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Abstract—Satellite-assisted internet of things (IoT) networks
have emerged as a beacon of promise, offering global cover-
age and uninterrupted connectivity. However, the challenges of
resource allocation and task offloading in such networks are
intricate due to the unique characteristics of satellite communi-
cation systems. This research’s findings enrich the landscape of
energy-efficient and dependable satellite-assisted IoT networks.
The paper navigates the delicate balance between energy effi-
ciency, network throughput, and fairness in distributing resources
among IoT devices. The proposed techniques, notably the Outer
Approximation Algorithm (OAA), usher in seamless connectivity
and resource optimization. The central challenge at hand, a
concave fractional programming problem, transforms through
the Charnes-Cooper transformation, presenting as a concave
optimization enigma. Herein, the proposed outer approximation
algorithm takes flight, navigating the intricate paths of concave
optimization. The performance of the epsilon-optimal solution
faces scrutiny under diverse system parameters—the constella-
tion of IoT devices, their affiliations, fairness considerations, and
the equitable distribution of resource blocks. This contribution
not only enriches research but also opens doors to the boundless
possibilities of satellite-assisted IoT networks.

Index Terms—IoT association, task offloading, resource allo-
cation, MINLP, satellites

1. INTRODUCTION

In the contemporary landscape, IoT devices seamlessly in-
tertwine with our daily lives, signifying their integral role [1]—
[3]. Advancements in intelligent technologies and applications
continue to unfold, ushering in an era of growing benefits.
Notably, the energy consumption of persistently operational
apps, fueled by transmitted data, exceeds that of their non-
intelligent counterparts, offering a glimpse into the intricate
balance between innovation and resource expenditure. Cloud
computing has emerged as a versatile player, influencing a
range of scenarios—from cloud radio access networks (C-
RAN() to intricate heterogeneous networks (HetNets), vehicle
ad hoc networks (VANETS), and vibrant social networks [4]-
[6].

These strides transform communication and bring forth
intriguing inquiries. Within this symphony of technology, the
pursuit of energy efficiency emerges as a guiding star, converg-
ing with the surge of interconnected IoT devices [7]-[9]. This
endeavor stems from the urgency to optimize network assets
and curtail energy consumption, fostering sustainability [10].
In response to scientific proposals, the board aims to illumi-
nate energy consumption and real-time communication. While

centralizing data within cloud servers offers benefits, it brings
inherent drawbacks. Escalating traffic, prolonged processing,
intensified energy needs, and mounting costs underscore the
intricate orchestration, especially in fifth-generation networks
[11], [12].

Present satellite-based communication divides into three:
Geosynchronous Earth Orbit (GEO), Medium Earth Orbit
(MEO), and Low Earth Orbit (LEO) [13]. The future integrates
satellite and terrestrial networks, heavily relying on Low
Earth Orbit (LEO) satellites for minimal latency. Integration
is poised for next-gen wireless networks, particularly 5G,
promising widespread high-speed Internet access [14]. Urban
IoT networks leverage 3G, 4G, or 5G for data collection.
Coupling Low Earth Orbit (LEO) satellites with global access
networks extends potential for distributed IoT networks. Yet,
IoT gateways reliant on low-Earth orbit satellites encounter
data caching hurdles [15]. This landscape underscores infras-
tructure’s pivotal role in IoT’s growth.

Wireless networks shift with IoT’s global adoption, intensi-
fying traffic demands [16]. The pursuit culminates in equitable
high-speed Internet access transcending boundaries [17]. De-
spite terrestrial advancements, rural areas face limited terres-
trial backhaul network reach [18]. Energy efficiency becomes
paramount in IoT’s interconnectivity. Green fog computing
offers solutions for latency-sensitive IoT applications. But,
solutions require innovative resource allocation and network
modeling, balancing power, energy, cost, and latency [19].

This paper embarks on enhancing cache availability, ex-
panding storage on fog nodes, and optimizing energy ef-
ficiency. Integration with GEO/LEO satellites takes center
stage, aiming to create a fairness-aware planning framework.
This framework harmonizes elements like association control,
transmission power, and bandwidth allocation to minimize IoT
device task delays. As we embark, a consistent terminology
shall be our compass.

A. Related work

The literature review [20]- [32] explores satellite-based
IoT network studies, addressing connectivity challenges and
proposing solutions. While these studies delve into various
aspects, they often overlook fairness in IoT distribution and
data access delays. Bridging this gap is essential for a com-
prehensive understanding of IoT networks’ capabilities and



TABLE I
RELATED WORK AND NOVELTY

Parameters [20] [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31] [32] | This
2021 | 2021 | 2021 | 2020 | 2019 | 2021 | 2022 | 2022 | 2022 | 2021 | 2021 | 2021 | 2020 | paper

Transmission in UL v v v v v
IoT Admission v
IoT Association v v v v v
Power limit v v v v v v v v v v v v v
Geo satellite (cloud) v v v v v v
Leo satellite (cloudlet) | v/ v v v v v v
Effect of Rain v
Movement of Satellite v
Processing delay v v v v v v v
Transmission delay v v v v v v
Propagation delay v M v
Queuing delay v v
Cache enabled v v v v v
Data computation v v v v
Data storage v v v v v
Fair IoT and RBs dis- v
tribution

Energy efliciency v v v v v v

limitations. Table I summarizes previous work on resource
allocation in S-IoT networks.

In the cited literature, several research papers have explored
various aspects of satellite-based communication systems and
their implications for Internet of Things (IoT) networks. [20]
presented a comprehensive perspective on global connectivity
challenges and introduced a 5G smart connectivity platform as
a solution. This platform’s automation capabilities enable ef-
fective service management, addressing these challenges with
minimal costs. Satellites, unmanned aerial vehicles (UAVs),
and long-range, low-power IoT network technologies have
been identified as key enablers to extend 5G cellular coverage
to remote and unreachable locations. [21] delved into the realm
of satellite communication systems by proposing a joint beam
management and power allocation strategy to enhance signal-
to-interference-plus-noise ratio (SINR) and mitigate outages.
To tackle the intricate problem of allocating transmit power for
active low-Earth orbit (LEO) satellites, the author introduced
a deep Q-network (DQN) approach, while the application of
non-orthogonal multiple access (NOMA) techniques enhanced
spectral efficiency. In the realm of GEO/LEO satellite net-
works, research by [22] formulated a theoretical approach,
deriving the ergodic capacity of a two-layer network using
Meijer-G functions. However, these studies primarily focused
on IoT device association for satellite networks, neglecting
fairness considerations and data access delays.

[23] explored cooperative user association and resource
allocation strategies for hybrid GEO-LEO satellite networks,
tackling the challenge of task scheduling and user association
in a multi-tier framework. Similarly, [24] proposed sub-band
allocation and power regulation methods for boosting IoT cel-
lular network throughput, considering spectral leakage effects.
Resource allocation challenges in quantum key distribution
(QKD) networks that employ both GEO and LEO satellites
were addressed by [25], introducing sub-optimal strategies for
minimizing energy consumption and optimizing secret key
generation. [26] focused on energy-efficient relay selection
and power allocation strategies for communication networks,

particularly considering load balancing within the context of
relay-assisted communication. [27] proposes relay selection
and power allocation to improve energy efficiency and load
balancing in RLNC D2D communications supporting HetNets
in reference.

[28] tackled work offloading and software cache opti-
mization through an iterative approach, aiming to reduce
task execution delays by caching frequently used services.
[29] explored low-latency edge computing provided by flying
unmanned aerial vehicles (UAVs) and satellite-based cloud ac-
cess, with a comprehensive optimization approach considering
various parameters such as association control, computing job
allocation, and resource allocation for UAVs. [30] introduced
constrained joint node association and energy efficiency maxi-
mization problems for loT-Fog networks, devising suboptimal
solutions for power allocation and node association using
linearization strategies. Additionally, latency minimization in
cloudlet-based IoT networks was tackled through an Outer
Approximation Algorithm (OAA) approach [31]. In the con-
text of fog networks, [32] addressed the intricate challenge
of resource and power allocation for minimizing energy con-
sumption while considering factors like QoS constraints, cache
capacity, and network latency.

While these studies contribute significantly to satellite-based
IoT networks, they commonly lack an emphasis on fairness
in [oT distribution and data access delays. This research
gap highlights the need to explore these dimensions for a
comprehensive understanding of IoT networks’ capabilities
and limitations.

