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ABSTRACT

Near-infrared long-slit spectroscopy has been used to study the stellar population (SP) of the low luminosity active galactic
nuclei (AGNs) and matched analogues (LLAMA) sample. To perform the SP fits we have employed the X-shooter simple stellar
population models together with the STARLIGHT code. Our main conclusions are: The star formation history of the AGNs is
very complex, presenting many episodes of star formation during their lifetimes. In general, AGN hosts have higher fractions
of intermediate-age SP (light-weighted mean ages, <t > ;| < 4.5 Gyr) when compared with their analogues (<t > | < 8.0 Gyr).
AGNs are more affected by reddening and require significant fractions of featureless continuum and hot dust components. The
ratio between the AGN radiated energy and the gravitational potential energy of the molecular gas (Eraq/Epg) for the AGN is
compared with the <t > ; and a possible anticorrelation is observed. This suggests that the AGN is affecting the star formation
in these galaxies, in the sense that more energetic AGN [log(ERr.a/Epg) 2 3] tend to host nuclear younger SP (<t > | <4 Gyr).
We found that the recent (¢t <2 Gyr) returned (recycled) stellar mass is higher in AGN than in the controls. We also provide
evidence that the mass-loss of stars would be enough to feed the AGN, thus providing observational constraints for models that

predict that AGN feeding is partially due to the recycled gas from dying stars.
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1 INTRODUCTION

From the seminal investigations that spotted the correlation between
the mass of supermassive black holes (SMBHs) with the velocity
dispersion of their host galaxy bulges, it has become accepted that
there should be a connection between the active galactic nuclei
(AGNs) accretion and star formation (SF) processes (e.g. Magorrian
et al. 1998; Ferrarese & Merritt 2000; Gebhardt et al. 2000). Equally
well-established is the coexistence of nuclear SF and AGN activity
within the inner regions of galaxies, which strongly suggests a
symbiotic relationship between the growth of SMBHs, through gas
accretion, and the assembly of galaxies through SF (Heckman &
Best 2014; Madau & Dickinson 2014, for a comprehensively
review).

In the galaxy evolution framework, AGN is an important phase in
the life cycle of a galaxy, during which its central SMBH accretes
material from its vicinity, the circumnuclear environment (a few
hundred pc). The amount of required material to fuel an AGN is
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small' when compared with the amount of material available in the
centers of spiral galaxies. The mechanism responsible for making this
material lose angular momentum and ultimately feed the AGN is not
a consensus (e.g. Silva-Lima et al. 2022), however, when falling into
the deep potential well of an SMBH loses a huge amount of energy.
Part of this energy is released in the form of radiation, winds, and
relativistic jets.

Theoretical investigations and numerical simulations examining
gas inflows in the vicinity of galactic nuclei have shown that they
can give rise to episodes of SF, particularly in the nuclear region (e.g.
Di Matteo, Springel & Hernquist 2005; Hopkins & Hernquist 2010;
Zubovas etal. 2013; Heckman & Best 2014; Zubovas & Bourne 2017;
Mercedes-Feliz et al. 2023; Weinberger et al. 2023). In this context,
one of the most frequently invoked processes for regulating SF is
AGN feedback (e.g. Terrazas et al. 2020, and references therein).
According to some studies, the energy released by the AGN can
heat the gas (or remove it) preventing SF (e.g. Granato et al. 2004;
Fabian 2012; Zubovas et al. 2013; King & Pounds 2015; Zubovas &

To sustain a Seyfert galaxy with a bolometric luminosity of 10% ergs~!,

assuming a characteristic radiative efficiency of accretion of 10 per cent, only
~ 0.2Mg yr~! are required (see Rosario et al. 2018).
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Bourne 2017; Trussler et al. 2020) or, as suggested in other studies,
these outflows and jets, depending on the AGN luminosity, can
compress the galactic interstellar medium, and therefore act as a
catalyser, triggering or boosting the SF (e.g. Rees 1989; Hopkins
2012; Nayakshin & Zubovas 2012; Zubovas et al. 2013; Bieri et al.
2016; Zubovas & Bourne 2017) and even form stars inside the outflow
[e.g. Ishibashi & Fabian 2012; Zubovas et al. 2013; El-Badry et al.
2016; Wang & Loeb 2018, for observational examples, see Maiolino
et al. (2017); Gallagher et al. (2019)].

