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stract—Satellite-assisted internet of things (IoT) networks
emerged as a beacon of promise, offering global cover-
nd uninterrupted connectivity. However, the challenges of
rce allocation and task offloading in such networks are
ate due to the unique characteristics of satellite communi-

systems. This research’s findings enrich the landscape of
y-efficient and dependable satellite-assisted IoT networks.
aper navigates the delicate balance between energy effi-
, network throughput, and fairness in distributing resources
g IoT devices. The proposed techniques, notably the Outer
oximation Algorithm (OAA), usher in seamless connectivity
esource optimization. The central challenge at hand, a
ve fractional programming problem, transforms through
harnes-Cooper transformation, presenting as a concave
ization enigma. Herein, the proposed outer approximation
thm takes flight, navigating the intricate paths of concave
ization. The performance of the epsilon-optimal solution
scrutiny under diverse system parameters—the constella-
f IoT devices, their affiliations, fairness considerations, and
uitable distribution of resource blocks. This contribution
ly enriches research but also opens doors to the boundless
ilities of satellite-assisted IoT networks.

ex Terms—IoT association, task offloading, resource allo-
, MINLP, satellites

I. Introduction
the contemporary landscape, IoT devices seamlessly in-
ine with our daily lives, signifying their integral role [1]–
dvancements in intelligent technologies and applications
ue to unfold, ushering in an era of growing benefits.
ly, the energy consumption of persistently operational
fueled by transmitted data, exceeds that of their non-

igent counterparts, offering a glimpse into the intricate
ce between innovation and resource expenditure. Cloud
uting has emerged as a versatile player, influencing a

of scenarios—from cloud radio access networks (C-
s) to intricate heterogeneous networks (HetNets), vehicle
c networks (VANETs), and vibrant social networks [4]–

ese strides transform communication and bring forth
uing inquiries. Within this symphony of technology, the
it of energy efficiency emerges as a guiding star, converg-
ith the surge of interconnected IoT devices [7]–[9]. This
vor stems from the urgency to optimize network assets
urtail energy consumption, fostering sustainability [10].
ponse to scientific proposals, the board aims to illumi-
nergy consumption and real-time communication. While

centralizing data within cloud servers offers benefits, it b
inherent drawbacks. Escalating traffic, prolonged proces
intensified energy needs, and mounting costs underscore
intricate orchestration, especially in fifth-generation netw
[11], [12].

Present satellite-based communication divides into t
Geosynchronous Earth Orbit (GEO), Medium Earth O
(MEO), and Low Earth Orbit (LEO) [13]. The future integ
satellite and terrestrial networks, heavily relying on
Earth Orbit (LEO) satellites for minimal latency. Integr
is poised for next-gen wireless networks, particularly
promising widespread high-speed Internet access [14]. U
IoT networks leverage 3G, 4G, or 5G for data collec
Coupling Low Earth Orbit (LEO) satellites with global ac
networks extends potential for distributed IoT networks.
IoT gateways reliant on low-Earth orbit satellites encou
data caching hurdles [15]. This landscape underscores in
tructure’s pivotal role in IoT’s growth.

Wireless networks shift with IoT’s global adoption, int
fying traffic demands [16]. The pursuit culminates in equi
high-speed Internet access transcending boundaries [17].
spite terrestrial advancements, rural areas face limited te
trial backhaul network reach [18]. Energy efficiency beco
paramount in IoT’s interconnectivity. Green fog compu
offers solutions for latency-sensitive IoT applications.
solutions require innovative resource allocation and netw
modeling, balancing power, energy, cost, and latency [19

This paper embarks on enhancing cache availability,
panding storage on fog nodes, and optimizing energy
ficiency. Integration with GEO/LEO satellites takes c
stage, aiming to create a fairness-aware planning framew
This framework harmonizes elements like association con
transmission power, and bandwidth allocation to minimize
device task delays. As we embark, a consistent termino
shall be our compass.

A. Related work

The literature review [20]- [32] explores satellite-b
IoT network studies, addressing connectivity challenges
proposing solutions. While these studies delve into va
aspects, they often overlook fairness in IoT distribution
data access delays. Bridging this gap is essential for a c
prehensive understanding of IoT networks’ capabilities
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TABLE I
Related work and novelty

ameters [20]
2021

[21]
2021

[22]
2021

[23]
2020

[24]
2019

[25]
2021

[26]
2022

[27]
2022

[28]
2022

[29]
2021

[30]
2021

[31]
2021

[32]
2020

This
paper

nsmission in UL ✓ ✓ ✓ ✓ ✓
Admission ✓
Association ✓ ✓ ✓ ✓ ✓
er limit ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
satellite (cloud) ✓ ✓ ✓ ✓ ✓ ✓
satellite (cloudlet) ✓ ✓ ✓ ✓ ✓ ✓ ✓

ect of Rain ✓
vement of Satellite ✓
cessing delay ✓ ✓ ✓ ✓ ✓ ✓ ✓
nsmission delay ✓ ✓ ✓ ✓ ✓ ✓
pagation delay ✓ ✓ ✓
euing delay ✓ ✓
he enabled ✓ ✓ ✓ ✓ ✓
a computation ✓ ✓ ✓ ✓
a storage ✓ ✓ ✓ ✓ ✓
r IoT and RBs dis-
ution

✓

rgy efficiency ✓ ✓ ✓ ✓ ✓ ✓

tions. Table I summarizes previous work on resource
tion in S-IoT networks.

the cited literature, several research papers have explored
us aspects of satellite-based communication systems and
implications for Internet of Things (IoT) networks. [20]
nted a comprehensive perspective on global connectivity
nges and introduced a 5G smart connectivity platform as
tion. This platform’s automation capabilities enable ef-
e service management, addressing these challenges with
al costs. Satellites, unmanned aerial vehicles (UAVs),

ong-range, low-power IoT network technologies have
identified as key enablers to extend 5G cellular coverage
ote and unreachable locations. [21] delved into the realm

ellite communication systems by proposing a joint beam
gement and power allocation strategy to enhance signal-
erference-plus-noise ratio (SINR) and mitigate outages.
ckle the intricate problem of allocating transmit power for

low-Earth orbit (LEO) satellites, the author introduced
p Q-network (DQN) approach, while the application of
rthogonal multiple access (NOMA) techniques enhanced

ral efficiency. In the realm of GEO/LEO satellite net-
s, research by [22] formulated a theoretical approach,
ing the ergodic capacity of a two-layer network using
r-G functions. However, these studies primarily focused
T device association for satellite networks, neglecting
ss considerations and data access delays.
3] explored cooperative user association and resource
tion strategies for hybrid GEO-LEO satellite networks,
ng the challenge of task scheduling and user association

ulti-tier framework. Similarly, [24] proposed sub-band
tion and power regulation methods for boosting IoT cel-

network throughput, considering spectral leakage effects.
rce allocation challenges in quantum key distribution
) networks that employ both GEO and LEO satellites

addressed by [25], introducing sub-optimal strategies for
izing energy consumption and optimizing secret key

ation. [26] focused on energy-efficient relay selection
ower allocation strategies for communication networks,

particularly considering load balancing within the contex
relay-assisted communication. [27] proposes relay sele
and power allocation to improve energy efficiency and
balancing in RLNC D2D communications supporting Het
in reference.

[28] tackled work offloading and software cache
mization through an iterative approach, aiming to re
task execution delays by caching frequently used serv
[29] explored low-latency edge computing provided by fl
unmanned aerial vehicles (UAVs) and satellite-based clou
cess, with a comprehensive optimization approach conside
various parameters such as association control, computing
allocation, and resource allocation for UAVs. [30] introd
constrained joint node association and energy efficiency m
mization problems for IoT-Fog networks, devising subopt
solutions for power allocation and node association u
linearization strategies. Additionally, latency minimizatio
cloudlet-based IoT networks was tackled through an O
Approximation Algorithm (OAA) approach [31]. In the
text of fog networks, [32] addressed the intricate chall
of resource and power allocation for minimizing energy
sumption while considering factors like QoS constraints, c
capacity, and network latency.

While these studies contribute significantly to satellite-b
IoT networks, they commonly lack an emphasis on fair
in IoT distribution and data access delays. This rese
gap highlights the need to explore these dimensions f
comprehensive understanding of IoT networks’ capabi
and limitations.