B. Motivation and Contributions

Reviewing the synthesis of previous endeavors [20]- [32] in
Table I, our primary focus resides in the realm of resource al-
location and task offloading challenges within IoT ecosystems.
Specifically, we delve into scenarios where IoT devices strive
to establish connections with LEO-cloudlets in the uplink
direction. These devices transmit data files to LEO-cloudlets
for storage and computation, further extending to offloading



requests to cloudlets. This becomes particularly relevant in ex-
pansive geographical zones, encompassing remote areas void
of terrestrial access networks. In such intricate landscapes, the
deployment of satellite communication systems emerges as a
pivotal enabler for IoT devices, facilitating operations within
these far-flung and secluded regions.

The nucleus of our research orbits around optimizing end-
to-end network energy efficiency. Our objective embraces [oT
device admission, association with LEO satellites, latency
considerations, cache capabilities, impact of inclement weather
like rain, satellite movement dynamics, and power allocation
within satellite-based IoT (S-IoT) networks.

A pivotal dimension of our investigation concerns equitable
assignments of IoT devices to suitable associations and im-
partial distribution of spectrum resources. These objectives
harmoniously align with the overarching mission of enhancing
energy efficiency. This distinctive objective, somewhat unex-
plored in prior studies, necessitates the delicate equilibrium
between fairness and the quest for peak energy efficiency.

The optimization challenge at hand is intricate, character-
ized by the amalgamation of integer and nonlinear variables,
rendering it a mixed-integer nonlinear programming (MINLP)
problem. In response, we present an inventive iterative algo-
rithm—the outer approximation (OAA). This algorithm deftly
dissects the problem into discrete components, ultimately cul-
minating in an optimal solution. Through this novel approach,
we adeptly navigate the intricacies and complexities entwined
with the challenge.

To assess the potency of our proposed methodology, we
intend to conduct a thorough comparative analysis against
existing state-of-the-art techniques. This evaluation endeavors
to decipher the precise influence and contributions of our
approach. Notably, the contrasts delineated in Table I under-
score the discernible and substantial enhancements our method
ushers in.

The noteworthy contributions of our work can be encapsu-
lated as follows:

1) Innovative Architecture for Resource Allocation and
Task Offloading: Our approach introduces a cutting-edge
architectural framework for resource allocation and task
offloading across multiple tiers, seamlessly integrating
satellite support. Anchored in the concept of IoT de-
vices collecting data from their ambient surroundings,
especially in remote and underserved locales devoid of
terrestrial infrastructure, our methodology brings forth an
efficient task execution system.

2) Formulation and Transformation of Complex Prob-
lem: The complex challenge assumes the form of a
concave fractional programming (CFP) problem, en-
compassing vital constraints such as IoT association,
power allocation, latency, storage, QoS data rates, satellite
movement dynamics, and more. Employing the Charnes-
Cooper transformation (CCT), we adeptly transmute the
CFP problem into solvable concave optimization prob-
lems.

3) Innovative Iterative Algorithm—OQuter Approxima-
tion (OAA): Our research introduces a novel iterative
algorithm, the outer approximation. Through relaxation

approaches, we disentangle the challenge into non-linear
and mixed-integer linear components. By navigating be-
tween upper and lower bounds, this algorithm iteratively
seeks optimal solutions, skillfully addressing the inherent
intricacies.

4) Evidence through Comprehensive Simulations: Uti-
lizing meticulous simulations, we rigorously assess the
effectiveness of our proposed Satellite-based IoT network
system. The simulation results provide compelling evi-
dence that our algorithm excels, particularly in terms of
IoT association and the attained energy efficiency within
the context of satellite-assisted IoT networks.

In summation, our research propels advancements in energy-
efficient satellite-based IoT networks, elevating resource allo-
cation, task offloading, and their associated complexities.

In Section II, we perform an extensive review of pertinent
literature to contextualize our study within the existing body
of research. Moving to Section III, we outline the system
model and provide a comprehensive problem description. Our
innovative solution to the identified problem is evaluated in
Section IV through a dynamic framework. In Section V,
we delve into the specifics of simulation variables and their
corresponding outcomes. Lastly, Section VI encapsulates our
study’s findings and draws meaningful conclusions.

II. SystEm MobEL AND PrROBLEM FORMULATION
A. Network model

Figure 1 illustrates a three-tier architecture comprising loT
devices, cloudlets, and clouds. In this context, LEO and GEO
satellites assume the roles of cloudlets and clouds respectively.
We make the assumption that IoT devices are situated in
remote or inaccessible regions where conventional telecom-
munication infrastructure is absent. These IoT devices are
equipped with sensors to gather data from their surroundings
and transmit it to third-party entities for tasks such as storage,
data fusion, and computation. Given the inherent limitations
of these [oT devices in terms of storage and computation
capabilities, LEO and GEO satellites come equipped with
ample on-board storage and computation resources. As such,
the LEO satellite functions as a cloudlet, while the GEO
satellite functions as a cloud, offering essential services such
as storage and computation to IoT devices situated in remote
areas devoid of telecommunication infrastructure.

Lets consider a system with time slots and indexed as ¢ €
T =1{0,1,2,3,...}. Lets a set of IoT devices denoted by I(¢)
where i(t) € I(r) = {1,2,3,...,1(¢)} are operating in the time
slot ¢ and this set of IoT devices are served when J(f) number
of LEO-cloudlets where j(r) € J(¢) = {1,2,3,...,J(1)} fly over
the I(¢) IoT devices in far flung area. These LEO-cloudlets are
inter-connected via microwave links to share the traffic load of
1(t) IoT devices with fairness. Moreover, J(f) LEO-cloudlets
have a high capacity microwave link with the GEO-cloud. The
GEO-cloud will share the work load in case the LEO-cloudlet
Jj(t) can’t entertain the storage, and the computation request
from a IoT device i(¢). Thus, there are two different modes of
communication and discussed separately in sub-section II-C.



B. Resource allocation model
Few binary variables to show [oT device i(¢) € I(r) admis-
sion, association, and availability of LEO-cloudlet are defined
below:
« definition-1: Let the 0/1 indicator to show wether a IoT
device i(7) € I(¢) is admissible or not is given below:

1,
xi(1) = {

IoT device is admissible

(la)
(1b)
« definition-2: Let the 0/1 indicator to show wether a IoT

device i(t) € I(¢) is associated with LEO-cloudlet j(¢) €
J(®) or not is given below:

0, Otherwise

(2a)
yij(0) = { 2b)

« definition-3: Let the 0/1 indicator to show wether a LEO-
cloudlet j(r) € J(¢) is available to fulfill request of the [oT
device i(f) or not is given below:

o = 1, LEO-cloudlet is available
4= 0, Otherwise

1, IoT device is associated
0, Otherwise

(3a)
(3b)

In this context, it is observed that a LEO-cloudlet denoted
by j(#) € J(¢) has the capability to offer its services to multiple
IoT devices. However, an IoT device represented by i(f) €
I(z) is restricted to associate with only a single LEO-cloudlet,
namely j(z) € J(¢). This association of IoT devices should be
such that fairness is maintained while distributing the traffic
load among all LEO-cloudlets. Mathematically, the fairness is
ensured using Jain’s fairness index [33] as below:

(250

J0EI(@) \i(el(r)

>
J(t)[ > { > j(z)] ]
JeJ@®) \i(n)el(r)

0< @i, j < 1),

a;j(t) = (4a)

(4b)

where «; ;(f) in (4a) is the user fairness index (UFI) and
it’s value ranges between zero and one as shown in (4b). The
value of UFI is one when the distribution/ association of /()
IoT devices traffic load to the J(r) LEO-cloudlets follow the
optimum fairness.

Every IoT device i(r) € I(f) can transmit data file to the
LEO-cloudlet j(r) € J(¢) using it’s power within upper limit of
P;. Mathematically, the range of allocated power with in the
upper limit is given below:

0 < pij(1) < Py, Y i(1) € I(0), j(1) € J(2), 3

Every IoT device i(f) € I(¢) can associate and transmit data
to a LEO-cloudlet j(r) € J(r) [34]. The signal in the UL
suffers path loss, attenuation due to rain, and attenuation due
to atmospheric gasses when a IoT device i(f) € I(r) associates
and transmits data to LEO-cloudlet j(r) € J(r). The channel

(Cloudlet)

CloT devices)

GEO ﬁ LEO “— 10T device a
2 ~<
10T - Cloudlet link ~ ====== > GEO coverage O
-~

Cloudlet - Cloud link —_—

Cloudlet - Cloudlet link %

Fig. 1. System Model - GEO and LEO hybrid satellite network

LEO coverage ( )
N —

gain between a IoT device and a LEO-cloudlet in the UL is
given by [35].

