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A B S T R A C T

In this study, the effectiveness of Prosopis cineraria leaves powder in removing chromium from an aqueous 
solution was examined. The test was done in batch mode and the effect of Prosopis cineraria doses (1–5 g/L), 
initial pH (1.5–3.5), initial concentrations of chromium (10–50 mg/L), and contact times (15–75 min) on the 
biosorptioon process was examined. The results of response surface methodology indicated that under the best 
operating conditions with Prosopis cineraria dose of 3.98 g/L, initial chromium concentration of 25.41 mg/L, 
contact time of 59.82 min and pH of 2.02, chromium removal efficiency was selected as a maximum value of 
89.65%. The adsorption aligns with the Langmuir isotherm and pseudo-first-order kinetic models. The maximum 
adsorption capacity for chromium was determined to be 55.55 mg/g, indicating the high efficacy of Prosopis 
cineraria in removing chromium ions. The findings suggest that Prosopis cineraria leaves powder could be a cost 
effective alternative to more expensive heavy metal adsorbents from aqueous solution, but notes more research 
is needed on the efficiency of Prosopis cineraria for industrial wastewater. Future studies should focus on SEM, 
XRD and FTIR analysis to enhance understanding of the adsorption mechanisms and potential applications for 
chromium removal.

1. Introduction

Human activities and industrial processes have led to the release of 
harmful heavy metals like chromium into water bodies, posing a serious 
threat to human health and ecosystems [1]. Chromium, especially in the 
form of hexavalent chromium [Cr(VI)], is highly toxic and can cause cancer. 
High levels of chromium in water can harm aquatic organisms and human 
health [2]. It can accumulate in sediment and water, entering the food chain 
and causing adverse effects on biological systems. Chronic exposure to 
elevated levels of chromium in humans can lead to severe health issues, 
including dermatitis, respiratory problems, and cancer [3]. Effective re-
mediation strategies are crucial to address the environmental and health 
concerns associated with chromium contamination. The World Health Or-
ganization (WHO) has recognized the carcinogenic and toxic effects of 
hexavalent chromium on humans. Recommended maximum levels for total 
chromium in drinking water are 0.05 mg/L [4]. The permitted limits for 
discharge to surface water are 0.1 mg/L in the United States and the Eur-
opean Union [5]. The concentration of chromium in industrial effluent is 
usually in the range of 50–200 mg/L [6,7].

Various techniques have been used to reduce heavy metal toxicity in 
water, including membrane processes, electrochemistry, electrodialysis, 
advanced oxidation and adsorption. However, these methods have 
drawbacks such as time consumption, high energy usage, waste pro-
duction, toxic by-product formation, low water flux, and membrane 
fouling. Among them, adsorption process where absorbent materials 
adhere to a surface using physical forces. The effectiveness of the pro-
cess is influenced by various factors including the textural properties of 
the adsorbent, the pH of the solution, the amount of adsorbent used, 
temperature, and the presence of competing adsorbate in the medium. 
Some of the benefits of adsorption include its simple operational design, 
the ability to desorb the adsorbate, and the potential for reusing the 
adsorbent, which has led to continuous research interest in this tech-
nique within the scientific community [8–10].

Over the past few years, there has been a growing interest in using 
natural adsorbents, especially plant-based materials, as a cost-effective 
and environmentally friendly approach to remove heavy metals from 
water solutions. Prosopis cineraria, which belongs to the Fabaceae fa-
mily, is a small tree that is 3 to 5 m high. An important economical 
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species that grows in arid and semi-arid regions of India, Afghanistan, 
Pakistan, Iran and Saudi Arabia [11,12]. In Iran, Prosopis cineraria trees 
grow in coastal areas of Khuzestan, especially in the cities of Abadan 
and Khorramshahr. Due to its abundance, low cost and safe for human 
health, the leaves of these trees can be used as biosorbents easily. 
Prosopis cineraria has shown potential for water treatment by effectively 
eliminating heavy metal pollutants like chromium, lead, and cadmium 
from water solutions [13–15]. The presence of bioactive compounds 
such as tannins, flavonoids, and alkaloids in powdered leaves of Pro-
sopis cineraria has proven to be promising in adsorbing heavy metals. 
The unique surface properties and chemical composition of Prosopis 
cineraria enable it to effectively absorb heavy metals, especially chro-
mium, through processes like ion exchange, surface complexation, and 
electrostatic interactions. Research has also demonstrated its high ef-
fectiveness in removing lead and cadmium from water sources. These 
findings support the suitability of Prosopis cineraria for water remedia-
tion efforts and environmental sustainability [16].