Mercedes-Feliz et al. (2023), using the cosmological hydrodynam-
ical simulations from the feedback in realistic environment (FIRE),
with a novel implementation of hyper-refined accretion-disc winds
demonstrate that strong quasar winds, persisting for over 20 Myr,
drive the formation of a central gas cavity and significantly reduce
the surface density of SF across the galaxy’s disc. This shows that
the suppression of SF occurs mainly by limiting the availability
of gas for SF rather than by ejecting the pre-existing cold gas
reservoir (preventive feedback dominates over ejective feedback).
These authors also found that locally positive feedback is observed,
in the sense that higher local SF efficiency is detected in compressed
gas at the edge of the cavity produced by the winds from the central
engine. Thus positive and negative feedback are taking place in
different galaxy locations (e.g. Bessiere & Ramos Almeida 2022).

From observations, for instance, we have learned that nuclear SF
is common in AGN (e.g. Terlevich, Diaz & Terlevich 1990; Storchi-
Bergmann et al. 2001; Cid Fernandes et al. 2004; Davies et al. 2007,
2009; Riffel et al. 2007, 2009, 2011b, 2016, 2021b, 2022, 2023b;
Martins et al. 2010; Storchi-Bergmann et al. 2012; Esquej et al.
2014; Ruschel-Dutra et al. 2017; Hennig et al. 2018; Mallmann et al.
2018; Burtscher et al. 2021; Dahmer-Hahn et al. 2022). However,
comparing the AGN life-cycle (~ 0.1-10 Myr; Novak, Ostriker &
Ciotti 2011; Schawinski et al. 2015) with nuclear starbursts ages (~1-
100 Myr; Hickox et al. 2014) is very difficult, since the uncertainties
associated with the latter may be larger than the AGN life-cycle.
Studies have indicated that the proportion of young to intermediate-
age stars in the vicinity of AGN is often correlated with the AGN’s
luminosity. Typically, the most luminous AGN tend to exhibit higher
fractions of these younger stellar populations (Cid Fernandes et al.
2004; Riffel et al. 2007, 2009; Ellison et al. 2016; Bessiere et al. 2017,
Ruschel-Dutra et al. 2017; Zubovas & Bourne 2017; Mallmann et al.
2018; Ellison et al. 2021; Riffel et al. 2021b, 2023b). For instance,
some studies have found that the age of the starburst is connected to
the AGN’s luminosity (Davies et al. 2007; Riffel et al. 2022, 2023b),
while no correlation between X-ray luminosity and the fraction of
young stellar populations was identified in other analysis (Burtscher
etal. 2021). It’s worth noting that the complexity of the results found
in local AGN studies may partly stem from the luminosity acting as
a ‘third parameter’, and the fact that studies on the optical bands may
be strongly affected by reddening effects.

The stellar populations, consisting of stars with varying ages,
metallicities, and formation histories, are the fundamental building
blocks of galaxies. Analysing these stellar ensembles can offer
critical insights into the evolutionary trajectories of galaxies, the
dynamics of SF, and the role of feedback mechanisms in shaping
the galaxies. Thus it is fundamental to investigate if there is an
association between nuclear activity and SF, by studying the stellar
population properties in the inner few tens of parsec of AGN over a
wide range of AGN luminosities and comparing them with inactive
sources with similar host galaxy properties. To disentangle the
underlying continuum of AGN is a difficult task since at least three
main components have to be fitted together, namely: the host galaxy
stellar populations (characterized by their ages and metallicities), the
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AGN accretion disc, and hot dust components (representing the torus
emission, for details see Riffel et al. 2009). The wavelength region
most sensitive to the AGN featureless components (accretion disc
and hot dust emission) and the stellar population at the same time
is the near-infrared (NIR=0.8-2.4 um) where the AGN featureless
continuum (FC), the hot dust (HD), and the stellar population (SP)
components can be fitted together and disentangled (Riffel et al.
2009, 2011b, 2022). Additionally, the NIR also offers the possibility
to fit the stellar population content in the brighter type 1 sources,
which in the optical will have their underlying stellar population
out-shined by the accretion disc emission (e.g. Riffel et al. 2009).