GI*GR

hij(t) = 5——-T 6
J() §f}‘(l)§§;’m(l)§g@(l) ( a)

& f(r)=(w) , (6b)
> 1%

fan(e) = J,R¥ L, (60)
as _ AWAU

grw= sing; j(t)’ ©d)

where G,.T" and G®* are the antenna gains of the Internet-
of-Things device and the low-Earth-orbit cloud node, re-
spectively. Attenuation due to free-space path loss, rain, and
atmospheric gases are denoted by £/’ jL(t), _{-‘f;.”'"(t), and ff]f”'(t),
respectively. f. is the carrier frequency, and s;;(f) is the
separation between the Internet of Things node i() € I(r) and
the low Earth orbit cloud node j(r) € J(r). The v denotes
the velocity of light. The coefficients J, and y, change with
the frequency. The effective path length of a wave in rain is
denoted by L., while the intensity of rainfall is denoted by
R. A,, and A, are the absorptions due to water vapours and
oxygen, respectively [36]. 6; ;(?) is the elevation angle between
10T device i(t) € I(f) and LEO-cloudlet j(z) € J(¢) [37].

attainable uplink data rate y; ;(f) from IoT device i(t) € I(r)
to the LEO-cloudlet j(r) € J(¢) is calculated as follows, in
accordance with shannon’s capacity theorem:



Wi (t) = by j(logs (1+ @ (1)), (7a)
P Ppij(Oh; (1)

Q= (7b)

Ir 0= > e jOpr jOhy 0, (7¢)

JOeJ®)

where i # i, y;;(/) = 1 when ToT device i(t) € I(t)
associates with the LEO-cloudlet j(r) € J(#), and y;;(t) = 0
otherwise. The channel bandwidth is denoted by b; ;(¢), while
the signal to interference and noise ratio is represented by
®; /(7). The noise is denoted by o2, and the interference from
IoT device i (t) € I(t) to LEO-cloudlet j(®) € J(t) in the UL
is represented by Iy ;(r). The resource blocks are allocated
to a IoT device i(r) € I(r) by LEO-cloudlet j(z) € J(¢) as
per the requirement of quality of service (QoS). For a given
data rate QoS and resource block fairness index (RFI), the
following mathematical expressions can be used to determine
the necessary number of resource blocks:

@i
ri,_i(l) = ’r"[/”(t)“ , (82)
Z rij(0)
'}’i,j(t) = M’ (8b)
Z ¥i,j(®)
JEJ(®)
2
( Z ( Z 7i,j(t)J]
,Bi,j(l) _ JOEJ(@®) \i(el(r) - 80
J(t)[ > ( > y,-,j(z)) ]
JOeJ®) \i(hel(t)

To fulfill the data rate requirement of Q; ;(t), the number of
resource blocks required is denoted by r; ;(f) in (8a). ; j(f) in
(8b) is the normalized number of resource block by associated
IoT devices with a LEO-cloudlet. §; () in (8c) is the RFI and
it’s value ranges between zero and one shown in (8d). The
value of RFI is one when the allocation of resource blocks to
IoT devices follow optimum fairness.

C. Task offloading model

In this cellular environment, there are two modes to fulfill
the data storage, and computation requests by the I(¢) IoT
devices,i.e., LEO-cloudlet mode or GEO-cloud mode. LEO-
cloudlet mode is the first choice of the IoT device since
involves little latency due to less distance between IoT device
and LEO-cloudlet. Second choice is the GEO-cloud mode if
the data storage, and computation request by the IoT device
i(t) € I(¢) is not fulfilled by the LEO-cloudlet j(f) € J(¢). The
detail of two modes is given below:

1) LEO-cloudlet mode: Let the IoT device i(r) € I(¢) is

operating in the far flung area and records two data
files ff j(t) and fi}(t) from the surrounding environment.

2)

The fif'j(t) and fif'j(t) are the data files to be stored, and
computed, respectively, by the IoT device i(¢) € I(¢) to
the LEO-cloudlet j(r) € J(). The QLEC and QLEC are
storage and computation capacity of the LEO-cloudlet,
respectively. The storage and computation tasks need to
be performed by LEO-cloudlet j(#) € J(). These tasks are
scheduled, queued, and transmitted to be accomplished
in available N time windows. Latency experienced while
completing these tasks is given below:

IR0 = (N = 1), (9a)
FLO+ 2.0

MOy = 2L = W 9

i v (9b)
si,j(1)

e ® = =5= %)

5@
Lo = n(g’ﬁﬁo ] ©d)
IR0 = ERO@ + L0 @0 + X0 (1) + IE0(1), (9e)

where l{jff])(t) is the queue delay, lf.jfg(t) is the trans-
mission delay, /;/70(7) is the propagation delay, *0(7) is
the computing delay, and lf‘??(t) is the total delay occur
while completing the tasks of the IoT device i(¢) € I(¢).
The 7 is the number of CPU cycles required to compute
the data at LEO-cloudlet and QLE© is computing ability
of the LEO-cloudlet in cycles/second. The s;;(¢) is the
distance between IoT device i(7) € I(¢) and LEO-cloudlet
j(@) € J(t). The 7 is the length of a time window, N is
the total time windows.

GEO-cloudlet mode: GEO-cloud is contacted if the
request by IoT device i(f) € I(¢) to store and compute
the data files is not entertained by the LEO-cloudlet
Jj(@®) € J(t). LEO-cloudlet j(t) € J(¢) sends the request
to store and compute the data files to GEO-cloud. As
the distance involved between LEO-cloudlet and GEO-
cloud is very much high, so propagation delay involved
will add too much latency to fulfill the request of IoT
device i(r) € I(¢). In this case, the propagation delay [38]
involved in storing and computing the requested data files
is given below:

sSEO(p)
020 =~—, (102)
e v
£50
500 = n(Q';Eo)’ (100)
[P0 = 00 + I750(1). (10c)

The propagation delay lgji?(t) is distance dependent
where s?’EO(l) is the distance between LEO-cloudlet j(r) €
J(r) and GEO-cloud, and QCEO is computing ability of
the GEO-cloud in cycles/second. Using Eq. (9) and (10),
the maximum latency experienced in this communication
environment is given below:

(1) = 2 /OB + (1 - 2,0) 9520, (1)



TABLE II
LiST OF ABBREVIATIONS AND NOTATIONS

Definitions Abbreviations Definitions Notations
Geosynchronous Earth Orbit GEO Set of IoT devices I
Low Earth Orbit LEO Set of cloudlets J
Internet of Things ToT Set of data files stored S
Satellite Assisted Internet of Things S-IoT Set of data files computed C
Resource Blocks RBs Admission indicator Xi
Quality of Services QoS Association indicator Vij
Energy Efficiency EE IoT fairness index a;
Mixed Integer Non-Linear programming MINLP Max power of IOT device P;
Non-Linear Programming NLP Power allocated by IoT device in the UL Dij
Mixed Integer Linear Programming MILP Channel gain between IoT device and LEO-cloudlet 7 ;
Non-deterministic polynomial-time hard NP-Hard Transmit Antenna gain of IoT device G}-"
Charnes Cooper Transformation CCT Receive Antenna gain of LEO-cloudlet G]}"
Concave Fractional Programming CFP Minimum QoS data rate Wi
Outer Approximation Algorithm OAA Maximum allowed QoS latency D;;
Exhaustive Search Algorithm ESA Minimum QoS UFIL Qurr
Basic Open-source Nonlinear Mixed Integer Pro- BONMIN Minimum QoS RFI ORFI
gramming

Floating-point Operation Flop Attenuations in Channel & i)
Cycle Per Unit CPU Channel Bandwidth b; j(t)
Task Nodes TNs Number of Resource Block 7i,j(®)
Upper Bound UB Signal to interference and Noise Ratio D; (1)
Lower Bound LB Intensity of Rain Fall RHr

where /; j(#) is the maximum delay which can be caused
to a IoT device while completing its tasks.

