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Abstract

Systematic reviews (SRs) constitute a critical foundation for evidence-based decision-making and
policy formulation across various disciplines, particularly in healthcare and beyond. However, the
inherently rigorous and structured nature of the SR process renders it laborious for human reviewers.
Moreover, the exponential growth in daily published literature exacerbates the challenge, as SRs
risk missing out on incorporating recent studies that could potentially influence research outcomes.
This pressing need to streamline and enhance the efficiency of SRs has prompted significant interest
in leveraging Artificial Intelligence (AI) techniques to automate various stages of the SR process.
This review paper provides a comprehensive overview of the current AI methods employed for SR
automation, a subject area that has not been exhaustively covered in previous literature. Through
an extensive analysis of 52 related works and an original online survey, the primary AI techniques
and their applications in automating key SR stages, such as search, screening, data extraction, and
risk of bias assessment, are identified. The survey results offer practical insights into the current
practices, experiences, opinions, and expectations of SR practitioners and researchers regarding future
SR automation. Synthesis of the literature review and survey findings highlights gaps and challenges in
the current landscape of SR automation using AI techniques. Based on these insights, potential future
directions are discussed. This review aims to equip researchers and practitioners with a foundational
understanding of the basic concepts, primary methodologies, and recent advancements in AI-driven
SR automation while guiding computer scientists in exploring novel techniques to invigorate further
and advance this field.

Keywords: Systematic review, Artificial intelligence, Natural language processing, Machine learning, Deep
learning, Systematic review automation, Active learning

1 Introduction

Literature reviews constitutes an essential part of academic research, serving as a critical foundation
across various fields. A literature review may be conducted for various reasons, such as providing a
general overview of a particular research topic, identifying existing theories and methodologies gaps,
equipping a researcher with adequate information for decision-making, or even substantiating why a
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research topic must be studied, among others (Snyder, 2019). Predominantly, there exist two main types
of literature reviews: the narrative or traditional review and the systematic review (SR), with the latter
being considered the gold standard and more credible approach in numerous disciplines (Booth et al,
2016). SR, primarily used in healthcare research and other disciplines such as software engineering (SE)
or humanities (Kitchenham et al, 2009; Davis et al, 2014), allows literature revision to be performed
transparently, organised, and comprehensively. The systematic steps involved in an SR ensure an unbiased
synthesis of relevant literature, thus providing robust evidence to support practitioners, policymakers,
and academics (Egger and George Davey Smith, 2001). The general steps involved while conducting an
SR include 1) Development of protocol, 2) identification of relevant databases and developing a search
strategy, 3) screening of titles and abstracts obtained after searching, 4) full-text screening of relevant
abstracts to scout those that meet the exclusion/inclusion criteria stated in the protocol, 5) Extracting
relevant data of studies meeting the inclusion criteria, 6) critical appraisal/risk of bias (RoB) assessment
to check the quality of the included studies, 7) synthesis and interpretation of results (Aromataris and
Pearson, 2014).

SR, rather than a product, is a process. However, the SR process is inherently time-consuming and
susceptible to human error due to its orderly and well-structured nature. Reviewers have the overwhelm-
ing task of planning, searching, screening titles and abstracts, reading the full texts, and synthesising
data from many publications. Averagely, the typical timeframe reported for an SR to be completed and
published is approximately 15 months (Borah et al, 2017). With the exponential growth in daily pub-
lished literature (Bornmann and Mutz, 2015), most SRs fall behind, missing out on incorporating recent
studies that could have influenced the research outcomes (Gates et al, 2018; van de Schoot et al, 2021).
This highlights a pressing need for innovative solutions to streamline and enhance the efficiency of SRs.
On the other hand, this rapid growth in the number of studies published daily, coupled with the demand-
ing requirements of SR, has prompted significant interest in the deployment of Artificial Intelligence
(AI). Specifically, three broad aspects of AI, Natural Language Processing (NLP), Machine Learning
(ML), and Deep Learning (DL), have been explored for their potential to automate various stages of the
SR process (Marshall and Wallace, 2019). However, it is unclear what specific methods are being imple-
mented and what are the benefits of using AI methods during SR (Blaizot et al, 2022). To address these
challenges, this review paper seeks to explores the application of AI in automating the SR process and
to provide a comprehensive overview of the current AI techniques proposed. Thus, this paper aims to
equip researchers with a foundational understanding of the basic concepts, primary methodologies, and
advancements in SR AI automation.

To the best of knowledge, there exists only one study by Jaspers et al (2018) that provides a detailed
overview of the ML approach employed in SR. However, the study focuses on only one branch of AI
and only partially covers the NLP and DL aspects of the AI used for SR automation. Additionally,
the review focused on ML techniques used for only SRs within the domain of the Education and Skills
Funding Agency (ESFA). Thus, this review seeks to bridge the gap by summarising the AI methods used
to automate SR in fields such as the medical and software engineering (SE) domain.

1.1 Contributions of this study

Overall, the main contributions and structure of this survey paper are summarised as follows: 1) to provide
a comprehensive overview of the current AI methods used in SR automation, a subject area that has not
been exhaustively covered in previous literature, 2) presenting empirical results from an original online
survey which provides practical insights into the current practices, experiences, opinions and expectations
of SR practitioners and researchers for future SR automation, 3) combining the results of the original
survey as well as the comprehensive overview to provide recommendations for future AI SR automation.
Overall, this paper is organised as follows: Section 2 discusses the fundamentals of AI actively used for SR
automation. Section 3 presents an overview of how these methods described in Section 2 are deployed in
the studies found for the four most reported stages (search, screening, data extraction, and RoB) of the
SR process. Section 4 presents the online AI survey on SR automation. Section 5, summarises the public
datasets and codes available for automating these four stages and provided an assessment summary for
the most common evaluation metric in Section 3, used on similar public datasets. Section 6 discusses
potential limitations, challenges, and future directions for SR automation .
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1.2 Search criteria and eligibility criteria

To identify relevant studies, 31 papers were retrieved from current systematic reviews on SR automation
by van Dinter et al (2021) and Blaizot et al (2022). These SRs focused on finding studies that targeted
automating any of the SR’s stages but did not describe the AI methods deployed in these studies.
Additionally, databases such as PubMed, Scopus, Google Scholar, IEEE, Elsevier, Springer, ACM, and
ScienceDirect were queried using relevant Boolean strings keywords (e.g., “systematic review” AND
(“machine learning”, “text mining/classification” OR “deep learning” OR “natural language processing”
OR “automation” OR “active learning”). To gather other relevant papers, the concept of snowballing
was used. Papers that did not principally focus on SR automation and explain the AI methodology used
were excluded. The last update for the included articles was in 2024. From the search database, 21 new
papers were added to the 31 previously recruited papers, resulting in 52 papers. Among these, 11 papers
targeted the automation of the search phase, 33 addressed the screening phase, six focused on data
extraction automation, and two on the automation of the RoB. These papers are generally summarised
in Figure 1a and Figure 1b. Despite the recent prominence of large language models (LLMs) such as
ChatGPT1, papers utilising ChatGPT were excluded from this analysis due to the selection criteria
emphasising papers with a detailed explanation of the AI methods used. However, it is noted in Figure 1b
that other LLMs have been employed in some of the identified papers included in this review.

(a) Number of papers for each stage that met
the eligibility criteria

(b) Number of papers with respect to the years for
each stage

Fig. 1: Analysis of paper criteria and year distribution

2 Fundamentals of AI used in SR automation

The application of AI in the automation of SRs has increased significantly in recent years. As detailed in
Section 1, NLP, ML, and DL constitute the core AI techniques employed to accelerate the SR process.
The 52 papers found for the four stages of the SR (search, title/abstract screening, data extraction and
RoB) highlight NLP as the predominant technique used in SR automation. Thus, this section elucidates
the foundational NLP techniques commonly utilised in this context. To describe the interlinkage of
ML and DL with the NLP concept, Sections 2.5 and 2.6 expatiate this basis. NLP involves statistical
and graphical methods that facilitate systems’ understanding of human language. Among the primary
NLP tasks that underpin SR automation, text classification is the most predominant (Marshall and
Wallace, 2019). This task involves categorising text segments based on their content, such as during the
title/abstract screening phase of the SR process, where abstracts and titles are classified as relevant or
irrelevant. Another example of where this task is deployed is categorising the methods design of included
studies as having a high/low bias, thus facilitating the RoB assessment . Additionally, text classification
supports the search phase by filtering and categorising documents pertinent to specific research questions,
thereby alleviating the screening burden, for example, by identifying randomised control trials (RCT)
from databases.

1https://chat.openai.com/

3



163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

Information retrieval (IR) represents another essential NLP task, particularly vital in health research
for literature searches (Nadkarni, 2002). During the search phase, a prominent IR technique discussed
in related literature discussed in Section 3 query expansion (QE), which extends search strings to
include related terms, further improving original queries and resulting in richer and more relevant results
(Aklouche et al, 2019). Information extraction is another vital SR automation task, primarily used during
the data extraction phase. This process involves extracting specific information. In the medical domain,
these include elements of the PICO framework (Population, Intervention, Comparator, and Outcome),
sample size, setting details, and research questions from included studies. One of the earliest techniques
proposed for automating the data extraction stage is template filling, where data is extracted based
on sample templates such as CONSORT (Moher, 2001). Furthermore, this task aids in extracting sup-
porting statements for study design evaluations, thereby automating the RoB assessment. Additionally,
some related works to be discussed employed these tasks to automate the search stage. That is, extract-
ing information from seed studies to develop query strings. Lastly, another aspect of NLP used for SR
automation is Visual Text Mining (VTM). VTM combines text mining techniques such as IE and IR with
visuals. In SR, VTM is mainly used to automate the search stage and, sometimes, for screening/selecting
primary studies (Felizardo et al, 2012).

In summary, the integration of NLP techniques in SR automation follows a sequence of processes
known as the NLP pipeline, as illustrated in Figure 2. The subsequent subsections will discuss the stages
of the NLP pipeline (Figure 2) and their application in the automation of SR processes across the 52
identified studies.

Fig. 2: The NLP Pipeline for Systematic Review Automation (Training Phase)

2.1 Data Acquisition

To train the learning models for SR automation, a crucial initial step, as depicted in Figure 2, involves
acquiring data from pertinent sources and databases. Among the 52 related studies, PubMed2 abstracts
and Medline3 full-text data are most frequent source utilised to train models across the four identified
stages of SR reviewed in this study, especially for title and abstract screening. Additional data sources
include the CLEF eHealth Technology Assisted Reviews (TAR)4 and the TREC Precision Medicine
dataset5, which offer queries, abstracts, and relevance scores to enhance the automation of the search
stage. For the RoB and data extraction, text summaries from the Cochrane Database of Systematic
Reviews (CDSR)6 is the source employed in related studies to train and validate the AI model.

2https://pubmed.ncbi.nlm.nih.gov/
3https://www.nlm.nih.gov/medline/medline overview.html
4https://clefehealth.imag.fr/
5https://trec.nist.gov/data/clinical.html
6https://www.cochranelibrary.com/cdsr/about-cdsr
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2.2 Text Cleaning and Pre-processing

The principal aim of this stage in the pipeline is to remove noise from the text data, ensuring that
clean data is fed into subsequent stages. This section highlights some of the most frequent approaches
identified in related studies for SR automation, including sentence and word tokenisation, stop word
removal, stemming and lemmatisation, normalisation, and Part-of-speech (POS) Tagging. In RCT SRs,
stemming and/or lemmatisation are not always applied to tokens, as they can lead to the loss of critical
information in the text. For instance, during stemming, the term “trials” in an RCT SR report might be
reduced to “trial,” potentially altering the meaning and implying it is part of a single RCT report rather
than an SR of multiple RCTs (Bannach-Brown et al, 2019). To demonstrate how these pre-processing
techniques work significantly, and to help our non-technical readers, a sample SR abstract on juvenile
obesity by Aceves-Martins et al (2021) is used to describe these in Figure 3 visually.