One adequate sample to study the role played by the AGN and star-
formation processes is the complete volume-limited sample of nearby
AGN (selected by their 14-195 keV luminosity) with its control
galaxies called Low Luminosity AGN and Matched Analogues sample
(LLAMA, described in Davies et al. 2015). The stellar populations
in the optical range of the type 2 LLAMA AGN and controls have
been studied by Burtscher et al. (2021) who found that the young
stellar populations are common inside the nuclear region of the AGN.
However, they have shown that these young populations are not
indicative of ongoing SF, but rather than to recent cessation in the
star-formation providing evidence for models that see AGN activity
as a consequence of nuclear SF. Building upon the previous study,
here we study the nuclear stellar populations of the entire (type 1, type
2, and controls) LLAMA sample using NIR spectra, thus offering a
more statistically complete analysis in a spectral region less sensitive
to dust attenuation and sensitive to the three main components of the
AGN spectral energy distribution. This paper is structured as follows:
In Section 2 we present the sample observations and data reduction
process. The fitting procedures are described in Section 3. Results
are presented in Section 4. We discuss possible implications of the
findings in Section 5 and conclusions at Section 6. Along this paper
we have adopted in the calculations the galaxies distances listed by
Davies et al. (2015) and the Kroupa (2001) initial mass function
(IMF).

2 SAMPLE, OBSERVATIONS, AND DATA
REDUCTION

2.1 The LLAMA sample of AGN and control galaxies

The selection of the sample, along with a well-matched control
sample, holds the utmost importance in comprehending the impact
of AGN activity on SE. Our study focuses on the LLAMA sample
(Davies et al. 2015), which consists of 20 AGN meticulously chosen
from the Switft/BAT all-sky ultra-hard X-ray (14-195 keV) survey
in its 58-month edition (Ajello et al. 2012). The use of ultra-hard
X-rays as a selection criterion presents a significant advantage, as
it is mainly unaffected by obscuration, except for the most heavily
obscured sources known as Compton-thick (e.g. LaMassa et al. 2010;
Sales et al. 2011, 2014; Ricci et al. 2015). According to Martini et al.
(2003), the less luminous the AGN are, the more diverse the fuelling
mechanism becomes. To focus on ‘genuine’ AGN, which are more
likely to be fuelled by a unified mechanism, we selected the most
luminous sources (log Lx/(erg/s) > 42.5). Moreover, we further refine
our selection to include only local AGN (z < 0.01), corresponding
to distances of approximately <40 Mpc or less, giving us access to
a scale of up to a few hundred parsecs (<200 pc).

Additionally, the LLAMA sample incorporates a control group of
19 galaxies chosen to match the AGN sample in terms of distance,
Hubble type, stellar mass (measured by H band luminosity), and
axis ratio (inclination). This matched control sample plays a vital
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Table 1. Main properties of our sample and observations.