D. Energy consumption model

The transmission energy and circuit energy are the two
categories which are considered in the optimization technique
for energy consumption model in the UL. Circuit energy
includes the circuit components, i.e., amplifiers, convertors,
and processing units etc. The transmission energy is the
transmitter energy used while sending the data in the UL. The
circuit energy and the transmission energy are denoted by P,
and p; ;, respectively [39]. Mathematically, the total energy
consumed by the IoT device i(f) € I(f) to send data to the
LEO-cloudlet j(7) € J(z) is given below:

Pmml = P(‘ +Pi,j- (12)

The EE is calculated as follows based on the proportion of
transferred data to energy used:

Vi j
>
P total

where the units of ¢; ;(¢) and P,y are bits per second and
watts, respectively. Therefore, the unit of EE is bits/sec/watt.

EE = (13)

E. Problem formulation

For the network depicted in Fig. 1, we now formulate
the joint admission control, association of IoT devices, and
allocation of power problem. Fairness in the assignment of

I(t) 10T nodes to J(f) LEO-cloudlets is also a factor in this
dilemma. Allocating chunks of spectrum to IoT devices in the
network is done in a fair manner. To begin, we will define the
objective function and the limitations.The ultimate segment of
the paper entails the formulation of the mathematical model
pertaining to the issue at hand. The goal function and its
constraints are described below.
« Objective function: Using (2), (5), (7), (12), and (13),
EE maximization/optimization is the objective of this
research work and defined below:

Z Vi j(OWi (1)
JOEI(@) i(t)ed (1)
P.+

EE = (14)
2 Pl

JOEJ®) i(Del(r)
« IoT device association: Using (2), the constraints that
ensures association of IoT device i(f) € I(r) with just one

LEO-cloudlet j(r) € J(¢) is given below:

Z yi() < 1Y i(0) € ().
JEJ(®)

15)

« Power allocation: If the Internet-of-Things device i(?) €
I(?) is allowed into the network, it will receive the power
allocation p; ;(¢). The following constraint ensures that
power is allocated to each admitted IoT device using (1)
and (5).

0 < xi(Dpij() < P, Vi) €I(0), j©) e J@),  (16)



« Achieved data rate versus QoS data rate: Another
QoS requirement is the minimum data rate required to
complete the offloading tasks if IoT device i(r) € I is
admitted in the network . In order to guarantee a certain
level of quality of service, the minimum data rate required
to do so is constrained by (1), (5), (6), and (7).

Ui () 2 xi (O, Y i) € 1), j@©) € J@),

« Achieved data rate versus QoS latency: Another QoS
requirement for the admitted IoT device is that achieved
data rate should be such that maximum latency threshold
is not compromised. The constraint to guarantee an ade-
quate data rate for quality of service is stated here using
(1), (5), (6), and (7).

an

£+ £50

Ui () = xi(f)( Do)

), Vi) € I(r), j(@) € J@),
(18)
« Latency: One of the quality of service (QoS) require-
ment is the minimum latency in accomplishment of task
offloading to the LEO-cloudlet. Using (3), (9), (10), and
(11), the constraint to ensure QoS minimum latency is
given below:

Li,j@®) < xi(DL;j, Y i) € 1(0), j(@) € J@), (19)

« LEO-cloudlet storage: The constraints that ensures sum
of data size of files to be store at LEO-cloudlet j(¢) € J(¢)
is with in its storage capacity is given below:

Z 2/ (Of (1) < QO Vi) € 1),

i(r)el(r)

(20)

« Fairness in IoT device association: The distribution of
1(t) 10T devices traffic load in terms of association with
J(t) LEO-cloudlets should follow fairness to avoid over
loading of a LEO-cloudlet. Using (4), the constraint to
ensure fairness in distribution IoT devices traffic is given
below:

@; (1) = x;Qurr, Y i(0) € 1(0), j(©) € J(2).

« Fairness in RBs allocation: The distribution of /(¢) IoT
devices traffic load should follow fairness to avoid over-
loading and underloading of J(#) LEO-cloudlets. Using
(8), the constraint to ensure fairness in distribution RBs
is given below:

2D

Bij(t) z x;Orer, Y i(1) € 1(0), j(n) € J(1).  (22)

Objective function and constraints defined in ( 14) - (22)
helps in formulating a mathematical model to achieve latency
aware resource allocation, i.e., fairness in IoT device associ-
ation and resource blocks allocation etc and task offloading
in GEO-LEO Satellite Networks. Table II provides a concise
overview of the annotations and representations commonly
employed when posing a problem. To achieve throughput max-
imization in GEO-LEO satellite networks, the mathematically
problem with objective function U is given below:

IR I GG

JOEI@) i(n)el(r)

23a
»p P+ Z Z i (23a)
JOEJ®) it)el(r)

SLY w0 < 1Y) € 1), (23b)
JOEJ®)

0 < xi(Npij(1) < Py, Vi) 1), j(1) €J@),  (23¢)

Ui () = xi(OW;, Vi) € I(o), j@) € J(O), (23d)

fO+ f0)
Wi () =2 Xi(l)(W),V i(r) € I(r), (23¢)
Jj@®) € J(®,

i j(®) < xi(OLij, Y i(t) € I(1), j(@) € J(D), (23f)

D w00 < Q0 i) € Jo, 23g)
i(nHel(r)

@; j(t) = x;Qurr, Y i(r) € 1(2), j(®) € J(1), (23h)

Bij(®) = xiOrp1, Y i(t) € 1(2), j(1) € J(@). (231)

Each IoT device, denoted as i(r) € I(¢), is constrained to
associate with only one LEO-cloud, represented as j(z) € J(¢),
as stipulated by constraint (23b). The power allocation for an
admitted IoT device, i(f) € I(f), during uplink (UL) transmis-
sion must not exceed the available maximum power, ensuring
compliance with constraint (23c). Constraint (23d) guarantees
that the achieved data rate of an IoT device surpasses the
minimum Quality of Service (QoS) data rate requirement. Sim-
ilarly, constraint (23e) guarantees that the data transmission
time for achieving the data rate of an IoT device remains
within the specified QoS latency threshold. This latency con-
straint is bounded by the QoS maximum threshold, as stated
in constraint (23f). Additionally, the cumulative size of data
files designated for storage within a LEO-cloudlet must not
exceed the storage capacity of the LEO-cloudlet, as ensured
by constraint (23g). Constraint (23h) emphasizes fairness in
the traffic offloading of IoT devices, while constraint (23i)
guarantees equitable allocation of resource blocks among the
IoT devices.

F. Alternate Technique

The problem expressed in (23) involves both numerator and
denominator functions that are concave and convex. The real-
valued functions ; j(f) and p; j(t) are defined within a subset
of R", rendering it a classic instance of Concave Fractional
Programming (CFP). To transform this CFP problem into a
concave optimization problem, we employ the Charnes Cooper
Transformation (CCT) technique [40]. By substituting p; ;(f) =
(w), the optimization problem can be reconfigured into an
equivalent concave form. Following the required substitutions
in (23), the transformed concave optimization problem is
presented.
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Therefore, the challenge outlined in (24) falls into the
category of predicaments recognized as conventional Mixed-
Integer Non-Linear Programming (MINLP) predicaments. The
intricate task of associating IoT devices with LEO-cloudlets
and determining their respective UL power allocations [41]
constitutes a sophisticated and challenging NP-hard problem.
The optimization problem presented in (24) possesses a com-
binatorial nature. To surmount this formidable challenge, one
potential approach is to employ a brute-force algorithm. This
approach involves an exhaustive search, systematically explor-
ing and evaluating each option until the optimal solution is
achieved. However, when aiming for the best possible solution,
the algorithm would need to navigate a search space that
grows exponentially with the number of connected devices,
or 2. Moreover, the complexity of the algorithm escalates as
the count of simulated IoT devices increases. Alternatively, a
more streamlined approach to attaining the € = 10~ optimal
solution involves the use of outer approximation.

III. PrOPOSED ALGORITHM - OUTER APPROXIMATION

The challenge presented in (24) constitutes a MINLP
problem involving a combination of linear, non-linear, and
binary variables. The Outer Approximation Algorithm (OAA)
dissects the MINLP problem outlined in (24) into two distinct
sub-problems, enumerated as follows:

o Sub-problem NLP.

« Sub-problem MILP.

The complexity of the two sub-problems is manageable,
and the OAA efficiently achieves an optimal solution within a
specific number of iterations [42], [43].

A. Description of Outer Approximation Algorithm

Let us assume that both the objective function and the
constraints of the problems presented in (24) are represented
as © and Ilp4p.24j, respectively. Binary variables are denoted
by T, where T = x;,y; ;. Furthermore, we define N = ; ; and
M = T U N. For the aforementioned problems in (24), the
following four propositions hold true:
1) The set N is nonempty, convex, and compact.
2) Both ©® and Ily24; are convex with respect to N for a
certain constant M.