The traditional and standard approaches for determining the best level 
are extremely time-consuming and involve numerous experiments, making 
them unreliable. Response surface methodology (RSM) utilizes an experi-
mental design that systematically reduces the number of experiments and 
examines multiple R2 evaluations to identify conditions that result in the 
most suitable response within the experimental range. RSM is a valuable 
approach for concurrently assessing the relationship between the impacts of 
various individual parameters. In numerous research studies, response sur-
face methodology is used to optimize heavy metals removal using bioad-
sorptions [17,18]. For instance, Khoshraftar et al. [17] applied RSM to 
heavy metals elimination using dolomite powder. The results of central 
composite design (CCD) showed that the maximum adsorption of heavy 
metals was 60 mg/L and 293 K with a desirability of 0.976. Another study 
confirmed that the efficiency for removal of As, Cd, Co, Cr and Fe with a 
high coefficient of R2 (99%) using Chlorella colonials under RSM was more 
than 95% [19]. Isam et al. found that biosorption onto Gracilaria changii 
using RSM showed the maximum removal percentages of Pb(II) and Cu(II) 
were 96.3% and 44.77%, respectively [20]. Bayuo et al. optimized bio-
sorption of hexavalent chromium using RSM from aqueous media. The re-
sults revealed that the maximum adsorption capacity was achieved 
2.355 mg/g when the contact time, pH, initial Cr(VI) concentration were 
120 min, 8.0, and 50 mg/L [21].

Despite various techniques employed for heavy metal removal, 
there is a need for sustainable and cost-effective approaches. The no-
velty of this research lies in the utilization of Prosopis cineraria, a readily 
available plant material, for chromium remediation. By exploring the 
potential of a readily available, natural adsorbent material, this work 
seeks to offer a sustainable and cost-effective solution for chromium 
remediation from industrial wastewater in the semi-arid region of Iran. 
This study aims to elucidate the adsorption mechanism and kinetics of 
chromium removal onto Prosopis cineraria leaf powder, providing in-
sights into the potential applicability of this natural adsorbent for real- 
world environmental remediation efforts. Moreover, the performance of 
the bioadsorption process in terms of chromium removal was optimized 
using Response Surface Methodology (RSM) and Central Composite 
Design (CCD) to determine the impact of key variables.

2. Materials and methods

2.1. Preparing adsorbent

After collecting Leaves of Prosopis cineraria, the samples were 
transferred to the pilot laboratory of the Faculty of Health. The leaves 
were thoroughly washed with distilled water to eliminate any dust or 
soluble impurities, and then left to dry at room temperature (25–30 °C). 
Subsequently, the leaves were placed in an oven at 105 °C for 6 h, 
crushed using 0.71 mm plate and then sieved. Each experiment was 
conducted twice times. The mean values of the outcomes are discussed 
in this study. Chromium adsorption capacity and efficiency [22]:
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where q is the adsorption capacity (mg/g) of Ci, Co, and Ce, respec-
tively, are initial, final concentration, and equilibrium of chromium 
solution (mL), V is the sample volume in liter and W is the total amount 
of adsorbent (g). C0 and Ct are the initial and final concentrations of the 
pollutants, respectively.

2.2. Preparation of Cr (VI) solutions

The impact of different doses of biosorbent (1, 2, 3, 4, and 5 g/L), 
initial pH (1.5, 2, 2.5, 3, and 3.5), initial concentrations of chromium 
(10, 20, 30, 40, and 50 mg/L), and contact times (15, 30, 45, 60, and 
75 min). To prepare a stock solution of Cr (VI), 2.8287 g of 99.9% po-
tassium dichromate (K2Cr2O7) was dissolved in 1000 mL of water. This 
stock solution was then diluted as needed to create standard solutions 
with concentrations ranging from 10–50 mg/L of Cr (VI). The pH of the 
solution was adjusted using either 0.5 N HNO3 or 0.5 N NaOH solutions, 
as required, and was measured using a pH meter (CONSORT C831 
Belgium).

In each experiment, a 100 mL solution containing a specific initial 
chromium concentration and known amounts of Prosopis cineraria was 
poured into a 500 mL flask containing 0.14 g of potassium dichromate. The 
mass of each adsorbent was calculated based on a volume of 100 cc, which 
is equivalent to 0.1 g per liter. The solution was transferred to a stirrer 
(POLE IDEAL PARS Iran) and set at a speed of 180 rpm for a specified time. 
After stirring, the solutions were filtered using a 0.42 μ-Whatman filter 
paper (UK filter paper size 12.5 cm). The filtrates were collected and ana-
lyzed the concentration of chromium using atomic absorption spectro-
photometer (BRAIC wfx-130 AA Spectrophotometer). The obtained values 
were used to determine the adsorption isotherm and kinetic equation.

2.3. Response surface methodology

Compared to other modeling approaches [23], Response Surface 
Methodology (RSM) and Central Composite Design (CCD) are effective 
statistical techniques for modeling and optimizing the simultaneous 
impacts of important parameters within a four-factor, five-level fra-
mework [24]. These five levels are classified as two axial points, two 
factorial points, and one central point for each variable. In this study, 
these two statistical tools were utilized to model and optimize the ef-
fects of four crucial variables, namely biosorbent (1, 2, 3, 4, and 5 g/L), 
pH (1.5, 2, 2.5, 3, and 3.5), initial concentrations of chromium (10, 20, 
30, 40, and 50 mg/L), and contact times (15, 30, 45, 60, and 75 min), 
on the performance of the biosorptioon Prosopis cineraria in terms of 
chromium removal efficiency. The four variables are coded as presented 
in Table 1, with -α and + α representing the extreme levels for each 
variable.