B. Motivation and Contributions
Reviewing the synthesis of previous endeavors [20]- [3

Table I, our primary focus resides in the realm of resourc
location and task offloading challenges within IoT ecosyst
Specifically, we delve into scenarios where IoT devices s
to establish connections with LEO-cloudlets in the up
direction. These devices transmit data files to LEO-clou
for storage and computation, further extending to offloa
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sts to cloudlets. This becomes particularly relevant in ex-
ve geographical zones, encompassing remote areas void
restrial access networks. In such intricate landscapes, the
yment of satellite communication systems emerges as a
al enabler for IoT devices, facilitating operations within
far-flung and secluded regions.

e nucleus of our research orbits around optimizing end-
d network energy efficiency. Our objective embraces IoT
e admission, association with LEO satellites, latency
derations, cache capabilities, impact of inclement weather
ain, satellite movement dynamics, and power allocation
n satellite-based IoT (S-IoT) networks.
pivotal dimension of our investigation concerns equitable
ments of IoT devices to suitable associations and im-
l distribution of spectrum resources. These objectives
oniously align with the overarching mission of enhancing
y efficiency. This distinctive objective, somewhat unex-
d in prior studies, necessitates the delicate equilibrium
en fairness and the quest for peak energy efficiency.

e optimization challenge at hand is intricate, character-
by the amalgamation of integer and nonlinear variables,
ring it a mixed-integer nonlinear programming (MINLP)
em. In response, we present an inventive iterative algo-
—the outer approximation (OAA). This algorithm deftly
ts the problem into discrete components, ultimately cul-
ing in an optimal solution. Through this novel approach,
eptly navigate the intricacies and complexities entwined

the challenge.
assess the potency of our proposed methodology, we

to conduct a thorough comparative analysis against
ng state-of-the-art techniques. This evaluation endeavors
cipher the precise influence and contributions of our
ach. Notably, the contrasts delineated in Table I under-
the discernible and substantial enhancements our method
s in.
e noteworthy contributions of our work can be encapsu-
as follows:
nnovative Architecture for Resource Allocation and
ask Offloading: Our approach introduces a cutting-edge
rchitectural framework for resource allocation and task
ffloading across multiple tiers, seamlessly integrating
atellite support. Anchored in the concept of IoT de-
ices collecting data from their ambient surroundings,
specially in remote and underserved locales devoid of
errestrial infrastructure, our methodology brings forth an
fficient task execution system.
ormulation and Transformation of Complex Prob-

em: The complex challenge assumes the form of a
oncave fractional programming (CFP) problem, en-
ompassing vital constraints such as IoT association,
ower allocation, latency, storage, QoS data rates, satellite
ovement dynamics, and more. Employing the Charnes-
ooper transformation (CCT), we adeptly transmute the
FP problem into solvable concave optimization prob-

ems.
nnovative Iterative Algorithm—Outer Approxima-
ion (OAA): Our research introduces a novel iterative
lgorithm, the outer approximation. Through relaxation

approaches, we disentangle the challenge into non-l
and mixed-integer linear components. By navigating
tween upper and lower bounds, this algorithm iterat
seeks optimal solutions, skillfully addressing the inh
intricacies.

4) Evidence through Comprehensive Simulations:
lizing meticulous simulations, we rigorously assess
effectiveness of our proposed Satellite-based IoT netw
system. The simulation results provide compelling
dence that our algorithm excels, particularly in term
IoT association and the attained energy efficiency w
the context of satellite-assisted IoT networks.

In summation, our research propels advancements in ene
efficient satellite-based IoT networks, elevating resource
cation, task offloading, and their associated complexities.

In Section II, we perform an extensive review of pert
literature to contextualize our study within the existing
of research. Moving to Section III, we outline the sy
model and provide a comprehensive problem description.
innovative solution to the identified problem is evaluate
Section IV through a dynamic framework. In Sectio
we delve into the specifics of simulation variables and
corresponding outcomes. Lastly, Section VI encapsulates
study’s findings and draws meaningful conclusions.

II. SystemModel and Problem Formulation

A. Network model

Figure 1 illustrates a three-tier architecture comprising
devices, cloudlets, and clouds. In this context, LEO and G
satellites assume the roles of cloudlets and clouds respecti
We make the assumption that IoT devices are situate
remote or inaccessible regions where conventional telec
munication infrastructure is absent. These IoT devices
equipped with sensors to gather data from their surround
and transmit it to third-party entities for tasks such as sto
data fusion, and computation. Given the inherent limita
of these IoT devices in terms of storage and comput
capabilities, LEO and GEO satellites come equipped
ample on-board storage and computation resources. As s
the LEO satellite functions as a cloudlet, while the G
satellite functions as a cloud, offering essential services
as storage and computation to IoT devices situated in re
areas devoid of telecommunication infrastructure.

Lets consider a system with time slots and indexed a
T = {0, 1, 2, 3, ...}. Lets a set of IoT devices denoted by
where i(t) ∈ I(t) = {1, 2, 3, ..., I(t)} are operating in the
slot t and this set of IoT devices are served when J(t) num
of LEO-cloudlets where j(t) ∈ J(t) = {1, 2, 3, ..., J(t)} fly
the I(t) IoT devices in far flung area. These LEO-cloudlet
inter-connected via microwave links to share the traffic loa
I(t) IoT devices with fairness. Moreover, J(t) LEO-clou
have a high capacity microwave link with the GEO-cloud.
GEO-cloud will share the work load in case the LEO-clo
j(t) can’t entertain the storage, and the computation req
from a IoT device i(t). Thus, there are two different mod
communication and discussed separately in sub-section I
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esource allocation model
binary variables to show IoT device i(t) ∈ I(t) admis-

association, and availability of LEO-cloudlet are defined
:
efinition-1: Let the 0/1 indicator to show wether a IoT
evice i(t) ∈ I(t) is admissible or not is given below:

xi(t) =
{

1, IoT device is admissible (1a)
0, Otherwise (1b)

efinition-2: Let the 0/1 indicator to show wether a IoT
evice i(t) ∈ I(t) is associated with LEO-cloudlet j(t) ∈
(t) or not is given below:

yi, j(t) =
{

1, IoT device is associated (2a)
0, Otherwise (2b)

efinition-3: Let the 0/1 indicator to show wether a LEO-
loudlet j(t) ∈ J(t) is available to fulfill request of the IoT
evice i(t) or not is given below:

zi, j(t) =
{

1, LEO-cloudlet is available (3a)
0, Otherwise (3b)

this context, it is observed that a LEO-cloudlet denoted
t) ∈ J(t) has the capability to offer its services to multiple
evices. However, an IoT device represented by i(t) ∈
restricted to associate with only a single LEO-cloudlet,

ly j(t) ∈ J(t). This association of IoT devices should be
that fairness is maintained while distributing the traffic
among all LEO-cloudlets. Mathematically, the fairness is
ed using Jain’s fairness index [33] as below:

αi, j(t) =


∑

j(t)∈J(t)


∑

i(t)∈I(t)

yi, j(t)




2

J(t)


∑

j(t)∈J(t)


∑

i(t)∈I(t)

yi, j(t)


2

, (4a)

0 ≤ αi, j ≤ 1), (4b)

ere αi, j(t) in (4a) is the user fairness index (UFI) and
alue ranges between zero and one as shown in (4b). The
of UFI is one when the distribution/ association of I(t)
evices traffic load to the J(t) LEO-cloudlets follow the
um fairness.
ery IoT device i(t) ∈ I(t) can transmit data file to the
cloudlet j(t) ∈ J(t) using it’s power within upper limit of
athematically, the range of allocated power with in the
limit is given below:

0 ≤ pi, j(t) ≤ Pi, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (5)

ery IoT device i(t) ∈ I(t) can associate and transmit data
LEO-cloudlet j(t) ∈ J(t) [34]. The signal in the UL
s path loss, attenuation due to rain, and attenuation due
ospheric gasses when a IoT device i(t) ∈ I(t) associates

ransmits data to LEO-cloudlet j(t) ∈ J(t). The channel

Cloudle

Cloud

LEO

LEO

LEO

IoT devic

GEO

GEO LEO

GEO coverage

LEO coverage

IoT - Cloudlet link

Cloudlet - Cloud link

Cloudlet - Cloudlet link

IoT device

Fig. 1. System Model - GEO and LEO hybrid satellite network

gain between a IoT device and a LEO-cloudlet in the U
given by [35].

hi, j(t) =
GTx

i GRx
j

ξPL
i, j (t)ξRain

i, j (t)ξGas
i, j (t)

