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This study aims to develop an automated framework for
the characterization of materials which are both hyper-elastic
and viscoelastic. This has been evaluated using human
articular cartilage (AC). AC (26 tissue samples from 5
femoral heads) underwent dynamic mechanical analysis
with a frequency sweep from 1 to 90 Hz. The conversion
from a frequency- to time-domain hyper-viscoelastic material
model was approximated using a modular framework design
where finite element analysis was automated, and a genetic
algorithm and interior point technique were employed to
solve and optimize the material approximations. Three orders
of approximation for the Prony series were evaluated at N =
1, 3 and 5 for 20 and 50 iterations of a genetic cycle. This was
repeated for 30 simulations of six combinations of the above
all with randomly generated initialization points. There was a
difference between N = 1 and N = 3/5 of approximately ~5% in
terms of the error estimated. During unloading the opposite
was seen with a 10% error difference between N = 5 and
1. A reduction of ~1% parameter error was found when the
number of generations increased from 20 to 50. In conclusion,
the framework has proved effective in characterizing human
AC.
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1. Introduction
Numerical methods have been used in various areas of study, for example, modelling the musculoske-
letal system [1,2], fluid–structure interaction [3] and are ideally aimed at applications to clinical care
[4]. This advance in utility has led to regulatory bodies such as the US Food and Drug Administration
encouraging the inclusion of modelling data when submitting devices for approval [5,6]. Owing to the
complexity of biological systems, many need to be represented at multiple scales, with some studies
able to demonstrate the accuracy of the simulations [7–9]. These advanced models must not only
represent the geometric structure but also its mechanical properties [10], leading to the inclusion of
mathematical approximations. This requirement, however, leads to issues with the validation of the
output from these models; they are used as surrogates for experimental work but their accuracy must
be assured [11]. A reliable and effective model should include a strong link between simulations and
experimental data [12].

When quantifying physical phenomena in numerical models, they are normally defined using
partial differential equations and are often solved using finite element analysis (FEA) [13,14]. FEA
has been used to facilitate the evaluation of experimental conditions, where analysis of the mechanics
cannot be obtained either reliably or in a cost-effective manner. For example, toolboxes that generate
models for FEA of the mitral heart valve [15] or the lumbar spine [16] enable the effect of geometric
variables to be evaluated. While techniques to tackle anatomical variability and commercial software
for structural optimization, e.g. ATOM by Abaqus [17], are available, there is scope to develop
techniques for the optimization of material properties under representative physiological loading.

Sample variability, model robustness, validation bias and physiologically representative conditions
are all factors that need to be accounted for in determining the accuracy of a material approximation,
especially for biological tissues. There is a requirement for a large amount of experimental data in
modelling systems [12] with some studies using optimization techniques to develop their material
parameters [18]. This approach brings a need to separate training, testing and validation datasets to
ensure robust validation of any optimization techniques used; techniques such as cross-validation [19]
can be employed but this increases the data requirement to be effective.

Biological tissues exhibit material properties which can differ from standard engineering materials
[20]. Articular cartilage (AC), for example, exhibits hyper-elastic [21] and viscoelastic [22] properties
when dynamically loaded under conditions representative of physiological loading. AC has a reported
range of material properties varying across 4–5 orders of magnitude depending on the method of
testing used [20], induced stress [23] and frequency of loading [24]. Experimental techniques such as
dynamic mechanical analysis (DMA) enable viscoelastic characterization of ex vivo biological samples
under frequencies of loading relevant to their function within the body. However, this provides
material properties within a frequency domain (such as storage and loss moduli). Applying such data
to FEA simulations in a time domain, though challenging, is feasible via the characterization of a Prony
series. For instance, a Prony series has been characterized by frequency-dependent storage and loss
moduli for white and grey brain matter [25].

The aim of this study was to develop a framework for the automated characterization of time-
domain hyper-viscoelastic properties from frequency-domain experimental measurements. The study
is broken down into: (i) the gathering of experimental data through DMA; (ii) the automation of
the modelling process including the creation of the FEA simulation, solving and evaluation; and (iii)
the optimization of material property parameters. A key step is to allow the analysis of the models
themselves to define how the parameters are altered on each sequential generation that is created. A
case study of the application of the framework is presented for human AC, which is hyper-elastic and
viscoelastic and as such a prime candidate with which to evaluate the framework. This study interfaces
tissue biomechanics, machine learning and the automation necessary in numerical modelling to enable
a genetic algorithm to be applied to the former for applications related to physiology and pathology
conditions. This approach includes the distinction between training and validation datasets, as per
practices in machine learning.
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2. Methods
2.1. Experimental testing
The experimental dataset employed was that of Mountcastle et al. [22] where human AC specimens
were tested. In total, five femoral heads were used with n = 16 unique test samples harvested (figure 1).
Femoral heads were donated by patients who underwent surgery following a fracture of the femoral
neck (ethical approval: East of Scotland Research Ethics Service, 11/ES/1044).

Femoral heads were stored at –80°C until 24 h before testing [22] and were defrosted [26] in Ringer’s
solution. Each sample consisted of an 8 mm cartilage on bone core extracted using a diamond drill bit
with the cartilage then being separated using a medical scalpel [23,27].

Experimental tests were performed using a Bose ElectroForce 3200 testing machine, controlled via
WinTest 4.1 DMA software (Bose Corporation, Minnesota, USA; now, TA Instruments, New Castle, DE,
USA). Two separate compressive loading sequences were performed, a quasi-static ramp and DMA.
A preload of 0.02 N was followed by a quasi-static load at the rate of 3 N s−1, up to 61.6 N [21]. Then
preconditioning loading cycles at 24 and 49 Hz were run for 1500 and 3000 cycles, respectively [28],
consistent with AC requiring over 1200 [29] or 2000 [30] conditioning cycles for cyclic testing. Finally, a
frequency sweep was completed between 1 and 88 Hz [28].

DMA was performed as described by Lawless et al. [31]. Briefly, the viscoelastic material was
characterized by its complex stiffness k*  using the magnitudes of the load and displacement dataset
lengths, following a fast Fourier transform, for each frequency. A shape factor SF  for the test spec-
imen’s geometry, its complex modulus k*  and the phase lag (δ  between load and displacement
waveforms are then used to determine the storage E′  and loss E″  moduli (equations (2.1), (2.2)):

(2.1)E′ =  
k∗cos δSF

,

Dynamic

mechanical

analysis

Cartilage-on-bone core

prior to DMA analysis

Coring of specimen

Micro-CT

Preparation of specimen

using a surgical saw

(a)

(b)

(c)

(d ) Cartilage-bone

demonstrating location of core

Figure 1. Flow diagram illustrating femoral head specimen preparation and coring: (a) preparation of specimen using a surgical saw,
(b) example of cartilage–bone block prior to micro-CT analysis demonstrating where the core was taken, (c) coring of the specimen
and (d) example of cartilage–bone core prior to DMA [22]. Reproduced from [22] under a CC BY4.0 licence.
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(2.2)E′′ =
k∗sin δSF

.