Fig. 3: Demonstration of how some pre-processing techniques are deployed for SR automation using a
sample abstract by Aceves-Martins et al (2021)

2.3 Feature Extraction

Figure 4 summarises the various feature extraction methods used in the related studies for automat-
ing the four stages: search, screening, data extraction and RoB. This section aims to provide deeper
insights into these methods’ comparative strengths and limitations. Under traditional feature extraction
techniques, examples of these methods used include BoW, Bag of N-gram as 2-gram (bi-gram), 3-gram
(trigram) and TF-IDF are extensively utilised due to their simplicity and effectiveness in handling large
datasets(Walkowiak et al, 2018). BoW, being used in the screening processes as shown in Figure 4, is
advantageous for its ease of implementation but is limited by its inability to capture semantic meanings
between words. In contrast, N-gram models, which also appear frequently in the screening phase, offer a
balance by capturing some context within the data, though at a computational cost that scales with the
size of the n-gram. TF-IDF, on the other hand, stands out in Figure 4, demonstrating its robustness in dis-
tinguishing relevant terms in large text corpora by emphasising unique terms in documents. This method
is computationally efficient and often serves as a baseline for feature relevance assessment in text mining
applications (Walkowiak et al, 2018). Advanced embedding techniques like Word2Vec and GloVe, noted
less frequently in the screening stages, offer rich semantic representations of text but require more com-
putational resources. Even though these models capture deeper linguistic contexts, making them suitable
for applications needing nuanced text interpretation, they could be more practical for large datasets or
limited-resource settings. Transformer-based methods, such as BERT and s-BERT, represent the cutting
edge in feature extraction. Their lower frequency of use as feature extractors, as indicated in Figure 4,
may be due to their computational demands or because the model is directly used for fine-tuning the
SR tasks. However, their ability to understand context and nuance in text is unparalleled. Thus, the
choice of feature extraction method significantly impacts the computational efficiency and effectiveness
of SR automation. While traditional methods like BoW and TF-IDF are computationally less demanding
and thus more prevalent in larger datasets, advanced methods like BERT provide superior contextual
understanding, suggesting a trade-off between performance and computational overhead.
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Fig. 4: Summary of proposed feature extraction techniques in identified papers obtained

2.4 Modelling/Learning models

Continuing with the NLP pipeline depicted in Figure 2, the subsequent stage following text vectorisa-
tion is typically modelling. The three main AI learning models identified in the related works for SR
automation include the rule-based approach, ML and DL, a subclass of ML (Song et al, 2020). The
rule-based approach involves explicit, well-defined guidelines comprising logical statements that dictate
actions under specific conditions. Standard techniques observed in the related works include word lists,
string matching, and regular expressions (AHO, 1990). Specifically in SRs, rule-based methods, par-
ticularly regular expressions, are primarily used in the data extraction phase to identify and extract
data from included studies (Marshall et al, 2016, 2017). Although rule-based methods are effective and
provide a straightforward foundation for developing NLP models, a significant drawback is their static
nature; they do not adapt or learn over time, often necessitating the development of new rules as the
system evolves. In contrast, ML and DL models overcome these limitations by utilising adaptive learn-
ing and pattern recognition capabilities (Song et al, 2020). Nonetheless, rule-based approaches can also
complement ML and DL models, for example, by extracting information as input for these models or by
removing special characters from text during the preprocessing stage. Given the prominence of ML and
DL in the studies reviewed, these models will be discussed in detail as focal points in this subsection.
Training of these learning models is primarily categorised into three approaches: 1) supervised, where
all training documents are manually annotated, such as classifying text as either relevant or irrelevant,
or assessing whether a study is an RCT or if the methodology of an included study has high or minimal
bias. The advantage of supervised learning in SR automation is its accuracy and predictability in perfor-
mance. However, it requires a substantial amount of labelled data to train the learning model, which can
be costly; 2)unsupervised, where no labels are used to discover hidden patterns and 3) semi-supervised,
where a small proportion of training documents are labelled compared to the unlabelled ones, helping
to mitigate the label scarcity problem by leveraging unlabelled data. In SR automation, semi-supervised
learning is encapsulated in the concept of active learning, described in Section 2.5.3. The discussed
papers in Section 3 showcase numerous applications of these training methods across different stages of
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SR automation. Figure 5 illustrates that supervised training is predominantly used in the search phase,
while semi-supervised training is prevalent in the screening, data extraction, and RoB stages.

Fig. 5: Summary of techniques used in training NLP model to automate some stages in the SR process
from 51 out of the identified papers that explicitly stated the training type used

2.5 Machine Learning (ML)

ML is a branch of AI that allows models to learn directly from given data and experiences, e.g. instructions
and observations(Mitchell, 1997). This learning process is facilitated through four primary techniques:
supervised, unsupervised, semi-supervised, and reinforcement learning (Jha et al, 2021), each defining
a unique training approach. Interestingly, from the 52 related works found, only one study focused on
reinforcement learning; this will be discussed in Section 3. In short, reinforcement learning comprises
algorithm learning, which is achieved by being given an observation of a particular activity rather than
a label itself. . The ultimate purpose is for the algorithm to use the information from the environment
to raise awareness and minimise the danger or maximise the acquisition (Kaelbling et al, 1996; Gosavi,
2009). Figure 6 summarises the best-proposed ML algorithms in the 52 related works across the SR
stages, elucidating which models excel in each stage. The following subsection provides a brief overview
of these models deployed for SR automation, focusing on their suitability for the different stages.

2.5.1 Supervised Machine Learning Algorithms

This subsection discusses the underpinning of the popular supervised learning classification algorithms
deployed in SR automation, as summarised from the identified papers in Figure 6. Supervised algorithms
are extensively utilised across all stages of SR automation due to their ability to learn from labelled data.
For a detailed explanation of these techniques, readers are referred to the study by (Sarker, 2021).

• Support Vector Machine (SVM): is extensively utilised across various stages of the SR, as illus-
trated in Figure 6. This algorithm identifies an optimal hyperplane that segregates input data points
by their class (e.g. relevant or irrelevant as in the case of automating the screening stage or classifying
the input as having a high-risk or low-risk bias) within an N-dimensional space (Cortes and Vapnik,
1995) by employing a range of mathematical functions known as kernels. These kernels include linear,
sigmoid, Gaussian, polynomial, nonlinear, and radial basis functions (Mahendra and Azizah, 2023).
The linear SVM is predominantly used in LR automation (Joachims, 2006). Additional variations of
SVM, such as the soft-margin polynomial and Evolutionary SVM (EvoSVM), have been proposed in
other studies to enhance performance (Timsina et al, 2015).

• Logistic Regression (LR): remarkably proposed for automating the title/abstract screening stage,
as illustrated in Figure 6., is a probabilistic statistical model that uses a sigmoid function, the algo-
rithm’s core, to make predictions (Cessie and Houwelingen, 1992). Automatically, it performs binary
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Fig. 6: Summary of the common algorithms used in SR automation from related works per each stage;
SVM=Support Vector Machine, KNN=K Nearest Neighbours, LDA= Latent Dirichlet Allocation, RF
= Random Forest, PCA= Principal Component Analysis, LR= Logistic Regression, DT= Decision
Tree, CNN= Convolutional Neural Network, LSTM=Long Short Term Memory, NB= Näıve Bayes,
HMM=Hidden Markov Model

classification and is thus appropriate for text classification tasks, hence explains why it is proposed for
SR screening automation; relevant or irrelevant. However, recent advances have been made to support
multi-class classification(Abramovich et al, 2021). Readers are referred to the work done Iparragirre
et al (2023) for a detailed explanation of the LR model.

• Naive Bayes (NB): notably proposed for automating both the screening stage and the search stage
of the SR process is a probabilistic classifier uses the Bayes theorem seen in Equation 2.2. Various
variants of NB classifiers exist, including Gaussian, Bernoulli, Multinomial, Complement, and Cate-
gorical (Baranwal et al, 2022). Specifically, the Complement NB (cNB) is the type of NB employed in
SR automation to address class imbalance, a significant challenge in training datasets (O’Mara-Eves
et al, 2015)

P (A|B) =
P (B|A)P (A)

P (B)
, where P (B) ̸= 0 (2.2)

• K Nearest Neighbours (KNN): though less common in SR automation, has been proposed for
automating both the screening and the search stage. It makes predictions based on the similarity
between the input data and the desired outcome (Guo et al, 2003).

• Decision Tree (DT) and Random Forest (RF): DT is an algorithm that learns from a training
dataset by emulating the structure of a tree based on conditions and rules (Kotsiantis, 2011). A variant
of DT deployed in SR is Iterative Dichotomiser 3 (ID3), shown as in Figure 6 used to automate the
screening phase of the SR. Though DT is easy to understand, one main challenge is that it is prone
to over-fitting and may be unstable to noisy datasets (Kotsiantis, 2011). RF is an advancement and
ensemble method of the decision tree algorithm that solves the over-fitting issue (Popuri, 2022). In SR
automation, RF is proposed for automating the search and screening stage. Readers are referred to
the work by Popuri (2022) for a detailed explanation of how these models work.
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• Latent Dirichlet Allocation (LDA): is a dimensionality reduction supervised learning approach
which is used to reduce the number of input features present in the training dataset proposed by
(Blei et al, 2003). As illustrated in Figure 6, LDA has been proposed for automating the search stage
in the SR process. This is because LDA supports thematic understanding that enables latent topic
discovery Jelodar et al (2018). As a result, it aids in refining search queries and enhances the relevance
of documents. An application of LDA used in expediting SRs is topic modelling described in Section 3
of this paper.

2.5.2 Unsupervised Machine Learning Algorithms

Here, the most commonly used unsupervised learning techniques in automating SRs are summarised
as identified in related works. The primary categories of these algorithms include clustering and
dimensionality reduction. A summary of the popular unsupervised algorithms follows:

• K-Means Clustering: is one of the most utilised unsupervised models for automating SR, particularly
the screening stage (Figure 6). This method partitions observations into distinct clusters based on
similar behaviours or patterns. As a result, K-means clustering supports organising large sets of SR
datasets, e.g. abstracts, into clusters based on similarities in their text content. This grouping helps
identify patterns or themes common to certain clusters, which can indicate relevance to the research
questions or criteria of the SR. While K-Means is computationally efficient, determining the optimal
number of clusters remains challenging Ahmed et al (2020).

• Principal Component Analysis (PCA): is a dimensionality reduction technique that simplifies the
complexity of high-dimensional data while retaining trends and patterns. It reduces the dataset dimen-
sions by transforming the original variables into a new set of variables, which are linear combinations
of the original variables, known as principal components. The technique is proper for exploratory data
analysis and feature extraction as such, PCA is proposed for automating the search and the screening
stage in the SR process(Paul et al, 2013; Jolliffe, 2014).

2.5.3 Semi-Supervised Machine Learning Algorithms and Active Learning (AL)

Supervised and unsupervised machine learning techniques typically require a significant amount of data
randomly sampled from the underlying population distribution, representing a passive approach to
learning (Thrun, 1995). The challenge lies with the cost (time, resource) involved in getting this large
amount of data, especially labelled data, for supervised ML models, which is the core of SR automation.
In automating SRs, researchers must manually label a substantial dataset for model training, further
burdening the SR process. This challenge has spurred the adoption of Active Learning (AL), a semi-
supervised technique that involves initially labelling only a small subset of data to make predictions on
unseen data. This technique allows humans or oracles within the cycle, thus known as humans in the
loop. Unlike passive learning, where the model learns from a random sample, AL allows it to select the
most beneficial data points for faster learning. These selected data points are then presented to a human
or oracle for labelling, constituting a more targeted and informative sampling approach than random
sampling (August, 2001). This process of selection is referred to as a query. The primary goal of AL
is to minimise the volume of labelled data required to train a model effectively. In contrast to passive
learning, which solely relies on the input data provided, AL actively seeks new information or data to
enhance the model’s predictive capabilities.

Fig 7 illustrates the active learning cycle used in SR automation. There are three principal settings
through which the model, referred to as the learner, queries the human or oracle for additional data
or information: 1) membership query strategy, the earliest form of this approach (Angluin, 1988), 2)
stream-based selective sampling (Cohn et al, 1994), and 3) pool-based sampling (Lewis, 1998), which has
proven particularly effective in text classification (Hoi et al, 2006) and is the most frequently employed
method in SR automation. Pool-based sampling operates under the assumption that a large reservoir
of unlabelled data is available, from which queries are made using an informative measure known as a
query strategy.

The query strategy enables the learner to select the most informative sample or instance from the
unlabelled data or choose which instance to learn from. One example used in computerising SR is
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Fig. 7: Active learning cycle for SR automation

uncertainty sampling (Lewis, 1998). The rationale behind this strategy is to present or select instances
where it has minimal confidence in its expected output or prediction. In so doing, three main probabilistic
approaches were used. The first is the least confidence method, mathematically written as, where is the
instance, is the expected label, and is the probability of y happening if x has transpired, and H(x)
is the uncertainty value. The learner queries are outputs with higher H(x) values. One limitation of
this approach is that it considers only one of the many possible expected probabilities of an instance
to calculate the uncertainty value whilst ignoring the rest. To solve this, the margin of sampling query
strategy is used (Scheffer et al, 2001). It calculates the uncertainty level using the expected label’s highest
and second-highest probability. The formula used for this method is H(x) = P (y1 | x) − P (y2 | x).
The third approach used is entropy sampling (Shannon, 1948). This uncertainty sampling method uses
a summation of an instance’s probability labels instead of finding the uncertainty value using some
selected values. Certainty-based sampling (Miwa et al, 2014) is another query strategy, which is the
inverse of uncertainty sampling. Here, the learner queries the user on data it is most confident about
its expected output. In SR, this type of query is helpful because the goal would be to present relevant
articles for querying, thus minimising the workload. Other types include the query-by-committee and
expected model change, among others. A detailed explanation of how AL works is found in the survey
by (McGreevy and Church, 2020). AL is the most used method in automating the screening phase from
the related works, especially for methods deployed as tools.

