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Objectives: An important challenge in epilepsy is to define biomarkers of 
response to treatment. Many electroencephalography (EEG) methods and 
indices have been developed mainly using linear methods, e.g., spectral power 
and individual alpha frequency peak (IAF). However, brain activity is complex 
and non-linear, hence there is a need to explore EEG neurodynamics using 
nonlinear approaches. Here, we use the Fractal Dimension (FD), a measure of 
whole brain signal complexity, to measure the response to anti-seizure therapy 
in patients with Focal Epilepsy (FE) and compare it with linear methods.

Materials: Twenty-five drug-responder (DR) patients with focal epilepsy were 
studied before (t1, named DR-t1) and after (t2, named DR-t2) the introduction 
of the anti-seizure medications (ASMs). DR-t1 and DR-t2 EEG results were 
compared against 40 age-matched healthy controls (HC).

Methods: EEG data were investigated from two different angles: frequency 
domain—spectral properties in δ, θ, α, β, and γ bands and the IAF peak, and 
time-domain—FD as a signature of the nonlinear complexity of the EEG signals. 
Those features were compared among the three groups.

Results: The δ power differed between DR patients pre and post-ASM and HC 
(DR-t1 vs. HC, p  <  0.01 and DR-t2 vs. HC, p  <  0.01). The θ power differed between 
DR-t1 and DR-t2 (p  =  0.015) and between DR-t1 and HC (p  =  0.01). The α power, 
similar to the δ, differed between DR patients pre and post-ASM and HC (DR-t1 
vs. HC, p  <  0.01 and DR-t2 vs. HC, p  <  0.01). The IAF value was lower for DR-t1 
than DR-t2 (p  =  0.048) and HC (p  =  0.042). The FD value was lower in DR-t1 than 
in DR-t2 (p  =  0.015) and HC (p  =  0.011). Finally, Bayes Factor analysis showed 
that FD was 195 times more likely to separate DR-t1 from DR-t2 than IAF and 
231 times than θ.

Discussion: FD measured in baseline EEG signals is a non-linear brain measure 
of complexity more sensitive than EEG power or IAF in detecting a response to 
ASMs. This likely reflects the non-oscillatory nature of neural activity, which FD 
better describes.

OPEN ACCESS

EDITED BY

Adeel Razi,  
Monash University, Australia

REVIEWED BY

Wenhai Zhang,  
Hengyang Normal University, China
Zongyue Cheng,  
Purdue University, United States
Stefania Coelli,  
Polytechnic University of Milan, Italy

*CORRESPONDENCE

Camillo Porcaro  
 camillo.porcaro@unipd.it

†These authors have contributed equally to 
this work

RECEIVED 14 March 2024
ACCEPTED 20 May 2024
PUBLISHED 07 June 2024

CITATION

Porcaro C, Seppi D, Pellegrino G, Dainese F, 
Kassabian B, Pellegrino L, De Nardi G, 
Grego A, Corbetta M and Ferreri F (2024) 
Characterization of antiseizure medications 
effects on the EEG neurodynamic by fractal 
dimension.
Front. Neurosci. 18:1401068.
doi: 10.3389/fnins.2024.1401068

COPYRIGHT

© 2024 Porcaro, Seppi, Pellegrino, Dainese, 
Kassabian, Pellegrino, De Nardi, Grego, 
Corbetta and Ferreri. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 07 June 2024
DOI 10.3389/fnins.2024.1401068

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2024.1401068&domain=pdf&date_stamp=2024-06-07
https://www.frontiersin.org/articles/10.3389/fnins.2024.1401068/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1401068/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1401068/full
https://www.frontiersin.org/articles/10.3389/fnins.2024.1401068/full
mailto:camillo.porcaro@unipd.it
https://doi.org/10.3389/fnins.2024.1401068
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2024.1401068


Porcaro et al. 10.3389/fnins.2024.1401068

Frontiers in Neuroscience 02 frontiersin.org

Conclusion: Our work suggests that FD is a promising measure to monitor the 
response to ASMs in FE.