2.2. Automated modelling system structure
Two cyclic control structures linked optimization with the modelling software and provided the
primary automation. The modelling procedure is controlled through the Python node apart from the
output analysis which is performed using Matlab (The MathWorks Inc., Massachusetts, USA). The
optimization of the material parameters is completed using a separate Matlab script (figure 2). Before
the cycle starts, an initial optimization takes place to create the first parameter set.

These two components work together in an overarching cyclic system that completes a loop upon
every cycle of the machine learning algorithm. The Matlab code produces the parameters that comprise
the current dataset which is then passed through to the Python node. This Python node then produces,
applies loads to and solves models for each of the parameters and outputs a dataset of material
properties. This is then passed through fitness evaluation in the Matlab scripts and then a new
parameter set, of each child, is produced starting the cycle again until ending conditions are met.
A visual representation of the overall structure of the system and how these two components work
together is laid out in figure 2. As part of the optimization procedure, the Python control node is run
on every generational cycle of the algorithm to create and solve the models. It provides the simulation
data of the material properties used as part of the ‘fitness’ evaluation of each child of that generation’s
data inputs.

The total dataset used has 168 unique data tuples which include frequency (Hz), storage modulus
(MPa) and loss modulus (MPa). The dataset is then divided into 128 datasets for training and 40 data
points for validation, which are split at random on each run. This first optimization is performed
using an interior point technique on the training dataset. The validation dataset is used by the Matlab
script to evaluate the efficacy of the produced models. The Matlab script requires three user inputs
(excluding predefined variables defined below): ‘N’, the degree of the approximation; ‘NumIteration’,
the maximum number of generations the optimization will complete; and ‘NumInGen’, the number
of models generated per generation (minimum limit of 100, as the system requires several models
to compare for each generation). A limiting factor of this system is the time complexity, which is
controlled by the three variables above.

The Python control node is self-contained and modular; thus, its code does not change per iteration,
and only the required inputs are altered. Two-dimensional AC models (electronic supplementary

Main Control Node

Inputs: N, NuminGen,

Numiteration

No
No

Initialization

Create first material parameter

prediction

Models

created?

Yes

Experimental

Data Set
Identify first

solution set

Python Control Node

Inputs:modelparameters
Visco elastic potential

parameters

Yes
1st run

No

Validation Data

Set

Ending

conditions

met?

Yes

Output solution

Update solution

set/track progress

Optimization Control Node

Inputs: ModelOutputs,

Convergence, Numiterations,

NumInGen

Legend

Matlab Code

Data set

Python Code

Excel data import/export

Figure 2. Flow chart representation of the control structure for the automation system, with boxes representing code/data and
diamonds representing questions the system asks through its iterations.
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material, figure S1) are created which, briefly, consist of the shape, conditions of loading, physical
properties of the material, and set-up for FEA; with further details on meshing and modelling
provided in §2.3. They are generated from a defined set of parameters (provided by the optimization
control node) and then sequentially solved for each combination, providing a range of models to be
analysed for efficacy. The lack of required deviations in the code allows for seamless running without
the need for user input at this stage. Displacement values are extracted from the solved jobs and passed
through to a Matlab analyser script that compares them to the experimental validation set, allowing the
models to control the progression of the material parameter development. After every generation of
models, parameters are stored in the backup to track property progression.

In the optimization node, initially, the model outputs are sorted and compared with an evaluation
dataset that is composed of three separate displacement profiles representing the ramp test, and then
the load and unloading during the sinusoidal loading sequence. It is then checked to establish whether
the ending conditions have been satisfied which could include a number of factors such as maximum
cycles, minimal error and no error change. If not, the optimal solutions are then taken and passed into
the optimization module.

A genetic algorithm is used to progress the development of the parameters during optimization.
The mutator uses crossover, Gaussian distribution alteration and random mutation to create many
possible parameter compositions. These are evaluated against a viability check, and then the defined
number of models (NumInGen) is passed back to the Python control sequence. The next generation
of models created is a combination of the top results from the previous generation, outputs from
the mutator and random possibilities. All code is stored in GitHub and archived within the Zenodo
repository [32].

2.3. Finite element analysis
FEA has been performed using ABAQUS 6.14 (Dassault Systèmes Simulia Corp., Providence, RI,
USA), controlled using the inbuilt functionality of Python script macros. AC was modelled as a
cross-sectional segment of the cylindrical test samples with dimensions matching the sample cores
that were tested experimentally. The geometry is set to 8 mm in length (mean), and 1.5 mm in height
taken from sample thickness data; as per [21]. Three options of mesh were defined at 100, 150 and
200 μm, providing mesh sizes between 200 and 800 elements to test variation in error among mesh
conditions. To mimic physical testing two boundary conditions are applied to the model. The base was
completely restricted in displacement and rotation, and the top was restricted to only move along the y
axis, which has been defined as being perpendicular to the surface of AC test samples and aligned with
the direction of load (–y axis; electronic supplementary material, figure S1). These models are used as
input files for the purpose of the automation. For every possible combination of material properties
proposed, an individual model was created and solved with the above definitions. For each iteration
during the optimization, 1000 viscoelastic potential parameter solutions were created alongside a fixed
Ogden hyper-elastic definition.

For each simulation, a uniform load was applied across the top surface of the geometry of 0–1.7 MPa
to mimic the experimental testing performed. This was applied in two sequential stages lasting for 1
s. The first section performed a simulated ramp compression step loading from 0 to 1.225 MPa. The
second portion of the sequence performed a sinusoidal loading step calculated via a time-dependent
multiplication factor (a), frequency of loading (ω), initial step time (t0) and current step time (t)
(equation (2.3)):

(2.3)a = 1.225 + 0.493 ⋅ cos 2 ⋅ π ⋅ ω ⋅ t − t0 .

This amplitude produced a representative 1 Hz sinusoidal stress of 0.7 to 1.7 MPa which is representa-
tive of values observed physiologically [33] and in DMA tests. Loading was applied uniaxially to the
top face of the model with the displacement measured.

2.4. Material characterization
To simulate AC, a hyper-viscoelastic approximation was used in Abaqus which included: a Poisson’s
ratio of 0.45 [34]; a Prony series (§2.4.1); and an Ogden model [35] for the hyper-elastic approximation.
The hyper-elastic, strain-energy potential function is simplified to equation (2.4) and includes N in
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this case the order of the model, µi is a shear term, αi is a dimensionless material constant and λi are
principal stretch values (evaluated automatically by Abaqus):

(2.4)U = ∑i = 1

N 2 ⋅ μiαi2 λ1
αi + λ2

αi + λ3
αi − 3 .

The values used for the Ogden approximation were taken from [21]; other hyper-elastic models can be
modelled through minor alterations to the Python data import file.