,

ξPL
i, j (t) =

(
4π fcsi, j(t)

υ

)2

,

ξRain
i, j (t) = Jrℜµr Le,

ξGas
i, j (t) =

AwAo

sinθi, j(t)
,

where GTx
i and GRx

j are the antenna gains of the Inte
of-Things device and the low-Earth-orbit cloud node
spectively. Attenuation due to free-space path loss, rain,
atmospheric gases are denoted by ξPL

i, j (t), ξRain
i, j (t), and ξG

i,
respectively. fc is the carrier frequency, and si, j(t) is
separation between the Internet of Things node i(t) ∈ I(t)
the low Earth orbit cloud node j(t) ∈ J(t). The υ den
the velocity of light. The coefficients Jr and µr change
the frequency. The effective path length of a wave in ra
denoted by Le, while the intensity of rainfall is denote
ℜ. Aw and Ao are the absorptions due to water vapours
oxygen, respectively [36]. θi, j(t) is the elevation angle betw
IoT device i(t) ∈ I(t) and LEO-cloudlet j(t) ∈ J(t) [37].

attainable uplink data rate ψi, j(t) from IoT device i(t) ∈
to the LEO-cloudlet j(t) ∈ J(t) is calculated as follow
accordance with shannon’s capacity theorem:
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ψi, j(t) = bi, j(t)log2

(
1 + Φi, j(t)

)
, (7a)

Φi, j(t) =
pi, j(t)hi, j(t)
Ii′ , j(t) + σ2 , (7b)

Ii′ , j(t) =
∑

j(t)∈J(t)

yi′ , j(t)pi′ , j(t)hi′ , j(t), (7c)

ere i
′
, i, yi, j(t) = 1 when IoT device i(t) ∈ I(t)

iates with the LEO-cloudlet j(t) ∈ J(t), and yi, j(t) = 0
wise. The channel bandwidth is denoted by bi, j(t), while
ignal to interference and noise ratio is represented by
). The noise is denoted by σ2, and the interference from
evice i

′
(t) ∈ I(t) to LEO-cloudlet j(t) ∈ J(t) in the UL

resented by Ii′ , j(t). The resource blocks are allocated
IoT device i(t) ∈ I(t) by LEO-cloudlet j(t) ∈ J(t) as
e requirement of quality of service (QoS). For a given

rate QoS and resource block fairness index (RFI), the
ing mathematical expressions can be used to determine

ecessary number of resource blocks:

ri, j(t) =
⌈

Qi, j(t)
ψi, j(t)

⌉
, (8a)

γi, j(t) =

∑

j(t)∈J(t)

ri, j(t)

∑

j(t)∈J(t)

yi, j(t)
, (8b)

βi, j(t) =


∑

j(t)∈J(t)


∑

i(t)∈I(t)

γi, j(t)




2

J(t)


∑

j(t)∈J(t)


∑

i(t)∈J(t)

γi, j(t)


2

, (8c)

0 ≤ βi, j(t) ≤ 1, (8d)

fulfill the data rate requirement of Qi, j(t), the number of
rce blocks required is denoted by ri, j(t) in (8a). γi, j(t) in
s the normalized number of resource block by associated
evices with a LEO-cloudlet. βi, j(t) in (8c) is the RFI and
alue ranges between zero and one shown in (8d). The
of RFI is one when the allocation of resource blocks to
evices follow optimum fairness.

sk offloading model
this cellular environment, there are two modes to fulfill
ata storage, and computation requests by the I(t) IoT
es,i.e., LEO-cloudlet mode or GEO-cloud mode. LEO-
let mode is the first choice of the IoT device since
es little latency due to less distance between IoT device
EO-cloudlet. Second choice is the GEO-cloud mode if

ata storage, and computation request by the IoT device
I(t) is not fulfilled by the LEO-cloudlet j(t) ∈ J(t). The
of two modes is given below:
EO-cloudlet mode: Let the IoT device i(t) ∈ I(t) is
perating in the far flung area and records two data
les f s

i, j(t) and f c
i, j(t) from the surrounding environment.

The f s
i, j(t) and f c

i, j(t) are the data files to be stored,
computed, respectively, by the IoT device i(t) ∈ I(
the LEO-cloudlet j(t) ∈ J(t). The ΩLEO

s and ΩLEO
c

storage and computation capacity of the LEO-clou
respectively. The storage and computation tasks nee
be performed by LEO-cloudlet j(t) ∈ J(t). These task
scheduled, queued, and transmitted to be accompli
in available N time windows. Latency experienced w
completing these tasks is given below:

lLEO
i, j,q (t) = τ(N − 1),

lLEO
i, j,m (t) =

f s
i, j(t) + f c

i, j(t)

ψi, j(t)
,

lLEO
i, j,ρ (t) =

si, j(t)
υ

,

lLEO
i, j,c (t) = η


f c
i, j(t)

ΩLEO
c

 ,

lLEO
i, j,T (t) = lLEO

i, j,q (t) + lLEO
i, j,m (t) + lLEO

i, j,ρ (t) + lLEO
i, j,c (t),

where lLEO
i, j,q (t) is the queue delay, lLEO

i, j,m (t) is the t
mission delay, lLEO

i, j,ρ (t) is the propagation delay, lLEO
i, j,c

the computing delay, and lLEO
i, j,T (t) is the total delay o

while completing the tasks of the IoT device i(t) ∈
The η is the number of CPU cycles required to com
the data at LEO-cloudlet and ΩLEO

c is computing ab
of the LEO-cloudlet in cycles/second. The si, j(t) is
distance between IoT device i(t) ∈ I(t) and LEO-clo
j(t) ∈ J(t). The τ is the length of a time window,
the total time windows.

2) GEO-cloudlet mode: GEO-cloud is contacted if
request by IoT device i(t) ∈ I(t) to store and com
the data files is not entertained by the LEO-clo
j(t) ∈ J(t). LEO-cloudlet j(t) ∈ J(t) sends the req
to store and compute the data files to GEO-cloud
the distance involved between LEO-cloudlet and G
cloud is very much high, so propagation delay invo
will add too much latency to fulfill the request of
device i(t) ∈ I(t). In this case, the propagation delay
involved in storing and computing the requested data
is given below:

lGEO
i, j,ρ (t) =

sGEO
j (t)

υ
, (

lGEO
i, j,c (t) = η


f c
i, j(t)

ΩGEO
c

 , (

lGEO
i, j,T (t) = lGEO

i, j,ρ (t) + lGEO
i, j,c (t). (

The propagation delay lGEO
i, j,ρ (t) is distance depen

where sGEO
j (t) is the distance between LEO-cloudlet j

J(t) and GEO-cloud, and ΩGEO
c is computing abilit

the GEO-cloud in cycles/second. Using Eq. (9) and
the maximum latency experienced in this communic
environment is given below:

li, j(t) = zi, j(t)lLEO
i, j,T (t) +

(
1 − zi, j(t)

)
lGEO
i, j,T (t),
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TABLE II
List of Abbreviations and Notations

finitions Abbreviations Definitions Notations
osynchronous Earth Orbit GEO Set of IoT devices I

Earth Orbit LEO Set of cloudlets J
rnet of Things IoT Set of data files stored S

ellite Assisted Internet of Things S-IoT Set of data files computed C
ource Blocks RBs Admission indicator xi

ality of Services QoS Association indicator yi, j

rgy Efficiency EE IoT fairness index αi, j

xed Integer Non-Linear programming MINLP Max power of IOT device Pi

n-Linear Programming NLP Power allocated by IoT device in the UL pi, j

xed Integer Linear Programming MILP Channel gain between IoT device and LEO-cloudlet hi, j

n-deterministic polynomial-time hard NP-Hard Transmit Antenna gain of IoT device GTx
i

arnes Cooper Transformation CCT Receive Antenna gain of LEO-cloudlet GRx
j

ncave Fractional Programming CFP Minimum QoS data rate Ψi, j

ter Approximation Algorithm OAA Maximum allowed QoS latency Di, j

austive Search Algorithm ESA Minimum QoS UFI QUFI

ic Open-source Nonlinear Mixed Integer Pro-
mming

BONMIN Minimum QoS RFI QRFI

ating-point Operation Flop Attenuations in Channel ξi, j(t)

cle Per Unit CPU Channel Bandwidth bi, j(t)

k Nodes TNs Number of Resource Block γi, j(t)

per Bound UB Signal to interference and Noise Ratio Φi, j(t)

er Bound LB Intensity of Rain Fall ℜµr

here li, j(t) is the maximum delay which can be caused
o a IoT device while completing its tasks.