3) Differentiation can be performed on ® and Ilp4p.24; for a
specific M.

4) To enable a precise solution for a MINLP problem, it is
necessary to first establish a fixed M.

1) Sub-problem NLP: In order to convert MINLP prob-
lems similar to those described in (24) into NLP problems,
the value of M needs to be fixed at M* during the initial
stage. The upper bound (UB) of the optimal solution serves
as the solution to the NLP problem. The formulation of the
challenge can be stated as follows:

min - MK, N) (252)

S.t. H24b_24j(Mk, N) <0 (25b)

2) Sub-problem MILP: By employing the solution derived
from the NLP problem presented in (25), we can acquire the
binary variables of M at M. The MINLP problems in (24) are
then converted into an MILP problem utilizing the outcomes
from the initial stage. The MILP problem can be succinctly
described as follows:

. . _ k
min ml\}n M, N) (26a)
s.t. Tl oM, N) <0 (26b)

(26) can also be written as:
min —w(M) 27)

such that

oM) = ngn -O(MK, N) (28a)
s.t. Tlagp24i(MF,N) < 0 (28b)

(24) projected onto M-space presents the difficulty de-
scribed in (27). For every M¥, the constraints for the NLP
issue stated in (25) hold, hence the projection problem may
be expressed as follows:

N - N
Lo & gk £ Nk
min min OM*,N*) - VO(M" - N )(M B Mk) (29a)
k
I k Nk -
S.t. Togp24i(M", N¥) — VIIp4p04(M", N )(M B Mk) <0.
(29b)

The issue in (29) can be rewritten as follows by substituting
¢ for another variable:



s (30a)
st ¢ > —OMF, N — VoM — Nb) N-N¢ (30b)
e ’ M — Mt
N - N¥
k k k k
I4p-24)(M", N%) — VIIgp24§(M", N )(M _ Mk) <0
(30c)

The MILP problem yields an optimal lower bound (LB) as
shown in equation (30). To solve the MILP problem [44],
the branch and bound approach is employed. Specifically,
the MILP problem is motivated by the solution to the NLP
problem at M [45], [46], assuming linearity of the objective
function ® and constraint function Ilp4p24j. The e-optimal
algorithm operates through the following iterative phases:

1) As the algorithm progresses towards an e-optimal solu-
tion, the lower bound (LB) increases while the upper
bound (UB) decreases.

2) When the difference between LB and UB becomes
smaller than €, the solution is deemed optimal.

3) If the difference exceeds €, the binary variables M are
updated to M**!. Consequently, both the nonlinear pro-
gramming (NLP) and mixed-integer linear programming
(MILP) problems are resolved again in the subsequent
iteration, yielding new LB and UB values.

4) The process of updating LB and UB continues until
their difference becomes smaller than e, indicating the
achievement of the optimal solution.

5) The flowchart illustrating the e-optimal algorithm is pre-
sented in Figure 2.

e 1073
Convergence < FALSE
Guess initial values of binary variables

Start

B. Algorithm Convergence and Optimality

The e-optimal algorithm exhibits linear convergence, as
indicated by [42], [45]. When the binary variables M are
fixed at M¥, the objective and constraint functions, namely
©® and Ilb4p-24j, become convex. Utilizing the branch and cut
technique, the e-optimal algorithm [44] efficiently seeks the
best solution (within € = 1073 iterations) when all four precon-
ditions are fulfilled. This algorithm ensures that the obtained
solution lies within an e-bound of the optimal solution for any
€ > 0, a validity confirmed for smaller € values. Regarding the
provided binary variable M, which dictates the optimality of
N in accordance with (30), one potential solution is outlined
below:

1) If ¢ > O(M*,N*) — viable solution

2) Otherwise ¢ < O(MF,N¥) — not a viable solution
Hence, the MILP problem described in (30) does not possess
an insolvable value of M¥, ensuring that the e-optimal algo-
rithm converges within a finite number of iterations. As long as
M remains constant, the algorithm consistently yields optimal
outcomes due to the convex nature of both the objective and
constraint functions. A comprehensive proof of convergence
for the OAA algorithm is provided in [42]. Although an
exhaustive search algorithm (ESA) could potentially find the
optimal solution for problem in (24), it comes at the cost of
exponentially increased processing time. The computational
complexity of ESA can be expressed using the notation for
complexity C and the / IoT devices:

Cesa = 2% (€2

On the other hand, OAA with an infinite number of itera-
tions [43] will eventually lead you to the e-optimal algorithm.

Is converged?

Sub-problem NLP gives the UB

arg min
NF N
subject to  Tloup.04j (M, N) < 0;

-0 (M,N)

UB « 6 (M*,N)

Sub-problem MILP gives the LB
argmin ¢
MN.¢
subject to
¢ 2 -0(M N
v (M) (V)
o4p-24i (Mk» Nk)
—VH24b-z4j (Mk, Nk) (N_ONk) <0
LB «¢

(M*,N*,¢7) «

Get new
binary variables
k=k++

Convergence==True UB-LB < €?

Fig. 2. Flow chart - outer approximation algorithm



Below is a simplified representation of the computational
complexity of the OAA:

i2

Conn = o (32)
In the context provided, the variable « signifies the total
number of constraints, while w represents the maximum
permissible deviation of the e-optimal method from the value
of the global optimum. With OAA, you can be confident of
attaining an optimal solution within the scope of €, unlike
ESA, where this assurance is lacking. The escalating compu-
tational complexity of both OAA and ESA is depicted in the
referenced figure 3.
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Fig. 3. Number of IoT devices vs Computational Complexity - OAA and
ESA.

C. Computational Complexity Analysis of the e-Optimal
Algorithm

Assessing complexity sometimes involves the utilization
of flops' [47]. In the initial stage of the epsilon-optimal
algorithm, you will require five flops. To solve the NLP
problem, simply include 4/JY and 21J flops. Solving the
MILP problem demands an additional 2/JY and 41/JY flops.
When considering both the NLP and MILP problems together,
the algorithm accumulates a total of two flops. Incorporating
additional binary values results in an additional four flops. The
complexity of the e-optimal algorithm can be assessed based
on the number of flops essential for its completion.

E=5+21] +41JT +41JY +2[JY +4,  (33a)
E=9+21J+ 101J7, (33b)
E ~21J + 101J. (33¢)

The complexity of the e-optimal algorithm can be represented
using Big O notation as O(IxJ)+ O xJxY). Here, I denotes
the number of connected IoT devices, J indicates the number
of LEO cloudlets, and T represents the number of constraints
in the problem.

Counting the number of floating-point operations, or “flops,” serves as a
measure of complexity. Additionally, a flop is added each time a division or
multiplication operation occurs. When combining two flops, complex addition
is employed, while combining four flops employs complex multiplication.
Performing matrix multiplication between a matrix of dimensions / X m and
another matrix of dimensions mxo yields 2/mo flops. Both the logical operator
and the assignment operator contribute one additional flop each. The operation
log>(x) requires two flip-flops to complete

D. Simulation Setup

The simulations involved the utilization of various system
parameters, as detailed in Table III. Throughout the simulation
process, the maximum power for both Low Earth Orbit (LEO)
and Geostationary Orbit (GEO) Satellites was established at 33
dBm and 37 dBm, respectively. The maximum radius was set
to 1000 km for LEOs and 42000 km for GEO satellites. The
minimum required data rates spanned from 0.2 Mbps to 1.0
Mbps. The minimum allowable number of users was set to
3, while the maximum allowable number was incrementally
set to 48 in steps of 5. A total of 160 Resource Blocks
(RBs) were available for user allocation. Other factors included
a zero-mean Gaussian random variable set at 10 dB. The
total circuit power (Pc) was defined as 10~ Watts, and the
maximum permissible latency was restricted to 5 ms. These
parameters played a crucial role in conducting the simulations
and assessing the system’s performance.