KEYWORDS

quantitative-EEG, focal epilepsy, antiseizure medications, biomarkers, fractal 
dimension

1 Introduction

Epilepsy represents one of the most common neurological 
conditions, affecting up to 1% of the world population. The clinical 
management of epilepsy patients is largely based on clinical judgment 
and is essentially qualitative. For instance, the choice of the first 
medication—after a diagnosis of epilepsy is made—is based on the 
clinical features of the seizures and the potential side effect profile of 
the medication. Similarly, the efficacy of response is established based 
on the reduction of the number of seizures or the qualitative 
improvement of inter-ictal EEG signals. Currently, there are no 
quantitative biomarkers for the prediction of pharmacological efficacy 
at the population or individual patient level.

The objective of this study is to quantitatively assess the effects of 
ASMs on brain signals to predict the likelihood of response through 
an automated algorithm leveraging quantitative analysis of clinical 
EEGs (qEEG) (Park et al., 2020). Quantitative EEG is a promising 
branch of clinical neurophysiology that explores local and global brain 
dynamics. When coupled with drugs (Jobert et al., 2012) qEEG is a 
promising tool to study the response to new drugs and has become an 
established technique for their classification (Galderisi et al., 1994; 
Mucci et al., 2006; Fink, 2010; Iosifescu, 2011).

So far, the two most reliable EEG biomarkers of ASM response are 
the interictal epileptiform discharges and the power spectral analysis, 
while the use of the Individual Alpha Frequency (IAF) peak is still 
debated but may represent a promising biomarker (Reynolds et al., 
2023). However, these linear methods mainly capture the oscillatory 
component of the EEG signal and do not consider non-stationarities 
and non-linearities present in EEG signals (Stam, 2005; Klonowski, 
2009). As stated by Cole and Voytek and by Jones and colleagues 
(Jones, 2016; Cole and Voytek, 2017), brain signals do not simply 
represent a sustained oscillation at a particular frequency but rather 
brief bouts of activity that repeat intermittently (Feingold et al., 2015; 
Lundqvist et al., 2016). Neuromodulation studies demonstrate that the 
application of complex and non-sinusoidal waveforms is more 
effective than sinusoidal oscillators in modulating brain (Somers and 
Kopell, 1993; Fröhlich and McCormick, 2010; Fröhlich, 2015; Dowsett 
and Herrmann, 2016; Cottone et al., 2018; Porcaro et al., 2019) and 
entraining brain rhythms (Somers and Kopell, 1993; Dowsett and 
Herrmann, 2016). This “hidden information” captured by non-linear 
methods such as fractal dimension analysis may be additional and 
complementary to linear methods and could shed light on the 
physiological neural communication, computation, and cognition in 
healthy as well as patients with neuropathological conditions 
(Goldberger, 2001; Goldberger et al., 2002; Zhang and Raichle, 2010; 
Rodríguez-Bermúdez and García-Laencina, 2015; Porcaro et al., 2017, 
2019, 2020a,b, 2022). This is the reason why time-series fractal analysis 
is more and more used in different research fields ranging from basic 

neuroscience (Di Ieva et al., 2014, 2015; Moaveninejad et al., 2024), 
neurophysiology (Adeli et  al., 2008; Ahmadlou and Adeli, 2012; 
Ahmadlou et al., 2012a,b), translational neuroscience (Smits et al., 
2016; Porcaro et  al., 2020b, 2021, 2022; Fiorenzato et  al., 2024; 
Olejarczyk et al., 2024) to genetic variability in human phenotypes 
(Cattani and Pierro, 2013; Lee, 2020; Borri et al., 2022).

The purpose of our study is, therefore, to compare EEG signals in 
newly diagnosed patients with focal epilepsy patients before and after 
the initiation of therapy and examine their normalization using both 
linear (power spectra and IAF) and non-linear methods (FD). 
Specifically, we are interested in evaluating which method is more 
sensitive in detecting differences pre- and post-therapy with ASMs.