Factorial designs are limited in their ability to predict curvature or 
critical points in the designed space. Therefore, RSM was employed to 
model the process with fewer experimental runs and a more precise 
analysis of the variables in various formats [25]. The specific number of 
experiments is determined based on the number of variables using the 
following equation:  

E = 2 v + 2 V + P                                                                (3) 

where E is the number of demanded experiments for analysis, V is 
the number of independent variables, and P is the number of replica-
tions at the central point. The empirical model used was a second-order 
polynomial regression, represented by Eq. (4), which helped in ana-
lyzing the interaction between the dependent variable (Y ) and the in-
dependent variables.
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where Y denotes the result (removal efficiency of chromium in per-
centage), j is second-order, i is the linear constant, β0 is a constant 
coefficient, βi is the regression constant, βii is the quadratic coefficient, 
βij is the interaction coefficient and is a random error. Also, xi and xj 

are the coded independent variables. The process of the whole meth-
odology is shown in Fig. 1.

3. Results and discussions

3.1. Statistical analysis and model fitting via central composite design

Following the utilization of the five-level coding system illustrated 
in Table 2, the CCD method was utilized to evaluate the impact of the 
variables on chromium removal through Prosopis cineraria biosorption. 
The replication of central points for each variable was conducted to 
identify model errors and assess the final regression quality. Out of 30 
experimental runs, 24 were designed at factorial and axial points, while 
the remaining runs (#26, #27, #28, #29, and #30) were replicated at 
the central point (3 g/L, 30 mg/L, 45 min, and 2.5). As shown in 
Table 2, Cr removal varied between about 31% and 88%.

3.2. Modeling and data analysis

The second-order polynomial functions were used to fit the pre-
dicted values, with Y representing Cr removal (%). The parameters A, 
B, C, and D correspond to the Prosopis cineraria dose, initial chromium 
concentration, time, pH, respectively, as shown in Eq. (5).  

Y (Cr removal efficiency, %) = 69·71 + 5·99 A + 6·20B +5·72 C 
−8·56D – 4·09AB + 2·56AC– 5·17BC – 1·68BD - 3·25CD - 3·07A2 – 
3·67B2 – 1·14 C2 – 1·47D2                                                        (5) 

To assess the suitability of the model, an analysis of variance 
(ANOVA) was conducted, as shown in Table 3. The statistically sig-
nificant results (p  <  0.0001) for Cr removal in relation to the model's 
terms listed in Table 3. In this context, terms A, B, C, and D had sig-
nificant effects on Cr removal efficiency. According to the result, the 
quadratic equations A2, B2, C2 and D2, as well as the coefficients of AB, 
AC, BC, BD, CD had significant effects on Cr removal efficiency. Rela-
tively high values of R2 and Adj.R2 were equal to 98% and 96%, re-
spectively, which confirms the correlation coefficients of the quadratic 
equation. Relatively high values of R2 indicate the accuracy of the 
quadratic equation for Prosopis cineraria dose, initial chromium con-
centration, time, and pH.

Fig. 2a and b shows the probability of being normal the residues of 
each response and that the experiments are random. A diagram will 
show the normal probability of residuals if the points are on a straight 
line, which shows the normal distribution of residues. The normal 
probability diagram of the residues indicates the degree that the 
chromium removal residues follow the normal distribution. Further-
more, Fig. 2(b) indicates the being randomized the experiments. In 
terms of model accuracy, the points should follow roughly a diagonal 
line, as shown. This confirms the model's suitability for Cr removal 
efficiency.

3.3. Interaction of variables on chromium removal by Prosopis cineraria

The combined effectiveness of key factors, including Prosopis ciner-
aria dose, initial chromium concentration, time, and pH duration on the 
removal of Cr efficiency were assessed, optimized by mathematical 
models RSM and CCD. Fig. 3 shows the interactions of independent 
variables including initial chromium concentration, and Prosopis ciner-
aria adsorbent dose on Cr removal. As shown in Fig. 3(a) the highest 
chromium removal rate (more than 72%) occurred by Prosopis cineraria 
adsorbent at initial concentration of 3500 mg/L and adsorbent dose of 
3.5 g/L. The chromium removal efficiency decreases as the initial 

Table 1 
The coded levels and range of the studied variables. 