TABLE III
SIMULATION PARAMETERS

Parameter Value Parameter Value
P 33 dBm R;’. {0.2,0.4,0.6,1.0} Mbps
Py 37 dBm R‘]’. {0.2,0.4,0.6,1.0} Mbps
HL 1,000 Km HG 37,786 Km
TrB 160° G 50
bij 0.1 Mbps £ij() 10 dB
P. -30 dBm L y(1) 5 ms
5 10° cycle/s fe 5% 10° cycle/s
3 2 Gbps fe 50 Gbps
Min 10Ts 3 Increment 5
Max 10Ts 50 - -

IV. ResuLrs WiTH IN-DEPTH DISCUSSIONS

In this section, the simulation outcomes are showcased,
illustrating the efficacy of the proposed algorithm in accom-
plishing equitable admission control, IoT association, power
allocation, and the maximization of EE. Furthermore, a per-
formance evaluation is undertaken to discern the distinctions
between the fairness-oriented approach and an approach de-
void of fairness considerations. This assessment centers on
IoT association, EE, and throughput within a hybrid satellite
network encompassing GEO and LEO components.

Figure 4 depicts a graph showcasing the correlation between
the quantity of IoT devices and IoT association (IoTA) (both
fairness-based and without fairness). IoTA pertains to the
cumulative count of accessible IoT devices as opposed to the
count of IoT devices affiliated with the satellite network, en-
compassing both LEO and GEO satellites. The graph distinctly
demonstrates that as the count of IoT devices escalates, there
is a corresponding rise in IoTA, both under the fairness-based
and non-fairness-based contexts. This indicates that with an
augmentation in the network’s device count, a higher likeli-
hood exists for their connection with any available LEO/GEO
satellite network.

The graph further reveals that the values of fairness-based
and non-fairness-based IoTA are remarkably close, exhibiting



only a minor disparity in the overall mean count of affiliated
devices. The noteworthy divergence lies in the just distribution
of connected devices among the existing satellites in both
scenarios. In the fairness-based IoTA approach, the association
of devices with a particular LEO satellite takes into consid-
eration the equitable distribution of load across the accessible
satellite network. Conversely, in the absence of fairness-based
IoTA, the device-to-satellite association does not consider the
principle of equitably distributing the load.

Additionally, the graph in Figure 4 portrays a variety of
satellites, encompassing both LEOs and GEOs, each charac-
terized by distinct orbital velocities and QoS rates spanning
from 0.2 to 1 Mbps. The findings conspicuously unveil that the
count of IoT devices linked with GEO satellites notably trails
behind other LEO satellites. This discrepancy can be attributed
to several factors, including the extended propagation, pro-
cessing, and transmission delays inherent in communicating
with GEO satellites. Furthermore, the phenomenon of task
offloading might transpire when LEO satellites are incapable
of accommodating specific requests, leading to the redirection
of these requests toward GEO satellites. As a result, GEO
satellites manifest fewer affiliations with IoT devices compared
to their LEO counterparts.
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Fig. 4. IoT devices vs IoT Devices Associated in hybrid GEO/LEO
Satellite Network.

10T Associated (without fairness )

Figure 5 provides a comparison between the findings from
prior research [31] and [32], denoting the former as the
baseline or previous condition, while the proposed curve
with additional parameters portrays an upgraded or optimized
scenario. The enhanced curve conspicuously illustrates a more
streamlined and proficient resource allocation, leading to an
increased count of IoT devices becoming part of the network.
This progress signifies that the system has been refined to
effectively manage the growing influx of IoT devices and
cater to their connectivity demands. Moreover, the improved
curve signifies that the system has implemented enhanced
strategies for associating IoT devices, potentially involving
optimized algorithms or resource allocation techniques. These
advancements have contributed to a more judicious utilization
of available resources, enabling a larger number of IoT devices
to be successfully integrated into the network.

Figure 6 displays a graph illustrating the fairness-based
IoTA in relation to different Quality of Service (QoS) rate
requirements, spanning from 0.2 to 1.0 Mbps, for a total of
50 users. The primary focus of this plot is to showcase the
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Fig. 5. IoT devices vs IoT Devices Associated in comparison to paper 15
and 16.
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Fig. 6. QoS Rate Requirement vs IoT Devices Associated (fairness based).

distribution of device associations across both LEOs and GEO
satellite networks. Upon a careful examination of Figure 6, it
becomes evident that when the QoS rate requirement is set at
0.2 Mbps, there is an even distribution of devices among the
available LEO satellites. Each LEO satellite accommodates a
comparable number of associated devices, reflecting an equi-
table allocation of devices within the LEO satellite network.
As the QoS rate requirement incrementally increases from 0.2
to 1.0 Mbps, the plot maintains a consistent trend similar to
that observed at the 0.2 Mbps data rate.

Furthermore, the plot highlights that the number of devices
connected to GEO satellites is notably lower compared to
those associated with LEOs. This phenomenon stems from
the primary role of LEO satellites in handling the generated
requests from IoT devices, meeting the majority of their
demands. Only a small fraction of requests that cannot be
addressed by LEO satellites are redirected to GEO satel-
lites. This allocation pattern is influenced by factors such
as prolonged delays and response times linked with GEO
satellites. Overall, the prominent presence of I0TA is witnessed
with LEO satellites, irrespective of the data rate requirement,
underscoring their pivotal role in facilitating connections for
IoT devices. This pattern persists across both lower and higher
data rates. Additionally, Figure 6 portrays a marginal decrease
in the total count of associated devices as the Quality of
Service (QoS) rate requirement progressively rises from 0.2 to
1.0 Mbps. This reduction in IoTA performance signifies that
the system associates fewer devices as data rates increase, in
comparison to instances with lower data rates.
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In figure 7, Uneven distribution of devices can result in
congestion in certain areas or on specific satellite beams,
leading to performance degradation and potential service dis-
ruptions. Unfair distribution of IoT devices may result in
some devices receiving a disproportionately higher share of
network resources, such as bandwidth or processing capa-
bilities. This can lead to congestion, increased latency, and
degraded performance for devices that receive inadequate
resources. Consequently, the overall network efficiency and
user experience may suffer.
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Fig. 8. IoT Devices Associated vs IoT Devices at different QoS rate
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Figure 8 provides a comprehensive plot that illustrates the
interplay between the number of IoT devices, IoT Association
(IoTA), and IoT Fairness (IoTF) index under varying Quality
of Service (QoS) rate requirements—specifically, 0.2 Mbps,
0.4 Mbps, 0.6 Mbps, 0.8 Mbps, and 1.0 Mbps. The range of
IoT devices spans from 3 to 50, with incremental steps of 5,
facilitating a thorough analysis of the system’s behavior across
diverse IoT device quantities.

Of noteworthy significance is that even as IoTA diminishes
in response to heightened QoS rate requirements, the fairness
observed in associating devices with available LEOs and
GEO satellites remains relatively stable across all examined
QoS rate prerequisites—ranging from 0.2 Mbps to 1.0 Mbps.
This discovery underscores the system’s ability to uphold an
equitable distribution of associations among the accessible
satellite resources, regardless of the specific QoS rate demand.
These findings serve as corroborative evidence to the outcomes

presented in Figure 6 and 7, further affirming the consistency
and resilience of our research findings.
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Fig. 9. IoT Devices vs IoT Devices Associated and RB at different QoS
rate requirements.

Figure 9 provides a comprehensive analysis of how different
Quality of Service (QoS) rate requirements influence the
association of devices with Resource Blocks (RBs). The QoS
rate requirement signifies the minimal acceptable data rate
for each IoT device, exerting a significant influence on RB
allocation. The graph’s insights reveal that as the QoS rate
requirement escalates, there is a slight reduction in the number
of devices associated with RBs. This observation implies that
higher data rate demands introduce limitations on resource
availability, leading to a slightly lower count of devices being
linked with RBs.

Notwithstanding the variations in device-RB associations
across diverse QoS rate requirements, the graph highlights the
system’s adeptness in upholding a just distribution of RBs
among IoT devices. This equity-based distribution guarantees
that every device receives an equitable share of RBs according
to its needs and the accessible resources. The observation
underscores the system’s efficacy in effectively managing
resource allocation to maintain fairness, regardless of the
specific QoS rate requirement. This aspect exemplifies the
system’s ability to optimally balance network performance
with the individual requirements of IoT devices, ensuring
equitable access to resources while catering to varying data
rate demands.
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Fig. 10. IoT Devices vs IoT Devices Associated and Allocated RBs.

The graph 10 illustrates the allocation of RBs to the associ-
ated IoT devices. RB allocation represents the distribution of
available RBs among the devices. It is evident from the graph



that as the number of IoT devices increases, the allocation
of RBs also increases. This observation demonstrates that the
system effectively manages RB allocation to accommodate the
growing demand and ensure adequate resource provisioning
for the associated devices.
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Fig. 11. IoT Devices vs IoT Devices Associated and RB Fairness at

different QoS rate requirements.