2.6 Deep Learning (DL)

DL is a subfield of AI that employs neural networks with multiple layers to address complex problems
that are challenging for traditional ML algorithms, especially beneficial for handling larger datasets.
The simplest form of neural network used in DL is a perceptron, which consists of a single layer com-
ing together to form multiple layers. The following summarises the basic DL model proposed for SR
automation, illustrated in Figure 6. :

10
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• Convolutional Neural Network (CNN): Apart from SVM, CNN is the model proposed to auto-
mate three (data extraction, RoB and search) out of the four SR stages. The general architecture of
a CNN (Lecun et al, 1998) model comprises a convolutional layer with activation functions, a pooling
layer, and a fully connected layer to learn from the training data and make future predictions. In the
search phase, CNNs are proposed to determine the relevance of textual content by recognising patterns
that match the strings or queries. Resulting that CNNs are known for superior pattern recognition
capabilities (Albawi et al, 2017), they are proposed as a learning model to extract specific information
from both structured or semi-structured research studies Marshall et al (2017).

• Recurrent Neural Network (RNN): These are models suitable for sequential data and tasks where
the order of the data points is crucial, such as text processing and time series analysis. However, they
struggle with long sequences due to the vanishing gradient problem, which is mitigated by advanced
architectures like Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Gated
Recurrent Units (GRU) (Cho et al, 2014). In SR automation, LSTM and Bi-LSTM are the two types
of RNNs used to automate SRs, primarily the search stage as depicted in Figure 6.

• Transformers: Introduced by Vaswani et al (2023), transformers use self-attention mechanisms to
weigh the importance of each word in a sequence relative to others, allowing more effective handling
of long-range dependencies in text data. Transformers, primarily BERT (Devlin et al, 2019) and GPT
(Radford et al, 2019), are increasingly used in SR automation for tasks such as text classification and
data extraction (van de Schoot et al, 2021).

2.7 Evaluation and/or Post-Modelling Phases

Table 1 defines the most common metrics for evaluating NLP models built for SR automation. These
metrics are derived from the fundamental concepts of True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). TP refers to the number of relevant articles correctly identified
by the model, while TN represents the number of irrelevant articles correctly identified. Conversely, FP,
a Type I error, refers to the number of irrelevant articles incorrectly predicted as relevant. FN, known
as a Type II error, indicates the number of relevant articles incorrectly predicted as irrelevant. In some
active learning approaches, these concepts are denoted as TPL, TNL, FPL, FNL, where L represents
data labelled by the oracle, and U represents unlabelled data whose labels are inferred by the classifier
for the remaining citations. In Section 3, where all 52 identified papers are summarised w.r.t the various
AI techniques used in the NLP pipeline, metrics such as precision, recall, and f-beta score are frequently
reported across the four SR stages. Another principal metric used in SR automation is Work Saved Over
Sampling (WSS), particularly in the screening stage and sometimes during the search stage. WSS, first
introduced by Cohen et al (2006), measures the reduction in human labour at a given recall level compared
to random sampling. This metric estimates the proportion of irrelevant articles researchers do not have
to manually review because the model has correctly identified them as irrelevant. The calculation of WSS
is mathematically defined in Equation 1, where the most commonly targeted recall (R) levels are 95%
and 100%. A recall of 95% is widely considered satisfactory in SRs as proposed by Cohen et al (2006),
acknowledging that approximately 5% of relevant studies might be missed. Furthermore, Yu et al (2018)
argues that no algorithm can guarantee 100% recall unless all candidate studies are examined, which
supports the rationale for not always targeting a 100% recall level. Nevertheless, some SR automation
studies report achieving WSS at 100% (van de Schoot et al, 2021). Ultimately, the higher the WSS value,
the more effectively the algorithm reduces the workload of human screening. In certain active learning
studies, this metric is analogous to yield.

WSS@R =

(
TN + FN

N

)
− (1 −R) where N = TP + TN + FP + FN (1)

2.8 Techniques to Alleviate Over-Fitting of ML and DL for SR automation

Both ML and DL SR models face two main challenges: over-fitting and under-fitting O’Mara-Eves et al
(2015). By default, most NLP models suffer from overfitting Marshall and Wallace (2019). In this section,
we present some approaches used to curb overfitting for SR automation from related works:
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• Weight regularisation: In SR automation, this approach constrains the model to minimise the loss
function by tuning some hyper-parameters to add weight penalties to the loss function. Examples
deployed in SR automation include Lasso regression (L1) and ridge regression (L2) to regularise LR
(Simon et al, 2019). A combination of both methods proposed for SR automation is the elastic net
regression model (Hans, 2011; Allot et al, 2021).

• Cross Validation: proposed for SR automation works by dividing the training data into folds, where
some data is used for training and others for testing. This helps to compare how different ML and DL
models will work, evaluate their performance on unseen data, and help select the best model for a task
(Cohen et al, 2006; Bekhuis and Demner-Fushman, 2012; Timsina et al, 2015).

• Dropout: This is a regularisation approach by randomly omitting some units during training neural
networks to prevent over-fitting during the training phase. The purpose is to enable the model to study
a sparse representation.

• Use of Ensemble Techniques: This technique proposed for SR automation has proven to obtain
better predictive performance in their models, e.g., the combination of DT and LR to form a Logistic
model tree (LMT) for automating the search phase (Almeida et al, 2016; Marshall et al, 2018)

• Data Balancing Techniques: One major challenge in SR is class imbalance resulting from the
training set having less number of “relevant” data. This involves re-sampling techniques such as over-
sampling and undersampling or using cost-sensitive classifiers such as the use of algorithms like cNB
(Timsina et al, 2015)

2.9 Overview of techniques used in SR for maintaining recall high whilst
increasing precision

In SR, achieving a recall of ≥ 95% is crucial to minimise the omission of relevant articles (i.e., reduc-
ing false negatives, FN) (O’Mara-Eves et al, 2015). However, a precision-recall trade-off exists where
increasing recall decreases precision and vice versa. Consequently, some studies have employed techniques
to enhance precision while maintaining high recall rates. These techniques include feature enrichment,
resampling methods, and query expansion. Table 2 summarises the methods proposed in relevant studies
to maintain recall rates and improve precision.

3 Summary of the NLP methods proposed for SR automation

This section provides a comprehensive summary of how NLP methods, as discussed in Section 2, have
been utilised across the stages of systematic review (SR) in each identified study. The 52 related works
reveal that the most automated phases in SR are the search, screening, and data extraction stages.
Thus, discussion will be centred around the AI methods used in these four stages. To ensure a thorough
discussion of the NLP approaches, the technical stages proposed in each included paper w.r.t the NLP
pipeline, i.e. text pre-processing, feature extraction, and modelling techniques, are outlined. The methods
discussed are summarised in detail in relation to the various stages of the NLP pipeline. While some
related studies have implemented the NLP concepts as either web services or desktop applications, the
focus remains on discussing the underlying AI techniques rather than the specific tools. For a deeper
exploration of SR automation tools and software, readers are directed to the scoping review by Khalil
et al (2022) or the survey conducted by Marshall and Wallace (2019), which comprehensively lists and
describes these automation tools.

3.1 Summary of NLP methods proposed in related works for automating
the search phase

This section highlights the NLP methods proposed in the related studies for automating the search phase.
11 out of the 52 associated works targeting the automation of the search phase reveal that most proposed
NLP automation techniques fall under three major categories: search prioritisation, text classification,
and information retrieval (with and without visualisation). The subsequent subsections delve into these
NLP categories and techniques proposed in related studies across various stages of the NLP pipeline.
Although various algorithms and vectorisation techniques were explored by researchers, this work only
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presents the best-performing methods, except in cases involving ensemble techniques. Tokenisation, as
a fundamental process in NLP, is prevalent across articles in this category, with most employing it on
their training dataset. Table 3 and Table 4 provide a detailed summary of these proposed approaches
for automating the search stage under each category.

3.1.1 Search prioritisation techniques for search automation

Search prioritisation is one of the primal techniques proposed for automating the search phase in the
SR process. It is a semi-supervised text classification approach that re-orders articles in the remaining
unlabelled dataset such that articles eligible for inclusion are ranked higher. Cohen et al (2015), one
of the earliest studies found and solely under this of automation of the search phase, proposed the use
of search prioritisation as a method of ranking citations as being RCT studies with a confidence score
ranging from 0 to 1. Using the Medline RCT filter as a comparator, the researchers proposed using
SVM to train a 5 million dataset retrieved from Medline, , with partially labelled data. Performance
metrics obtained from the AUC, average precision, F1-score, and accuracy highlighted the potential of
the approach over the traditional Medline RCT filter with a precision metric obtained from their pilot
testing spanning from 0.85, AUC ROC was between 0.971 - 0.978 and accuracy of 0.98.

3.1.2 Text classification techniques for search automation

Automating the search phase of the SR process has transitioned from ranking-based search prioritisation
to binary text classification methods. Compared to Cohen et al (2015), Marshall et al (2018) aimed at
training an ensemble model to classify citations as RCT studies. However, instead of a ranking score
as output, the methodology proposed by the latter was binary (whether a study was RCT (1) or not
(0)). Using the Cochrane Highly Sensitive Search Strategy (HSSS), SVM and CNN as a benchmark, the
proposed ensemble method trained with CNN+SVM with PT yielded the best results in terms of AUC
ROC, recall, and precision. In contrast to training a model with RCT data, Simon et al (2019) and
Allot et al (2021) proposed the use of PubMed IDs to classify abstracts as relevant or irrelevant to the
research question aiming to reduce search output obtained from the database. Simon et al (2019), was
the first study found in the automation of the search stage to propose using an ensemble of classifiers to
accommodate the complex nature of the search SR reviews. These classifiers included SVM, maximum
entropy, elastic net model, RF, scaled LDA, Boosting, DT, kNN, and NB classifiers trained with abstracts
to classify PubMed IDs. Selecting the best-performing model was based on the concept of cross-validation.
In the study by Allot et al (2021), which is a comparative study to Simon et al (2019), beyond training
the learning models with PubMed IDs, the use of abstracts, registry numbers, and keywords were added
as a feature enrichment methods. Similarly, variant classifiers such as elastic net and ridge classifiers
were proposed, with the output fed into an LR classifier. Compared to Simon et al (2019), the results
obtained on the public LitCovid dataset (Chen et al, 2020), resulted in an AUC of 0.067, recall of 0.144,
precision of 0.007, and an F1-score of 0.089 higher.

3.1.3 Information extraction methods for SR search automation

In this category, Mergel et al (2015) proposed the use of an iterative VTM method to extract relevant
terms from selected included studies. As such, refining the initial search string to be used in the search
phase.. The proposed method was to be introduced during screening, where, as titles and abstracts are
screened, essential words/terms are extracted using the TF-IDF approach. The TF-IDF terms extracted
with scores are visually displayed using a Heat Map, with higher scores indicating words more likely to
be included as refined search strings. Similarly, in the study conducted by Ros et al (2017), a five-step
iterative method was proposed. For automating the search phase, in the first step, a set of accepted
papers was used as the initial seed to train an ID3 algorithm for generating search strings from terms
in the title, abstract, and keywords. A novelty of the proposed method was using the Scopus database
to automatically download articles, which later became part of the initial training set based on queries
from term extraction.

Likewise, Scells et al (2020) presented a novel approach to automatically explore how to formulate
Boolean queries from an SR protocol. The proposed framework comprised 1) query logic composition,
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a logical hierarchy to extract statements describing the protocol using an English probabilistic context-
free grammar (PFCG) (Klein and Manning, 2003), which was to convert the logics extracted to noun
phrases, 2) extraction of entity and representation as ULMS terms, 3) optional expansion of the entities
represented, 4) mapping of entities to keywords and, 5) and post-processing using techniques like stem-
ming. It was realised that this study is the first to have reported WSS for the search phase. Overall,
the results obtained from evaluation metrics precision, recall, F1 score and WSS indicate the method’s
potential to automate the SR search phase using the SR protocol.

3.1.4 Information retrieval techniques for search automation

Moving to the most used approach for automating the search phase, in this category, , it was noticed that
the two main techniques deployed were: QE and ranking. Another observation noted is the variation in
evaluation metrics across studies, including precision@k (P@k) and mean average precision (MAP), as
depicted in Table 1. Bui et al (2015) presented an unsupervised QE method and ranking approach, with
PubMed QE expansion as the comparator. The researchers proposed adding MeSH terms to PubMed
queries for QE and suggested using an ensemble classifier of NB and SVM for ranking. The proposed
approach achieved comparative results using MAP, NDCG, and P@10. Similarly to Bui et al (2015),
Aklouche et al (2018) proposed using an unsupervised iterative QE and ranking method as an extension
of PubMed’s search engine. The study aimed to present a novel technique of QE by training a Word2Vec
embedding model. Suggesting a 4-stage pipeline, the method included 1) data pre-processing, 2) training
of the model, 3) QE, and 4) ranking of relevant articles from PubMed search. To rank the documents,
Aklouche et al (2018) proposed using Okapi BM25 (Zhang et al, 2009), a probabilistic weighting to find
the most significant articles analogous to TF-IDF. Russell-Rose et al (2019) likewise presented the use of a
meta-search engine which maps the API of some databases, such as Google Scholar, PubMed, and Elastic
Net, to expand queries. The studies aimed to propose a method to serve as an alternative to conventional
“advanced searches.” Here, the researchers suggested the addition of a 2-D canvas where queries can
be manipulated. The study investigated word embedding, Glove, and Word2Vec on Wikipedia, Google
News and PubMed (Chiu et al, 2016) to expand queries. The validation results concluded that word2vec
trained on PubMed data produced the best QE and search string recommendation results. Finally, Soto
et al (2018) also proposed using a semantic search engine that expands queries to identify articles from
the PubMed database as part of its methodology. The NLP processing suggested was named entity
recognition (NER) to extract medical entities. In the study by Soto et al (2018), the entities were
limited to only eight main concepts in search words to be typed by the user (chemicals, species, drugs,
metabolites, diseases, genes, proteins, and anatomical entities).