nergy consumption model
e transmission energy and circuit energy are the two
ories which are considered in the optimization technique
nergy consumption model in the UL. Circuit energy
es the circuit components, i.e., amplifiers, convertors,

processing units etc. The transmission energy is the
itter energy used while sending the data in the UL. The

t energy and the transmission energy are denoted by Pc

i, j, respectively [39]. Mathematically, the total energy
med by the IoT device i(t) ∈ I(t) to send data to the
cloudlet j(t) ∈ J(t) is given below:

Ptotal = Pc + pi, j. (12)

e EE is calculated as follows based on the proportion of
erred data to energy used:

EE =
ψi, j

Ptotal
, (13)

ere the units of ψi, j(t) and Ptotal are bits per second and
, respectively. Therefore, the unit of EE is bits/sec/watt.

oblem formulation
r the network depicted in Fig. 1, we now formulate
int admission control, association of IoT devices, and
tion of power problem. Fairness in the assignment of

I(t) IoT nodes to J(t) LEO-cloudlets is also a factor in
dilemma. Allocating chunks of spectrum to IoT devices in
network is done in a fair manner. To begin, we will defin
objective function and the limitations.The ultimate segme
the paper entails the formulation of the mathematical m
pertaining to the issue at hand. The goal function an
constraints are described below.
• Objective function: Using (2), (5), (7), (12), and

EE maximization/optimization is the objective of
research work and defined below:

EE =

∑

j(t)∈J(t)

∑

i(t)∈J(t)

yi, j(t)ψi, j(t)

Pc +
∑

j(t)∈J(t)

∑

i(t)∈I(t)

pi, j

.

• IoT device association: Using (2), the constraints
ensures association of IoT device i(t) ∈ I(t) with just
LEO-cloudlet j(t) ∈ J(t) is given below:

∑

j(t)∈J(t)

yi, j(t) ≤ 1 ∀ i(t) ∈ I(t).

• Power allocation: If the Internet-of-Things device i
I(t) is allowed into the network, it will receive the p
allocation pi, j(t). The following constraint ensures
power is allocated to each admitted IoT device usin
and (5).

0 ≤ xi(t)pi, j(t) ≤ Pi, ∀ i(t) ∈ I(t), j(t) ∈ J(t),
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chieved data rate versus QoS data rate: Another
oS requirement is the minimum data rate required to

omplete the offloading tasks if IoT device i(t) ∈ I is
dmitted in the network . In order to guarantee a certain
evel of quality of service, the minimum data rate required
o do so is constrained by (1), (5), (6), and (7).

ψi, j(t) ≥ xi(t)Ψi, j, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (17)

chieved data rate versus QoS latency: Another QoS
equirement for the admitted IoT device is that achieved
ata rate should be such that maximum latency threshold
s not compromised. The constraint to guarantee an ade-
uate data rate for quality of service is stated here using
1), (5), (6), and (7).

ψi, j(t) ≥ xi(t)


f s
i, j(t) + f c

i, j(t)

Di, j(t)

 , ∀ i(t) ∈ I(t), j(t) ∈ J(t),

(18)
atency: One of the quality of service (QoS) require-
ent is the minimum latency in accomplishment of task
ffloading to the LEO-cloudlet. Using (3), (9), (10), and
11), the constraint to ensure QoS minimum latency is
iven below:

li, j(t) ≤ xi(t)Li, j, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (19)

EO-cloudlet storage: The constraints that ensures sum
f data size of files to be store at LEO-cloudlet j(t) ∈ J(t)
s with in its storage capacity is given below:

∑

i(t)∈I(t)

zi, j(t) f s
i, j(t) ≤ ΩLEO

s ∀ i(t) ∈ I(t). (20)

airness in IoT device association: The distribution of
(t) IoT devices traffic load in terms of association with
(t) LEO-cloudlets should follow fairness to avoid over

oading of a LEO-cloudlet. Using (4), the constraint to
nsure fairness in distribution IoT devices traffic is given
elow:

αi, j(t) ≥ xiQUFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t). (21)

airness in RBs allocation: The distribution of I(t) IoT
evices traffic load should follow fairness to avoid over-
oading and underloading of J(t) LEO-cloudlets. Using
8), the constraint to ensure fairness in distribution RBs
s given below:

βi, j(t) ≥ xiQRFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t). (22)

jective function and constraints defined in ( 14) - (22)
in formulating a mathematical model to achieve latency
resource allocation, i.e., fairness in IoT device associ-

and resource blocks allocation etc and task offloading
O-LEO Satellite Networks. Table II provides a concise
iew of the annotations and representations commonly
yed when posing a problem. To achieve throughput max-

tion in GEO-LEO satellite networks, the mathematically
em with objective function U is given below:

max
y,p

∑

j(t)∈J(t)

∑

i(t)∈I(t)

yi, j(t)ψi, j(t)

Pc +
∑

j(t)∈J(t)

∑

i(t)∈I(t)

pi, j

(

s.t.
∑

j(t)∈J(t)

yi, j(t) ≤ 1 ∀ i(t) ∈ I(t), (

0 ≤ xi(t)pi, j(t) ≤ Pi, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (
ψi, j(t) ≥ xi(t)Ψi, j, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (

ψi, j(t) ≥ xi(t)


f s
i, j(t) + f c

i, j(t)

Li, j(t)

 ,∀ i(t) ∈ I(t),

j(t) ∈ J(t),
(

li, j(t) ≤ xi(t)Li, j, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (∑

i(t)∈I(t)

zi, j(t) f s
i, j(t) ≤ ΩLEO

s ∀ j(t) ∈ J(t), (

αi, j(t) ≥ xiQUFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (
βi, j(t) ≥ xiQRFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t).

Each IoT device, denoted as i(t) ∈ I(t), is constraine
associate with only one LEO-cloud, represented as j(t) ∈
as stipulated by constraint (23b). The power allocation fo
admitted IoT device, i(t) ∈ I(t), during uplink (UL) trans
sion must not exceed the available maximum power, ensu
compliance with constraint (23c). Constraint (23d) guaran
that the achieved data rate of an IoT device surpasses
minimum Quality of Service (QoS) data rate requirement.
ilarly, constraint (23e) guarantees that the data transmis
time for achieving the data rate of an IoT device rem
within the specified QoS latency threshold. This latency
straint is bounded by the QoS maximum threshold, as s
in constraint (23f). Additionally, the cumulative size of
files designated for storage within a LEO-cloudlet mus
exceed the storage capacity of the LEO-cloudlet, as ens
by constraint (23g). Constraint (23h) emphasizes fairne
the traffic offloading of IoT devices, while constraint
guarantees equitable allocation of resource blocks among
IoT devices.

F. Alternate Technique

The problem expressed in (23) involves both numerator
denominator functions that are concave and convex. The
valued functions ψi, j(t) and pi, j(t) are defined within a su
of Rn, rendering it a classic instance of Concave Fract
Programming (CFP). To transform this CFP problem in
concave optimization problem, we employ the Charnes Co
Transformation (CCT) technique [40]. By substituting pi, j( ui, j(t)

v

)
, the optimization problem can be reconfigured int

equivalent concave form. Following the required substitu
in (23), the transformed concave optimization problem
presented.
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x
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v
∑

j(t)∈J(t)

∑

i(t)∈J(t)

yi, j(t)bi, j(t)log2

1 +
ui, j(t)hi, j(t)

v
(
Ii′ , j(t) + σ2

)
 ,

(24a)

.t.
∑

y(t)∈Y(t)

βx,y(t) ≤ 1 ∀ x(t) ∈ X(t), (24b)

0 ≤ xi(t)ui, j(t) ≤ vPi, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (24c)

yi, j(t)bi, j(t)log2

1 +
ui, j(t)hi, j(t)

v
(
Ii′ , j(t) + σ2

)
 ≥ xi(t)Ψi, j,

∀ i(t) ∈ I(t), j(t) ∈ J(t),

(24d)

yi, j(t)bi, j(t)log2

1 +
ui, j(t)hi, j(t)

v
(
Ii′ , j(t) + σ2

)
 ≥

xi(t)


f s
i, j(t) + f c

i, j(t)

Li, j(t)

 , ∀ i(t) ∈ I(t), j(t) ∈ J(t),

(24e)

li, j(t) ≤ xi(t)Li, j, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (24f)∑

i(t)∈I(t)

zi, j(t) f s
i, j(t) ≤ ΩLEO

s ∀ j(t) ∈ J(t), (24g)