Figure 11 provides an in-depth analysis of how distinct
Quality of Service (QoS) rate requirements impact the as-
sociation of devices with Resource Blocks (RBs). The QoS
rate requirement denotes the minimum acceptable data rate for
each IoT device, which significantly shapes RB allocation. The
graph’s insights reveal that as the QoS rate requirement rises,
there is a marginal reduction in the number of devices affiliated
with RBs. This observation implies that heightened data rate
demands introduce limitations on resource availability, leading
to a slightly diminished count of devices being linked with
RBs.

Despite the variations in device-RB associations across
diverse QoS rate requirements, the graph underscores the
system’s prowess in upholding equitable distribution of RBs
among IoT devices. This fairness-driven distribution ensures
that every device garners a proportionate allocation of RBs
in line with its needs and the available resources. This obser-
vation reaffirms the system’s adeptness in resource allocation
management to ensure fairness, regardless of the specific QoS
rate requirement. Such a capability showcases the system’s
effectiveness in optimizing network performance while accom-
modating individual IoT device requirements, ensuring just
access to resources amidst varying data rate demands.
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Fig. 12. QoS rate requirement vs IoT Devices Associated and Allocated
RBs.

Figure 12 presents a graphical representation that eluci-
dates the interplay between the Quality of Service (QoS)
rate requirement of IoT devices and two key metrics: IoT
association and Resource Block (RB) allocation. The graph
unveils an inverse correlation between IoT association and
the QoS rate requirement, while RB allocation exhibits a
direct relationship with elevated QoS rate requirements. The
graphical depiction in Figure 12 distinctly showcases that with
the upsurge in the QoS rate requirement of IoT devices, the
corresponding IoT association diminishes. This pattern aligns
with expectations, given that higher data rates necessitate
increased power consumption to uphold satisfactory perfor-
mance levels. Consequently, at elevated data rates, the power
needed for a user to affiliate with a specific LEO/GEO satellite
network also rises. Consequently, the IoT association dwindles
as the QoS rate requirement climbs.

Conversely, the RB allocation depicts a positive trajectory
as the QoS rate requirement escalates. This signifies that aug-
mented data rates call for a more extensive allotment of RBs
or spectrum resources to cater to the heightened transmission
demands. Hence, the allocation of RBs at elevated data rates
surpasses that at lower data rates. This graph thus provides
valuable insights into the intricate dynamics between QoS rate
demands, IoT association, and RB allocation, underscoring the
intricate balance required in optimizing network performance.
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Fig. 13. IoT Devices vs IoT Devices Associated and Throughput.

The graph 13 showcases the relationship between the num-
ber of devices associated with the network and the resulting
throughput. Throughput represents the rate at which data is
transmitted through the network and is a crucial performance
metric for IoT applications. The graph illustrates that as the
number of associated devices increases, the throughput also
tends to increase. This observation suggests that the network
can efficiently handle the data transmission demands of a
larger device population, leading to higher overall throughput.
As the number of 10T devices grows, the network demonstrates
its ability to scale and maintain higher throughput levels. This
scalability is essential for ensuring that the network can handle
the increasing data traffic and meet the performance require-
ments of [oT applications. By efficiently managing resources
such as bandwidth, transmission power, and scheduling, the
network can ensure that data is transmitted more effectively,
thereby increasing throughput. This optimization takes into
account factors like channel conditions, traffic patterns, and
QoS requirements.
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In our analysis, we have delved into the impact of Quality of
Service (QoS) rate requirements, which define the minimum
acceptable data rate for each IoT device. Figure 14 portrays
a graphical representation that elucidates the intricate rela-
tionship between the number of IoT devices, IoT association
(IoTA), and throughput across different QoS rate requirements:
0.2 Mbps, 0.4 Mbps, 0.6 Mbps, 0.8 Mbps, and 1.0 Mbps.

The behavior observed in the IoTA metric resonates with our
earlier discussed findings. The consistent pattern of increasing
user count across all QoS rate requirements underscores the
proportional rise in the number of IoT associations with
the augmentation of devices. This phenomenon holds true,
regardless of the specific QoS rate requirement.

Additionally, Figure 14 brings into focus the varying trends
in throughput across distinct QoS rate requirements. Notably,
optimal throughput is attained when the QoS rate requirement
is at its minimum. However, as the QoS rate requirement
escalates, a subsequent decrease in throughput is observed.
It’s important to emphasize that despite this decline, the
overall trajectory of throughput exhibits an upward tendency in
correspondence with the growing number of IoT devices. This
insight showcases the intricate balance between QoS demands
and network performance, affirming the complex dynamics at
play in IoT ecosystem management.
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Figure 15 depicts the behavior of throughput in the pres-
ence and absence of rain, as described by equation 6¢. The
curve clearly illustrates how throughput is influenced by the
presence of rainy conditions when IoT devices are connected
to LEO/GEO Satellites. It is evident that throughput decreases

when rain is present, whereas it increases under clear weather
conditions. The impact of rain on throughput is particularly
noticeable when multiple devices are attempting to fetch their
required data from the network. In cases where fewer devices
are connected to the network, the effect of rain may not be as
pronounced.

Under clear weather conditions, IoT devices can transmit
data with higher signal strength and experience lower latency,
resulting in smoother communication with the satellite net-
work. The absence of rain reduces the likelihood of signal
attenuation or signal loss, leading to improved overall connec-
tivity. Raindrops falling through the signal path can cause sig-
nal absorption, scattering, and reflection, contributing to signal
degradation. This attenuation in the signal strength can lead to
increased noise and a higher bit error rate (BER), ultimately
affecting the quality and reliability of the connection.

N

PEEN)
S o S &

EE (Mbps/Watt)

=

o o

3 8 13 18 23 28 33 38 43 48
No. of 10T devices

mm 0T Associated Without Rain - 10T Associated at 2.5mm/h loT Associated at 10mm/h
== 10T Associated at 40mm/h  s210T Associated at 70mm/h  wm 0T Associated at 100mm/h
~=EE at No Rain EE at 2.5mm/h ~=EE at 10mm/h

~=EE at 40mm/h ==EE at 70mm/h ~=EE at 100mm/h

Fig. 16. IoT Devices vs IoT Devices Associated and Energy Efficiency
(without rain and different intensities of rain.

Graph 16, depicting the correlation between rain intensity
and energy efficiency in IoT devices, reveals a consistent
pattern: with increasing rain intensities, both energy efficiency
and IoT association exhibit a decline. This trend is particu-
larly noticeable at exceptionally high levels of rain intensity,
such as 100 mm/hr. Rainfall introduces signal attenuation,
scattering, and interference, thereby degrading the quality and
reliability of the wireless channel. As rain intensity escalates,
these detrimental effects intensify, resulting in reduced energy
efficiency due to the heightened energy requirements neces-
sary to overcome the challenges posed by the compromised
communication environment.

Furthermore, the reduction in IoT association can be at-
tributed to the influence of rain intensities on connectivity. As
rainfall becomes more intense, it obstructs data transmission,
leading to increased packet loss and disruptions in commu-
nication. Consequently, IoT devices encounter difficulties in
establishing and maintaining stable connections, ultimately
resulting in a decrease in the number of successful IoT
associations.

Graph 17 portrays the correlation between latency in IoT
devices and their energy efficiency, thereby revealing a distinct
pattern: an increment in latency is accompanied by a reduction
in both energy efficiency and IoT association. The rise in
latency signifies a prolonged delay in the transmission and
reception of data between IoT devices and the network. This
delay prompts heightened energy consumption, as devices
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must remain active for extended periods, awaiting responses
or acknowledgments. Consequently, the energy efficiency di-
minishes, as more energy is expended per unit of transmitted
data.

Furthermore, heightened latency exerts an adverse influence
on IoT association. The delays in information exchange trans-
late to postponed processing of commands and receipt of feed-
back. This delay-induced effect can lead to a curtailed number
of successful associations between IoT devices, hampering
their seamless connectivity and interaction with the network.
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The graph 18 shows the relationship between IoT device
storage values and energy efficiency uncovers a compelling
trend: as storage increases, so does energy efficiency, accompa-
nied by a boost in IoT association. Devices with more storage
capacity can locally store and process more data. It reduces
data transmission frequency to and from the network, resulting
in reduced energy consumption. It can efficiently store and
retrieve data as needed, reducing the need for frequent com-
munication and increasing energy efficiency. Moreover, the
increase in storage capacity positively impacts IoT association
that allows devices to store more data locally, enabling them to
operate autonomously and maintain continuous functionality
even when network connectivity is intermittent or temporarily
unavailable. It increases the likelihood of successful IoT as-
sociations as devices can maintain operations and synchronize
data when network connectivity is restored.