2.4.1. Viscoelastic model

The generalized Maxwell model, used here, combines a singular main elastic branch with N spring–
dashpot branches. This was implemented as a Prony series to represent the time-domain viscoelastic
response for a material modelled:

(2.5)μ t = G∞ + ∑i = 1

N giexp − tti′ ,

where μ t  is the time-dependent relaxation modulus, G∞ is the equilibrium modulus and gi and ti′ are
the spring relaxation modulus and relaxation time of the Prony series for N spring–dashpot pairs or
frequency delays. The relaxation modulus μ t  can be expressed as a discrete set of exponential decays
[25] and the complex modulus u* is defined as

(2.6)u∗ jω = G∞ + ∑i = 1

N gi ti′jω
1 +  ti′jω ,

where ω is the angular frequency and j = −1 . This expression is derived as the Laplace form
(equation (2.5)). Thus, the Prony series representations of storage (equation(2.7)) and loss (equation
(2.8)) modulus in terms of frequency can be defined:

(2.7)u′ ω = G∞ + ∑k = 1

N gk ⋅ ωτk 2

1 +  ωτk 2 ,

(2.8)u″ ω = ∑k = 1

N gk ⋅ ωτk
1 +  ωτk 2 .

The dynamic moduli, ui′,  ui″, at a given frequency, ωi, with u′ ωi  and u″ ωi  being the respective
predicted values are put through a minimization equation using the original generalized Maxwell
model (equation (2.9)):

(2.9)ming, t ∈ RN F g,  τ = ∑i = 1

N u′ ωiui′ − 1
2

+
G″ ωiGi″ − 1

2
.

The optimization problem solves for so-called Prony parameters (g, G∞ , N, τk) so that they simultane-
ously satisfy experimentally generated storage and loss modulus calculation from DMA tests, where g
= ( g1, …, gN ) and τ = ( τ1, …, τN ) for the defined series length, N.

The parameters were determined using a two-stage optimization process within the overall system.
They enforce that sequential time values τi are always increasing in value and that the summation of all
the equilibrium shear modulus values summate to less than 1 (equations (2.10)–(2.12)):

(2.10)τi ≤  τi + 1  ∀ i,
(2.11)  ∀ k∑k = 1

N gk ≤  1,

(2.12) 0 <  gk < 1.

2.5. Python control structure
As thousands of FEA models were solved during a single system run, the computational load of
the design and solving procedure was minimalized. For each iteration of the automation, one FEA
model was solved, which sequentially created and then solved all defined models. Inputs into the
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control sequence were defined through two Excel documents controlling the model parameters that are
common to all models and then a secondary document that contains the material parameter definition.
The first spreadsheet (sample values in table 1) controls the model construction and is unique to the
individual overall model being simulated. The file also includes the hyper-elastic material coefficients
(table 2). In this example, only one selection of coefficients is supplied; however, akin to loads/meshes,
multiple sets of coefficients may be provided, and all combinations of simulations will be produced;
the caveat being that all approximations must have the same number of material parameter values for
each coefficient set, in this case six points, as a third-order model is used with αi and μi (equation (2.4)).

A secondary file stores the current iteration of the Prony coefficients tested, updated on each
iteration and which can contain anywhere from 10 to 500 possible combinations depending on the
limitations placed by the user on the algorithm. Each variation is backed up so that backtracking and
analysis of a previous solution is possible; i.e. how variables change across generations can be tracked
(figure 3).

The spreadsheets are converted to Python variables, upon every iteration of new values, and passed
into the main class of the Python script. The Excel spreadsheets are converted using a Matlab function-
ality called ‘fprintf’ which allows direct text to be written in a notepad format. Once converted to
notepad, the file can be read-in by the Python script as a variable file if formatted correctly. The process
for the evaluation and creation of models is defined in table 3 alongside a class diagram depicting its
relational schema (figure 3).

2.6. Matlab optimization control sequence
The main cycle components for control (figure 2) are model evaluation and optimal solution identi-
fication, dataset permutation, genetic mutation, evaluations for model creation, send to modelling
node and restart. The process uses an interior point optimization [36] technique to generate an initial
starting point for the genetic algorithm, optimizing the problem via solving sequential, approximate
minimization problems. Mathematically, if the original minimization problem is defined in equation
(2.13), the approximate solutions are defined as equation (2.14) which has the introduction of as many
slack variables si as there are inequality constraints g x . The aim is that as µ trends to 0 so does the
result of f(x).

(2.13)minx f(x),  st:  ℎ(x) = 0 and g(x) ≤ 0,

(2.14)∀ μ > 0,  minx, s fμ x, s = minx, s f x − μ∑i ln si ,  st:  s ≥ 0,  ℎ x = 0 and g x + s = 0.

‘Var’Excel file

Geometry and design

parameters for models

‘LoopVar’ Excel file

Viscoelastic property

parameter variations

1

Python Control Node

Defines and solves all models

for a given generation

1

0 ... *

FEA Model

1

1

Duplicate copy saved

for backtracking

Model Results

output to Excel file

Boundary

Conditions
Geometry Meshes Loads

Material

Definitions

Figure 3. Python control node class diagram. The bottom set of boxes represents the different portions of the model creation system
that are currently implemented. This can be increased with any other requirements.
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The limits, h and g, were set to the Prony limits (equations (2.11) and (2.12)). A random seed, defined
by the computer time, is used to define the initialization point of the algorithm with 100 iterations
performed to get a range of solutions from unique starting points. The solution set from this first step
is what provides the automatic loop with its initial parameter starting point.

2.6.1. Main optimization sequence overview: genetic algorithm

Genetic algorithms mimic natural selection. The main components of any genetic algorithm are the
genetic operators and the fitness check. There are two fitness checks that occur to develop the
parameter solution. One is based on calculating the error produced by the Prony series equation and
the other uses the model output and compares that directly to the experimental dataset. This allows a
larger population to be created without hindering the overall efficiency of the system The cycle of an
individual iteration is seen in figure 4.

Table 1. Example of the required used defined parameters that are global variables to all the models produced. The actual format
required is available via the code provided [32]. The dimension values all determine the geometric structure of the object undergoing
compression.

dimension values

GridSpaceX1 GridSpaceX2 XOrigin maxWidth GridSpaceY1 GridSpaceY2 YOrigin
maxHeig
ht

0 0.008 0.004 80 0 1e-03 5e-04 80

loading/material/meshing values

elastic modulus Poisson ratio load magnitude (MPa) mesh density

1e+09 0.45 1 255 000 1.5e-04

Table 2. Ogden material approximation parameter set used.