3.2 Summary of NLP methods proposed in the related works for
automating the screening phase

The 33 related studies aiming to automate the screening phase can be categorised under four main
approaches: screening prioritisation, text classification, active learning (human-in-the-loop) and reinforce-
ment learning. Primarily, most of the proposed methods to be discussed that are deployed as software
(desktop/web) use active learning. In contrast, those not deployed predominantly use text classification,
including state-of-the-art LLMs-based approaches. Throughout the various papers, the most common
evaluation metric that runs through the related works is the WSS. The subsequent subsections delve into
how the various approaches were proposed in related studies across various stages of the NLP pipeline.
A detailed summary and comparison of the related works for studies that proposed screening prioriti-
sation and reinforcement learning is provided in Table 5. Similarly, Table 6 and Table 7 also provide a
comprehensive summary of the various text classification methods proposed as well Table 8 for the active
learning methods.

3.2.1 Screening prioritisation technique for screening automation

Screening prioritisation is a ranking-based method that assigns a confidence score to each citation instead
of a binary label. Most studies in this section deployed topic modelling and clustering methods. Cohen
et al (2009) proposed a novel topic modelling technique known as cross-topic learning, combining topics
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from specific topic training datasets with information from other SR topics to train an SVM.To reduce
classifier bias, more specific topics with fewer non-specific topics were recommended. Results from the
AUC metric demonstrated how cross-topic learning can aid in automating the screening phase. Howard
et al (2016) also suggested using topic modelling to discover citation keywords for training a log-linear
supervised model. Bag of n-grams with TF-IDF, was proposed as a feature extraction method alongside
the use of LDA to facilitate topic modelling. Likewise, the study by Kontonatsios et al (2020) aimed to
project the use of a novel supervised neural-based extraction method compared to the standard feature
extraction methods. The architecture of the proposed deep learning feature extraction had a denoising
autoencoder and a feed-forward network, which was used to train an SVM to rank the unlabelled part
of the dataset using a confidence score. The scores were calculated based on the “soft-margin” distance
of features for a particular citation to the hyperplane of the SVM. Their proposed model indicated a
promising result compared to 5 other baseline models, BoW-LDA, BoW-SVD, BoW-MeSH, BoW-LDA,
BoW-PV, and BoW-SVD-LDA-PV. On the other hand, Gonzalez-Toral et al (2019) also investigated how
using unsupervised clustering of words in citations can reduce and prioritise the words in citations that
may apply to the research question. Different experiments were done using LDA, embedding techniques
such as (Word2Vec, Doc2Vec, FastRead) and PCA with BM25. Experimental results showed that using
PCA for ranking words in citations outperformed all the other experimental models. Similarly, the work
by Weißer et al (2020) introduced an unsupervised method, k-means clustering, for filtering abstracts.
The clustering algorithm trained using a large metadata set comprised of titles, abstracts, keywords,
and authors’ names. The NLP pipeline included tokenisation of documents with stop words removal,
stemming, and TF-IDF vectorisation, with Latent Semantic Analysis (LSA) employed for dimensionality
reduction. Evaluation metrics such as average TF-IDF score per word per cluster, the sum of squared
errors (SSE), and silhouette score (SSC) were computed. Results showed that clustering using titles
yielded promising results compared to abstracts or keywords, suggesting that abstract and keyword text
may be too complex for effective dimensionality reduction. Finally, Cawley et al (2020) suggested a semi-
supervised clustering method to identify relevant studies. This technique utilised a set of “initial seeds”
or relevant studies for training and clustering algorithms to rank clusters on new datasets. Using and
ensemble approach of nonnegative matrix factorisation (NMF) and k-means with cluster sizes of 10, 20,
and 30, the experimental results indicated the prospective of the proposed method for expediting citation
screening. Although screening prioritisation has proven effective in automating abstract screening tasks,
more recent studies is geared toward automating the screening tasks as a binary task, text classification,
rather than a screening prioritisation task.

3.2.2 Text classification techniques for screening automation

In this category, Cohen et al (2006) is one of the earliest studies found. This study introduced having a
recall ≥ 95% in screening classification and calculating WSS@95%. The pre-processing technique involved
the use of stemming and stop words on the most occurring 300 tokens from titles, abstracts, MESH, and
Medline PT in the training dataset. The training utilised a voting perceptron-based approach with a
linear kernel. Results indicated that recall ≥ 0.95 was achievable for the screening task however, reported
a trade-off where an increase in recall resulted in a reduction in WSS@95. Tomassetti et al (2011)
proposed using the Linked Data approach, a method of using an existing technology within the area of
the semantic web to enrich the domain of studies obtained in the search phase with the information to
select relevant studies. This method was later used to train an NB classifier to classify unseen studies as
relevant or irrelevant to the research question. The researchers proposed using BoW after applying pre-
processing techniques like stop words and stemming for feature extraction. They presented the use of the
title, introduction, abstract and conclusion for training based on the studies by Cohen et al (2006), which
suggests that the essential terms in documents appear at the beginning and the end. Similarly,Frunza
et al (2011b) presented the addition of the research question to classify medical citations. Comparing the
addition of the research question to the proposed classifier, NB, with the same classifier built without the
research question, they found that the addition improved the evaluation metrics, precision, and recall.
Likewise, they also projected from their comparative study that combining ULMS terms and BoW for
feature extraction improves results. The investigation by Bekhuis and Demner-Fushman (2012) focused
on examining the impact of different citation portions (title + abstract, full citations i.e., title + abstract

20
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+ metadata, and title + abstract) on automation processes. Additionally, the study explored the influence
of Bag of Words (BoW), bi-grams, and tri-grams on training. It evaluated the effectiveness of kNN, NB,
cNB, and EvoSVM algorithms in screening automation under these variations. Furthermore, the study
delved into the effects of optimisation techniques and cross-validation on model performance. The results
suggested that optimising and cross-validating BoW with full citations (title + abstract + metadata)
or with title + abstract, using either cNB or EvoSVM, yielded the most favourable outcomes in terms
of automation performance. Rúbio and Gulo (2016) also presented bibliometric features as a method
of finding relevant studies instead of training the model with studies obtained during the search. These
include publications metadata linked with an article’s relevance, e.g., the citation number, reference
number, media type, year and type of publication. Like all other tasks, the dataset was passed through a
series of classifiers, such as DT, NB, ID3 and KNN, where ID3 was the best-performing algorithm. Using
their previous study as a benchmark (Gulo et al, 2015), where the researchersproposed using references
for text classification with an NB classifier but not with SR data, their latter experiment concluded that
the combination of references and bibliometric features has the potential to expedite the screening phase.
On the other hand, a comparative study by Timsina et al (2015) was conducted, building upon the work
of Cohen et al (2006). The researchers advocated for ULMS as a feature extraction method from the titles
and abstracts within the training dataset. Five algorithms were compared in the constructed models:
SoftMax SVM, SVM, Perceptron, EvoSVM, and Näıve Bayes. The researchers reported that SoftMax
SVM outperformed the other algorithms across four public datasets. In addressing the research question
concerning enhancing precision while maintaining high recall rates, they explored various re-sampling
techniques such as SMOTE, under-sampling, and a combination of SMOTE + under-sampling. Results
derived from using SMOTE + under-sampling demonstrated the highest scores for F1, precision, recall,
and WSS@95 when employing a 5X2 cross-validation technique.

Similarly, investigations by Almeida et al (2016) delved into the potential of various re-sampling tech-
niques, feature extraction methods, and feature selection techniques to aid in automating the screening
stage. The undersampling technique was proposed to address class imbalance. Regarding feature extrac-
tion, the researchers explored the effectiveness of using BoW alongside either MeSH terms or keywords in
conjunction with the title and abstract to enhance evaluation metrics. Moreover, different methods were
evaluated for dimensionality reduction and feature selection, including Information Gain (IG), Inverse
Document Frequency (IDF), and odds ratio techniques. Among the classifiers considered (Logistic Model
Tree (LMT), SVM, NB), the results highlighted that employing BoW + MeSH with the LMT classifier
using IDF demonstrated potential in automating the screening stage based on precision, F1, F2, and
recall metrics. Additionally, Bannach-Brown et al (2019) proposed the utilisation of tri-grams with TF-
IDF for their approach. The dataset utilised was curated by the authors. The proposed method employed
SVM with Stochastic Gradient Descent (SGD) to automate the screening phase. Similarly, Olorisade
et al (2019) aimed to demonstrate the potential of feature enrichment in improving citation screening.
The researchers investigated the impact of adding references/bibliography to each citation on evaluation
metrics. The study used 19 public datasets, comprising 15 clinical reviews and four software engineer-
ing datasets, to create two data sets: one with reference data and one without. Regarding the learning
model, different configurations of SVM (BoW with non-linear kernel, word2vec with linear kernel, and
word2vec with non-linear kernel) were explored. This study is the first to report the Matthews Correla-
tion Coefficient (MCC) metric. Experimental results depicted that adding reference data has potential
in the automation of citation screening.

More recently, text classification for abstract screening has shifted towards the use of RNNs and
LLMs. Hasny et al (2023), is one of the newer papers to investigate the use of BERT and its biomedical
variants for title and abstract screening for complex SR datasets. To fine-tune the BERT models for
this classification challenge, the study employs two intricate datasets, encompassing human, animal,
and in-vitro studies. Backtranslation, a data augmentation technique, is used to address issues of class
imbalance. The study compares the performance of BERT models and their variants on both original
and augmented data sets. The findings indicate that BERT models and their variants offer an accessible
and efficient solution for the screening phase of SR. Natukunda and Muchene (2023) also presented
the use of an LDA-based topic model to identify relevant topics from titles and abstracts, and the
establishment of a scoring threshold for determining the relevance of documents for full-text review.
The methodology was retrospectively applied to two systematic review datasets: one on Helminth and
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the other on Wilson disease. The results showed varying degrees of sensitivity and specificity. In the
helminth dataset, the method achieved a sensitivity of 69.83% against a false positive rate of 22.63%. In
the Wilson disease dataset, the sensitivity was 54.02%, with a specificity of 67.03%. Moreno-Garcia et al
(2023) presented the use of traditional machine learning SVM combined with a zero-shot classification
approach. GloVe, FastText and Doc2vec were explored as the feature extraction method combined with
a zero-shot classification threshold output. In summary, the results showed that the combination of the
output of the zero-shot method as input to the SVM model showed promising results. Orel et al (2023)
also introduced LiteRev, a tool that collects relevant metadata, including abstracts or full texts. It then
processes this text data and transforms it into a TF-IDF matrix. Employing dimensionality reduction
and clustering techniques, LiteRev uses a k-NN algorithm to suggest potentially relevant papers. Out of
613 papers suggested for screening (31.5% of the total corpus), LiteRev correctly identified 64 relevant
papers (73.6% recall rate) compared to the manual abstract screening. For full-text screening, LiteRev
had a recall rate of 87.5%, accurately identifying 42 relevant papers out of 48 found manually. This
resulted in a total work-saving oversampling of 56%. The study demonstrates LiteRev’s effectiveness as an
automation tool. Finally,Ofori-Boateng et al (2023), presented the use of LSTM and Bi-LSTM, coupled
with GloVe for vectorisation, in streamlining the abstract screening stage. Additionally, to address the
precision-recall trade-off—a common challenge in classification tasks—the study incorporates attention
mechanisms into these classifiers. This enhancement is aimed at boosting precision while maintaining
a recall rate of at least 95%. The experimental results demonstrate that the Bi-LSTM model with the
added attention mechanism shows promising potential in accelerating the citation screening process.

In summary, although these text classification methods have shown great potential in automating
abstract screening, they are fully automated and, as such, do not allow humans-in-the-loop or user input.
The next subsection discusses how the concept of active learning(humans-in-the-loop), is deployed in
most existing AI screening automation software (deployed as a web/desktop) from the related works.