Graph 19 portrays the interrelationship between the quantity
of IoT devices and two crucial factors: the count of associated
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Fig. 19. IoT Devices vs and IoT Associated and Energy Efficiency.

IoT devices and their corresponding energy efficiency. The
horizontal axis signifies the number of devices, spanning from
3 to 50, while the vertical axis represents the number of
associated devices and their respective energy efficiency levels.
The graph prominently indicates that with an escalating count
of devices, the energy efficiency of the network experiences
a gradual enhancement. This positive trend can be attributed
to the amalgamation and optimization of resources across a
larger device pool.

The upward trajectory in energy efficiency is a consequence
of streamlined resource allocation and utilization strategies.
As the number of devices increases, there emerges an am-
plified opportunity to streamline data processing and storage
activities, thereby curtailing redundant energy consumption.
This refined resource utilization fosters an improved energy
efficiency landscape throughout the network.
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Graph 20 illustrates the correlation between the movement
of a LEO satellite, its corresponding energy efficiency, and
IoT association. The graph reveals that the maximum energy
efficiency is achieved when an IoT device is positioned at
a 90-degree angle to the LEO satellite. LEO satellites are
characterized by their lower orbits around Earth, leading to
shorter communication links and reduced signal propagation
delays. When the IoT device is situated at a 90-degree angle, it
aligns perfectly with the line of sight to the LEO satellite. This
alignment enables direct and unobstructed communication
between the device and the satellite.

In this optimal alignment, the IoT device receives the
strongest and most reliable signals from the LEO satellite.



This efficient signal reception and transmission contribute to
higher energy efficiency. Additionally, the ideal alignment
enhances IoT association, as the device can establish a stable
connection with the LEO satellite. This facilitates smooth
data exchange and communication between the device and
the satellite. However, as the angle deviates from 90 degrees,
the alignment between the IoT device and the LEO satellite
becomes less optimal. This can lead to decreased energy
efficiency and potentially reduced IoT association due to signal
degradation and increased signal propagation delays.
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Fig. 21. IoT Devices vs and IoT Associated and Energy Efficiency in
comparison to paper 15 and 16.

Graph 21 provides a comparison between the number of
associated IoT devices and Energy Efficiency (EE) based on
the approaches described in [31] and [32]. The curve labeled
as [31] and [32] represents a previous scenario without IoT
admission, processing, queuing delay factors, fair IoT distri-
bution, and RB allocation. In this scenario, no considerations
were made for optimizing energy efficiency. In contrast, the
improved curve demonstrates a significantly higher level of
energy efficiency compared to the previous scenario. This
enhancement indicates that the system has implemented strate-
gies to optimize energy usage and enhance the overall energy
efficiency of the network. The improved curve suggests the
utilization of energy-efficient algorithms, power management
techniques, or resource allocation strategies to ensure the
optimal use of energy resources. These improvements have led
to a more efficient allocation of energy among the associated
IoT devices, resulting in enhanced energy efficiency.

Moreover, the improved curve indicates that the system
has achieved a better balance between IoT device association
and energy efficiency. It shows that a greater number of IoT
devices can be successfully associated with the network while
maintaining or even improving energy efficiency. This signifies
the successful integration of energy-efficient practices into the
network design, ultimately benefiting both device connectivity
and energy consumption.

Upon analyzing the graph depicted in Figure 22, noticeable
trends and patterns emerge as the number of IoT devices
increases, affecting both Energy Efficiency (EE) and Resource
Blocks (RB) Allocation. Firstly, focusing on Energy Efficiency,
it becomes apparent that EE tends to experience a gradual
increase as the number of IoT devices rises. This observation
suggests that, on average, the network becomes more energy-
efficient when accommodating a larger number of IoT devices.
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Fig. 22. IoT Devices vs EE and RB Allocation.

This positive correlation between device count and energy ef-
ficiency signifies improved resource utilization and optimized
transmission strategies.

Conversely, RB Allocation pertains to the distribution of
available resource blocks, fundamental units of wireless com-
munication, among [oT devices. The graph underscores a
similarity in the pattern between Energy Efficiency and RB
Allocation. As the number of IoT devices increases, there is
a corresponding rise in the allocation of resource blocks. This
trend implies that the network adeptly manages its resources
to cater to the demands of the expanding device population.
A greater allocation of resource blocks facilitates enhanced
connectivity, improved data transmission rates, and overall
network performance.

Furthermore, the graph provides insights into the interplay
between different allocation strategies and their impact on
energy efficiency, as well as vice versa. This understanding
can serve as a guide for the development of resource allocation
algorithms and protocols that optimize both Energy Efficiency
and RB Allocation. Such optimization efforts can lead to
improved network performance, better sustainability, and more
efficient resource utilization.

A. S-I0T network - case studies

Satellite-assisted IoT networks have emerged as a promising
solution for achieving global connectivity, but they encounter
challenges in effectively allocating resources due to the unique
characteristics of satellite communication systems. This work
introduces a solution to these challenges. The benefits of
the proposed techniques are exemplified through various case
studies:

« Precision Agriculture Monitoring: In remote agricul-
tural areas, where terrestrial infrastructure is limited,
satellite-assisted IoT networks play a crucial role in
monitoring soil moisture, temperature, and crop health
in real-time. By satellite-assisted IoT networks, farmers
can optimize resource allocation for efficient data trans-
mission, enabling timely insights into irrigation needs,
pest infestations, and crop growth patterns. This not
only enhances agricultural productivity but also conserves
energy by ensuring that only essential data is transmitted.

« Maritime Fleet Management: Satellite-assisted IoT net-
works revolutionize maritime fleet management by en-



abling continuous monitoring of vessel location, engine
performance, and cargo conditions. By satellite-assisted
IoT networks, fleet operators can dynamically allocate
bandwidth based on vessel priority, route optimization,
and environmental conditions. This optimized resource
allocation ensures seamless connectivity and efficient data
transmission, leading to improved fleet safety, operational
efficiency, and reduced fuel consumption.

« Disaster Response and Emergency Management: Dur-
ing natural disasters or humanitarian crises, rapid and
reliable communication is essential for coordinating res-
cue efforts and delivering aid to affected areas. Satellite-
assisted IoT networks provide resilient connectivity in
disaster-stricken regions. This facilitates efficient disaster
response and recovery operations, ultimately saving lives
and minimizing damage.

« Remote Environmental Monitoring: In remote or en-
vironmentally sensitive areas such as wildlife reserves
or ecological research sites, continuous environmental
monitoring is crucial for conservation efforts and ecolog-
ical research. Satellite-assisted IoT networks enable real-
time data collection on biodiversity, habitat changes, and
climate patterns. This data facilitates better conservation
management, early detection of ecological threats, and
informed decision-making for sustainable development
initiatives.

These case studies illustrate how satellite-assisted IoT net-

works enriches the energy efficiency, and ensuring seamless
connectivity across diverse applications and domains.

V. CoNcLUSION

In summary, this study delves into the intricate domain
of joint admission control, IoT association, and power allo-
cation within the context of hybrid satellite-assisted Internet
of Things (S-IoT) networks. The primary aim is to strike a
balance between ensuring equitable IoT device association
and spectrum resource allocation while optimizing energy
efficiency (EE). Addressing this challenge involves tackling
a Convex Fractional Programming (CFP) problem, which
undergoes transformation into a concave optimization prob-
lem through the ingenious application of the Charnes-Cooper
Transformation (CCT). The proposed Outer Approximation
Algorithm (OAA) then comes to the forefront, tasked with
resolving the concave optimization problem and deriving an
epsilon e optimum solution, with € being set at 1073. The
prowess of this e-optimum solution, as orchestrated by the
OAA, is scrutinized through the lens of diverse system pa-
rameters. These parameters encompass IoT association (IoTA),
IoT fairness (I0TF), resource block (RB) fairness, and energy
efficiency (EE). The outcomes portray a compelling narra-
tive—both IoT fairness and RB fairness exhibit upward trajec-
tories as the cohort of associated devices expands. Moreover,
the energy efficiency (EE) metric demonstrates a consistent
ascent as user numbers increase. However, a noteworthy
corollary emerges: EE encounters a dip as Quality of Service
(QoS) rate requirements surge.
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