2 Materials and methods

2.1 Patients and data collection

We retrospectively reviewed the data of 25 newly diagnosed focal 
epilepsy patients and a control group of 40 healthy subjects enrolled 
at the epilepsy clinic of the Neurophysiological Unit of the Padua 
University Hospital (see Table  1). Epilepsy patients fulfilling the 
following inclusion criteria were included: (i) focal epilepsy according 
to the International League Against Epilepsy diagnostic 
recommendations (Scheffer et al., 2017); (ii) > 16 years old; (iii) no 
previous ASMs therapy (drug-naïve patients); (iv) at least two routine 
EEGs performed before (i.e., <30 days – DR-t1) and 6–12 months after 
(DR-t2) the beginning of treatment; (vi) EEGs included 5+ min of 
artifact free wakefulness; (vii) clinical follow-up at two-years. The 
exclusion criteria were: (i) other drugs acting on the CNS; (ii) 
medication change between EEG recordings. All patients underwent 
neurophysiological assessment, EEG, and brain MRI, as per standard 
of care (Koutroumanidis et al., 2017a,b; Scheffer et al., 2017).

Healthy subjects were volunteers. They were interviewed by a 
neurologist to rule out medical conditions potentially biasing the 
study. Healthy subjects met the following inclusion criteria: (i) 
age > 16 years; (ii) no medical or psychiatric conditions; (iii) no 
neuroactive drugs.

The study protocol was approved by Padua University Hospital’s 
ethics committee for a retrospective study.

2.2 EEG recording

Nineteen channel EEG was acquired with a EB-Neuro Galileo 
(Mizar 40) recorder. The electrodes were placed according to the 
international 10–20 system (Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, 
T3, T4, T5, T6, O1, O2, Fz, Cz, Pz). The reference was placed on FPz 
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and the ground on FCz. Impedance was kept below 10 kOhm for all 
electrodes. The sampling rate was set to 256 Hz. EEG recordings for 
patients lasted at least 20 min as per standard of care. This included 
5 min of EEG eyes closed, which was selected for the purpose of this 
study. The remaining 15 min included eyes open recording, reactivity 
to eye closure and opening, intermittent photic stimulation, and 
hyperventilation, as per common clinical practice. The healthy control 
group performed 5 min of EEG recordings with open eyes and 5 min 
of EEG recordings with closed eyes.

2.3 EEG pre-processing

Quantitative EEG analysis was performed using the EEGLab 
Toolbox for Matlab1 and in-home Matlab code. Offline data 
pre-processing included: (i) visual inspection for rejection of possible 
interictal and ictal epileptiform activity; (ii) DC removal; (iii) 
bandpass filter between 1 and 48 Hz (linear phase finite impulse 
response filter); (iv) EEG re-reference to average; (v) correction for 
pulse and eye blink artifacts using Independent Component Analysis 
(ICA) (Barbati et al., 2004; Porcaro et al., 2015). Visual identification 
of interictal and ictal abnormalities was performed by experienced 
neurophysiologists blind to the clinical data as well as 5 min of EEG 
eyes closed (FF, CL, FD).

2.4 Characterization of 
electrophysiological neural activity at rest

We considered signal properties in the frequency domain (PSD) 
and time domain. The PSD is the squared modulus of the continuous 
Fourier transform. It is particularly useful for studying brain 
oscillations on a time scale of minutes, typical of an individual’s 
“stable state” (Schomer and Lopes Da Silva, 2012). As for the time 
domain, the signal power of neuronal assemblies, as a function of 
frequency, displays a “power law” function (Ramon and Holmes, 
2015), and the exponent of this function corresponds to its fractality. 
Thus, we used temporal Higuchi’s fractal dimension (FD) (Higuchi, 
1988) as a signature of neural dynamics underlying brain functions.

2.5 EEG power spectrum

We calculated the PSD using the Welch procedure (256 time points 
duration, Hanning window, and 60% overlap). We then investigated 

1 https://sccn.ucsd.edu/eeglab/index.php

the spectral properties of the EEG total power in the classical frequency 
bands, such as δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β (14–30 Hz), and 
γ (31–48 Hz) bands (Chatrian et  al., 1974). In addition, IAF was 
defined as the exact frequency in the α range containing the maximum 
power. It was calculated using an automated peak-detection algorithm 
(function RestingIAF on EEGLab) (Corcoran et al., 2018).