(1) 2 3) (C)] 5) (6) )] 3 )] (10) (11)
Source RA DEC K z D Morph. Instrument/ Slit Width  Aperture PA.
(h:m:s) (d:m:s) (mag) (Mpc) Telescope (arcsec) (arcsec) (deg)
Sample
NGC 1365 03:33:36.4 —36:08:26.3  6.373 0.00546 18 Sb Tspec/Blanco' 1.1 2.0 0
MCG-05-14-012 05:43:32.9 —27:39:05.0 10.80 0.00992 41 Sot Tspec/SOAR? 1.1 2.0 80
NGC 2110 05:52:11.3 —07:27:22.4  8.140 0.00765 34 SO0~ SpeX/IRTF 0.8 1.5 20
NGC 2992 09:45:42.0 —14:19:349  8.590 0.00771 36 Sa SpeX/IRTF? 0.8 2.0 50
MCG-05-23-016 09:47:40.1 —30:56:55.9  9.349 0.00849 35 S0+ Tspec/SOAR? 1.1 2.0 45
NGC 3081 09:59:29.5 —22:49:347 8910 0.00798 34 SO0/A Tspec/Blanco* 1.1 2.0 90
NGC 3783 11:39:01.7 —37:44:19.0  8.649 0.00973 38 Sab Tspec/SOAR? 1.1 2.0 90
NGC 4235 12:17:09.8 +07:11:29.6  8.396 0.00755 37 Sa GNIRS/GEMINI® 0.3 1.8 113
NGC 4388 12:25:46.8 + 12:39:43.4  8.004 0.00842 39 Sb GNIRS/GEMINI® 0.3 1.8 64
NGC 4593 12:39:39.4 —05:20:39.0  7.985 0.00831 37 Sb Tspec/SOAR? 1.1 2.0 40
NGC 5128 13:25:27.6 —43:01:08.8  3.942 0.00183 3.8 S0° Tspec/SOAR? 1.1 2.0 135
ESO 021-G004 13:32:40.6 —77:50:40.8  8.248 0.00984 39 S0/a Tspec/SOAR? 1.1 2.0 100
MCG-06-30-015 13:35:53.7 —34:17:44.1 9.582 0.00775 27 E Tspec/SOAR? 1.1 2.0 90
NGC 5506 14:13:14.9 —03:12:27.2  8.188 0.00608 27 Sa Tspec/SOAR? 1.1 2.0 90
NGC 5728 14:42:23.9 —17:15:114  8.171 0.00932 39 Sa SpeX/IRTF 0.8 1.5 36
ESO 137-G034 16:35:14.1 —58:04:48.1 8.258 0.00914 35 S0/a Tspec/SOAR? 1.1 2.0 0
NGC 6814 19:42:40.5 —10:19:25.1  7.657 0.00522 23 Sbc SpeX/IRTF’ 0.8 3.7 0
NGC 7172 22:02:01.8 —31:52:11.6  8.317 0.00868 37 Sab Tspec/Blanco' 1.1 2.0 97
NGC 7213 22:09:16.2 —47:10:00.0  7.035 0.00584 25 Sa Tspec/Blanco' 1.1 2.0 113
NGC 7582 23:18:23.6 —42:22:14.0  7.316 0.00525 22 Sab Tspec/Blanco' 1.1 2.0 119
Control sample
NGC 0718 01:53:13.3 +04:11:453 8.739 0.00578 23 Sa Tspec/Blanco' 1.1 2.0 135
NGC 1079 02:43:44.3 —29:00:11.7  8.344 0.00484 19 S0/a Tspec/SOAR? 1.1 2.0 90
NGC 1315 03:23:06.6 —21:22:30.7 9.734 0.00539 21 Sot Tspec/SOAR? 1.1 2.0 90
NGC 1947 05:26:47.6 —63:45:36.0  7.497 0.00367 19 SO0~ Tspec/SOAR? 1.1 2.0 90
ESO 208-G021 07:33:56.2 —50:26:35.0  7.878 0.00362 17 SO0~ Tspec/SOAR? 1.1 2.0 110
NGC 2775 09:10:20.1 +07:02:16.5  7.037 0.00450 21 Sab Tspec/SOAR? 1.1 2.0 90
NGC 3175 10:14:42.1 —28:52:19.4  7.786 0.00363 14 Sa Tspec/SOAR? 1.1 2.0 45
NGC 3351 10:43:57.7 + 11:42:13.0  6.665 0.00260 11 Sb Tspec/SOAR? 1.1 2.0 110
ESO 093-G003 10:59:26.0 —66:19:58.3  8.621 0.00611 22 S0/a Tspec/SOAR? 1.1 2.0 135
NGC 3717 11:31:31.9 —30:18:27.8  7.518 0.00578 24 Sb Tspec/SOAR? 1.1 2.0 90
NGC 3749 11:35:53.2 —37:59:50.3  8.705 0.00901 42 Sa Tspec/SOAR? 1.1 2.0 120
NGC 4224 12:16:33.7 +07:27:43.6  8.609 0.00862 41 Sa Tspec/SOAR? 1.1 2.0 60
NGC 4254 12:18:49.6 + 14:24:59.3  6.929 0.00803 15 Sc Tspec/SOAR? 1.1 2.0 90
NGC 4260 12:19:22.2 + 06:05:55.6  8.538 0.00592 31 Sa Tspec/SOAR? 1.1 2.0 50
NGC 5037 13:14:59.3 —16:35:25.1 8.599 0.00619 35 Sa Tspec/SOAR? 1.1 2.0 45
NGC 5845 15:06:00.7 +01:38:01.7 9.112 0.00555 25 E Tspec/SOAR? 1.1 2.0 135
NGC 5921 15:21:56.5 + 05:04:13.9  8.096 0.00494 21 Sbc Tspec/SOAR? 1.1 2.0 20
IC 4653 17:27:06.9 —60:52:44.1 10.08 0.00640 26 S0/a Tspec/SOAR? 1.1 2.0 131
NGC 7727 23:39:53.8 —12:17:34.8  7.688 0.00599 26 Sa Tspec/Blanco! 1.1 2.0 10