3.2.3 Active learning (AL) techniques for screening automation

As stated in Section 2.5.3, AL allows humans in the loop. However, a significant challenge faced by many
AL models identified in this review and reiterated in the study conducted by (Marshall and Wallace,
2019) is the absence of a precise threshold for human intervention in screening processes. The calculation
of WSS often assumes that users possess prior knowledge of when optimal recall levels are achieved,
a situation rarely encountered in real-world scenarios (Przyby la et al, 2018). Notably, only two studies
in this review attempted to tackle this challenge. An SR AL screening review conducted by Yu et al
(2018) identified three state-of-the-art methods (Wallace et al, 2010; Miwa et al, 2014; Cormack and
Grossman, 2014), serving as foundational frameworks for other AL screening methods. These methods
primarily address four key areas crucial for AL implementation: 1) when the classifier starts training, 2)
which studies to query next, 3) whether to stop training or continue and 4) how to balance the training
data. For 1), i.e., when to start training, two main suggestions that are proposed are “patient” (P)
and “hasty” (H). In P, the algorithm keeps random sampling until a specified number or an adequate
number of the “relevant” studies are obtained or retrieved from the dataset. In H, the reverse of P, the
classifier begins training as soon as one “relevant” study is found. Compared to P, H is of tremendous
advantage since it causes the algorithm to learn faster, thus saving time to make predictions on the
remaining articles (Cormack and Grossman, 2014; van de Schoot et al, 2021). Similarly, 2) has two
leading suggestions already described in Section 2.5.3. These are U for “uncertainty sampling”, and C
for “certainty sampling”. In 3), the two main suggestions proposed for SR automation are whether the
algorithm should continue training (T) or stop training (S). In T, the algorithm never stops training, but
when the query strategy used is U, the algorithm only switches to C after the classifier attains stability.
On the other hand, in S, the algorithm stops training immediately after the classifier achieves stability.
This stability is reached based on a specified number of “relevant studies” that the classifier can find
from the training data. Finally, in 4), these papers propose four primary suggestions for data balancing;
no balancing (N), aggressive under-sampling (A), weighting (W) before and after the algorithm reaches
stability, and M for “mixing of W and A”. Where the balancing is M, W is first applied before the
classifier attains stability, and A is used after. The AL techniques summarised in related studies are
detailed based on these state-of-the-art methods in Table 9.
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Table 9: Summary of AL techniques in related works used in SR automation where P = Patient, H = Hasty,
S = Stop training, T = Continue training, A = Aggressive sampling, N= No balancing, W = Weighting, M
= Mixed

Active Learning
Studies

When to Start
Training

Which Document
to Query Next

Whether to Stop
Training (or not)

How to Balance
the Training Data

(Wallace et al, 2010) P U S A
(Cormack and Grossman, 2014) H C T N
(Miwa et al, 2014) P C T W
(Hashimoto et al, 2016) N/A C N/A W

(Ouzzani et al, 2016) Not explicitly stated
Not stated explicitly
but uses five- star
score rating

S N/A

(Cheng et al, 2018) P C T M
(Przyby la et al, 2018) P U T Not stated
(Yu et al, 2018) H U T M
(Howard et al, 2020) P C S N/A
(van de Schoot et al, 2021) H U T M
(Chai et al, 2021) P C N/A N/A

The study by Wallace et al (2010) is noted as an early advocate of AL for screening automation, where
the PUSA was introduced alongside an SVM classifier. The SVM model utilised manual annotations
for classification (relevant, borderline, or irrelevant) to rank remaining citations asynchronously. Fea-
ture extraction involved N-Gram with TF-IDF for titles, abstracts, and MeSH terms enriched by UMLS
terminology. Results indicated AL’s potential in screening automation, especially with UMLS enrich-
ment, reducing human effort while maintaining screening efficacy(Gates et al, 2018). Similarly, Cormack
and Grossman (2014) advocated for the HCTN approach, favouring quicker initiation of training over
patient strategies. It is one of the initial studies to show the potential of using “Hasty” generalisation
instead of “Patient” when the algorithm should start training. Miwa et al (2014) contributed an AL
method employing PCTW, combining L2-regularised SVM and logistic regression. The work emphasised
certainty sampling’s advantages over uncertainty sampling and introduced evaluation metrics like yield,
burden, coverage, and utility for AL models. Hashimoto et al (2016) proposed paragraph vectors for
topic detection in AL, contrasting with traditional LDA. This method’s context awareness enhanced the
grouping of similar words, improving WSS@95 and reducing the workload. Also, Ouzzani et al (2016)
focused on N-gram features and MeSH terms with an SVM classifier, employing a five-star rating system
for query strategy.

Cheng et al (2018) introduced the PCTM method for training an SVM with SDG, suggesting the
commencement of training after identifying 100 “relevant” studies, which may be limiting for studies
with fewer inclusions. Also, Przyby la et al (2018) recommended the PUT method for screening, focusing
on automated keyword extraction from titles and abstracts to train SVM models. Feature enrichment
included utilising the GENIA tagger for lemma and POS tracking and adopting the C-value to improve
keyword identification. The study’s novelty was real-time evaluation during an ongoing review, showcas-
ing potential workload reduction from 7% to 71% based on WSS@95 metrics across 22 citation collections.
Likewise, Yu et al (2018) also suggested the usage of HUTM for screening citations from the title and
abstract. Like all other studies, basic pre-processing techniques were deployed. The main aim of the
studies was to compare the three state-of-the-art screening AL methods and how different combina-
tions from these suggestions could outperform the original techniques. Thus, their result found that the
HUTM method outperforms the three state-of-the-art methods. Howard et al (2020) contributed to the
PCS approach, introducing a recall-based stopping criterion using the negative binomial distribution to
determine the safe threshold for halting screening, ensuring a recall rate of 95%. This study is the first
to propose a method to handle the “safe” threshold faced by AL SR methods. Their method showed
promising results with an average WSS@95 of 35% across 26 heterogeneous datasets.

van de Schoot et al (2021) also proposed using HUTM like Yu et al (2018) for screening. The study’s
novelty is that it allows a wide range of classifiers to be implemented, allowing it to accommodate
the varying complexity of SR projects, thus having higher flexibility. The classifiers proposed by the
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researchers are SVM, NB, the default algorithm, LSTM, LR, and RF. Interestingly, this study is the
only one we found in this review that uses transformer models for feature extraction, Sentence BERT,
from the titles and abstracts. Their study also showed the use of multi-feature extraction techniques
that the oracle could select TF–IDF Embedding-IDF, Doc2Vec with the default TF-IDF and BoW.
van de Schoot et al (2021) is the first study we found to have reported WSS@100 compared to the most
used WSS@95. In evaluating their approach on four SR datasets created by the authors, the WSS@100
obtained was within 38.2% - 92.6% and WSS@95 was also within 67-92%. Chai et al (2021) introduced the
use of PC, although the specifics of data balancing and stopping criteria for training were not explicitly
detailed. Similar to Howard et al (2020), one of the study’s objectives was to establish a “safe stopping”
threshold for the oracle. For feature extraction, Doc2Vec was proposed by the researchers for titles and
abstracts. The proposed algorithm engages users by presenting articles in batches of fifty, then used
as input for AL algorithms to re-rank subsequent batches of fifty articles. The rationale for this batch
size stemmed from preliminary experiments indicating that immediate algorithm retraining after user
labelling led to accelerated re-ranking, potentially causing relevant articles to be pushed down in the
ranking order and overlooked. Sensitivity analyses were conducted across nine SR datasets to determine
the optimal screening threshold. A five-step interval approach was used to assess the capture rate of final
relevant articles at different intervals (5%, 10%, 15%, 20%, and so forth). For example, in a sensitivity
analysis of the ”Low back pain - lifting” dataset with 2249 references, where only 13 were deemed
relevant, the algorithm identified nine relevant studies after screening 5% of the papers, with similar
trends observed at subsequent intervals. This analysis indicated that the percentage of relevant articles
screened ranged from 5% to 35%, with an average of 12.8%, suggesting a viable screening threshold of
50%. These findings were supported by WSS@100 results, implying that researchers could confidently
halt screening after approximately 40 rounds of citations, assuming a researcher is dealing with an SR
study involving 4000 citations. Across nine SR projects, WSS@95 results ranged from 6% to 46%, while
WSS@100 showed a 28% to 44% improvement over other AL methods like van de Schoot et al (2021).
These studies collectively demonstrate evolving strategies in AL for screening automation, emphasising
nuanced approaches in training initiation, query strategies, evaluation metrics, and feature enrichment
to optimise screening efficacy while minimising human effort. With the rise in alignment methods such as
reinforcement learning, the next subsection discusses a related work found that proposes this approach.

3.2.4 Reinforcement learning technique for screening automation

In this review, the study by Ros et al (2017) is the first and only paper found that proposes the use
of reinforcement learning for screening automation. The study contrasted the outcomes achieved using
RL paired with LR classifiers against the more commonly employed active learning (AL) approach with
SVM classifiers. The results obtained from their investigation indicated that employing RL alongside LR
classifiers led to a notable reduction in human effort during screening processes, demonstrating promis-
ing outcomes. Moving further, Felizardo et al (2012) contributed to the field by proposing the utilisation
of a Visual Topic Model (VTM) for citation screening. They advocated for the adoption of innovative
visualisation techniques, including the document map, citation network, and edge bundles, to stream-
line screening processes. The document map, functioning as a 2-D visual representation, aids reviewers
in comprehending the content and identifying similarities among primary studies under consideration.
Through clustering methodologies, documents sharing commonalities in titles, abstracts, and keywords
are grouped together, enhancing efficiency in analysis. The edge bundle technique, depicted as a hierar-
chical tree, visually portrays nodes (representing primary studies) and node links (depicting citations),
providing insights into the relationships within the literature. Furthermore, the citation network intro-
duced by Felizardo et al (2012) serves to elucidate the intricate relationships between primary studies
and their cited references. Their evaluation framework proposed assessing performance metrics, such
as time spent identifying relevant studies, and effectiveness metrics, gauging the alignment of included
or excluded studies with expert opinions in SRs These methodological innovations underscore ongoing
efforts to enhance the efficacy, accuracy, and interpretability of screening processes in research reviews.

27



1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512

T
a
b
le

1
0

:
S

u
m

m
ar

y
of

D
at

a
E

x
tr

a
ct

io
n

a
n

d
R

o
B

in
re

la
te

d
st

u
d

ie
s

p
ro

p
o
se

d
fo

r
a
u

to
m

a
ti

n
g

th
e

sc
re

en
in

g
st

a
g
e

P
r
o
p
o
se

d
N
L
P

T
a
sk

R
e
fe
r
e
n
c
e

P
r
e
-

p
r
o
c
e
ss
in

g
F
e
a
tu

r
e

E
x
tr
a
c
-

ti
o
n

T
r
a
in

in
g

p
a
r
t

T
r
a
in

in
g

T
e
c
h
-

n
iq
u
e

L
e
a
r
n
in

g
M

o
d
e
l

P
u
b
li
c

c
o
d
e

D
a
ta

se
t

E
v
a
lu

a
ti
o
n

M
e
tr
ic
s

D
e
p
lo
y
e
d
/

N
a
m

e

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(K
ir

it
ch

en
k
o

et
a
l,

2
0
1
0
)

S
en

te
n

ce
-

sp
li

tt
in

g
S

to
p

-w
o
rd

s
N

-G
ra

m

A
b

st
ra

ct
s

M
et

h
o
d

o
lo

g
y

R
es

u
lt

s
se

ct
io

n
-

fr
o
m

H
T

M
L

ta
g
sS

em
i-

su
p

er
v
is

ed

R
eg

u
la

r-
E

x
p

re
ss

io
n

S
V

M
N

o
P

ri
v
a
te

P
re

ci
si

o
n

R
ec

a
ll

Y
es

E
x
a
C

T

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(M
a
rs

h
a
ll

et
a
l,

2
0
1
6
)

T
o
k
en

is
a
ti

o
n

S
to

p
-w

o
rd

s
B

o
W

F
u

ll
-t

ex
ts

S
em

i-
su

p
er

v
is

ed
S

V
M

N
o

P
ri

v
a
te

P
re

ci
si

o
n

R
ec

a
ll

F
1

N
o

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(B
u

i
et

a
l,

2
0
1
6
)

T
o
k
en

is
a
ti

o
n

S
to

p
-w

o
rd

s
B

o
W

F
u

ll
te

x
t

o
f

p
d

fs
N

o
t

st
a
te

d

S
V

M
w

it
h

B
o
W

+
C

o
n
te

x
t+

S
em

a
n
ti

c)
R

eg
u

la
r-

m
a
tc

h
in

g

N
o

P
ri

v
a
te

R
ec

a
ll

P
re

ci
si

o
n

F
1

sc
o
re

N
o

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(M
a
rs

h
a
ll

et
a
l,

2
0
1
6
)(

R
o
B

)
(M

a
r-

sh
a
ll

et
a
l,

2
0
1
7
)(

D
a
ta

E
x
tr

a
c-

ti
o
n

)