μ1 (Pa) α1 μ2 (Pa) α2 μ3 (Pa) α3

26 133 000 2.7190 12 922 000 3.9960 13 227 000 1.504

Table 3. Model creation and retrieval of results as performed in Python’s interaction with Abaqus.

creation of the generation’s models

  1. reading in of required variables (2 Excel spreadsheets)

  2. set limitations on the number of models to be created based on the number of variations in the variables

  3. create a new blank model and job for each combination of variables

  4. loop through combinations defining model values (loads/material coefficients/meshes etc.) based on variations

solving and results collating

  1. model database saved for tracking progress

  2. individual jobs looped through and solved

   a. nodal results for displacement and load magnitude saved

   b. results collated into correct folders alongside other tracking information: model database for the current generation,
variables file and all combinations of variables

  3. Abaqus module closed as analysis occurs within Matlab and to reduce computational usage
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2.6.2. Genetic operators

Upon each generation, the new population is created using several genetic operators which are
crossover, Gaussian mutation and random generation, with each of them producing a third of the new
generation. The population amount is defined in the code as ‘numinpopulation’ but is not controllable
by the user-defined variables. Owing to the limits required by the solution (equations (2.11) and (2.12))
all children created are checked for validity; this ensures the time values are all sequential and the g
values all sum to 1.

Both single and K-point crossovers are performed with a 50:50 split of population production.
Single point crossover is performed by producing a uniformly distributed random number between
one and the length of the solution (2 × N) + 1 where N is the number of series expansions. The
parent solutions are split at this point and then recombined to form two new unique solutions. K-point
crossover has the same theory, but instead of generating one crossover point, a user-defined number of
crossovers take place.

2.6.3. Equation-based fitness check

The evaluation based on the equation is performed as soon as the dataset for any given generation
is created, ranging from 1000 to 100 000 permutations of the parameter set. A dataset of 128 unique
experimental data points was used to compare against the parameter possibilities. The validation
dataset of 40 points is stored as storage and loss moduli (equation (2.9)) and the parameter values forgi and τi , these data points can be substituted in and thus a difference computed. This is then averaged
across all the data points and an ‘error’ value is produced for each possible solution. Owing to the
volume of checks that are being computed growing exponentially and being defined by N (degree of
approximation) multiplied by dataSize (number of comparison points) and GeneticMutations (number
of permutations in each generation), ensuring this calculation was computationally efficient was
necessary. The fitness check reduced the number of solutions already computed and hence the number
of models generated to the value of ‘NumInGen’.

2.6.4. Model-based fitness check

The values that are used to evaluate which model outputs to continue with are load, time and
displacement, split into three portions: ramp test and upper/lower loading profile of sinusoidal load.
The latter required time/displacement data to be converted into a hysteresis loop, representing the
entire time period. The hysteresis for every simulation is then split into its upper and lower curve
structure. This allows the parameter solutions to be evaluated for how they represent the different
loading and unloading material reactions seen in the experimental data. The error values reported are
averaged percentage differences across every displacement/force data point produced by the model.

The dataset used for validation of the ramp tests was gathered by performing six separate ramp
loading sequences without the additional DMA. The six tests were then averaged to provide an overall

Optimization Control Node

Model Output Inputs: ModelOutputs,

Convergence, Numiterations,

NuminGen

No
Validation

dataset

Model review

Fitness check of model outputs

Ramp Load

Ending

conditions

met?

Population generation

Genetic operators produce next

Sinusoidal
load Crossover

Random
generation

Output solution

Top 100 Solutions
identified and passed

through to model
generation

Python
Control
Node

Gaussian
mutation

Yes

Figure 4. Optimization sequence control structure flow diagram representation.
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approximation of the experimental ramp data. To ensure both datasets (experimental and model) are
comparable the validation data are approximated by a logarithmic representation (figure 5).

The evaluation of the sinusoidal load starts with the model output. this must first be normalized to
the lowest displacement value of 0 and then split into its upper and lower loop loading profiles. The
experimental data were taken from the validation set of DMA experiments referenced earlier.

(2.15)y = a1 ⋅ log b1 ⋅ x ,

(2.16)y = a2 ⋅ e(b2 ⋅ x) .

The upper half was approximated using a function of the form displayed in equation (2.15) and the
lower half with equation (2.16), with a1, b1 and a2, b2 being the optimized variables per equation set,
respectively. An example hysteresis validation set is shown in figure 5b.

3. Results
The results presented include 30 unique simulations completed via the automation system. They are
composed of three N (order of approximation) values of 1, 3 and 5, for the Prony series, and two
iteration lengths of 50 and 20 split into the N values at six 50 runs and four 20 runs (table 4). All initial
solutions were derived using the native Java rand function using the current (at the time of simulation
initialization) computer clock as the seed to ensure no initial bias gave one simulation benefit over the
others.

From each simulation error values for each ramp, upper hysteresis and lower hysteresis load values
were taken on every iteration using the optimal parameter set at that point in progression. The final
output error across the entire loading curve (i.e. the ‘mean error’) was calculated and can be observed
in figure 5. The final mean error values were in the range of 15–30% regardless of whether 20 or 50
repeats were solved (table 4).

The ramp load error (figure 6) calculation. For n = 1 the final parameters produced on average more
error after both 20 and 50 iterations compared with n = 3 and 5. In this result set, the produced error
when N was defined at 3 and 5 was 2% smaller at n = 1 after 20 iterations and still 1% smaller after
50 iterations. An additional feature of both n = 3 and 5 was that the deviation among the repeats was
negligible in both tests with a much larger deviation seen in n = 1 results. There is also a negligible
difference between the datasets produced for n = 3 and 5.

Figure 6c,d presents the lower or unloading portion of the hysteresis loop at 50 and 20 iterations,
respectively. The simulations for n = 1 perform consistently worse across both sets of simulations with
it resulting in around 5% more error than n = 3 and 10% more than n = 5. Comparing n = 3 and 5, both
versions plateau after around 20 iterations with n = 5 performing around 5% better. The value n = 3
does continue to reduce the error until 50 iterations but at a much more gradual pace demonstrated by
the final error value having a large standard deviation.

Figure 6e,f displays the loading portion of the hysteresis loop at 50 and 20 iterations, respectively.
When n = 5, the error was unable to be improved from the initial iteration in both the 20 and 50
iteration runs and produced an overall error value ~10% larger than N values of 1 and 3. Given that the
standard deviation was very small in both 20 and 50 iterations it shows that this occurred for every n =
5 simulation. It is seen that the error continued to be reduced up until the point of 50 iterations for both
n = 1 and n = 3 giving an improvement of 1% for n = 1 and 3% for n = 3. The convergence across the
simulation repetitions also improved as the iteration progressed as shown by the deviation bar values
reducing as the later iterations are reached.

For completeness, the Prony series characterized for femoral head human AC, for n = 1, 3 and 5 (20
and 50 iterations) are provided in the electronic supplementary material (tables S1–S3). Results from
six simulation sets are presented.