αi, j(t) ≥ xiQUFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (24h)
βi, j(t) ≥ xiQRFI, ∀ i(t) ∈ I(t), j(t) ∈ J(t), (24i)

Pcv +
∑

j(t)∈J(t)

∑

i(t)∈I(t)

ui, j(t) = 1. (24j)

erefore, the challenge outlined in (24) falls into the
ory of predicaments recognized as conventional Mixed-
er Non-Linear Programming (MINLP) predicaments. The
ate task of associating IoT devices with LEO-cloudlets
etermining their respective UL power allocations [41]

itutes a sophisticated and challenging NP-hard problem.
ptimization problem presented in (24) possesses a com-
rial nature. To surmount this formidable challenge, one

tial approach is to employ a brute-force algorithm. This
ach involves an exhaustive search, systematically explor-
nd evaluating each option until the optimal solution is
ved. However, when aiming for the best possible solution,
lgorithm would need to navigate a search space that
s exponentially with the number of connected devices,
|. Moreover, the complexity of the algorithm escalates as
ount of simulated IoT devices increases. Alternatively, a
streamlined approach to attaining the ϵ = 10−3 optimal
on involves the use of outer approximation.

III. Proposed Algorithm - Outer Approximation
e challenge presented in (24) constitutes a MINLP
em involving a combination of linear, non-linear, and
y variables. The Outer Approximation Algorithm (OAA)
ts the MINLP problem outlined in (24) into two distinct
roblems, enumerated as follows:
ub-problem NLP.
ub-problem MILP.

e complexity of the two sub-problems is manageable,
he OAA efficiently achieves an optimal solution within a
fic number of iterations [42], [43].

A. Description of Outer Approximation Algorithm
Let us assume that both the objective function and

constraints of the problems presented in (24) are represe
as Θ and Π24b-24j, respectively. Binary variables are den
by T, where T = xi, yi, j. Furthermore, we define N = ui, j

M = T ∪ N. For the aforementioned problems in (24)
following four propositions hold true:

1) The set N is nonempty, convex, and compact.
2) Both Θ and Π24b-24j are convex with respect to N f

certain constant M.
3) Differentiation can be performed on Θ and Π24b-24j

specific M.
4) To enable a precise solution for a MINLP problem,

necessary to first establish a fixed M.
1) Sub-problem NLP: In order to convert MINLP p

lems similar to those described in (24) into NLP probl
the value of M needs to be fixed at Mk during the in
stage. The upper bound (UB) of the optimal solution se
as the solution to the NLP problem. The formulation o
challenge can be stated as follows:

min
N
− Θ(Mk,N) (

s.t. Π24b-24j(Mk,N) ≤ 0 (

2) Sub-problem MILP: By employing the solution der
from the NLP problem presented in (25), we can acquire
binary variables of M at Mk. The MINLP problems in (24
then converted into an MILP problem utilizing the outco
from the initial stage. The MILP problem can be succi
described as follows:

min
M

min
N
− Θ(Mk,N) (

s.t. Π24b-24j(Mk,N) ≤ 0 (

(26) can also be written as:

min
M
−ϖ(M)

such that

ϖ(M) = min
N
−Θ(Mk,N) (

s.t. Π24b-24j(Mk,N) ≤ 0 (

(24) projected onto M-space presents the difficulty
scribed in (27). For every Mk, the constraints for the
issue stated in (25) hold, hence the projection problem
be expressed as follows:

min
M

min
N
− Θ(Mk,Nk) − ∇Θ(Mk − Nk)

(
N − Nk

M −Mk

)
(

s.t. Π24b-24j(Mk,Nk) − ∇Π24b-24j(Mk,Nk)
(

N − Nk

M −Mk

)

(

The issue in (29) can be rewritten as follows by substitu
ς for another variable:
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in
,ς
ς (30a)

.t. ς ≥ −Θ(Mk,Nk) − ∇Θ(Mk − Nk)
(

N − Nk

M −Mk

)
(30b)

Π24b-24j(Mk,Nk) − ∇Π24b-24j(Mk,Nk)
(

N − Nk

M −Mk

)
≤ 0

(30c)

e MILP problem yields an optimal lower bound (LB) as
n in equation (30). To solve the MILP problem [44],
ranch and bound approach is employed. Specifically,
ILP problem is motivated by the solution to the NLP

em at Mk [45], [46], assuming linearity of the objective
ion Θ and constraint function Π24b-24j. The ϵ-optimal
ithm operates through the following iterative phases:

s the algorithm progresses towards an ϵ-optimal solu-
ion, the lower bound (LB) increases while the upper
ound (UB) decreases.
hen the difference between LB and UB becomes

maller than ϵ, the solution is deemed optimal.
f the difference exceeds ϵ, the binary variables M are
pdated to Mk+1. Consequently, both the nonlinear pro-
ramming (NLP) and mixed-integer linear programming
MILP) problems are resolved again in the subsequent
teration, yielding new LB and UB values.
he process of updating LB and UB continues until

heir difference becomes smaller than ϵ, indicating the
chievement of the optimal solution.
he flowchart illustrating the ϵ-optimal algorithm is pre-
ented in Figure 2.

B. Algorithm Convergence and Optimality

The ϵ-optimal algorithm exhibits linear convergence
indicated by [42], [45]. When the binary variables M
fixed at Mk, the objective and constraint functions, na
Θ and Π24b-24j, become convex. Utilizing the branch and
technique, the ϵ-optimal algorithm [44] efficiently seeks
best solution (within ϵ = 10−3 iterations) when all four pre
ditions are fulfilled. This algorithm ensures that the obta
solution lies within an ϵ-bound of the optimal solution for
ϵ > 0, a validity confirmed for smaller ϵ values. Regarding
provided binary variable M, which dictates the optimali
N in accordance with (30), one potential solution is out
below:

1) If ς ≥ Θ(Mk,Nk) → viable solution
2) Otherwise ς ≤ Θ(Mk,Nk) → not a viable solution

Hence, the MILP problem described in (30) does not po
an insolvable value of Mk, ensuring that the ϵ-optimal a
rithm converges within a finite number of iterations. As lon
M remains constant, the algorithm consistently yields opt
outcomes due to the convex nature of both the objective
constraint functions. A comprehensive proof of converg
for the OAA algorithm is provided in [42]. Although
exhaustive search algorithm (ESA) could potentially find
optimal solution for problem in (24), it comes at the co
exponentially increased processing time. The computat
complexity of ESA can be expressed using the notation
complexity Ç and the I IoT devices:

ÇES A = 22i

On the other hand, OAA with an infinite number of i
tions [43] will eventually lead you to the ϵ-optimal algori

Start
ϵ ← 10−3

Convergence← FALS E
Guess initial values of binary variables

Is converged?

End

Sub-problem NLP gives the UB

Nk ←


arg min
N

−Θ (M,N)

subject to Π24b-24j (M,N) ≤ 0;
UB← Θ

(
Mk,N∗

)

Sub-problem MILP gives the LB

(M∗,N∗, ς∗)←



arg min
M,N,ς

ς

subject to
ς ≥ −Θ

(
Mk,Nk

)

−∇Θ
(
Mk,Nk

) (
N−Nk

0

)

Π24b-24j

(
Mk,Nk

)

−∇Π24b-24j

(
Mk,Nk

) (
N−Nk

0

)
≤ 0

LB← ς

UB-LB ≤ ϵ?
Get new

binary variables
k=k++

Convergence==True

Yes

No

NoYes

Flow chart - outer approximation algorithm
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is a simplified representation of the computational
lexity of the OAA:

ÇOAA =
i2κ
ω

(32)

e context provided, the variable κ signifies the total
er of constraints, while ω represents the maximum
issible deviation of the ϵ-optimal method from the value
e global optimum. With OAA, you can be confident of
ing an optimal solution within the scope of ϵ, unlike
where this assurance is lacking. The escalating compu-
al complexity of both OAA and ESA is depicted in the
nced figure 3.

No. of IoT devices

Number of IoT devices vs Computational Complexity - OAA and

omputational Complexity Analysis of the ϵ-Optimal
ithm
sessing complexity sometimes involves the utilization
ps1 [47]. In the initial stage of the epsilon-optimal

ithm, you will require five flops. To solve the NLP
em, simply include 4IJΥ and 2IJ flops. Solving the

problem demands an additional 2IJΥ and 4IJΥ flops.
considering both the NLP and MILP problems together,

lgorithm accumulates a total of two flops. Incorporating
onal binary values results in an additional four flops. The
lexity of the ϵ-optimal algorithm can be assessed based
e number of flops essential for its completion.