S
to

p
w

o
rd

s
T

o
k
en

is
a
ti

o
n

N
-g

ra
m

s
F

u
ll

te
x
t

o
f

p
d

fs
S

em
i-

su
p

er
v
is

ed

C
N

N
+

S
V

M
P

C
A

R
eg

u
la

r-
ex

p
re

ss
io

n

Y
es

P
ri

v
a
te

N
o
t

ex
p

li
ci

tl
y

st
a
te

d

Y
es

R
o
b

o
t-

R
ev

ie
w

er

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(N
o
rm

a
n

et
a
l,

2
0
1
9
)

T
o
k
en

is
a
ti

o
n

S
to

p
-w

o
rd

s

N
-g

ra
m

s
B

E
R

T
-

to
k
en

iz
er

A
b

st
ra

ct
s

o
f

R
C

T
S

em
i-

su
p

er
v
is

ed

B
io

B
E

R
T

L
o
g
is

ti
c-

R
eg

re
ss

io
n

N
o

P
ri

v
a
te

P
re

ci
si

o
n

N
o

In
fo

rm
a
ti

o
n

-
E

x
tr

a
ct

io
n

(M
a
rs

h
a
ll

et
a
l,

2
0
2
0
)

T
o
k
en

is
a
ti

o
n

N
-g

ra
m

s
R

C
T

a
b

st
ra

ct
s

fr
o
m

P
u

b
M

ed
W

H
O

IC
T

R
P

S
em

i-
su

p
er

v
is

ed

R
u

le
-b

a
se

d
L

o
g
is

ti
c-

R
eg

re
ss

io
n

N
o

P
ri

v
a
te

R
ec

a
ll

P
re

ci
si

o
n

C
-s

ta
ti

st
ic

s

Y
es

T
ra

il
st

re
a
m

er

In
fo

rm
a
ti

o
n

E
x
tr

a
ct

io
n

(S
ch

m
id

t
et

a
l,

2
0
2
0
)

N
o
t

ex
p

li
ci

tl
y

st
a
te

d
B

E
R

T
-

to
k
en

iz
er

A
b

st
ra

ct
s

S
u

p
er

v
is

ed
S

C
iB

E
R

T
m

B
E

R
T

N
o

P
ri

v
a
te

R
ec

a
ll

F
1

P
re

ci
si

o
n

N
o

28



1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566

3.3 Summary of NLP methods proposed in the related studies for
automating the data extraction and RoB phase

Eight related works were found for this category. These associated works are summarised in detail in
Table 10. One of the earliest studies found to automate the data extraction stage is by Kiritchenko et al
(2010). The study’s primary purpose was to extract PICO elements and other pertinent information, such
as DOI, publication date, funding number, and early stopping of trials, from full texts of RCTs. SVM
was proposed to highlight necessary sentences from HTML files with a high probability of containing
targeted information. These sentences were highlighted based on the algorithm’s identification of their
intended information, extracting the best five sentences ranked from high to low, excluding publication
details (DOI, DOP, author name). Additionally, a template based on CONSORT statements (Moher,
2001) was proposed, with regular expressions used to extract wordings from highlighted sentences to fill
the template.

In comparison, Bui et al (2016) proposed a method for extracting data from PDFs instead of HTML
using a nine-stage pipeline. The architecture of their proposed method included 1) text extraction from
PDF documents using the open-source tool PDFBox to break down texts into snippets, and 2) classifica-
tion and filtering of snippets using a multi-pass sieve method to automatically classify the snippets into
five categories: title, body text, abstract, metadata, and semi-structure. Normalisation of snippets, iden-
tification of IMRAD sections, segmenting sentences, and filtering irrelevant sentences were performed.
They proposed using BoW combined with contextual or semantic information to train an SVM for
ranking and prioritisation of sentences. Key phrase extraction using regular expressions, noun phrase
chunking, and post-processing to filter out lengthy extracted phrases as part of the methodology. Results
indicated combining BoW and contextual information for ranking achieved higher recall and precision.
Marshall et al (2016) proposed the use of ML based on the standard Cochrane Risk of Bias (RoB) Tool,
which assesses seven common types of bias in clinical trials. The system was built using distant super-
vision, utilising data from the Cochrane Database of Systematic Reviews (CDSR), a vast repository of
systematic reviews. This data was used to pseudo-annotate a corpus of approximately 2,200 clinical trial
reports in PDF format. Marshall et al (2016, 2017) stand as the only study found in this review to auto-
mate both RoB assessment and the data extraction phase. The study aimed to classify RCT articles as
having a high/unknown or minimal risk of bias and provide supporting text for that prediction. Addi-
tionally, the study aimed to extract PICO elements and general information such as author names and
article titles. The Cochrane RoB tool’s six domains by Higgins et al. (Higgins et al, 2011) were used for
RoB assessment, and distant supervision was employed to obtain labels and rationale for RoB assessment
without manual annotation. Distant supervision automates label acquisition through heuristics like reg-
ular expressions, which link and extract author judgments and PICO elements. The CNN and Softmax
SVM ensemble method was proposed for multi-variant task classification. Additionally, PCA was pre-
sented to aid in visualising PICO embeddings. Similarly, Norman et al (2019) also explored automating
data extraction for diagnostic test accuracy (DTA) using distant supervision, comparing its effective-
ness with direct supervision. They created a dataset of about 90,000 sentences, with experts manually
annotating 1,000 sentences. BioBERT and logistic regression models were tested for ranking sentences,
showing distant supervision’s effectiveness comparable to or exceeding direct supervision. Marshall et al
(2020) proposed Trailstreamer, combining ML and rule-based methods to find and categorise new RCT
reports automatically. The system extracts trial PICO elements, maps them to Medical Subject Head-
ings (MeSH) terms, predicts the risk of bias, and extracts critical findings. Finally, Schmidt et al (2020)
explored BERT variants for PICO extraction in English and multilingual contexts. They treated data
extraction as question-answering and sentence classification tasks, achieving high F1 scores across mod-
els and domains and addressing ambiguity in PICO sentence prediction tasks through diverse training
datasets.

Overall, these studies showcase the evolving landscape of automated data extraction techniques,
leveraging machine learning, distant supervision, and advanced LLMs to enhance the speed, accuracy,
and scalability of data extraction and RoB assessment in SR.
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4 Systematic literature review survey

4.1 Overview

As discussed in Section 3, the automation of stages in the SR process has been targeted by numerous
studies. However, it is still unclear which stage in the review process is considered the most burdensome
from the perspective of SR reviewers, as existing studies are based on estimations derived from related
works. For example, the RoB stage was proposed to be burdensome for reviewers in the SR process by
Marshall et al (2016), as it was estimated that an average of 20 minutes is required for a sole study
that successfully passes the screening stage to be critically evaluated (RoB). Similarly, an average of 30
- 90 seconds was estimated by Howard et al (2020) for a skilled systematic reviewer to screen a single
abstract. Additionally, Przyby la et al (2018) estimated that an average of 80 - 125 hours is required
for screening 5,000 publications retrieved from searching, among other estimations. Thus, in the next
section, results from an online survey are presented that aim to bridge this gap identified by presenting
which stage in the review process SR researchers and practitioners think future AI automation will help,
rather than from a point of estimation. Similar methods were followed, and some questions were recruited
from the SR survey by Scott et al (2021), which focused on understanding automation tools. However,
the aim of our survey is not to understand these tools but to gather the opinions of systematic reviewers.
This enables us to identify which stages they find challenging and gather their suggestions on which SR
stage AI methods can benefit the most. Additionally, the survey aimed to understand how abreast these
reviewers were with AI, targeting their knowledge of automation tools and which stages reviewers apply
these SR automation tools. The survey also intended to capture the challenges faced while using the
tools and gather general feedback on whether automation tools have been of great benefit to them in
the review process. The following subsections discuss the methods and procedures that were followed.

4.2 Study design

The survey was implemented on the JISC platform and comprised 10 main questions provided in
Appendix A. The questions asked could be grouped into five main sections. Knowing the location and
affiliation of participants was the first aspect. The second aspect was knowing the type of review per-
formed by participants and how long they have been doing it. The third was to assess the level of ease
or difficulty associated with the different stages involved in the SR. The fourth was to capture the par-
ticipant’s knowledge of AI through automation tools. Finally, the fifth aspect captured the participants’
recommendations for any future AI automation for SR. The estimated time to complete the survey was
5-10 min.

4.3 Participants and distribution

Participation in the survey was entirely voluntary. Researchers who have performed or were performing
SRs and were at least 18 years old were targeted by the survey. The team of SR reviewers in the School
of Nursing, Midwifery and Paramedic Practice and the School of Health Sciences at Robert Gordon
University and The Rowett Institute, University of Aberdeen, were involved in distributing the survey to
their networks, such as the Joanna Briggs Institute (JBI), Cochrane Collaboration, etc. The survey was
opened on 23rd April 2022, and responses inputted before 1st June 2022 were analysed. Nonetheless, the
survey 7 is still open to systematic reviewers who want to share their opinions.

4.4 Result and discussion

The survey results are presented in two formats: a bar chart and statistics. The results for all five aspects
of the survey are in Additional File 1 as a bar chart, and statistical values are in Additional File 2.

4.4.1 First and second aspect: Geographic location and type(s) of SRs conducted

In all, 60 responses were obtained from institutions across the globe. The geographical distribution of
the participants is indicated in Figure 8. From the responses, it was noticed that 10 (16.7%) of the

7https://robertgordonuniversity.onlinesurveys.ac.uk/automating-systematic-literature-review-with-artificial-in
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respondents had performed over 10 systematic reviews (SRs) over the past five years, 4 (6.7%) had
conducted 7-10 reviews, while 22 (36.7%) had participated in 4-6 SRs and 24 (40%) had been involved
in 1-3 SRs over the past years. Likewise, it was also noticed that the type of SR review most commonly
performed by the respondents was systematic reviews, with 50 (83.3%) conducting SRs, scoping reviews
being the second highest at 28 (46.7%), and meta-analyses the third highest at 26 (43.3%).

Summarising the first and second aspects of this survey, the result gave a general impression that
most of the participants were indeed involved in SRs. Thus, on average, had performed at least 3- 6 SRs
over the past 5 years, which was beneficial to the overall results to be obtained from the survey.

Fig. 8: Results of demographical visualisation of survey respondents

4.4.2 Third aspect: Rating of stages as respondents perform SR

The results obtained for this section focused on knowing the level/difficulty associated with each stage
in the SR process using the Likert scale 8 from 1-5 (1 for “very easy”, 2 – “very easy”, 3 – “neutral”, 4 –
“difficult”, 5 – “very difficult”. The results are summarised in Appendix B and the statistical summary in
Additional File 2. For the development of the protocol, it was observed that, on average, most respondents
find this stage neutral. For the search phase, 22 (36.7%) of the respondents rated this stage as difficult,
while 6 (10%) rated this stage as extremely difficult. Both 15 (25%) rated this stage as neutral and easy;
thus, the level of ease is likewise neutral but more complex, with a mean value of 3.25. For the title and
abstract screening, 31 (51.7%) of the respondents rated this stage as easy, while 13 (21.7%) rated this
stage as complex. The mean rank was 2.57, indicating that most respondents consider this stage easy. For
data extraction and synthesis, 35 (59.3%) rated this stage as complex, and 3 (5.1%) also rated this stage
as extremely difficult. Thus, the mean ranking was 3.56. Likewise, the mean rank for the RoB was 3.67.
In conclusion, most respondents rated the RoB stage as the most challenging stage they encountered
during the SR process, followed by the data extraction stage, with the screening stage. as the easiest.
The next subsection sheds more light on why respondents may have given these ratings.

4.4.3 Fourth aspect: Respondent’s knowledge of AI through automation tools

The results from this section are fully recapitulated in Figures B3, B4 and B5 . Concerning the results
from this aspect, 33 (55%) of the 60 respondents were familiar with automation tools and utilised them to
expedite one or more stages in the SR process. Of those who had not used any automation tool, 27 (45%)
of the respondents were aware of automation tools. However, factors such as cost prevented 7 (58.3%) out
of the 13 respondents from using such tools. Others, 4 (33.3%), also stated that the lack of availability
in their institution prevented them from using such tools. Additionally, one respondent was comfortable

8https://en.wikipedia.org/wiki/Likert scale
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with the traditional SR method, and others claimed they were pleased to work with spreadsheets. On the
other hand, 14 (51.9%) out of the 27 respondents were unfamiliar with AI automation tools. However,
rating their willingness on a scale of 1-10 to accept and use AI, 13 (95.8%) rated above 5, indicating their
willingness to use AI tools. Of the 33 respondents who used any AI automation software, 21 (63.6%)
mostly used the Covidence tool. The results from the initial question on where in the SR stage the
respondents deployed these tools showed that the most used stage was the title and abstract screening,
22 (66.7%), followed by the data extraction, 14 (48.5%); with the search and interpretation of literature
as the most miniature stage where the respondents applied these tools, 5 (15.2%). It can be inferred that
most respondents probably stated that the title and abstract screening is the easiest stage in (b) because
most automation has been developed in that area. It was also realised that most of the 33 respondents
learned how to use these tools personally, 14 (42.4%), while others also learned it from conferences,
workshops, etc. Overall, 16 (48.5%) of the respondents reported that using automation in SR saves a lot of
time, while 15 (45.5%) also stated it saves some time. Additionally, 22 of the 33 respondents encountered
no challenges while using the tool. However, 7 out of the 11 suggested that using AI automation for
SR was a challenge because some tools required technical knowledge. The conclusion drawn from these
results is that automation is indeed a significant benefit in SR automation.