Variables Unit Type Coded levels

- α -1 0 + 1 + α

Adsorbent dose g/L A 1 2 3 4 5
Initial chromium concentration mg/L C 10 20 30 40 50
Time min D 15 30 45 60 75
pH - B 1.5 2 2.5 3 3.5

Fig. 1. General methodology of the study. 
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chromium concentration and adsorbent dose decrease. As the adsorbent 
dose was gradually reduced to below 2 g/L, the removal of Cr decreased 
by 50% during treatment time. Devaprasath et al. [26] achieved that Cr 
removal decreased by increasing adsorbent dose, which was in contrast 
with the present study. This phenomenon can be described as that with 
a fixed adsorbent dose, the total available adsorption sites remain 
constant for all the concentrations [27]. Therefore, Cr removal rate has 
demonstrated a significant decrease as the initial chromium con-
centrations increase. However, in another study carried out by Eshraghi 
et al. [28] regarding the elimination of cadmium by Prosopis cineraria, it 

was found that the rate of cadmium removal increased as the adsorbent 
dose increased, aligning with the findings of the current study. Shah-
maleki et al. [29] also obtained comparable findings in their research, 
showing that the rate of lead removal increased with higher doses of the 
adsorbent.

Recent studies on the impact of reaction time on the elimination of 
heavy metal ions shows that the rate of adsorption is typically high 
during the initial phase of adsorption processes [30]. Fig. 3(b) indicates 
that the highest Cr removal efficiency of 85% was achieved by in-
creasing the adsorbent dose to approximately 5 g/L and extending the 

Table 2 
CCD experimental design and the response results for chromium removal using Prosopis cineraria absorption. 

Run Adsorbent dose (g/L) Initial chromium concentration (mg/L) Time (min) pH Response 
Chromium Removal (%)

Predicted Actual

1 2 20 30 2 40.35 42.45
2 4 20 30 2 53.43 54.52
3 2 40 30 2 74.64 75.65
4 4 40 30 2 71.34 72.55
5 2 20 60 2 63.52 64.34
6 4 20 60 2 86.83 88.45
7 2 40 60 2 77.11 78.32
8 4 40 60 2 84.05 85.45
9 2 20 30 3 31.10 31.22
10 2 20 30 3 48.12 47.41
11 4 40 30 3 58.68 57.56
12 2 40 30 3 59.33 60
13 4 20 60 3 41.27 40.56
14 2 20 60 3 68.52 69
15 2 40 60 3 48.16 48.56
16 4 40 60 3 59.05 57.45
17 1 30 45 2.5 45.46 44.54
18 5 30 45 2.5 69.42 68.34
19 3 10 45 2.5 42.64 41.23
20 3 50 45 2.5 67.45 66.87
21 3 30 15 2.5 53.71 52.52
22 3 30 75 2.5 76.59 75.78
23 3 30 45 1.5 80.88 76.65
24 3 30 45 3.5 46.62 48.85
25 3 30 45 2.5 69.71 71.56
26 3 30 45 2.5 69.71 68.79
27 3 30 45 2.5 69.71 64.13
28 3 30 45 2.5 69.71 70.11
29 3 30 45 2.5 69.71 75.13
30 3 30 45 2.5 69.71 68.54

Table 3 
ANOVA results of experiment data for Cr removal using Prosopis cineraria. 

Source of variations Sum of Squares df Mean square F-Value Prob  >  F Remarks

Model 5923.24 14 423.09 54.73 <  0.0001 Highly significant
A- Prosopis cineraria dose 861.00 1 861.00 111.39 <  0.0001 Highly significant
B- initial chromium concentration 923.18 1 923.18 119.43 <  0.0001 Highly significant
C- Time 785.13 1 785.13 101.57 <  0.0001 Highly significant
D- pH 1760.45 1 1760.45 227.75 <  0.0001 Highly significant
AB 267.90 1 267.90 34.66 <  0.0001 Highly significant
AC 104.81 1 104.81 13.56 <  0.0022 significant
AD 15.54 1 15.54 2.01 0.1766
BC 427.97 1 427.97 55.37 <  0.0001 Highly significant
BD 44.92 1 44.92 5.81 0.0292 significant
CD 168.94 1 168.94 21.86 0.0003 significant
A2 256.25 1 256.25 33.41 <  0.0001 Highly significant
B2 368.62 1 368.62 47.69 <  0.0001 Highly significant
C2 35.70 1 35.70 4.62 0.0483 significant
D2 60.97 1 60.97 7.89 0.0132 significant
Residual 115.95 15 7.73
Lack of Fit 49.64 10 4.96 0.37 0.9127
Pure Error 66.31 5 13.26
Cor Total 6039.19 29
PRESS 

381.39
AP 
28.34

Pred.R2 

0.94
Adj.R2 

0.96
R2 

0.98
CV 
4.47

Mean 
62.22

SD 
2.78
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reaction time to 75 min. Study suggests that as the contact time in-
creases, the percentage of removal also increases. This is because the 
active and vacant sites on the adsorbent surface become occupied over 
time, leading to a higher rate of adsorption initially and a decrease in 
adsorption capacity over time. Therefore, the amount of adsorption 
decreases in the later stages. Hence, the minimum and maximum Cr 
removal rates were below 50% in 10 min with 1 g/L of Prosopis cineraria 
dose and 85% in 75 min with 50 g/L of Prosopis cineraria dose, re-
spectively. Based on the two-dimensional graph, the optimal removal 
rate was 75% in 50 min and the adsorbent dose is 4 g/L, and since then, 
no significant increase in the removal rate has been reported. Study 
found that with increasing contact time, the amount and percentage of 
chromium removal increases. The findings revealed that the highest 
amount of Cr removal was 94.36% in 120 min [27].