E = 5 + 2IJ + 4IJΥ + 4IJΥ + 2IJΥ + 4, (33a)
E = 9 + 2IJ + 10IJΥ, (33b)
E ≈ 2IJ + 10IJΥ. (33c)

omplexity of the ϵ-optimal algorithm can be represented
Big O notation as O(I× J)+O(I× J×Υ). Here, I denotes

umber of connected IoT devices, J indicates the number
O cloudlets, and Υ represents the number of constraints
problem.

unting the number of floating-point operations, or ”flops,” serves as a
re of complexity. Additionally, a flop is added each time a division or
lication operation occurs. When combining two flops, complex addition
loyed, while combining four flops employs complex multiplication.
ing matrix multiplication between a matrix of dimensions l × m and

r matrix of dimensions m×o yields 2lmo flops. Both the logical operator
assignment operator contribute one additional flop each. The operation

) requires two flip-flops to complete

D. Simulation Setup
The simulations involved the utilization of various sy

parameters, as detailed in Table III. Throughout the simul
process, the maximum power for both Low Earth Orbit (L
and Geostationary Orbit (GEO) Satellites was established
dBm and 37 dBm, respectively. The maximum radius wa
to 1000 km for LEOs and 42000 km for GEO satellites.
minimum required data rates spanned from 0.2 Mbps to
Mbps. The minimum allowable number of users was s
3, while the maximum allowable number was incremen
set to 48 in steps of 5. A total of 160 Resource Bl
(RBs) were available for user allocation. Other factors incl
a zero-mean Gaussian random variable set at 10 dB.
total circuit power (Pc) was defined as 10−6 Watts, and
maximum permissible latency was restricted to 5 ms. T
parameters played a crucial role in conducting the simula
and assessing the system’s performance.

TABLE III
Simulation Parameters

Parameter Value Parameter Value
Pl 33 dBm Rd

j {0.2,0.4,0.6,1.0} Mb
Pg 37 dBm Ru

j {0.2,0.4,0.6,1.0} Mb
HL 1,000 Km HG 37,786 Km
TRB 160‘ G 50
bi, j 0.1 Mbps ξi, j(t) 10 dB
Pc -30 dBm lx,y(t) 5 ms
f c
l 109 cycle/s f c

g 5 × 109 cycle/s
f s
l 2 Gbps f s

g 50 Gbps
Min IOTs 3 Increment 5
Max IOTs 50 - -

IV. ResultsWith In-depth discussions
In this section, the simulation outcomes are showca

illustrating the efficacy of the proposed algorithm in acc
plishing equitable admission control, IoT association, p
allocation, and the maximization of EE. Furthermore, a
formance evaluation is undertaken to discern the distinc
between the fairness-oriented approach and an approach
void of fairness considerations. This assessment center
IoT association, EE, and throughput within a hybrid sat
network encompassing GEO and LEO components.

Figure 4 depicts a graph showcasing the correlation betw
the quantity of IoT devices and IoT association (IoTA) (
fairness-based and without fairness). IoTA pertains to
cumulative count of accessible IoT devices as opposed to
count of IoT devices affiliated with the satellite network
compassing both LEO and GEO satellites. The graph disti
demonstrates that as the count of IoT devices escalates,
is a corresponding rise in IoTA, both under the fairness-b
and non-fairness-based contexts. This indicates that wit
augmentation in the network’s device count, a higher li
hood exists for their connection with any available LEO/G
satellite network.

The graph further reveals that the values of fairness-b
and non-fairness-based IoTA are remarkably close, exhib
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a minor disparity in the overall mean count of affiliated
es. The noteworthy divergence lies in the just distribution
nnected devices among the existing satellites in both
rios. In the fairness-based IoTA approach, the association
vices with a particular LEO satellite takes into consid-
n the equitable distribution of load across the accessible
ite network. Conversely, in the absence of fairness-based
, the device-to-satellite association does not consider the
iple of equitably distributing the load.
ditionally, the graph in Figure 4 portrays a variety of
ites, encompassing both LEOs and GEOs, each charac-
d by distinct orbital velocities and QoS rates spanning
0.2 to 1 Mbps. The findings conspicuously unveil that the
of IoT devices linked with GEO satellites notably trails

d other LEO satellites. This discrepancy can be attributed
veral factors, including the extended propagation, pro-
g, and transmission delays inherent in communicating
GEO satellites. Furthermore, the phenomenon of task
ding might transpire when LEO satellites are incapable
commodating specific requests, leading to the redirection
ese requests toward GEO satellites. As a result, GEO
ites manifest fewer affiliations with IoT devices compared
ir LEO counterparts.
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te Network.

ure 5 provides a comparison between the findings from
research [31] and [32], denoting the former as the

ine or previous condition, while the proposed curve
additional parameters portrays an upgraded or optimized
rio. The enhanced curve conspicuously illustrates a more
lined and proficient resource allocation, leading to an
sed count of IoT devices becoming part of the network.
progress signifies that the system has been refined to
ively manage the growing influx of IoT devices and
to their connectivity demands. Moreover, the improved
signifies that the system has implemented enhanced

gies for associating IoT devices, potentially involving
ized algorithms or resource allocation techniques. These
cements have contributed to a more judicious utilization
ilable resources, enabling a larger number of IoT devices
successfully integrated into the network.
ure 6 displays a graph illustrating the fairness-based
in relation to different Quality of Service (QoS) rate

rements, spanning from 0.2 to 1.0 Mbps, for a total of
ers. The primary focus of this plot is to showcase the
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Fig. 6. QoS Rate Requirement vs IoT Devices Associated (fairness b

distribution of device associations across both LEOs and G
satellite networks. Upon a careful examination of Figure
becomes evident that when the QoS rate requirement is s
0.2 Mbps, there is an even distribution of devices among
available LEO satellites. Each LEO satellite accommoda
comparable number of associated devices, reflecting an e
table allocation of devices within the LEO satellite netw
As the QoS rate requirement incrementally increases from
to 1.0 Mbps, the plot maintains a consistent trend simil
that observed at the 0.2 Mbps data rate.

Furthermore, the plot highlights that the number of dev
connected to GEO satellites is notably lower compare
those associated with LEOs. This phenomenon stems
the primary role of LEO satellites in handling the gene
requests from IoT devices, meeting the majority of
demands. Only a small fraction of requests that canno
addressed by LEO satellites are redirected to GEO s
lites. This allocation pattern is influenced by factors
as prolonged delays and response times linked with G
satellites. Overall, the prominent presence of IoTA is witne
with LEO satellites, irrespective of the data rate requirem
underscoring their pivotal role in facilitating connection
IoT devices. This pattern persists across both lower and hi
data rates. Additionally, Figure 6 portrays a marginal decr
in the total count of associated devices as the Qualit
Service (QoS) rate requirement progressively rises from 0
1.0 Mbps. This reduction in IoTA performance signifies
the system associates fewer devices as data rates increas
comparison to instances with lower data rates.
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figure 7, Uneven distribution of devices can result in
stion in certain areas or on specific satellite beams,
g to performance degradation and potential service dis-
ns. Unfair distribution of IoT devices may result in
devices receiving a disproportionately higher share of
rk resources, such as bandwidth or processing capa-
s. This can lead to congestion, increased latency, and
ded performance for devices that receive inadequate
rces. Consequently, the overall network efficiency and
experience may suffer.
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ure 8 provides a comprehensive plot that illustrates the
lay between the number of IoT devices, IoT Association
), and IoT Fairness (IoTF) index under varying Quality
rvice (QoS) rate requirements—specifically, 0.2 Mbps,
bps, 0.6 Mbps, 0.8 Mbps, and 1.0 Mbps. The range of
evices spans from 3 to 50, with incremental steps of 5,

tating a thorough analysis of the system’s behavior across
se IoT device quantities.
noteworthy significance is that even as IoTA diminishes
ponse to heightened QoS rate requirements, the fairness
ved in associating devices with available LEOs and
satellites remains relatively stable across all examined

rate prerequisites—ranging from 0.2 Mbps to 1.0 Mbps.
discovery underscores the system’s ability to uphold an
ble distribution of associations among the accessible

ite resources, regardless of the specific QoS rate demand.
findings serve as corroborative evidence to the outcomes

presented in Figure 6 and 7, further affirming the consist
and resilience of our research findings.
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Fig. 9. IoT Devices vs IoT Devices Associated and RB at different
rate requirements.