To summarise these results, it can be inferred that most systematic reviewers do have a fair idea
of existing available AI automation software. A trend in the tools being used, as seen in Figure B4, is
human-in-the-loop. This implies that most reviewers prefer tools that allow them to be a part of the
process rather than to be fully automated.

4.4.4 Fifth aspect: Participant’s recommendations for future AI automation
techniques for SR

Results in this section captured participants’ thoughts on which stage is suggested would chiefly benefit
from AI automation (Q: Based on your experience as a systematic reviewer, which particular stage in the
SR process do you think would be of the most benefit using an automation method or tool?). As seen in
Figure 9, 18 (30%) of the 60 respondents indicated that the title and abstract screening would benefit
most from using AI. Although most respondents rated this stage as easy, they still recommend it as the
most beneficial stage. This confirms that the screening phase is the most time-consuming stage in the
process (Booth et al, 2016; Przyby la et al, 2018). Although there are existing methods, exploring this
stage is still necessary for reviewers. Additionally, 15% of the respondents suggested that the search phase
would be the second most beneficial stage if automated. Both results from the survey in this aspect and
the rate of ease/difficulty suggest that the search is another difficulty in SR that needs much exploration.
The third proposed stage to benefit from AI automation is the data extraction stage, 13 (21.7%). In
Table B1, further comments on future suggestions for AI automation from respondents are indicated.

Based on the results for this aspect, it can be concluded that the title and abstract screening phase
is the stage in the SR process reviewers find laborious, followed by the search/information retrieval and
the data extraction phase. Hence, these results can inform and direct future AI automation methods
rather than from estimations.

5 Systematic Review Dataset Repositories and Code

This section highlights some readily available datasets and repositories used for building and testing
these SR automation methods in SE and medicine, which will be a starting point for future research.
Almost all the dataset falls within the abstract and title screening domain, whilst few are in the other
stages. Below is a list of these datasets:

1. ASReview Repository is a compilation of some title and abstract datasets within the medicine and
SE discipline readily available on Github9. Table 11 shows a summary of these datasets within this
repository. Four of the 26 available datasets are related to the SE domain, while the rest are related
to healthcare for humans and animals. The size of datasets in the repository varies greatly, from as
few as 310 papers (Antihistamines) to over 10,000 (Anxiety-Related Disorders). Larger datasets may

9https://github.com/asreview/systematic-review-datasets
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Fig. 9: Stage in the SR process proposed by participants where future AI automation would greatly
benefit.

provide more robust training opportunities for machine learning models, while smaller datasets might
not be as effective.
Analysis and comparison of the datasets AsReview Repository: The analysis and comparison
of the datasets in the AsReview Repository reveal a class imbalance issue, as seen in Table 11. Various
methods have been used to solve this issue before the algorithms are trained with data; however,
further exploration of other class imbalance techniques is needed. In Table 12, where a comparison
table is presented, the results of WSS@95 reported for experiments run on Table 11 are compiled
with respect to three categories of methods proposed for the screening stage (text classification,
screening prioritisation, and active learning). All proposed methods, text classification, screening
prioritisation, and active learning, substantially gave positive results for WSS. It was noticed that the
best-performing method across most of the datasets in Table 12 was the text classification approach,
followed by screening prioritisation. An inference that can be drawn is that most text classification
approaches, such as the study done by Timsina et al (2015), aimed at improving precision while
maintaining a high recall, indeed helped increase the WSS@95 value. Nonetheless, no comparative
analysis has been done on these similar datasets with LLMs, which is a future direction for future AI
automation methods. Although no other comparative studies were found aside from Yu et al (2018) on
the four SE data, the values of the WSS@95 were high. An exciting deduction that can be made from
the study’s aim stated in Section 3.2.3 was to find a faster AL technique compared to all the state-
of-the-art approaches. The results showed that might indeed be valid. A future study could look at
their proposed AL method on these health datasets instead of the SE dataset to explore its potential
to reduce human burden.

2. The TREC Track Repository10 comprises of benchmark datasets used for information retrieval
tasks. In SR, the TREC Precision Medicine (PM) dataset is the used data for training learning
models for automating the search stage. The PM TREC used for automating the SR search is the
2018. Soto et al (2018) partitioned into 2017 and 2018 datasets11 containing 50 queries each. The
TREC (PM) dataset is a collection of data and queries used in the TREC Precision Medicine track.
It typically consists of queries that are clinically motivated questions, resembling the information
needs of physicians. It also consists of a large set of documents that the search algorithms use to find
relevant information. These documents can include scientific articles, clinical trial reports, and other
related medical texts. Additionally, it consists of relevance judgments that are used to evaluate the
performance of search systems which assess how well the documents retrieved by a search query meet
the information need expressed in that query.

10https://trec.nist.gov/data.html
11https://trec.nist.gov/pubs/trec27/trec2018.html
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Table 11: Summary of existing public title and abstracts screening dataset

Dataset ID Topic
Total number
of papers

Number
included

Imbalance Ratio (IR)

Appenzeller-Herzog 2020 Wilson disease 3453 29 1: 118.07
Bannach-Brown 2019 Animal Model of Depression 1993 280 1: 6.12
Bos 2018 Dementia 5746 11 1: 521.36
Cohen 2006 ACEInhibitors ACEInhibitors 2544 41 1: 61.05
Cohen 2006 ADHD ADHD 851 20 1: 41.55
Cohen 2006 Antihistamines Antihistamines 310 16 1: 18.38
Cohen 2006 AtypicalAntipsychotics Atypical Antipsychotics 1120 146 1: 6.67
Cohen 2006 BetaBlockers Beta Blockers 2072 42 1: 48.33
Cohen 2006 CalciumChannelBlockers Calcium Channel Blockers 1218 100 1: 11.18
Cohen 2006 Estrogens Estrogens 368 80 1: 3.60
Cohen 2006 NSAIDS NSAIDS 393 41 1: 8.59
Cohen 2006 Opiods Opiods 1915 15 1: 126.67
Cohen 2006 OralHypoglycemics Oral Hypoglycemics 503 136 1: 2.70
Cohen 2006 ProtonPumpInhibitors Proton Pump Inhibitors 1333 51 1: 25.14
Cohen 2006 SkeletalMuscleRelaxants Skeletal Muscle Relaxants 1643 9 1: 181.56
Cohen 2006 Statins Statins 3465 85 1: 39.76
Cohen 2006 Triptans Triptans 671 24 1: 26.96
Cohen 2006 UrinaryIncontinence Urinary Incontinence 327 40 1: 7.18
Hall 2012 Software Fault Prediction 8911 104 1: 84.68
Kitchenham 2010 Software Engineering 1704 45 1: 36.87
Kwok 2020 Virus Metagenomics 2481 120 1: 19.68
Nagtegaal 2019 Nudging 2019 101 1: 19.99
Radjenovic 2013 Software Fault Prediction 6000 48 1: 124.00
Wahono 2015 Software Defect Detection 7002 62 1: 111.94
Wolters 2018 Dementia 5019 19 1: 263.16
van Dis 2020 Anxiety-Related Disorders 10953 73 1: 149.04

3. LitCovid Hub12 is a readily available dataset of up-to-date scientific facts about the COVID-19
pandemic. This dataset is found in LitCovid, a curated literature hub. The dataset is updated daily
as new articles related to COVID-19 are indexed in PubMed. This dataset was used by Simon et al
(2019) to evaluate their proposed algorithms for automating the search stage.

4. EBM-NLP dataset13 developed by Nye et al (2018) is the only readily available dataset with
explicitly recognised PICO elements. This dataset contains approximately 4,993 annotated abstracts
of PICO elements of medical journals outlining clinical trials. Since the annotation of the PICO is
done on the abstract and not in full text, challenges may arise for journals with the PICO elements
in the full text.

All the public codes found in the related studies are summarised in Table 13.

6 Gaps and recommendations

6.1 From Literature review

Putting it all together, from the 52 identified papers targeting the automation of the search, title and
abstract screening, and data extraction, this section highlights the gap found and provides recommen-
dations for the future. To begin, a wide gap was noticed in using large language models (LLMs) for SR
automation. In Table 3, 4, 5, 6, 7, 8, 10 where all the related works are summarised with respect
to the natural language processing (NLP) pipeline, it is clear that only a few studies have explored the
use of LLMs for SR automation primarily for the title and abstract screening and data extraction phase
(Hasny et al, 2023; Norman et al, 2019; Schmidt et al, 2020). Despite the growing prevalence of LLMs,
their application in SR automation remains relatively nascent. These models can potentially redefine key
SR stages such as title and abstract screening, search, data extraction, risk of bias (RoB) assessment, and

12https://www.ncbi.nlm.nih.gov/research/coronavirus/
13https://github.com/bepnye/EBM-NLP
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Table 12: Comparison of proposed methods across the existing public datasets

Dataset ID Task Type Method WSS@95

Cohen 2006 ACEInhibitors

Text classification (Cohen et al, 2006) 0.56
Text classification (Timsina et al, 2015) 0.78
Screening Prioritisation (Howard et al, 2016) 0.80
Text classification (Olorisade et al, 2019) 0.81
Active Learning (Howard et al, 2020) 0.75

Cohen 2006 ADHD

Text classification (Cohen et al, 2006) 0.68
Screening Prioritisation (Howard et al, 2016) 0.79
Text classification (Olorisade et al, 2019) 0.70
Active Learning (Howard et al, 2020) 0.74

Cohen 2006 Antihistamines

Text classification (Cohen et al, 2006) 0.00
Screening Prioritisation (Howard et al, 2016) 0.13
Text classification (Timsina et al, 2015) 0.22
Text classification (Olorisade et al, 2019) 0.01
Active Learning (Howard et al, 2020) 0.07

Cohen 2006 AtypicalAntipsychotics

Text classification (Cohen et al, 2006) 0.14
Screening Prioritisation (Howard et al, 2016) 0.49
Text classification (Olorisade et al, 2019) 0.18
Active Learning (Howard et al, 2020) 0.17

Cohen 2006 BetaBlockers

Text classification (Cohen et al, 2006) 0.28
Screening Prioritisation (Howard et al, 2016) 0.43
Text classification (Olorisade et al, 2019) 0.47
Active Learning (Howard et al, 2020) 0.59

Cohen 2006 CalciumChannelBlockers

Text classification (Cohen et al, 2006) 0.12
Screening Prioritisation (Howard et al, 2016) 0.45
Text classification (Howard et al, 2016) 0.24
Active Learning (Olorisade et al, 2019) 0.56

Cohen 2006 Estrogens

Text classification (Cohen et al, 2006) 0.18
Screening Prioritisation (Howard et al, 2016) 0.47
Text classification (Olorisade et al, 2019) 0.25
Active Learning (Howard et al, 2020) 0.45

Cohen 2006 NSAIDS

Text classification (Cohen et al, 2006)) 0.50
Screening Prioritisation (Howard et al, 2016) 0.73
Text classification (Olorisade et al, 2019) 0.37
Active Learning (Howard et al, 2020) 0.62

Cohen 2006 Opiods

Text classification (Cohen et al, 2006) 0.13
Screening Prioritisation (Howard et al, 2016) 0.83
Text classification (Olorisade et al, 2019) 0.61
Active Learning (Howard et al, 2020) 0.26

Cohen 2006 OralHypoglycemics

Text classification (Cohen et al, 2006) 0.89
Screening Prioritisation (Howard et al, 2016) 0.11
Text classification (Olorisade et al, 2019) 0.04
Active Learning (Howard et al, 2020) 0.09

Cohen 2006 ProtonPumpInhibitors

Text classification (Cohen et al, 2006) 0.28
Screening Prioritisation (Howard et al, 2016) 0.38
Text classification (Olorisade et al, 2019) 0.27
Active Learning (Howard et al, 2020) 0.40

Cohen 2006 SkeletalMuscleRelaxants

Text classification (Cohen et al, 2006) 0.00
Text classification (Timsina et al, 2015) 0.72
Screening Prioritisation (Howard et al, 2016) 0.56
Text classification (Olorisade et al, 2019) 0.01
Active Learning (Howard et al, 2020) 0.29

Cohen 2006 Statins

Text classification (Cohen et al, 2006) 0.25
Screening Prioritisation (Howard et al, 2016) 0.45
Text classification (Olorisade et al, 2019) 0.18
Active Learning (Howard et al, 2020) 0.40

Cohen 2006 Triptans

Text classification (Cohen et al, 2006) 0.34
Screening Prioritisation (Howard et al, 2016) 0.41
Text classification (Olorisade et al, 2019) 0.03
Active Learning (Howard et al, 2016) 0.46

Cohen 2006 UrinaryIncontinence

Text classification (Cohen et al, 2006) 0.26
Screening Prioritisation (Howard et al, 2016) 0.53
Text classification (Olorisade et al, 2019) 0.28
Active Learning (Howard et al, 2020) 0.41

Hall 2012 Active learning (Yu et al, 2018) 0.91
Kitchenham 2010 Active learning (Yu et al, 2018) 0.58
Radjenovic 2013 Active learning (Yu et al, 2018) 0.85
Wahono 2015 Active learning (Yu et al, 2018) 0.8535
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Table 13: Publicly available codes from related studies

Reference
Code availability
(If https is not at the beginning, it implies that it is under github.com)

(Wallace et al, 2010) bwallace/abstrackr-web
(Mergel et al, 2015) gmergel/SLR.qub
(Almeida et al, 2016) TsangLab
(Marshall et al, 2016) ijmarshall/robotreviewer
(Marshall et al, 2018) ijmarshall/robotsearch
(Yu et al, 2018) fastread/src
(Kontonatsios et al, 2020) gkontonatsios/DAE-FF

(van de Schoot et al, 2021)
1. https://zenodo.org/record/6258041#.YkRv-XrMLIW
2. asreview/asreview

(Hasny et al, 2023) 3. /ESA-RadLab/BERTCSRS

even the synthesis of findings by leveraging their deep contextual understanding. Thus, future research
could explore how transformer models can be fine-tuned for these tasks.