2.6 Higuchi’s fractal dimension

FD (Higuchi, 1988) is a non-linear measure of waveform 
complexity applied in the time domain. Discretised functions or 
signals can be analyzed as a segment of data X(1), X(2), …, X(N), 
where N is the total number of samples. From the starting time 
sequence, a new self-similar time series Xmk can be calculated as Eq. 1:
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for m = 1, 2, …, k where m is the initial time; k is the time interval, 
k =  1, 2, …, kmax; kmax is a free parameter, and int() represent the 
integer operator.

The length, Lm(k), of each curve Xk
m is calculated as Eq. 2:
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where N is the length of the original time series X and 
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 is a normalization factor.

Lm(k) was averaged across all m forming the mean value of the 
curve length L(k) for each k = 1,…, kmax as Eq. 3:

 
L k

L k

k
m
k
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(3)

An array of mean values L(k) was obtained and the FD was 
estimated as Eq. 4:

 
FD L k k for k k� � �� � � � � �log log/ / , , , max1 1 2

 (4)

TABLE 1 Demographic characteristics of the sample by group.

Group N. Age (years) Gender Etiology Drug

Mean SD F M U S LEV LTG LCM

EPI 25 39.8 17.0 18 7 18 7 15 5 5

HC 40 38.9 16.0 23 17

EPI, focal epilepsy patients; HC, healthy controls; N, number of individuals; SD, standard deviation; U, Unknown origin; S, Structural origin; LEV, Levetiracetam; LTG, Lamotrigine; LCM, 
Lacosamide.
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In practice, the original curve or signal can be  divided into 
smaller parts with or without overlap, called “windows.” Then, the 
method for computing the FD should be applied to each window 
where N should be seen as the length of the window. Individual FD 
values can be averaged across all windows for the entire curve (or 
data time-series), and the mean FD value can be used as a measure 
of curve complexity. Additional analysis demonstrated that FD 
measurements were not dependent on the choice of window length 
and overlapping windows see Smits et al. (2016), Marino et al. (2019), 
and Porcaro et al. (2020a) for details. Here, for each EEG channel, 
we  calculated FD in non-overlapping time windows of 1 s 
(corresponding to 256-time points since our sample frequency rate 
was 256 Hz) as a good compromise between the window length of the 
data and computational time. The choice of the free parameter k has 
a crucial role in FD estimation; for this reason, for each window, 
we estimated 127 values of FD for all the possible k values (i.e., k = 2, 
…, 128).

The value 128 was equal to half of the samples within our 1 s 
window (i.e., 128-time points are the maximum that can be chosen 
since the maximum k value is equal to half of the window length). For 
the subsequent FD analysis, we set k = 25 (Smits et al., 2016; Marino 
et al., 2019; Porcaro et al., 2020a, 2022).

2.7 Statistical analysis

Shapiro–Wilk test for normality revealed that PSD, IAF, and FD 
values did not differ from a Gaussian distribution (p > 0.200). 
Repeated-measures analysis of variance (rm-ANOVA) was performed 
on PSD values to investigate the interaction effect GROUPs × BANDs 
(the three GROUPs as a between-subject factor: DR-t1, DR-t2, and 
HC); the five BANDs as a within-subjects factor (δ, θ, α, β, γ). The 
sphericity of the covariance matrix was verified with the Mauchly 
sphericity test. In the case of violation of the sphericity assumption, 
the Greenhouse–Geisser epsilon adjustment was used. One-way 
ANOVA was also applied to investigate the GROUPs effect (between-
subject factor: DR-t1, DR-t2, and HC) on FD and IAF. The results 
were analyzed only for all ANOVA models if the Wilks’ Lambda 
multivariate significance criterion was achieved. In the case of 
violation of the sphericity assumption, the Greenhouse–Geisser 
epsilon adjustment was used. Post-hoc analysis was performed using 
the Bonferroni correction method for multiple comparisons. Finally, 
the three measures (PSD, IAF, and FD) were analyzed using a 
Bayesian approach to test which of the three methods was better able 
to discriminate between DR-t1 and DR-t2 conditions. We  have 
performed the same ANOVA test as above on a single drug to test for 
any drug specificity. The drug chosen was LEV since it has higher 
numerosity, with the number of subjects being 15. All the analyses 
described above were conducted in JASP software (v0.17.2-1—jasp-
stats.org/).