Figure 9 provides a comprehensive analysis of how diff
Quality of Service (QoS) rate requirements influence
association of devices with Resource Blocks (RBs). The
rate requirement signifies the minimal acceptable data
for each IoT device, exerting a significant influence on
allocation. The graph’s insights reveal that as the QoS
requirement escalates, there is a slight reduction in the num
of devices associated with RBs. This observation implies
higher data rate demands introduce limitations on reso
availability, leading to a slightly lower count of devices b
linked with RBs.

Notwithstanding the variations in device-RB associa
across diverse QoS rate requirements, the graph highlight
system’s adeptness in upholding a just distribution of
among IoT devices. This equity-based distribution guaran
that every device receives an equitable share of RBs accor
to its needs and the accessible resources. The observ
underscores the system’s efficacy in effectively mana
resource allocation to maintain fairness, regardless of
specific QoS rate requirement. This aspect exemplifies
system’s ability to optimally balance network perform
with the individual requirements of IoT devices, ensu
equitable access to resources while catering to varying
rate demands.
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The graph 10 illustrates the allocation of RBs to the as
ated IoT devices. RB allocation represents the distributio
available RBs among the devices. It is evident from the g
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s the number of IoT devices increases, the allocation
s also increases. This observation demonstrates that the

effectively manages RB allocation to accommodate the
ing demand and ensure adequate resource provisioning
e associated devices.
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1. IoT Devices vs IoT Devices Associated and RB Fairness at
nt QoS rate requirements.

ure 11 provides an in-depth analysis of how distinct
ty of Service (QoS) rate requirements impact the as-
tion of devices with Resource Blocks (RBs). The QoS
equirement denotes the minimum acceptable data rate for
IoT device, which significantly shapes RB allocation. The
’s insights reveal that as the QoS rate requirement rises,
is a marginal reduction in the number of devices affiliated
RBs. This observation implies that heightened data rate
nds introduce limitations on resource availability, leading
slightly diminished count of devices being linked with

spite the variations in device-RB associations across
se QoS rate requirements, the graph underscores the

’s prowess in upholding equitable distribution of RBs
g IoT devices. This fairness-driven distribution ensures
very device garners a proportionate allocation of RBs
e with its needs and the available resources. This obser-

reaffirms the system’s adeptness in resource allocation
gement to ensure fairness, regardless of the specific QoS
equirement. Such a capability showcases the system’s
iveness in optimizing network performance while accom-
ting individual IoT device requirements, ensuring just
s to resources amidst varying data rate demands.
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Figure 12 presents a graphical representation that e
dates the interplay between the Quality of Service (Q
rate requirement of IoT devices and two key metrics:
association and Resource Block (RB) allocation. The g
unveils an inverse correlation between IoT association
the QoS rate requirement, while RB allocation exhib
direct relationship with elevated QoS rate requirements.
graphical depiction in Figure 12 distinctly showcases that
the upsurge in the QoS rate requirement of IoT devices
corresponding IoT association diminishes. This pattern a
with expectations, given that higher data rates necess
increased power consumption to uphold satisfactory pe
mance levels. Consequently, at elevated data rates, the p
needed for a user to affiliate with a specific LEO/GEO sat
network also rises. Consequently, the IoT association dwin
as the QoS rate requirement climbs.

Conversely, the RB allocation depicts a positive trajec
as the QoS rate requirement escalates. This signifies that
mented data rates call for a more extensive allotment of
or spectrum resources to cater to the heightened transmis
demands. Hence, the allocation of RBs at elevated data
surpasses that at lower data rates. This graph thus prov
valuable insights into the intricate dynamics between QoS
demands, IoT association, and RB allocation, underscorin
intricate balance required in optimizing network performa
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Fig. 13. IoT Devices vs IoT Devices Associated and Throughput.

The graph 13 showcases the relationship between the n
ber of devices associated with the network and the resu
throughput. Throughput represents the rate at which da
transmitted through the network and is a crucial perform
metric for IoT applications. The graph illustrates that as
number of associated devices increases, the throughput
tends to increase. This observation suggests that the netw
can efficiently handle the data transmission demands
larger device population, leading to higher overall through
As the number of IoT devices grows, the network demonst
its ability to scale and maintain higher throughput levels.
scalability is essential for ensuring that the network can ha
the increasing data traffic and meet the performance req
ments of IoT applications. By efficiently managing resou
such as bandwidth, transmission power, and scheduling
network can ensure that data is transmitted more effecti
thereby increasing throughput. This optimization takes
account factors like channel conditions, traffic patterns,
QoS requirements.
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our analysis, we have delved into the impact of Quality of
ce (QoS) rate requirements, which define the minimum
table data rate for each IoT device. Figure 14 portrays
phical representation that elucidates the intricate rela-
ip between the number of IoT devices, IoT association
), and throughput across different QoS rate requirements:
bps, 0.4 Mbps, 0.6 Mbps, 0.8 Mbps, and 1.0 Mbps.

e behavior observed in the IoTA metric resonates with our
r discussed findings. The consistent pattern of increasing
count across all QoS rate requirements underscores the
rtional rise in the number of IoT associations with
ugmentation of devices. This phenomenon holds true,
dless of the specific QoS rate requirement.
ditionally, Figure 14 brings into focus the varying trends
oughput across distinct QoS rate requirements. Notably,
al throughput is attained when the QoS rate requirement
its minimum. However, as the QoS rate requirement
tes, a subsequent decrease in throughput is observed.

mportant to emphasize that despite this decline, the
ll trajectory of throughput exhibits an upward tendency in
spondence with the growing number of IoT devices. This
t showcases the intricate balance between QoS demands
etwork performance, affirming the complex dynamics at
in IoT ecosystem management.
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ure 15 depicts the behavior of throughput in the pres-
and absence of rain, as described by equation 6c. The
clearly illustrates how throughput is influenced by the

nce of rainy conditions when IoT devices are connected
O/GEO Satellites. It is evident that throughput decreases

when rain is present, whereas it increases under clear we
conditions. The impact of rain on throughput is particu
noticeable when multiple devices are attempting to fetch
required data from the network. In cases where fewer dev
are connected to the network, the effect of rain may not b
pronounced.

Under clear weather conditions, IoT devices can tran
data with higher signal strength and experience lower late
resulting in smoother communication with the satellite
work. The absence of rain reduces the likelihood of s
attenuation or signal loss, leading to improved overall con
tivity. Raindrops falling through the signal path can cause
nal absorption, scattering, and reflection, contributing to s
degradation. This attenuation in the signal strength can lea
increased noise and a higher bit error rate (BER), ultim
affecting the quality and reliability of the connection.
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Fig. 16. IoT Devices vs IoT Devices Associated and Energy Effic
(without rain and different intensities of rain.

Graph 16, depicting the correlation between rain inte
and energy efficiency in IoT devices, reveals a consi
pattern: with increasing rain intensities, both energy effici
and IoT association exhibit a decline. This trend is par
larly noticeable at exceptionally high levels of rain inten
such as 100 mm/hr. Rainfall introduces signal attenua
scattering, and interference, thereby degrading the quality
reliability of the wireless channel. As rain intensity escal
these detrimental effects intensify, resulting in reduced en
efficiency due to the heightened energy requirements ne
sary to overcome the challenges posed by the comprom
communication environment.

Furthermore, the reduction in IoT association can b
tributed to the influence of rain intensities on connectivity
rainfall becomes more intense, it obstructs data transmis
leading to increased packet loss and disruptions in com
nication. Consequently, IoT devices encounter difficultie
establishing and maintaining stable connections, ultim
resulting in a decrease in the number of successful
associations.

