properties [78]. In recent
years, 4-OI, a derivative of itaconate, has been rediscovered as an anti-inflammatory metabo-
lite that acts via the antioxidant transcription factor known as nuclear factor erythroid 2-related fac-
tor 2 (Nrf2) to limit inflammation [79] (Figure 3). Hence, it has been proposed as a therapeutic in a
number of disease settings [80].

Perhaps unsurprisingly, then, a role for itaconate in atherosclerosis was also recently found. Three
studies have recently reported a role for itaconate and its synthesizing enzyme, aconitate decar-
boxylase 1 (ACOD1, also known as IRG1), in protection against atherosclerosis [81,82]. Song
et al. showed that itaconate and Acod1 are upregulated during atherogenesis in mice. Deletion
of Acod1 in myeloid cells exacerbated inflammation and atherosclerosis in vivo and resulted in
an elevated frequency of a specific subset of proinflammatory macrophages in the atherosclerotic
aorta. Importantly, ACOD1 levels were inversely correlated with clinical occlusion in atherosclero-
tic human aorta specimens. Treating mice with the itaconate derivative 4-octyl itaconate attenu-
ated the inflammation and atherosclerosis induced by high cholesterol. Mechanistically, they
found that Nrf2 was required for itaconate to suppress macrophage activation induced by oxi-
dized lipids in vitro and to decrease atherosclerotic lesion areas in vivo [82]. Harber et al. found
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Outstanding questions
What is themetabolic fuel of immune cell
responses in human atherosclerotic
plaques?

What metabolic enzymes, metabolite
sensors, or metabolic supplements
play key roles in atherosclerosis
and can be harnessed to prevent,
stabilize, or resolve the plaque?

How do systemic metabolic factors,
such as obesity, diabetes, and
dyslipidemia, influence immune
cell metabolism and function in
atherosclerosis, and can targeting
systemic metabolism offer novel
approaches for managing
atherosclerosis?
that atherogenesis-prone mice transplanted with Acod1–/– bone marrow displayed a more stable
plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes
to the vessel intima. Macrophages from Acod1–/– mice contained more lipids whilst also display-
ing reduced induction of apoptosis [81]. Finally, Cyr et al. [83] used cytometry by time of flight
(CyTOF) and single-cell RNA-sequencing (scRNA-seq) of peripheral blood mononuclear cells
treated with plasma from cardiovascular disease (CVD) patients to show that 4-OI attenuates pro-
inflammatory phospho-signaling and mediates the anti-inflammatory rewiring of macrophage
populations. Overall, these three studies highlight the relevance of pursuing IRG1-itaconate
axis supplementation as a therapeutic approach for atherosclerosis in humans. Overall, the
data point to the ACOD1-itaconate axis as potentially targetable for therapeutic gain.

Concluding remarks
Understanding the metabolic control of immune responses in atherosclerosis, ‘athero-
immunometabolism’, is an emerging area, and metabolites and metabolic enzymes are the key
to the regulation of such pathways. If we want to identify novel approaches to prevent or treat ath-
erosclerosis, immunometabolism represents a goldmine. For instance, inhibitors of metabolic en-
zymes are being developed, such as those for PKM2, as they show promise for anti-inflammation
approaches. Another avenue being explored is targetingmicrobial metabolites through dietary in-
terventions, probiotics, or pharmacological methods for treating and preventing atherosclerosis.
Similarly, itaconate is being developed for anti-inflammatory approaches in a plethora of diseases
characterized by inflammation. Last, G protein-coupled receptor (GPCR) binding metabolites are
likely to become a target of intense research in the near future, as the pharmacology for such re-
ceptors is well developed, holding promise for therapeutic gain (Box 1).

Related research work that will appear in the near future will resonate beyond the area of CVD and
immunology, into the field of genetics. Those studying the associations between genetic charac-
teristics and the risk of atherosclerosis are likely to identify mutations that occur in key genes that
regulate metabolic pathways or control the entry and exit of metabolites into cells, adding new
layers to previous known risk factors. Hence, the athero-immunometabolism field has the
Box 1. Metabolite-sensing G protein-coupled receptors (GPCRs)

GPCRs constitute the largest family of membrane proteins in mammals, and they participate in the regulation of major
physiological functions in the organism. A growing number of GPCRs have now been identified as metabolite-sensing
and are activated by intermediates of energy metabolism, including the free fatty acids (FFAs), lactate, succinate, and ke-
tone bodies, among others, and play a key role in metabolic disorders [84,85].

GPCRs for long-, medium-, and short-chain fatty acids have been identified. They have been linked to inflammation and
metabolic control, relating them to a range of metabolic conditions, from obesity to Type 2 diabetes. GPR91 was shown
to be the unique receptor for succinate through experiments in GPR91 knockout mice, where administration of increasing
doses of succinate raised the mean arterial blood pressure via increased secretion of renin in wild-type but not GPR91
knockout mice. However, GPR91 displayed a high EC50 for succinate (lowmillimolar) compared with physiological plasma
levels of succinate (low micromolar), suggesting that the pathophysiological relevance of succinate may lie in situations
where the blood supply to the kidney is restricted, such as renal atherosclerosis or ischemia [86].

Niacin has been known for a long time to be a potent agent controlling lipid levels in the plasma of patients at an increased
risk of atherosclerosis. More recently, it was shown that niacin acts via GPR109A. Indeed, niacin was able to inhibit ath-
erosclerosis in Ldlr–/– mice but not in Ldlr–/– Gpr109a–/– mice [87]. However, this area remains controversial, as another
study concluded that in their animalmodel of atherosclerosis, the GPR109A receptor was not responsible for the beneficial
lipid effects of niacin [88]. In addition to its anti-atherogenic effects on plasma lipids, niacin has anti-inflammatory effects,
which have been ascribed to GPR109A-expressing immune cells [89].

Overall, studies are emerging to show that metabolite-sensing GPCRs may provide targets for the design of novel thera-
pies for metabolic diseases, including atherosclerosis.
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potential to fill the existing gap, whereby individuals that do not exhibit the known risk factors still
suffer from infarcts or strokes, even at a young age (see Outstanding questions).
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