Notes. (1) Galaxy name; (2) Right Ascension; (3) Declination; (4) K band magnitude (Jarrett et al. 2003); (5) Redshift taken from NED (https://ned.ipac.
caltech.edu/); (6) Distance from Davies et al. (2015); (7) Morphology, as compiled by Davies et al. (2015) and converted to De Vaucouleurs (1959) system; (8)
Spectrograph and telescope used; (9) Slit width of the instrument; (10) Aperture integrated for final spectra; (11) Position angle of the slit, in degrees East of

North.

! Obtained under project 2016B-0912; 2 Obtained under project SO2021B-004; 3 Obtained under project 2017A022; * Obtained under project 2016A-0621; 3
Data published by Riffel, Rodriguez-Ardila & Pastoriza (2006); ® Data published by Mason et al. (2015); 7 Data published by Riffel et al. (2019).

role within the LLAMA framework, as it enables us to calibrate
our results against a comparable set of galaxies that solely differ
from the AGN sample in terms of their nuclear accretion rate. We
consider this control sample selection integral to the overall integrity
and robustness of the LLAMA project. The main properties of the
sample are summarized in Table 1. For more details see Burtscher
et al. (2021) and Davies et al. (2015).

2.2 Observations and data reduction

Out of our sample, five AGNs had literature spectra available (taken
from Riffel et al. 2006; Mason et al. 2015; Riffel et al. 2019, see
Table 1 for more details). A detailed discussion of their observations
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and reductions can be found in their respective papers, but they
followed the standard observation and reduction processes for the
NIR (see discussion below for our sample).

The remaining 15 AGNs and 19 controls were observed as part of
this work, employing either the SpeX spectrograph attached to the
Infrared Telescope Facility (IRTF; Rayner et al. 2003), or employing
the Triplespec 4 spectrograph, which was mounted on the Victor M.
Blanco telescope until 2019 (where it was named ARCOoIRIS), or
mounted on the SOAR telescope since then (and where it is named
TripleSpec 4.1). From now on, we refer to Triplespec 4 as Tspec,
regardless of which telescope it was mounted on. During daytime
calibrations, we took flat fields and hollow cathode lamps (CuHeAr),
in order to correct for discrepancies in sensitivity between pixels and
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to wavelength calibrate the target. Galaxies were observed using
either ABBA pattern (i.e. nodding the object along the slit), or
observed in an A-Sky-A pattern, to remove sky emission. Also,
each galaxy observed was preceded or followed by an AQV star with
similar airmass, which was then used to remove telluric absorptions,
as well as to flux calibrate the spectra. Lastly, although we observed
hollow arcs during daytime, the objects were A-calibrated using sky
emission lines, which are more reliable than arcs because they are
taken at the same time as the target.