Fig. 4 shows the interaction diagram of independent variables in-
cluding initial chromium concentration, pH and reaction time on Cr 
removal. Fig. 4(a) shows the interaction between initial chromium 
concentration and reaction time on Cr removal. At this stage, different 
chromium concentrations (10, 20, 30, 40, 50 mg/L) were added to the 
chromium solution at 3 g/L Prosopis cineraria. As can be seen, the 
highest removal of chromium (75%) from aqueous solution was ob-
tained at a time above 60 min and the concentration of Cr range from 
15–35 g/L. By decreasing the concentration of Cr and reducing the re-
action time, the removal efficiency dropped to below 40%. In a water- 
based solution, a force is created with the initial concentration of sor-
bate, which helps to move Cr (VI) ions onto the surface of the adsorbent 
[31]. Therefore, the impact of the initial concentration of Cr (VI) is also 
an important factor. In the same vain, with increasing the initial 
chromium concentration, the removal efficiency has also increased up 
to 75% with Cr concentration of 35 mg/L in 65 min, after which there is 
a decrease in efficiency. This phenomenon can be explained by the fact 
that as the initial concentration of chromium increases, the available 

adsorption sites on the adsorbent surface become occupied, resulting in 
a decrease in removal efficiency [32].

The surface charge of the biosorbent can be altered by the pH, and it 
can also impact the level of ionization and speciation of the heavy metal 
in the solution [33]. At this stage, different chromium concentrations 
(1.5, 2, 2.5, 3, 3.5) were added to the chromium solution at 3 g/L 
Prosopis cineraria. In Fig. 4(b), the highest removal efficiency of Cr using 
Prosopis cineraria was observed at acidic pH and when the initial con-
centration of Cr ranged from 35–50 mg/L. While as the pH increases 
beyond 3, the efficiency of chromium removal gradually decreases to 
below 40%. At acidic pH levels, the H+ ions competed with the chro-
mium ions for the available sites on the surface of Prosopis cineraria. 
This is because the concentration of H+ ions in an aqueous medium was 
reported to be high. As the pH increased, the concentration of H+ ions 
decreased, leading to a decrease in competition for the sites [34]. 
Shahmaleki et al. [29] observed that high removal of lead (90%) 
achieved at pH 6 using nano Prosopis cineraria leaf ash and as pH went 
up from 6 to 10, the removal efficiency decreased. The results of the 
study of Devaprasath et al. [26] also emphasized on increasing the 
removal efficiency of chromium at low pH, especially at pH 2. Contrast 
to these findings, Mangood et al. found that the adsorption of metallic 
ions increases quickly as the pH of the solution rises within the range of 
pH 2 to 5 [35].

Fig. 5 shows the interactions of independent variables including pH 
and reaction time on Cr removal. The impression of time on bio-sorp-
tion of Cr was studied at different times ranging from 15 to 75 min. As 
seen in Fig. 5, by increasing the reaction time and reducing the pH to 
less than 2, resulted in a significant increase in Cr removal efficiency by 
the Prosopis cineraria adsorbent, reaching over 80%. However, when the 
pH exceeded 3, the removal rate reached its lowest value and reaction 
time had no significant impact on it. Sinha et al. [7] showed that Cr 
removal efficiency using Prosopis cineraria adsorbent increased sig-
nificantly by longer reaction time and lower pH levels of the solution.

3.4. Possible mechanisms of Cr(VI) removal by Prosopis cineraria

In order to comprehend the binding of chromium to biomass, it is 
crucial to pinpoint the functional groups that are responsible for the 
binding of chromium. When discussing the mechanism of chromium 
biosorption on biosorbents, it is important to consider various me-
chanisms such as electrostatic forces, ion-exchange, and chemical 
complexation. The study confirmed that the removal rate of hexavalent 
chromium is significantly dependent on pH, decreasing as pH increases. 
In an acidic environment, hexavalent chromium is likely reduced to 
trivalent chromium through direct reduction reactions and adsorption 
of trivalent chromium ions at higher pH values. At very low pH value 
(pH = 1.1), hexavalent chromium is poorly adsorbed due to electro-
static repulsion [36]. Hexavalent chromium undergoes reduction to 
trivalent chromium in the water phase through a direct mechanism 
when it comes into contact with the electron-donor group of bioma-
terials, which have a lower reduction potential than hexavalent chro-
mium. The trivalent chromium ions then either remain dissolved in 
water or form complexes with Cr-bonding groups present on the surface 
of the biosorbent. The absence of detectable Cr (III) content in the fil-
trate (at pH < 3.0) from the experiments suggests that complexation 
may play a role in the elimination of hexavalent chromium [37]. The 
reduction in sorption as pH increases may be attributed to the decrease 
in electrostatic attraction and the competition between the chromium 
anionic species (HCrO4