4. Discussion
The term ‘optimization’ is often misrepresented, being used when parameters are purely varied
without the evaluation of a true optimal solution [37,38]. For example, varying Young’s modulus over
10 values to find a ‘best’ value is not an optimized solution, but the best of 10 proposed solutions:
a common misconception. Further, where a variable range is constrained by a user in this manner,
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solutions can be stationed within a local minimum rather than the global minima. A related pitfall
is overfitting [39], where the solution chosen is specific to a particular dataset and thus might be
unsuitable when used to predict future observations.

The framework developed in this paper has used an automated, optimization approach to charac-
terize the hyper-viscoelastic properties of human AC from the femoral head. Using the model outputs
as the driving force for each generation’s progression allows not only the material approximation to
be a factor for the parameters but also the direct comparison of an experimental result to a model’s
response. In total, 30 sets of simulations of the automation system with varying initialization param-
eters were run, to test the effectiveness of this technique with the aim of showing consistency and
effectiveness of said framework. Furthermore, a methodology has been made available which enables
data obtained under a frequency domain to be available for time-domain analysis; optimizing material
characterization [32].

The use of numerical methods and modelling has seen an uptake in biomedical research over
the last 20 years; however, development is still required as demonstrated by Bhattacharya et al.
[40]. Within this field, an important component is the validation of said numerical methods [41].
Cyclic optimization of material parameters has been used elsewhere [42]; in our study, we present
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a technique which focuses on validation intrinsic to the characterization of the material properties,
and the process is automated. This unique approach allows the simulation of actual experimental test
results to be a part of the fitness evaluation. There could be scope, in future, to replace input data
tuples from experimental testing with histomorphological properties for subchondral bone, as these
can be correlated to the storage and loss moduli for AC [43]; as per figure 1, it is noted that micro-CT
was performed on all samples used in this study [22], though these data are not currently incorporated
within the code. The application of genetic algorithms to optimization has been demonstrated [44,45]
but could clearly have greater use within the biomedical field.

The framework has been evaluated for human AC and has enabled time-domain parameters to be
obtained for a hyper-viscoelastic model, from frequency-domain experimental testing. It was seen in all
situations that there was a reduction in the error of the models as the iterations of the genetic algorithm
progressed with varying degrees of success across our different set-ups. Convergence was seen in both
ramp and unloading/lower hysteresis error analysis with 20 and 50 iterations, respectively; however,
there was still a significant reduction in the error of the model up to 50 iterations in the loading/upper
hysteresis error calculations.

Focusing on the ramp section of the error analysis, it was seen to be the easiest for the algorithm
to converge doing so in just over five iterations across all simulations. However, the hysteresis error
was more evident across both loading and unloading and demonstrated the benefits of progressing
the algorithm to 50 iterations. An n = 1 Prony series performs the best for the upper portion and the
worst for the lower whereas n = 5 is the opposite. Both series report ~10% difference from best to
worst performing iterations within the series, whereas the n = 3 Prony series may be the better overall
solution resulting in ~5% cumulative error, supported by the standard deviation for these simulations
(figure 6e,f). The different number of iterations investigation has enabled the evaluation of how many
generations are needed to establish an accurate approximation of the optimization problem. Moreover,
the error difference between models employing a different order, N, of the Prony series evidences
how this can be exploited to improve predictions. Final mean errors were in the range of 15–30% for
the best-performing outputs, across all types of tests: ramp and loading–unloading cycles. Although
these errors may appear large, they incorporate the uncertainty as a consequence of variability in
material properties in human AC. Furthermore, validation does not aim to directly match one dataset
to one model or one test method, which can artificially reduce errors and can ignore natural variability.
Instead, a training set is used in this study, as per practices in machine learning. It was also important
that the optimization component had a low coding knowledge requirement to provide a framework
more easily accessible to those interested in numerical modelling. This would allow it to be transferred
for use in other applicable simulations with only minor adjustments to the code base; freely available
[32].

The technique for model error calculation is seen to effectively provide a basis for the genetic
algorithm to rank all the previous solutions as all simulations were able to progress and reduce the
error by a meaningful amount after the initial optimization process. Part of what could have been
hindering the algorithm in some instances is the variation that was seen in the initial dataset that

Table 4. Final mean error values of each simulation averaged across the 30 repeats with s.d. included. The error values correspond to
the difference between the resultant approximations and the experimental dataset averaged across multiple simulations. Done for (A)
50 iterations and (B) 20 iterations.

ramp lower (unloading) upper (loading)

N mean s.d. mean s.d. mean s.d.

(A) 50 iterations of the genetic algorithm (% error)

  1 16.95 0.68 24.6 0.28 20.98 0.81

  3 15.79 0.02 19.89 1.80 21.69 1.51

  5 15.79 0.02 15.74 0.75 30.69 0.03

(B) 20 iterations of the genetic algorithm (% error)

  1 17.75 1.94 24.59 0.19 21.62 1.30

  3 15.79 0.03 19.82 1.95 24.02 4.14

  5 15.84 0.04 16.09 0.60 30.73 0.09
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was used to create the testing set. This resulted from the variation seen in the human AC tissue
obtained and its varying level of damage and its donor’s age, which could have resulted in a less
clear view of what the ‘ideal’ model should be. Narrowing this down in the future should reduce the
errors measured for model results for a similar set of simulations; however, it does have its limitations
owing to the difficulty in obtaining human tissue of the same standard. Further, filtering the dataset
employed to constrain variability, by definition, limits the range of human AC which the model is
trained to represent, and can induce artefacts associated with overfitting. Building a validation set of
healthy/unhealthy tissue in the future would be beneficial to the development of models representing
healthy/damaged cartilage tissue. In addition to this, building a much larger dataset would provide
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more points for the machine learning algorithm to use in its prediction of the parameters increasing the
likelihood of a reduced error comparison to the tissue experimental data.

Prony series have been shown to be useful for characterizing biological tissues in the time domain,
so as to predict frequency-domain mechanics [25,46]. However, a challenge with Prony series is that
there is not one single set of parameters which may represent a dataset. Hence, a genetic algorithm
has been employed in this study to identify the optimal parameters which best characterize a hyper-
viscoelastic material and focus on error analysis. The rationale for presenting data for series with n =
1, 3 and 5 is also to aid in evidencing how a Prony series may vary with the series order, including
how error may vary. Furthermore, the model error can be reduced by increasing the experimental
dataset, particularly for training. In terms of numerical modelling, a separate approach could be
to evaluate a wider range of material properties including some which are more specific as to the
constitutive composition of the material. Separately, additional mutation algorithms that occur during
the parameter creation portion of the genetic algorithm could be evaluated. However, it should noted
that biological tissues can experience fracture strain [47]. In our current study, we have avoided tissue
fracture by loading to an induced stress below 2 MPa; typically >2.8 MPa would be required to induce
failure during cyclic loading of AC [48]. If fracture were to occur during testing, the characterization
would include an inherent bias within the parameters optimized. The authors have targeted the widest
possible application for frequency-domain measures to time-domain modelling; however, there is
scope to tailor the code used to a given application further.