Additionally, one general challenge identified across all the stages from the related works is the varying
effectiveness of NLP techniques based on the specificity of the SR topic at hand. In Table 2, an approach
used for handling this is domain knowledge integration, which includes feature enrichment methods
such as the addition of MeSH headings, publication tags, and concatenation of UMLS embeddings with
abstract embeddings, among others. In the other related studies that deployed state-of-the-art LLMs,
variants of BERT pre-trained on medical domain corpora like SciBERT, PubMedBERT, and BioBERT
were used as domain adaptability and knowledge integration. However, reported studies have shown that
these LLMs are unable to capture medical concepts and terms required for biomedical data and treat
these key terms as ordinary tokens (Xie et al, 2022). Additionally, since these LLMs were trained on the
free biomedical corpus, they lack specific structured domain knowledge essential for biomedical domain
tasks (Xie et al, 2022). This opens up an area of exploration on domain integration into LLMs for SR
automation as a stand-alone together with human feedback in active learning methods (human-in-the-
loop).

Discussing the automation of the search phase of SR, a prevalence of proposed methods such as text
classification, information retrieval with and without visualisation (VTM), and information extraction
was observed. For example, Cohen et al (2015) utilised search prioritisation, employing SVM to rank
citations in a large dataset. Although effective in prioritising relevant studies, this technique showed
limitations in processing complex queries. Similarly, Marshall et al (2018) and Allot et al (2021) applied
text classification techniques, integrating CNN and SVM to classify citations. Despite their effectiveness
in narrowing search results, these approaches still grapple with the challenge of accurately handling
diverse and nuanced SR research topics. Future works can explore the use of LLMs for these tasks in
terms of query generation and expansion for SR automation, as they are pre-trained in a broader range
of datasets and thus can handle complex queries and provide more nuanced search results, overcoming
limitations of traditional methods (Alaofi et al, 2023). Furthermore, summarising the main challenges
associated with the text classification technique for the search stage, some identified studies were limited
to automating publication from only PubMed, excluding articles or abstracts not indexed in PubMed and
non-peer-reviewed publications. Other studies also focused on automating searches for only randomised
controlled trials (RCTs). Thus, future works may be to find appropriate methodologies that may be
examined to automate the search phase beyond PubMed or RCTs. Moving on to the abstract and
screening stage, most studies deployed as tools use active learning. Recapitulating the main associated
challenges aside from the use of LLMs and domain knowledge integration, is finding the apt threshold
for a reviewer to stop screening. Only two studies under active learning-related studies have sought to
address this. This, therefore, opens an exploration of further advanced statistical approaches to solve
this issue, providing a user with the threshold at which screening can be stopped.

For data extraction and the RoB phase, the NLP methods are still in a nascent stage. Kiritchenko
et al (2010) and Bui et al. Bui et al (2016) explored SVM for extracting data from texts, highlighting
the potential of NLP in identifying key study elements like PICO. In automating the RoB assessment,
Marshall et al (2016, 2017) utilised an ensemble of CNN and SVM and rule-based methods, indicating
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the feasibility of NLP in this domain. However, this area remains relatively unexplored and ripe for
further development. Thus, the potential of LLMs in this area is immense. By training these models
on datasets and incorporating domain-specific heuristics, LLMs can automate the extraction of complex
data elements like PICO, and assess RoB with greater accuracy. Additionally, it was observed that studies
that focused on automating the data extraction phase treated it as a sentence classification task. A future
recommendation will be to explore this task as a question and answering task as the latter is built for
contextual understanding and response to specific queries and to reduce ambiguity Rogers et al (2023).
Furthermore, as seen in Section 3 and Table 10, few studies have targeted the data extraction stage. Yet,
in Figure B4 and Table B1, it is seen that this is one necessity for SR reviewers in the review process.
As such, future automation studies may need to target this stage. Finally, in automating the RoB, the
two related works focused on RCTs; thus, such automation needs to be extended to non-RCTs. Another
novel area of exploration could be exploring how the human-in-the-loop strategy, active learning, might
help in RoB classification.

Also, one significant observation to be realised across all the related studies is that all focused on
only English datasets except for Schmidt et al (2020); thus, current SR automation studies are skewed
towards English datasets. This opens a novel field of exploring which concepts will best automate either
partially or fully non-English SRs. The result that most of the existing NLP methods in Section ??
proposed for SR automation are predominantly focused on English language datasets overlooks the rich
and diverse body of non-English scientific literature, which is crucial for comprehensive global SRs. Thus,
developing and refining NLP algorithms that cater to multilingual datasets is an imperative frontier.
This includes training models on diverse linguistic datasets and developing language-agnostic models
capable of processing and analysing research in multiple languages effectively. Such advancements would
significantly broaden the scope and inclusivity of SRs, ensuring a more global representation in research
synthesis. Similarly, regarding available datasets for SR automation, there is still the need to develop
more public datasets beyond the screening stage, specifically for the other automation stages such as
data extraction, RoB, and the search phase. To the best of my knowledge, there exists only one publicly
available dataset readily available for PICO data extraction synthesis (EBM-PICO) in English. As such,
there is a need for the development of diverse, publicly available datasets that encompass the full scope of
SR automation. These datasets should include varied SR research topics, multiple languages, and different
types of studies to enhance the robustness and generalisation of future AI SR automation models.

Finally, in the data extraction stage, it was noticed that there is currently no evidence of data
extraction in images that may be present in the articles; hence, this provides a future gap for further
development in future AI automation tools. A significant proportion of valuable data in scientific articles
is often encapsulated in images, graphs, and tables. Current NLP techniques predominantly focus on
text analysis, leaving a gap in extracting and interpreting data presented visually. The development of
NLP methods integrated with image processing algorithms could unlock this untapped data source. This
integration would enable the extraction of quantitative data from graphical representations, the conver-
sion of table data into analysable formats, and even the interpretation of complex images like medical
imaging reports. Such a holistic approach to data extraction would enhance the comprehensiveness and
depth of SRs, especially in fields where visual data plays a pivotal role.

6.2 Conclusion and practical insights from the survey

Overall, the survey sought to provide insights into the current state of AI tool automation usage in SR, the
challenges faced by reviewers, and potential areas for future development and improvement. Integrating
the insights from your survey with the literature review to provides a comprehensive understanding of the
current state and possible areas for improvement in AI methods for systematic review (SR) automation
for the search phase, in Table B1, part of the challenges raised by the SR reviewers, is handling diverse
search queries, which aligns with the literature’s identified limitations. Thus, there is a need for more
advanced AI methods that can handle the complexity and variability of research topics. Though the
abstract screening phase is the most automated phase, the survey results show that this is a major need
for most SR practitioners. Similarly, though techniques for data extraction and risk of bias assessment,
such as those proposed by Kiritchenko et al (2010) and Bui et al (2016), participants find data extraction
still particularly burdensome, indicating an area where current literature falls short. It suggests a need for
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more sophisticated NLP techniques capable of accurately extracting and synthesising data from diverse
sources. This highlights a significant opportunity for developing NLP methods specifically tailored for
RoB assessment. Finally, the survey reveals potential areas for AI Automation development from the
point of view of SR reviewers; the title and abstract screening, followed by the search phase and data
extraction, as potential areas where AI automation will be most beneficial. This feedback can direct
future research and development ensuring that the development of AI tools for SR is aligned with the
actual needs of researchers and practitioners in the field rather than from estimation.

Overall, the role of AI in automating SR indeed possesses numerous advantages.

7 Limitation of this study

While the study presents a comprehensive review of existing AI methods for SR automation, the literature
included primarily provided information on SR health sciences, software engineering domains up until
2023. The findings and recommendations might not be fully applicable to SR in other fields with different
types of data or research methodologies. Additionally, the study does not provide an overview of papers
that deployed ChatGPT as an automation technique as our selection criteria was based on papers with
detailed explanation on its AI methodology. Furthermore, with the rapidly evolving field of AI, the
methods and tools discussed in this study might quickly become outdated as new advancements emerge.
This limitation may affect the long-term applicability of the study’s findings. Finally, the AI methods
and tools discussed primarily focus on English language datasets. This limits applicability to systematic
reviews involving non-English sources or multilingual datasets.

8 Conclusion

In conclusion, this review paper provided a comprehensive overview of the current AI methods, including
NLP, ML, and DL, that are employed to automate various stages of the SR process. Through an extensive
analysis of 52 related works identified from our search, we found that most studies focused on automat-
ing the screening stage, followed by the search, data extraction, and risk of bias (RoB) assessment stages.
To complement the literature review, we conducted an original online survey to gather practical insights
from SR practitioners and researchers regarding their experiences, opinions, and expectations for future
AI-driven SR automation. By synthesising the findings from both the literature review and the survey
results, we identified key gaps and challenges in the current landscape of SR automation using AI tech-
niques. Based on these findings, we discussed potential future directions to bridge the identified gaps, such
as exploring the application of LLMs for various SR stages, integrating domain knowledge into AI mod-
els, developing multilingual datasets and language-agnostic models, and incorporating image processing
techniques for data extraction from visual representations in scientific literature. This review aimed to
provide researchers and practitioners with a foundational understanding of the basic concepts, primary
methodologies, and recent advancements in AI-driven SR automation. By highlighting the current state,
limitations, and prospects, we anticipate that this work will not only aid non-technical researchers in
comprehending the application of AI in SR automation but also guide computer scientists in exploring
novel techniques to invigorate further and advance this field.
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Appendix A Questions used for the survey

Fig. A1: Summary of questions asked during the survey
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Appendix B Some selected results from the survey

Q: Based on your experience, rate the level of ease/difficulty associated with each stage as you perform
a systematic review (or other types of review) of the literature

Fig. B2: Summary of results from respondents on ranking the degree of ease/difficulty associated with
each stage as they perform SRs using the Likert scale.

Fig. B3: Summary of the most used AI automation tools from the SR respondents.15

15The squared tools are those applied to multiple stages in the SR process, while the circled tools are those applied only to the
title and abstract/citation screening stage and use the concept of active learning(human-in-the-loop)
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Fig. B4: Stage in the review process where participants deployed automation tools

Fig. B5: Q: Based on your experience, how much time did the tools speed up the review process?

Table B1: Further suggestions from reviewers for future AI automation techniques

No Suggestions from SR reviewers Stage

1 I think tools need to become more flexible and not just be built around
what are effectively Cochrane standards and inocesses. For example,
it would be helpful for text mining tools to reflect the fact that not
all reviews require a comprehensive/exhaustive search (e.g. by help-
ing prioritise terms?) and for tools designed to support screening to
work with processes other than two independent reviewers screening
100interpretive/configurative reviews most often and this is reflected
in my answer here. It would be really helpful in this particular field
to have more flexible tools that can support processes to free up more
time for interpretive work.

Search and Screening

2 Automation of data extraction and risk of bias would help speed up
the conduct of SRs further.

Data Extraction and RoB

3 Retrieval of paper from all published data Search
4 Need to communicate with health librarians to develop a suitable tool

for searching across varying databases to find relevant literature.
Search

5 The manual extraction of outcomes will always need human input but
might benefit from an initial AI attempt to save extraction time.

Data Extraction

6 Would be great to see a full-text screening and/or data extraction tool. Screening and Data Extraction
7 Screening of title, abstract or full text could be an area to work on. Screening
8 Automated data extraction would be great, but very difficult to imple-

ment well.
Data Extraction

9 An automation tool to develop search strategy specific to databases
when keywords are provided. A tool for searching multiple databases

Search
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