- and CrO4
2-) and OH- ions in the solution for 

adsorption on the active sites of the sorbent [38]. Recent studies con-
firmed that the highest efficiency in removal was achieved at pH 
1.0–2.0. Adsorption coupled with reduction is considered the real me-
chanism of Cr (VI) removal under acidic conditions. The process of 
indirect reduction is quite complex and involves three main steps. In-
itially, the anionic Cr (VI) attaches to positively charged groups on the 
surface of biomaterials, such as amino groups and carboxyl groups. In 

Fig. 2. (a) Distribution diagram of the normal probability of residues and (b) 
random of experiments in Cr removal by Prosopis cineraria.
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the next step, it is transformed into Cr (III) with the help of neighboring 
electron-donor groups, leading to the release of Cr (III) into the aqueous 
phase. This release occurs due to detachment forces between the posi-
tively charged Cr (III) and positively charged groups on the surface of 
the biomaterials, or due to the formation of complexes of Cr (III) with 
adjacent groups (Fig. 6) [36,39].

3.5. Numerical optimization

After data analysis, optimization, which is one of the main objec-
tives of RSM, was performed to achieve the optimum values of variables 
for maximum removal efficiency from the model. As shown in Table 4, 
the desired goal for chromium removal efficiency was selected as a 
maximum value of 89.65%, and the variables of Prosopis cineraria dose, 
initial chromium concentration, time, and pH were selected to be 
within range. Based on the results obtained by the model, the optimal 
operating conditions are as follows: Prosopis cineraria dose of 3.98 g/L, 
initial chromium concentration of 25.41 mg/L, contact time of 
59.82 min and pH of 2.02.

3.6. Investigation of chromium biosorption on Prosopis cineraria adsorbent

3.6.1. Adsorption kinetic
Estimating the adsorption rate is valuable during the development 

of batch adsorption systems. Understanding the kinetics of pollutant 
absorption is essential for selecting appropriate operating conditions for 
full-scale batch processes [35].

The Pseudo-first-order kinetic model (Eq. (6)) denotes the adsorbent 
capacity and is used when adsorption happens using the diffusion me-
chanism from within the boundary layers.

q q q k tln ( ) ln
2.303eq eq

1= (6) 

where q (mg/g) and qeq are the amount of chromium adsorbed at 
equilibrium and at time t, k1 is the rate constant of the first–order rate 
eq. (1/min). The experimental determination of the adsorption rate 
constant K1 involves plotting ln (qe–qt) versus (t) as shown in Fig. 5(A).

The Pseudo-second-order kinetic model (Eq. (7)) is the dominant 
and controlling mechanism of chemical adsorption in the adsorption 

Fig. 3. Two-dimensional response surface diagram for Cr removal efficiency from aqueous solution by Prosopis cineraria, (a) initial concentration of chromium versus 
adsorbent dose of Prosopis cineraria (b) reaction time versus Prosopis cineraria adsorbent dose.
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Fig. 4. Two-dimensional response surface diagram for chromium removal efficiency from aqueous solution by Prosopis cineraria, (a) initial concentration of chro-
mium versus reaction time (b) initial concentration of chromium versus pH.

Fig. 5. Two-dimensional response surface diagram for chromium removal efficiency from aqueous solution by Prosopis cineraria, pH versus reaction time. 
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process and is based on solid-phase adsorption and describes the 
slowing phase of chemical adsorption [41].

t
q k q q

t1 1
eq eq2
2= +

(7) 

where K2 is the second-order kinetic constant (g/mg.min) and qe is the 
amount adsorbed at equilibrium and at time t. By plotting t/qt versus t, 
the experimental assessment of the adsorption rate constant K2 can be 
determined, and the capacity qe can be measured from the slope of 
Fig. 5(B).

Table 5 presents the estimated kinetic data for Cr. The results in-
dicate that the pseudo-first-order kinetic model is suitable for de-
scribing Cr removal on Prosopis cineraria, as the calculated theoretical 
qe, cal values closely match the investigational qe, exp values, and the 
coefficient of determination (R2) values are 0.9613. As a result, it is 
feasible that the rate-limiting step may involve chemical sorption re-
lated to valency forces during electron allocation or interaction be-
tween the adsorbent and metal ions. Chemisorption typically only oc-
curs with a single layer of molecules on the surface, but it may be 
followed by further layers of physically adsorbed molecules. During 
chemisorption, the adsorbent surface forms a chemical bond, typically 
covalent, with the heavy metals, causing them to position themselves in 
a way that increases their coordination with the surface [42].