3 Results

3.1 Demographic results

A one-way ANOVA model found no significant age difference 
among groups [F(2, 89) = 2.24, p = 0.129].

3.2 EEG power spectrum and IAF

3.2.1 All drugs (LEV, LTG, LCM)
A repeated measure ANOVA (rm-ANOVA) for the PSD with a 

Greenhouse–Geisser correction (Mauchly’s W = 0.005, p < 0.001, 
ε = 0.369) revealed a significant GROUP × BAND interaction [F(8, 
356) = 16.4, p < 0.001]. The between-subjects factor GROUP also 
showed a difference [F(2, 89) = 26.1, p < 0.001]. Post-hoc tests using the 
Bonferroni correction revealed that the δ band was different between 
DR-t1 and HC (p < 0.001) and between DR-t2 and HC (p < 0.001). 
There was no significant difference between DR-t1 and DR-t2. The θ 
band differed between DR-t1 and DR-t2 (p = 0.015) and DR-t1 and HC 
(p = 0.01), but not between DR-t2 and HC. Finally, the α band 
significantly differed between DR-t1 and HC and between DR-t2 and 
HC (p = 0.002 for both), but there was no difference between DR-t1 
and DR-t2. No significant differences were found for other frequency 
bands (Figure 1A). The IAF ANOVA model revealed a statistically 
significant difference between GROUPs [F (2, 89) = 3.29, p = 0.042]. 
Bonferroni corrected post-hoc tests revealed that the IAF value was 
lower for the DR-t1 as compared to the DR-t2 (p < 0.048) and the HC 
group (p = 0.042). No difference was observed for the DR-t2 vs. HC 
(Figure 2A, Up).

3.2.2 Only LEV
rm-ANOVA for the PSD with a Greenhouse–Geisser correction 

(Mauchly’s W = 0.0113, p < 0.001, ε = 0.410) revealed a significant 
GROUP × BAND interaction [F(8, 268) = 14.2, p < 0.001]. The 
between-subjects factor GROUP also showed a difference [F(2, 
67) = 18.9, p < 0.001]. Post-hoc tests using the Bonferroni correction 
revealed that the δ band was different between DR-t1 and HC 
(p < 0.001) and between DR-t2 and HC (p < 0.001). There was no 
significant difference between DR-t1 and DR-t2. The θ band differed 
between DR-t1 and DR-t2 (p = 0.008) and DR-t1 and HC (p = 0.001), 
but not between DR-t2 and HC. Finally, the α band significantly 
differed between DR-t1 and HC (p = 0.015) and between DR-t2 and 
HC (p = 0.006), but there was no difference between DR-t1 and DR-t2. 
No significant differences were found for other frequency bands 
(Figure  1B). The IAF ANOVA model only showed a tendency to 
significantly differ between GROUPs [F (2, 67) = 2.455, p = 0.09; 
Figure 2B, Up].

3.3 Higuchi’s fractal dimension

3.3.1 All drugs (LEV, LTG, LCM)
The ANOVA model for the FD feature also revealed a significant 

GROUP effect for FD [F(2, 89) = 5.537, p = 0.005]. Bonferroni 
corrected post-hoc tests revealed that FD was lower for DR-t1 
compared to DR-t2 (p = 0.015) and the HC group (p = 0.011). No 
significant difference was found for DR-t2 vs. HC (Figure 2A, Bottom).