A limitation of the use of a Prony series to characterize the viscoelastic behaviour of AC is that it
does not directly prescribe properties to the composition of AC. However, Cederlund & Aspden [49]
have recently questioned some of the assumptions in the literature around the current understanding
of the role of water in AC mechanics. Moreover, material properties of soft connective tissues can vary
by orders of magnitude across studies [20]; for cartilage this may primarily be owing to rate [50] and
magnitude of loading [23]. The model which is presented in this current study makes no assumptions
as to the role of constituents in the physical behaviour of the material. In terms of clinical applications,
the data can be seen as providing a standard against which replacement materials for AC can be
evaluated; particularly if these are designed to mimic the dynamic behaviour of AC. Furthermore,
this study presents a framework by which to ‘translate’ frequency-domain to time-domain data for
hyper-viscoelastic materials, independent of the case study of AC. Hence, the framework and code
provided have applications to synthetic materials which are not solely biomaterials.

The framework presented enables the use of frequency-domain test results ready for use within
time-domain models, such as for FEA. Although Abaqus has been applied for the current study, the
framework could be implemented with other FEA software that has scripted access to input files.
Examples include FEBio and LS-Dyna which have previously been used for automatic spine [16] and
heart valve [51] modelling, respectively. However, the interfacing scripts would require amending. The
system is transferable in its use owing to the modular design of its components, though the intricacies
of the parameter alteration during the optimization procedures require a problem-specific definition.
Thus, it requires some simulation-specific knowledge for implementation to a different material. This
would mainly involve changing the fitness characterization and optimization equations within the
optimization control node as displayed in the system structure (figure 2).

5. Conclusion
This article presents a framework that allows the automation of simultaneously characterizing and
validating hyper-viscoelastic material properties for a given material. The system used here can be
useful in furthering the characterization of soft materials, not least biomaterials. Indeed, frequency-
domain test data for AC have been used to produce the Prony series alongside a hyper-elastic material
model which can be implemented in a time domain, including through FEA.

Ethics. Ethical approval for data used in this study was provided by the United Kingdom National Research Ethics
Service (East of Scotland Research Ethics Service; 11/ES/1044).
Data accessibility. Data and relevant code for this research work are stored in GitHub [52] and have been archived
within the Zenodo repository [32].

Supplementary material is available online [53].
Declaration of AI use. We have not used AI-assisted technologies in creating this article.
Authors’ contributions. P.A.: conceptualization, data curation, formal analysis, investigation, methodology, software,
validation, writing—original draft; S.C.C.: conceptualization, methodology, project administration, resources,

14
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240383



supervision, writing—review and editing; S.J.: conceptualization, methodology, project administration, resources,
supervision, writing—review and editing; D.M.E.: conceptualization, methodology, supervision, visualization,
writing—review and editing.

All authors gave final approval for publication and agreed to be held accountable for the work performed
therein.
Conflict of interest declaration. We declare we have no competing interests.
Funding. This research was supported by EPSRC (EP/ L016346/1) and Arthritis Research UK (H0671).
Acknowledgements. The authors thank the members of the Healthcare Technologies Institute and Department of
Mechanical Engineering at the University of Birmingham for their technical support. We also thank the Institute of
Inflammation and Ageing at the University of Birmingham for providing the specimens.

References
1. Jin Z. 2014 Fundamentals of computational modelling of biomechanics in the musculoskeletal system. In Computational modelling of

biomechanics and biotribology in the musculoskeletal system: biomaterials and tissues. Amsterdam, The Netherlands: Elsevier.
2. Ren L, Qian Z. 2014 Finite element modeling in the musculoskeletal system: generic overview. In Computational modelling of biomechanics and

biotribology in the musculoskeletal system: biomaterials and tissues. Amsterdam, The Netherlands: Elsevier.
3. de Oliveira DMC, Abdullah N, Green NC, Espino DM. 2020 Biomechanical assessment of bicuspid aortic valve phenotypes: a fluid-structure

interaction modelling approach. Cardiovasc. Eng. Technol. 11, 431–447. (doi:10.1007/s13239-020-00469-9)
4. Winslow RL, Trayanova N, Geman D, Miller MI. 2012 Computational medicine: translating models to clinical care. Sci. Transl. Med. 4, 158rv11.

(doi:10.1126/scitranslmed.3003528)
5. Faris O, Shuren J. 2017 An FDA viewpoint on unique considerations for medical-device clinical trials. N. Engl. J. Med. 376, 1350–1357. (doi:10.

1056/NEJMra1512592)
6. Morrison TM, Pathmanathan P, Adwan M, Margerrison E. 2018 Advancing regulatory science with computational modeling for medical devices

at the FDA’s office of science and engineering laboratories. Front. Med. (Lausanne) 5, 241, (doi:10.3389/fmed.2018.00241)
7. Li LP, Soulhat J, Buschmann MD, Shirazi-Adl A. 1999 Nonlinear analysis of cartilage in unconfined ramp compression using a fibril reinforced

poroelastic model. Clin. Biomech. 14, 673–682. (doi:10.1016/S0268-0033(99)00013-3)
8. Fialho JC, Fernandes PR, Eça L, Folgado J. 2007 Computational hip joint simulator for wear and heat generation. J. Biomech. 40, 2358–2366.

(doi:10.1016/j.jbiomech.2006.12.005)
9. McDowell DL, Dunne FPE. 2010 Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32, 1521–1542. (doi:

10.1016/j.ijfatigue.2010.01.003)
10. Delingette H. 1998 Toward realistic soft-tissue modeling in medical simulation. Proc. IEEE 86, 512–523. (doi:10.1109/5.662876)
11. Pathmanathan P, Gray RA, Romero VJ, Morrison TM. 2017 Applicability analysis of validation evidence for biomedical computational models. J.

Verif. Valid. Uncertain. Quantif. 2, 021005. (doi:10.1115/1.4037671)
12. Dingreville R, Karnesky RA, Puel G, Schmitt JH. 2016 Review of the synergies between computational modeling and experimental

characterization of materials across length scales. J. Mater. Sci. 51, 1178–1203. (doi:10.1007/s10853-015-9551-6)
13. Szabo B, Babuska I. 1991 Finite element analysis. New York, NY: John Wiley & Sons.
14. Erdemir A, Guess TM, Halloran J, Tadepalli SC, Morrison TM. 2012 Considerations for reporting finite element analysis studies in biomechanics. J.