Graph 17 portrays the correlation between latency in
devices and their energy efficiency, thereby revealing a dis
pattern: an increment in latency is accompanied by a redu
in both energy efficiency and IoT association. The ris
latency signifies a prolonged delay in the transmission
reception of data between IoT devices and the network.
delay prompts heightened energy consumption, as dev
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remain active for extended periods, awaiting responses
knowledgments. Consequently, the energy efficiency di-
hes, as more energy is expended per unit of transmitted

rthermore, heightened latency exerts an adverse influence
T association. The delays in information exchange trans-

postponed processing of commands and receipt of feed-
This delay-induced effect can lead to a curtailed number
ccessful associations between IoT devices, hampering
seamless connectivity and interaction with the network.
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e graph 18 shows the relationship between IoT device
e values and energy efficiency uncovers a compelling

: as storage increases, so does energy efficiency, accompa-
by a boost in IoT association. Devices with more storage
ity can locally store and process more data. It reduces
ransmission frequency to and from the network, resulting
duced energy consumption. It can efficiently store and
ve data as needed, reducing the need for frequent com-
cation and increasing energy efficiency. Moreover, the
se in storage capacity positively impacts IoT association
llows devices to store more data locally, enabling them to
te autonomously and maintain continuous functionality
when network connectivity is intermittent or temporarily
ilable. It increases the likelihood of successful IoT as-

tions as devices can maintain operations and synchronize
when network connectivity is restored.
aph 19 portrays the interrelationship between the quantity

devices and two crucial factors: the count of associated
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IoT devices and their corresponding energy efficiency.
horizontal axis signifies the number of devices, spanning
3 to 50, while the vertical axis represents the numbe
associated devices and their respective energy efficiency le
The graph prominently indicates that with an escalating c
of devices, the energy efficiency of the network experie
a gradual enhancement. This positive trend can be attrib
to the amalgamation and optimization of resources acro
larger device pool.

The upward trajectory in energy efficiency is a consequ
of streamlined resource allocation and utilization strate
As the number of devices increases, there emerges an
plified opportunity to streamline data processing and sto
activities, thereby curtailing redundant energy consump
This refined resource utilization fosters an improved en
efficiency landscape throughout the network.
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Graph 20 illustrates the correlation between the move
of a LEO satellite, its corresponding energy efficiency,
IoT association. The graph reveals that the maximum en
efficiency is achieved when an IoT device is positione
a 90-degree angle to the LEO satellite. LEO satellites
characterized by their lower orbits around Earth, leadin
shorter communication links and reduced signal propag
delays. When the IoT device is situated at a 90-degree ang
aligns perfectly with the line of sight to the LEO satellite.
alignment enables direct and unobstructed communic
between the device and the satellite.

In this optimal alignment, the IoT device receives
strongest and most reliable signals from the LEO sate
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efficient signal reception and transmission contribute to
r energy efficiency. Additionally, the ideal alignment
ces IoT association, as the device can establish a stable
ction with the LEO satellite. This facilitates smooth
exchange and communication between the device and
tellite. However, as the angle deviates from 90 degrees,

lignment between the IoT device and the LEO satellite
es less optimal. This can lead to decreased energy
ncy and potentially reduced IoT association due to signal
dation and increased signal propagation delays.
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rison to paper 15 and 16.

aph 21 provides a comparison between the number of
iated IoT devices and Energy Efficiency (EE) based on
pproaches described in [31] and [32]. The curve labeled
1] and [32] represents a previous scenario without IoT
sion, processing, queuing delay factors, fair IoT distri-

n, and RB allocation. In this scenario, no considerations
made for optimizing energy efficiency. In contrast, the
ved curve demonstrates a significantly higher level of
y efficiency compared to the previous scenario. This
cement indicates that the system has implemented strate-
o optimize energy usage and enhance the overall energy
ncy of the network. The improved curve suggests the

ation of energy-efficient algorithms, power management
iques, or resource allocation strategies to ensure the
al use of energy resources. These improvements have led
ore efficient allocation of energy among the associated

evices, resulting in enhanced energy efficiency.
reover, the improved curve indicates that the system

chieved a better balance between IoT device association
nergy efficiency. It shows that a greater number of IoT
es can be successfully associated with the network while
aining or even improving energy efficiency. This signifies
ccessful integration of energy-efficient practices into the
rk design, ultimately benefiting both device connectivity
nergy consumption.
on analyzing the graph depicted in Figure 22, noticeable
s and patterns emerge as the number of IoT devices
ses, affecting both Energy Efficiency (EE) and Resource
s (RB) Allocation. Firstly, focusing on Energy Efficiency,
omes apparent that EE tends to experience a gradual
se as the number of IoT devices rises. This observation
sts that, on average, the network becomes more energy-
nt when accommodating a larger number of IoT devices.
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This positive correlation between device count and energ
ficiency signifies improved resource utilization and optim
transmission strategies.

Conversely, RB Allocation pertains to the distributio
available resource blocks, fundamental units of wireless c
munication, among IoT devices. The graph underscor
similarity in the pattern between Energy Efficiency and
Allocation. As the number of IoT devices increases, the
a corresponding rise in the allocation of resource blocks.
trend implies that the network adeptly manages its resou
to cater to the demands of the expanding device popula
A greater allocation of resource blocks facilitates enha
connectivity, improved data transmission rates, and ov
network performance.

Furthermore, the graph provides insights into the inter
between different allocation strategies and their impac
energy efficiency, as well as vice versa. This understan
can serve as a guide for the development of resource alloc
algorithms and protocols that optimize both Energy Effici
and RB Allocation. Such optimization efforts can lea
improved network performance, better sustainability, and m
efficient resource utilization.

A. S-IoT network - case studies
Satellite-assisted IoT networks have emerged as a prom

solution for achieving global connectivity, but they encou
challenges in effectively allocating resources due to the un
characteristics of satellite communication systems. This w
introduces a solution to these challenges. The benefit
the proposed techniques are exemplified through various
studies:
• Precision Agriculture Monitoring: In remote agr

tural areas, where terrestrial infrastructure is lim
satellite-assisted IoT networks play a crucial rol
monitoring soil moisture, temperature, and crop h
in real-time. By satellite-assisted IoT networks, far
can optimize resource allocation for efficient data t
mission, enabling timely insights into irrigation ne
pest infestations, and crop growth patterns. This
only enhances agricultural productivity but also conse
energy by ensuring that only essential data is transmi

• Maritime Fleet Management: Satellite-assisted IoT
works revolutionize maritime fleet management by
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bling continuous monitoring of vessel location, engine
erformance, and cargo conditions. By satellite-assisted
oT networks, fleet operators can dynamically allocate
andwidth based on vessel priority, route optimization,
nd environmental conditions. This optimized resource
llocation ensures seamless connectivity and efficient data
ransmission, leading to improved fleet safety, operational
fficiency, and reduced fuel consumption.
isaster Response and Emergency Management: Dur-

ng natural disasters or humanitarian crises, rapid and
eliable communication is essential for coordinating res-
ue efforts and delivering aid to affected areas. Satellite-
ssisted IoT networks provide resilient connectivity in
isaster-stricken regions. This facilitates efficient disaster
esponse and recovery operations, ultimately saving lives
nd minimizing damage.
emote Environmental Monitoring: In remote or en-
ironmentally sensitive areas such as wildlife reserves
r ecological research sites, continuous environmental
onitoring is crucial for conservation efforts and ecolog-

cal research. Satellite-assisted IoT networks enable real-
ime data collection on biodiversity, habitat changes, and
limate patterns. This data facilitates better conservation
anagement, early detection of ecological threats, and

nformed decision-making for sustainable development
nitiatives.

ese case studies illustrate how satellite-assisted IoT net-
s enriches the energy efficiency, and ensuring seamless
ctivity across diverse applications and domains.

V. Conclusion

summary, this study delves into the intricate domain
int admission control, IoT association, and power allo-

within the context of hybrid satellite-assisted Internet
ings (S-IoT) networks. The primary aim is to strike a
ce between ensuring equitable IoT device association
spectrum resource allocation while optimizing energy
ncy (EE). Addressing this challenge involves tackling
nvex Fractional Programming (CFP) problem, which
goes transformation into a concave optimization prob-
hrough the ingenious application of the Charnes-Cooper
formation (CCT). The proposed Outer Approximation
ithm (OAA) then comes to the forefront, tasked with
ing the concave optimization problem and deriving an
n ϵ optimum solution, with ϵ being set at 10−3. The

ess of this ϵ-optimum solution, as orchestrated by the
, is scrutinized through the lens of diverse system pa-
ers. These parameters encompass IoT association (IoTA),
airness (IoTF), resource block (RB) fairness, and energy
ncy (EE). The outcomes portray a compelling narra-
both IoT fairness and RB fairness exhibit upward trajec-
as the cohort of associated devices expands. Moreover,

nergy efficiency (EE) metric demonstrates a consistent
t as user numbers increase. However, a noteworthy
lary emerges: EE encounters a dip as Quality of Service
) rate requirements surge.
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