3.3.2 Only LEV
The ANOVA model for the FD estimated only on the LEV drug 

revealed a significant GROUP effect for FD [F(2, 67) = 5.903, 
p = 0.004]. Bonferroni corrected post-hoc tests revealed that FD was 
lower for DR-t1 compared to DR-t2 (p = 0.024) and the HC group 
(p = 0.004). No significant difference was found for DR-t2 vs. HC 
(Figure 2B, Bottom).
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FIGURE 1

Panel (A) all drugs, Delta (Upper panel), Theta (Middle panel), and Alpha (Bottom panel) values among groups [healthy controls (HC), patients before 
pharmacological intervention (DR-t1), and patients after pharmacological intervention (DR-t2)]. The horizontal bar indicates which contrast reached 
the significant level at p  <  0.01 (**) and p  <  0.05 (*). Black points and error lines represent the mean and the standard error. Panel (B), as panel (A), but for 
only LEV drug.
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3.4 Is FD more sensitive than PSD or IAF in 
detecting drug response effects?

We used Bayesian Paired samples t-tests to compare the relative 
sensitivity of FD vs. PSD in discriminating DR-t1 vs. DR-t2 patients. 
There are several advantages to using Bayesian methods. First, 
Bayesian methods allow inferences about both the null and alternative 
hypotheses. Second, it is possible to compare Bayes Factors (BF) 
across analyses and, based on the magnitude of the BF, derive whether 
one result is more robust than another.

We found a significant difference between DR-t1 and DR-t2 for 
FD [Student’s t (25) = −5.172, p < 0.001, BF10 = 973.069], θ band power 
[Student’s t (25) = 2.730, p = 0.011, BF10 = 4.220], and IAF [Student’s t 
(25) = −2.816, p = 0.009, BF10 = 4.994]. However, the magnitude of BF 
was higher for FD than θ band or IAF (BF FD = 973.069; BF θ 
band = 4.994; BF IAF = 4.220). Accordingly, FD was 195 times more 
likely than IAF, and 231 times more likely than θ band to distinguish 
DR-t1 from DR-t2. Figures 3, 4 show the descriptive statistics. In 
particular, Figure 3 shows the value for the θ band, IAF, and FD and 
each patient before and after the pharmacological intervention; the 
gray line that conjuncts the green circle with the orange circle 

emphasizes the trend obtained for each patient. The more the trend 
follows the same direction (i.e., from higher to lower θ), the higher 
will be the statistical effects. Figure 4 displays the individual cases 
(green dots), box plots, and density for the difference between the 
measures. In our case, FD (Figure 4, Bottom panel) clearly shows that 
the pharmacological intervention decreases the brain complexity 
estimated by Higuchi’s FD in all patients.

4 Discussion

The issue of assessing the response of ASMs in newly diagnosed 
epilepsy patients is an important clinical problem with important 
implications for health national systems. Research in the last 40 years 
has been devoted to developing EEG biomarkers as reliable indices of 
favorable response (Porcaro et al., 2019, 2020a, 2022; Comanducci 
et  al., 2020). Compared to MRI and PET scans, EEG has many 
advantages, including low costs, widespread availability in 
economically less developed countries, non-invasiveness, and 
portability. However, EEG biomarkers are not routinely used in 
clinical practice to assess response. Patients are still evaluated based 

FIGURE 2

Panel (A) all drugs, IAF (Upper panel) and FD (Bottom panel) values among groups [healthy controls (HC), patients before pharmacological intervention 
(DR-t1), and patients after pharmacological intervention (DR-t2)]. The horizontal bar indicates which contrast reached the significant level at p  <  0.01 
(**), p  <  0.05 (*) and (+) p  =  0.09. Black points and error lines represent the mean and the standard error. Panel (B), as panel (A), but for only LEV drug.
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on clinical response and a qualitative evaluation of EEG recordings 
and interictal abnormalities.

The research area exploring the relationship between fractal 
dimension and epilepsy is a novel and promising field, delving into the 
dynamics of brain activity. The Fractal dimension is a measure of the 

irregularity or complexity of a geometric structure, such as the 
spatiotemporal dynamics of brain (Porcaro et al., 2024). In epilepsy, the 
pathological mechanism involves abnormal synchronization of 
neuronal activity, leading to seizures. Fractal EEG signal analysis might 
be a new tool to investigate this abnormal complexity of brain activity 
in epileptic patients (Jouny and Bergey, 2012; Khoa et al., 2012).