As shown in Fig. 7A and B, the R2 value obtained (0.9613) and the 
proximity of q value (equilibrium absorption) obtained through model 
(37.8) with q value obtained from laboratory data (36.3) indicated a 
very high matching of pseudo-first-order kinetic model. In the same 
vein, Garg et al. [43] also achieved similar results that the adsorption of 
malachite green dye by Prosopis cineraria adsorbent follows the pseudo- 
first-order kinetic model. However, in contrast to this study, Naeemi 
et al. [44] found that the biosorption of lead by Chlorella vulgaris ad-
sorbent follows second-order kinetics. Also, the study of biosorption of 
copper, cadmium, zinc and lead by Ulothrix zonata algae from industrial 
wastewaters showed that biosorption of heavy metals follows the 
second-order kinetic equation [45]. In another study, it was observed 

that the second-order kinetic model (R2 =0.9992) is more desirable in 
adsorption of lead ion from aqueous solution by Prosopis juliflora ad-
sorbent than the first-order model [46].

3.6.2. Adsorption isotherm
Two commonly used bio-sorption isotherm models, the Langmuir 

and Freundlich models, were employed to examine the connection 
between adsorption capacity and equilibrium concentration. These 
models are crucial for optimizing the utilization of adsorbates as they 
elucidate the interaction between adsorbates and adsorbents [47].

In the Langmuir isotherm model (Eq. (8)), the layered and homo-
geneous adsorptive material with the same energy on all adsorbent 
surfaces explains that no transfer of adsorptive material occurs at the 
adsorbent surface. On the other hand, it shows the adsorptive material 
on the adsorbent in the Freundlich model (Eq. (9)) based on multilayer 
and heterogeneous adsorption [41].

q q bC q
1 1 1

e m e m
=

×
+

(8) 

where Ce is the concentration of chromium in the equilibrium state, qe is 
the amount of chromium adsorbed at equilibrium state (mg/L), qm is 
the maximum adsorption capacity (mg/g) and b is the constant in 
Langmuir equation (L/mg).

q k
n

Clog log 1 loge f e= + (9) 

where Ce is the concentration of chromium at equilibrium state, qe is the 
amount of chromium adsorbed at equilibrium state (mg/L), and kf (mg/ 
g), and n are the equilibrium constants and depend on the adsorption 
intensity and capacity.

According to Table 6 and Fig. 8, the results showed that there were 
high correlation coefficients for the isotherms. However, the Langmuir 
isotherm model (R2 =0.983) provided a satisfactory match with the 
adsorption data of Cr on Prosopis cineraria adsorbent. This suggests that 
the sorption of Cr onto Prosopis cineraria took place at specific sites on 
the surface of the adsorbent, known as monolayer. Therefore, it can be 
concluded that the chromium adsorption process data by Prosopis ci-
neraria follows the Langmuir model. Gupta and Rastogi showed that 
chromium adsorption with green alga Oedogonium hatei followed 
Langmuir model [48]. Moreover, in the study of Akhtar et al. [49], it 
was observed that the adsorption characteristics of green alga Chlorella 
sorokiniana for removal of chromium ions showed more adaptation of 
biosorption behavior with Langmuir model. The results of this study 
were not consistent with recent literature. For example, investigation of 
nickel adsorption isotherm by oak fruit ash from aqueous solution 
showed that laboratory data were better matched with Freundlich 
isotherm (R2 =0.93) [50]. Maleki et al. [51] found that both Langmuir 
and Freundlich models described the absorption of cadmium and 
copper by modified wheat bran. Sayadi et al. showed that Langmuir 
model for adsorption of chromium, copper and zinc ions by Spirogyra 
algae had the highest correlation coefficients of 0.9983, 0.9924 and 
0.9977, respectively [52].

Fig. 6. Possible mechanism of the Cr(VI) biosorption from aqueous system 
using Prosopis cineraria leaf powder (PCLP). Modified after Singh et al. [40].

Table 4 
Numerical Optimization of Chromium Removal by Prosopis cineraria. 

Optimized Conditions Efficiency of Chromium Removal (%) Standard Error Standard 
Deviation

Desirability (%)

Predicted Actual

Prosopis cineraria Dose (g/L)= 3.98 
Initial concentration of Chromium  
(mg/L)= 25.41 
Time (min)= 59.82 
pH= 2.02

88.47 89.65 1.18 ± 1.05 100
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Table 5 
Calculated constants of pseudo-first-order and pseudo-second-order kinetic models of chromium biosorption on Prosopis cineraria adsorbent. 

Pseudo-first order model Pseudo-second order model

C0 

(mg/L)
qe, exp 
(mg/g)

q1, cal 
(mg/g)

k1 

(1/min)
R2

1 q2, cal 
(mg/g)

k2 

(g/mg.min)
R2

2

25 36.3 37.8 0.027 0.9613 30.4 0.003 0.9279

C0: Initial concentration. qe: The amount of metal absorbed in equilibrium mode. q1: The amount of adsorption metal first and for first degree. q2: The amount of 
adsorption metal grade II. K1: Constant first-rate reaction speed. K2: Constant second-rate reaction speed. R2: Correlation coefficient

Fig. 7. The pseudo-first-order (A) and pseudo-second-order (B) rate kinetics for the adsorption of chromium on Prosopis cineraria adsorbent. 