Both SpeX and Tspec standard data reduction is performed using
the SPEXTOOL IDL package (Vacca, Cushing & Rayner 2003; Cushing,
Vacca & Rayner 2004). This pipeline follows the standard NIR
data reduction process and consists of flat-field correction, sky
subtraction, a combination of observations to improve the signal-
to-noise (S/N) ratio, wavelength calibration, telluric absorptions
correction, merging of the different orders, and flux calibration
employing the same AOV correction.

After the data reduction, we corrected our spectra for galactic
reddening using a Cardelli, Clayton & Mathis (1989, hereafter CCM)
law, and then corrected for redshift (this was done also for the
literature data) and homogenized the spectral resolution of them. An
example of the final reduced spectra for four galaxies, namely: NGC
3081 (AGN), NGC 2992 (AGN), IC 4653 (control galaxy, hereafter
CNT), and NGC 0718 (CNT) are shown in Fig. 1, together with
the identification of the most prominent absorption- and emission-
line features. The remaining sources are shown as supplementary
material. Observing information and some general properties of the
galaxies are shown in Table 1 with a full description of the sample
made in Davies et al. (2015). The main AGN properties are shown
in Table 2.

3 STELLAR POPULATION FITTING

The integrated spectra of galaxies are comprised of various com-
ponents, including for example the underlying stellar, gas, and
dust emission contributions (Bica & Alloin 1987; Schmidt et al.
1991; Riffel et al. 2009, 2011b, 2022; Walcher et al. 2011; Conroy
2013; Gomes & Papaderos 2017, and references therein). In the
case of active galaxies, additional considerations must be given to
components such as the AGN torus and accretion disc (Riffel et al.
2009, 2022; Burtscher et al. 2015). The process of stellar population
fitting involves determining the percentage contribution of these
components to the integrated spectrum.

It is important to note that due to the large number of parameters
involved (such as age, metallicity, kinematics, reddening, and AGN
components), numerous techniques have been employed over the
years to separate the different components of a galaxy’s spectrum (see
Walcher et al. 2011; Conroy 2013, for a review). As a result, various
fitting codes have been developed by different research groups, each
with their own priorities in mind (e.g. Cid Fernandes et al. 2005;
Ocvirk et al. 2006; Tojeiro et al. 2007; Koleva et al. 2009; Sanchez
et al. 2016; Cappellari 2017; Gomes & Papaderos 2017; Wilkinson
etal. 2017; Johnson et al. 2021). Naturally, comparisons among these
different codes have been conducted, demonstrating that, in general,
the codes yield consistent results when applied to the same data with
the same input parameters (e.g. Koleva et al. 2008; Dias et al. 2010;
Goddard et al. 2017; Gomes & Papaderos 2017; Cid Fernandes 2018;
Ge et al. 2018; Woo et al. 2024).

For the purpose of conducting stellar population fitting, we use the
software STARLIGHT (Cid Fernandes et al. 2004, 2005; Asari et al.
2007; Cid Fernandes 2018). We opted for this particular choice pri-
marily to ensure consistency with previous studies conducted by our
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team, enabling easier comparisons of the results. The STARLIGHT code
fits the complete absorption and continuum features in the observed
spectra by combining in different proportions the base-set elements.
It excludes emission lines and spurious data, employing a blend of
computational techniques derived from semi-empirical population
synthesis and evolutionary synthesis models (Cid Fernandes et al.
2004, 2005).