In healthy individuals, EEG signals exhibit a certain level of 
complexity, characterized by a fractal dimension within a specific 
range (Cottone et al., 2017; Marino et al., 2019). However, in epileptic 
patients, this complexity may be altered due to disruptions in the 
normal functioning of neural networks (Jouny and Bergey, 2012; Khoa 

FIGURE 3

Single subject representation for theta value [upper panel—before 
(DR-t1) and after (DR-t2) pharmacological intervention], IAF value 
[middle panel—before (DR-t1) and after (DR-t2) pharmacological 
intervention] and FD value [bottom panel—before (DR-t1) and after 
(DR-t2) pharmacological intervention]. Each circle represents a 
subject, and the gray line connects the same subject before (green 
circle) and after (orange circle) pharmacological intervention.

FIGURE 4

Single subject difference distribution density for theta value [Upper 
panel—before (DR-t1) and after (DR-t2) pharmacological 
intervention], IAF value [middle panel—before (DR-t1) and after (DR-
t2) pharmacological intervention] and FD value [bottom panel—
before (DR-t1) and after (DR-t2) pharmacological intervention]. Each 
green circle represents the subject difference for each feature under 
investigation (Theta Band, IAF, and FD) before and after 
pharmacological intervention. The green area under the curve 
represents its density distribution. In the box plot, the bold black line 
shows the sample median. The hinges indicate the 25th and 75th 
quantiles and the whiskers point to 1.5 interquartile ranges beyond 
the hinges.
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et  al., 2012). Several studies have found differences in fractal 
dimension measures between healthy individuals and epileptic 
patients, as well as between different types of epilepsy. For example, 
some research suggests that the fractal dimension of EEG signals may 
decrease during epileptic seizures, indicating a loss of complexity in 
brain activity (Olejarczyk, 2003; Jouny and Bergey, 2012; Khoa et al., 
2012). On this basis, fractal analysis has an enormous potential for 
understanding epilepsy, with implications for both diagnosis and 
treatment. By providing insights into the underlying mechanisms of 
epilepsy, this analysis could pave the way for developing more effective 
diagnostic tools and therapies, making it a crucial area of study.

Overall, while the exact connection between the fractal dimension 
and the pathological mechanism of epilepsy is still being explored, 
research in this area holds promise for advancing our understanding 
of this complex neurological disorder.

With this aim, here we used Higuchi’s Fractal Dimension (FD) to 
investigate newly diagnosed patients with focal epilepsy from healthy 
controls and their response to ASMs. As a benchmark, we compared 
the FD to linear neurophysiological markers like the band-limited 
power and the IAF that have been evaluated in previous studies of 
response to ASMs (Clemens et  al., 2007; Cho et  al., 2012; Guo 
et al., 2014).

We found that ASMs treatment reduced θ power near normal 
levels, while α and δ power bands did not change pre- and post-
treatment (Figure 1). ASMs also normalized the IAF and FD near the 
level of HC subjects (Figure 2).

Our reduction of θ band power after treatment with ASMs is 
generally consistent with several previous studies, and it does not 
appear to be drug-dependent. Patients treated with Levetiracetam 
showed an increase in α e β power and a decrease in δ and θ power 
bands (Cho et al., 2012). Patients treated with Perampanel showed an 
increase in α power in drug responder patients (Lanzone et al., 2021). 
In TLE patients, Levetiracetam induced an increase in α power and a 
decrease in θ band power (Ricci et al., 2021). In another study, patients 
treated with LTG or VPA as first line therapy showed reduced θ and γ 
power (Clemens et  al., 2007; Clemens, 2008; Guo et  al., 2014). 
However, other studies have shown spontaneous longitudinal 
fluctuations in power which may confound some of the drug response 
effect (Viana et al., 2021).

While in our study the α power did not significantly change pre- 
post-treatment, the θ power normalized consistently with previous 
studies. In addition, we showed an increase in IAF that normalized 
post-therapy. The IAF is a stable index of oscillatory activity in the 
occipital lobe that grows in the course of development, and it is 
decreased in some pathological conditions (e.g., schizophrenia, 
Ramsay et al., 2021). A within-subject study showed that IAF was 
significantly higher during a demanding working memory task than 
during rest or passive visual stimulation (Haegens et al., 2014). Our 
interpretation is that the increase in IAF reflects an improvement 
toward normalization of cognitive processing in our patients after 
starting ASMs.