Table 6 
Calculated Constants of Langmuir and Freundlich isotherm data of chromium biosorption on Prosopis cineraria adsorbent. 

Langmuir isotherm Freundlich isotherm

Chromium qmax KL RL R2 KF n R2

55.556 0.080 0.046 0.983 8.758 2.907 0.916

qmax: Adsorption capacity of single-layer adsorbent. KL: Langmuir absorption constant. RL: Separation coefficient. KF: Freundlich adsorption constant. n: Surface 
heterogeneity coefficient. R2: Correlation coefficient
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3.7. Comparison of Prosopis cineraria adsorbent performance with 
literature

The results reveal that Prosopis cineraria achieved maximum re-
moval efficiency of 88.45% at an initial concentration of 20 mg/L, pH 
of 2, adsorbent concentration of 4 g/L and time of 60 min. Table 7
presents the adsorption capacities of Prosopis cineraria compared to 
those of other biosorbents reported in previous studies. It is evident that 
the maximum adsorption capacity (Qmax) of Prosopis cineraria was 
55.55 mg/g, which was the highest absorption compared to most 
bioabsorbents. The presence of functional groups, high pore volume, 
and specific surface area enhances the adsorption ability of the bio-
sorbents. Furthermore, the comparison indicates that the biosorbent 
performed well for chromium removal, providing higher adsorption 
capacities compared to recent adsorbents such as Rice husk, Arundo 
donax, Fomitopsis pinicola and Bacillus subtilis. The simplicity and low 
production expenses are additional advantages of the biosorbent in this 
study.

4. Conclusions

The Prosopis cineraria leaves has been found to effectively adsorb 
chromium from aqueous solution. The results from the removal ex-
periments indicated that the optimum operational conditions for 
chromium removal of 65.89% within Prosopis cineraria dose of 3.98 g/L, 
initial chromium concentration of 25.41 mg/L, contact time of 
59.82 min and pH of 2.02. The adsorption of chromium by the Prosopis 
cineraria aligns well with the Langmuir isotherm model (R2 =0.983) 
and pseudo-first-order kinetic model (R2 =0.9613). Utilizing the 
Langmuir adsorption isotherm, we determined a maximum monolayer 
adsorption capacity (qmax) of 55.55 for chromium, indicating the effi-
cacy of the Prosopis cineraria surface in adsorbing chromium ions. This 
qmax value suggests a significant affinity for chromium adsorption on 

the Prosopis cineraria surface. The robust qmax value obtained serves as a 
promising indicator of the high capacity of Prosopis cineraria to effi-
ciently adsorb and remove chromium ions from the environment. With 
Prosopis cineraria leaves being cost-effective and easily accessible, this 
research suggests a practical method for removing chromium from 
contaminated water or effluents, offering a potential solution for 
eliminating toxic metals from wastewater. One of the limitations of this 
study was the use of aqueous solution instead of industrial wastewater 
to conduct experiments and also not considering temperature as a main 
variable in chromium absorption. Future studies should focus on ad-
vancing the technical analysis of the adsorption process using Prosopis 
cineraria leaves by conducting SEM analysis to explore surface mor-
phology, examining surface area and pore distribution, and im-
plementing XRD and FTIR analysis to elucidate functional group in-
teractions. These investigations will enhance the understanding of the 
adsorption mechanisms and provide valuable insights into the potential 
applications of Prosopis cineraria for chromium removal in aqueous 
solutions, further contributing to the field of heavy metal remediation 
research.
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Fig. 8. Langmuir (A) and Freundlich (B) isotherm for chromium biosorption on Prosopis cineraria adsorbent. 

Table 7 
Comparison of adsorption capacities of various biosorbents in chromium removal. 

References Optimized conditions Adsorption capacity (mg/g) Adsorbent

[36] pH= 1.1, adsorbent dosage= 20 g/L 45.1 Fomitopsis pinicola
[53] pH 5, contact time= 75 min, temperature= 30 ◦C and biomass dose= 5 g/L 38.4 Rice husk
[54] pH= 2 76.92 Arundo donax
[55] pH= 2, time= 120 min 64.82 walnut shell
[56] pH= 2, initial Cr concentration= 100 mg/L, adsorbent dosage= 2 g/L 14.54 Bacillus subtilis
[57] pH= 2, initial Cr concentration= 10 mg/L, adsorbent dosage= 1 g/L 18.5 Opuntia cladodes
[58] pH= 2, initial Cr concentration= 5 mg/L, adsorbent dosage= 2.5 g/L, time= 24 h 15.6 Tella
[59] pH= 2, initial Cr concentration= 50 mg/L, adsorbent dosage= 10 g/L, time= 1 h 15.17 Rosa canina
Present study pH= 2.02, initial Cr concentration= 25.41 mg/L, adsorbent dosage= 3.98 g/L,  

time= 59.82 min
55.55 Prosopis cineraria
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