In essence, the code fits an observed spectrum, represented as
0;, using a combination of N, simple stellar populations (SSPs)
in varying proportions. The visual extinction (Ay) is modelled by
STARLIGHT as foreground dust lanes. In the fits we use the CCM
(Cardelli et al. 1989) extinction law. The modelled spectrum, M,, is
obtained through the following equation:

Ny
M, = M,y ij bj i1 ® G(vs, 0,), (D

j=1

where x; is the population vector, b; , is the jth base element (see
below), r, is the reddening factor of the jth component normalized
at Ag, the reddening term is represented by r, = 1070442 =420 A1,
is the synthetic flux at the normalization wavelength (we have used
Anorm = 12 230 A in the rest frame). The convolution operator is ®
and G(v,, o0,) is the Gaussian distribution used to model the line-of-
sight velocity distributions of the stars, which is centred at velocity
v, with dispersion o,. The final fit is carried out through a chi-square
minimization, as follows:

X2 = [0 — Myw, %, )
A

where emission lines and spurious features are excluded from the fit
by fixing w, = 0 at the corresponding wavelengths.

For the base of elements, in this paper, we used as simple
stellar population (SSP) the evolutionary population synthesis (EPS)
models of Verro et al. (2022b). These models have been computed
with the new X-shooter Spectral Library (XSL; Verro et al. 2022a).
The base of elements comprises SSPs with four metallicities (Z
=0.25,0.63, 1, and 1.53 Z) and 25 ages (t = 0.050, 0.063, 0.079,
0.1, 0.126, 0.158, 0.200, 0.251, 0.316, 0.398, 0.501, 0.631, 0.794,
1, 1.259, 1.585, 1.995, 2.512, 3.162, 3.981, 5.012, 6.310, 7.943, 10,
and, 12.589 Gyr). They have been selected to have Kroupa (2001)
IMF and the PARSEC/COLIBRI isochrones (Chen et al. 2015; Pastorelli
et al. 2020), cover younger ages and are on the models safe-range
(see fig. 19 of Verro et al. 2022b).

Additionally, to account for the accretion disc featureless con-
tinuum (FC) we have used a power law of the form F; o« A7%
(e.g. Koski 1978; Cid Fernandes et al. 2005; Riffel et al. 2009).
We employed three different values for o, namely: 0.25, 0.5, and
0.75. To properly account for the hot dust emission component, eight
Planck distributions (black-body, BB), with temperatures ranging
from 700K to 1400 K, in steps of 100 K, were included in the fits.
The lower limit was chosen because lower temperatures are hard to
detect in this spectral range (Riffel et al. 2009) and the upper limit
is very close to the sublimation temperature of the dust grains (e.g.
Barvainis 1987; Granato & Danese 1994). For more details on the
effects of these components in the NIR spectra and on the definition
of our base of elements see Riffel et al. (2009, 2022). The components
used in the fits are shown in Fig. 2.

3.1 Uncertainties on the fits

Statistical analysis plays a crucial role in interpreting spectral fitting
findings, as evident from its widespread application (e.g. Panter

MNRAS 531, 554-574 (2024)
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Figure 1. Final reduced and redshift-corrected spectra for NGC 3081 (AGN), NGC 2992 (AGN), IC 4653 (CNT), and NGC 0718 (CNT). For each galaxy we
show — the redshift and reddening corrected spectra — from top to bottom the, J, H, and K bands, respectively. The flux is in units of 10715 erg em~2 s ! The
shaded grey area represents the uncertainties and the brown area indicates the poor transmission regions between different bands. The remaining spectra are

shown in on-line material.
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Table 2. Main AGN properties.
Source Activity L‘}(bs Li)?‘ MsMBH log Ly log Ny log(L’co) log Liom log Ly,