Overall, our results are consistent with those of other studies that 
have used classical FFT-based linear methods to distinguish between 
healthy subjects and epileptic patients and between pre- and post-
ASMs (Clemens et  al., 2014; Pellegrino et  al., 2018; Lanzone 
et al., 2021).

The most novel aspect of our results is that the FD increased 
normalizing after ASMs. Moreover, the FD was more sensitive than θ 

power and IAF in separating epileptic patients before and after 
treatment. The Fractal Dimension has been introduced as a marker in 
both healthy (Cottone et al., 2017; Marino et al., 2019; Porcaro et al., 
2020a) and pathological conditions (Smits et al., 2016; Porcaro et al., 
2019, 2020b, 2021, 2022). In the case of EEG, FD is a non-linear 
measure of signal complexity. Increased EEG synchrony results in its 
reduction while EEG desynchronization leads to FD increases. FD 
increases with task complexity (Cottone et al., 2018), and it is reduced 
after brain stroke (Zappasodi et al., 2014). The sensitivity of FD comes 
from its ability to estimate both oscillatory and non-oscillatory 
components of the EEG signal capturing patterns of activity that are 
not consistent over time. These non-rhythmic patterns have been 
clearly demonstrated in the human motor cortex (Feingold et al., 2015; 
Lundqvist et al., 2016; Cole et al., 2017; Cole and Voytek, 2017). The 
non-rhythmic nature of brain activity has been further supported by 
neuromodulation studies in which non-sinusoidal patterns were more 
effective in entraining brain rhythms (Somers and Kopell, 1993; 
Fröhlich and McCormick, 2010; Dowsett and Herrmann, 2016; 
Cottone et al., 2018).

Our results suggest that ASMs normalized brain activity in our 
focal epilepsy patients specifically by increasing signal complexity as 
indexed by FD. The corollary increase in IAF that has been associated 
with higher cognitive processing is also another neurophysiological 
indicator of brain activity normalization. It would have been 
important to show an improvement in neuropsychological scores 
post-therapy. It is remarkable that these changes occurred in the 
absence of apparent seizure activity. The large superiority of FD over 
oscillatory biomarkers (195 times more likely than IAF; 231 times 
higher than θ band) in picking up patients post-therapy is an 
indication that under physiological conditions brain activity is not 
oscillatory. To our knowledge, this is the first report to show a decrease 
of brain signal complexity in newly diagnosed epileptic subjects, 
which normalized after therapy.

5 Limitations and conclusions

The study suffers from several limitations. The sample is small, 
retrospective, and heterogeneous in terms of number of etiologies 
and drugs employed. In this respect, we  have performed the 
ANOVA on a more heterogeneous subgroup concerning the drug 
(in particular, we selected the 15 subjects treated with the LEV). 
The ANOVA showed comparable results with respect to the results 
obtained with the entire group treated with different drugs (i.e., 15 
LEV, 5 LTG, and 5 LCM). The robustness of our findings despite 
these limits may suggest that the effect is robust and even stronger 
in a more homogenous sample. Another limitation is that 
we  cannot exclude that these effects underlie the normal 
longitudinal recovery of signal complexity after the occurrence of 
novel seizure activity. To rule out this possibility, it would 
be important to have a group of non-responders and follow them 
longitudinally. However, non-responders are only about 30% of all 
epileptic patients, and a comparison across groups would be less 
sensitive than a within-subject comparison as in our study. The 
mean change in IAF pre- post-therapy was, on average ~ 0.5 Hz 
which is on par with within-subject IAF variability (~0.9 Hz in 
Haegens et  al.). In contrast, IAF between-subject variability is 
much larger (2.9 Hz in Haegens), which would require a much 
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larger sample of both responders and non-responders given the 
effect size observed here.

In conclusion, we  propose a new quantitative and automatic 
measure to track response to therapy in focal epilepsy. Future 
prospective studies are needed to validate this finding.
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