Biomech. 45, 625–633. (doi:10.1016/j.jbiomech.2011.11.038)
15. de Oliveira DC, Espino DM, Deorsola L, Mynard JP, Rajagopal V, Buchan K, Dawson D, Shepherd DET. 2021 A toolbox for generating scalable

mitral valve morphometric models. Comput. Biol. Med. 135, 104628. (doi:10.1016/j.compbiomed.2021.104628)
16. Lavecchia CE, Espino DM, Moerman KM, Tse KM, Robinson D, Lee PVS, Shepherd DET. 2018 Lumbar model generator: a tool for the automated

generation of a parametric scalable model of the lumbar spine. J. R. Soc. Interface 15, 20170829. (doi:10.1098/rsif.2017.0829)
17. Topology and shape optimization with Abaqus. See https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/training/atom-summary.pdf?

xtmc=ATOM&amp;.
18. Yang XS, Koziel S, Leifsson L. 2012 Computational optimization, modelling and simulation: smart algorithms and better models. Procedia

Comput. Sci. 9, 852–856. (doi:10.1016/j.procs.2012.04.091)
19. Refaeilzadeh P, Tang L, Liu H. 2016 Cross-validation. In Encyclopedia of database systems, pp. 1–7. New York, NY: Springer.
20. Miramini S, Fegan KL, Green NC, Espino DM, Zhang L, Thomas-Seale LEJ. 2020 The status and challenges of replicating the mechanical

properties of connective tissues using additive manufacturing. J. Mech. Behav. Biomed. Mater. 103, 103544. (doi:10.1016/j.jmbbm.2019.
103544)

21. Mellors B, Allen P, Lavecchia CE, Mountcastle S, Cooke ME, Lawless BM, Cox SC, Jones S, Espino DM. 2023 Development and experimental
validation of a dynamic numerical model for human articular cartilage. Proc. Inst. Mech. Eng. H 237, 879–889. (doi:10.1177/
09544119231180901)

22. Mountcastle SE et al. 2019 Dynamic viscoelastic characterisation of human osteochondral tissue: understanding the effect of the cartilage-bone
interface. BMC Musculoskelet. Disord. 20, 575. (doi:10.1186/s12891-019-2959-4)

15
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240383

http://dx.doi.org/10.1007/s13239-020-00469-9
http://dx.doi.org/10.1126/scitranslmed.3003528
http://dx.doi.org/10.1056/NEJMra1512592
http://dx.doi.org/10.1056/NEJMra1512592
http://dx.doi.org/10.3389/fmed.2018.00241
http://dx.doi.org/10.1016/S0268-0033(99)00013-3
http://dx.doi.org/10.1016/j.jbiomech.2006.12.005
http://dx.doi.org/10.1016/j.ijfatigue.2010.01.003
http://dx.doi.org/10.1109/5.662876
http://dx.doi.org/10.1115/1.4037671
http://dx.doi.org/10.1007/s10853-015-9551-6
http://dx.doi.org/10.1016/j.jbiomech.2011.11.038
http://dx.doi.org/10.1016/j.compbiomed.2021.104628
http://dx.doi.org/10.1098/rsif.2017.0829
https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/training/atom-summary.pdf?xtmc=ATOM&amp
https://www.3ds.com/fileadmin/PRODUCTS/SIMULIA/PDF/training/atom-summary.pdf?xtmc=ATOM&amp
http://dx.doi.org/10.1016/j.procs.2012.04.091
http://dx.doi.org/10.1016/j.jmbbm.2019.103544
http://dx.doi.org/10.1016/j.jmbbm.2019.103544
http://dx.doi.org/10.1177/09544119231180901
http://dx.doi.org/10.1177/09544119231180901
http://dx.doi.org/10.1186/s12891-019-2959-4


23. Lawless BM, Sadeghi H, Temple DK, Dhaliwal H, Espino DM, Hukins DWL. 2017 Viscoelasticity of articular cartilage: analysing the effect of
induced stress and the restraint of bone in a dynamic environment. J. Mech. Behav. Biomed. Mater. 75, 293–301, (doi:10.1016/j.jmbbm.2017.
07.040)

24. Sadeghi H, Espino DM, Shepherd DET. 2015 Variation in viscoelastic properties of bovine articular cartilage below, up to and above healthy gait-
relevant loading frequencies. Proc. Inst. Mech. Eng. H 229, 115–123. (doi:10.1177/0954411915570372)

25. Li W, Shepherd DET, Espino DM. 2021 Investigation of the compressive viscoelastic properties of brain tissue under time and frequency
dependent loading conditions. Ann. Biomed. Eng. 49, 3737–3747. (doi:10.1007/s10439-021-02866-0)

26. Szarko M, Muldrew K, Bertram JE. 2010 Freeze-thaw treatment effects on the dynamic mechanical properties of articular cartilage. BMC
Musculoskelet. Disord. 11, 231. (doi:10.1186/1471-2474-11-231)

27. Lewis RJ, MacFarland AK, Anandavijayan S, Aspden RM. 1998 Material properties and biosynthetic activity of articular cartilage from the bovine
carpo-metacarpal joint. Osteoarthr. Cartil. 6, 383–392. (doi:10.1053/joca.1998.0142)

28. Fulcher GR, Hukins DWL, Shepherd DET. 2009 Viscoelastic properties of bovine articular cartilage attached to subchondral bone at high
frequencies. BMC Musculoskelet. Disord. 10, 61. (doi:10.1186/1471-2474-10-61)

29. Verteramo A, Seedhom BB. 2007 Effect of a single impact loading on the structure and mechanical properties of articular cartilage. J. Biomech.
40, 3580–3589. (doi:10.1016/j.jbiomech.2007.06.002)

30. McCormack T, Mansour JM. 1997 Reduction in tensile strength of cartilage precedes surface damage under repeated compressive loading in
vitro. J. Biomech. 31, 55–61. (doi:10.1016/S0021-9290(97)00103-6)

31. Lawless BM, Barnes SC, Espino DM, Shepherd DET. 2016 Viscoelastic properties of a spinal posterior dynamic stabilisation device. J. Mech. Behav.
Biomed. Mater. 59, 519–526, (doi:10.1016/j.jmbbm.2016.03.011)

32. Allen P. 2024 Automated-Modelling-System. Zenodo. (doi:10.5281/zenodo.11160626)
33. Yao JQ, Seedhom BB. 1993 Mechanical conditioning of articular cartilage to prevalent stresses. Rheumatology 32, 956–965.
34. Bell JS, Winlove CP, Smith CW, Dehghani H. 2009 Modeling the steady-state deformation of the solid phase of articular cartilage. Biomaterials

30, 6394–6401. (doi:10.1016/j.biomaterials.2009.08.026)
35. Ogden RW. 1984 Non-linear elastic deformations. Eng. Anal. 1, 119. (doi:10.1016/0264-682X(84)90061-3)
36. Pólik I, Terlaky T. 2010 Interior point methods for nonlinear optimization. In Nonlinear optimization (eds G Di Pillo, F Schoen), pp. 215–276.

Berlin, Germany: Springer. (doi:10.1007/978-3-642-11339-0_4)
37. Shipley H, McDonnell D, Culleton M, Coull R, Lupoi R, O’Donnell G, Trimble D. 2018 Optimisation of process parameters to address fundamental

challenges during selective laser melting of Ti-6Al-4V: a review. Int. J. Mach. Tools Manuf. 128, 1–20. (doi:10.1016/j.ijmachtools.2018.01.003)
38. Jacobs MR. 2001 Optimisation of antimicrobial therapy using pharmacokinetic and pharmacodynamic parameters. Clin. Microbiol. Infec. 7, 589–

596. (doi:10.1046/j.1198-743x.2001.00295.x)
39. Ying X. 2019 An overview of overfitting and its solutions. J. Phys. Conf. Ser. 1168, 022022. (doi:10.1088/1742-6596/1168/2/022022)
40. Bhattacharya P, Viceconti M. 2017 Multiscale modeling methods in biomechanics. Wiley Interdiscip. Rev. Syst. Biol. Med. 9, e1375. (doi:10.1002/

wsbm.1375)
41. Henninger HB, Reese SP, Anderson AE, Weiss JA. 2012 Validation of computational models in biomechanics. Proc. Inst. Mech. Eng. H 224, 801–

812. (doi:10.1243/09544119JEIM649)
42. Fernanda M, Costa P, Ribeiro C. 2011 Parameter estimation of viscoelastic materials: a test case with different optimization strategies. AIP Conf.

Proc. 1389, 771–774. (doi:10.1063/1.3636846)
43. Fell NLA, Lawless BM, Cox SC, Cooke ME, Eisenstein NM, Shepherd DET, Espino DM. 2019 The role of subchondral bone, and its histomorphology,

on the dynamic viscoelasticity of cartilage, bone and osteochondral cores. Osteoarthr. Cartil. 27, 535–543. (doi:10.1016/j.joca.2018.12.006)
44. Wierzbanowski K, Tarasiuk J, Lodini A. 2010 Optimization of material properties using genetic algorithms. Mater. Sci. Forum 652, 1–6. (doi:10.

4028/www.scientific.net/MSF.652.1)
45. Chaparro BM, Thuillier S, Menezes LF, Manach PY, Fernandes JV. 2008 Material parameters identification: gradient-based, genetic and hybrid

optimization algorithms. Comput. Mater. Sci. 44, 339–346. (doi:10.1016/j.commatsci.2008.03.028)
46. Li W, Shepherd DET, Espino DM. 2024 Frequency and time dependent viscoelastic characterization of pediatric porcine brain tissue in

compression. Biomech. Model. Mechanobiol. (doi:10.1007/s10237-024-01833-7)
47. Wong WLE, Joyce TJ, Goh KL. 2016 Resolving the viscoelasticity and anisotropy dependence of the mechanical properties of skin from a porcine

model. Biomech. Model. Mechanobiol. 15, 433–446. (doi:10.1007/s10237-015-0700-2)
48. Sadeghi H, Shepherd DET, Espino DM. 2015 Effect of the variation of loading frequency on surface failure of bovine articular cartilage.

Osteoarthr. Cartil. 23, 2252–2258. (doi:10.1016/j.joca.2015.06.002)
49. Cederlund AA, Aspden RM. 2022 Walking on water: revisiting the role of water in articular cartilage biomechanics in relation to tissue

engineering and regenerative medicine. J. R. Soc. Interface 19, 20220364. (doi:10.1098/rsif.2022.0364)
50. Burgin LV, Aspden RM. 2008 Impact testing to determine the mechanical properties of articular cartilage in isolation and on bone. J. Mater. Sci.

Mater. Med. 19, 703–711. (doi:10.1007/s10856-007-3187-2)
51. de Oliveira DC, Espino DM, Deorsola L, Buchan K, Dawson D, Shepherd DET. 2023 A geometry-based finite element tool for evaluating mitral

valve biomechanics. Med. Eng. Phys. 121, 104067, (doi:10.1016/j.medengphy.2023.104067)
52. Allen P. 2024 Automated-Modelling-System. GitHub. See https://github.com/piers-ch-allen/Automated-Modelling-System.
53. Allen P, Cox SC, Jones S, Espino D. 2024 Supplementary material from: A genetic algorithm Optimisation framework for the Characterisation of

hyper-viscoelastic materials: application to human Articular cartilage. Figshare. (doi:10.6084/m9.figshare.c.7262683)

16
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240383

http://dx.doi.org/10.1016/j.jmbbm.2017.07.040
http://dx.doi.org/10.1016/j.jmbbm.2017.07.040
http://dx.doi.org/10.1177/0954411915570372
http://dx.doi.org/10.1007/s10439-021-02866-0
http://dx.doi.org/10.1186/1471-2474-11-231
http://dx.doi.org/10.1053/joca.1998.0142
http://dx.doi.org/10.1186/1471-2474-10-61
http://dx.doi.org/10.1016/j.jbiomech.2007.06.002
http://dx.doi.org/10.1016/S0021-9290(97)00103-6
http://dx.doi.org/10.1016/j.jmbbm.2016.03.011
http://dx.doi.org/10.5281/zenodo.11160626
http://dx.doi.org/10.1016/j.biomaterials.2009.08.026
http://dx.doi.org/10.1016/0264-682X(84)90061-3
http://dx.doi.org/10.1007/978-3-642-11339-0_4
http://dx.doi.org/10.1016/j.ijmachtools.2018.01.003
http://dx.doi.org/10.1046/j.1198-743x.2001.00295.x
http://dx.doi.org/10.1088/1742-6596/1168/2/022022
http://dx.doi.org/10.1002/wsbm.1375
http://dx.doi.org/10.1002/wsbm.1375
http://dx.doi.org/10.1243/09544119JEIM649
http://dx.doi.org/10.1063/1.3636846
http://dx.doi.org/10.1016/j.joca.2018.12.006
http://dx.doi.org/10.4028/www.scientific.net/MSF.652.1
http://dx.doi.org/10.4028/www.scientific.net/MSF.652.1
http://dx.doi.org/10.1016/j.commatsci.2008.03.028
http://dx.doi.org/10.1007/s10237-024-01833-7
http://dx.doi.org/10.1007/s10237-015-0700-2
http://dx.doi.org/10.1016/j.joca.2015.06.002
http://dx.doi.org/10.1098/rsif.2022.0364
http://dx.doi.org/10.1007/s10856-007-3187-2
http://dx.doi.org/10.1016/j.medengphy.2023.104067
https://github.com/piers-ch-allen/Automated-Modelling-System
http://dx.doi.org/10.6084/m9.figshare.c.7262683

	A genetic algorithm optimization framework for the characterization of hyper-viscoelastic materials: application to human articular cartilage
	1. Introduction
	2. Methods
	2.1. Experimental testing
	2.2. Automated modelling system structure
	2.3. Finite element analysis
	2.4. Material characterization
	2.5. Python control structure
	2.6. Matlab optimization control sequence

	3. Results
	4. Discussion
	5. Conclusion