Type erg s~ erg s ! 10® Mg Lo em™2 K km s~ ! pc? ergs™! ergs~!
H 2 3) €] 5) (6) @) 3 © (10)
ES0021-G004 Sy2 42.56 42.70 52.1 4 38.43 10.53 23.8 8.083 38.68 + 0.46 -
ESO137-G034 Sy2 4271 42.76 215+ 15.83 10.44 24.3 7.820 40.66 £ 0.45 38.81 £ 0.45
MCG-05-14-012 Sy 1.0 42.64 42.65 2.29 + 0.68! 9.60 <219 - 39.21 £ 0.46 -
MCG-05-23-016 Sy 1.9 43.51 43.50 27.1 +8.74! 9.94 22.2 7.445 39.62 + 0.46 38.31 £ 0.45
MCG-06-30-015 Sy 1.2 42.92 4291 7.38 + 1.98! 9.59 20.9 7.109 39.65 + 047 37.62 £ 0.45
NGC1365 Sy 1.8 42.63 42.60 19.7 £5.77! 10.58 22.2 8.782 - 38.12 £ 0.45
NGC2110 Sy2 43.63 43.63 150 + 1103 10.44 23.0 7.603 40.15 £ 0.45 39.11 £ 0.46
NGC2992 Sy 1.8 42.55 42.52 22.8 +6.74! 10.31 21.7 8.472 39.99 + 0.45 39.26 + 0.46
NGC3081 Sy2 43.07 43.29 36.6 +26.93 10.15 23.9 7.749 40.57 £ 0.45 38.73 £ 0.45
NGC3783 Sy 1.2 43.58 43.58 112 +3.61! 10.29 20.5 7.955 40.76 £+ 0.45 38.02 £+ 0.45
NGC4235 Sy 1.2 42.66 42.64 55.8 + 15.9! 10.43 21.3 7.754 39.39 + 045 -
NGC4388 Sy2 43.64 43.70 8.40 + 0.22 10.65 23.5 8.151 - 39.00 + 0.46
NGC4593 Sy 1.0/1.2 43.20 43.20 12.4 +3.91! 10.59 <19.2 8.146 39.70 + 0.45 -
NGC5128 Sy2 43.00 43.02 66.3 + 48.93 10.22 23.1 - - 37.12 £ 0.46
NGC5506 Sy2 43.31 43.30 2441723 10.09 224 7.874 - 38.74 £ 0.45
NGC5728 Sy2 43.23 43.36 23.0 4 2.32 10.56 24.2 8.531 40.50 £+ 0.45 39.04 + 0.46
NGC6814 Sy 1.5 42.76 4275 11.6 &+ 3.67" 10.31 21.0 7.491 39.57 £ 045 37.73 £ 045
NGC7172 Sy2 43.46 43.32 53.4 +39.33 10.43 22.9 8.658 38.60 + 0.45 -
NGC7213 Sy 1 42.50 42.49 6.46 +2.01! 10.62 <204 7.959 39.26 + 0.45 38.47 £0.45
NGC7582 Sy2 42.68 43.29 30.5 +22.43 10.38 24.2 8.917 39.29 + 0.45 38.38 £ 0.45

Note. (1) Source name; (2) Activity type, as compiled by Davies et al. (2015), with the exception of ESO021-G004, whose classification was taken from
Burtscher et al. (2021); (3) Logarithm of the observed hard X-ray luminosity (14—195 keV) from Ricci et al. (2017); (4) Logarithm of the intrinsic hard X-ray
luminosity (14—195 keV) from Ricci et al. (2017); (5) The Black Hole mass, published by Caglar et al. (2020), derived from: 'broad H o emission, 2megamaser
or 3stellar velocity dispersion; (6) Integrated H-band luminosity (given by the 2MASS total magnitude Skrutskie et al. 2006); (7) Neutral absorbing column,
from Ricci et al. (2015), based on modeling 0.3—150 keV spectrum; (8) The CO luminosities, from Rosario et al. (2018); (9) Measured [O 111] luminosity, and

(10) Measured H; luminosity.

et al. 2007). The practice of averaging results serves to diminish
uncertainties (Cid Fernandes et al. 2013). Incorporating statistical
interpretation is also advantageous for generating uncertainty es-
timations, a feature not readily available in STARLIGHT standard
output.

A viable approach to obtain such estimations involves perturbing
the input spectra, considering realistic error prescriptions (Cid
Fernandes et al. 2013). Here we followed Dametto et al. (2014) and
simulated 100 spectra for each galaxy within our sample employing
Monte Carlo approach. The simulated flux for each wavelength (;)
is computed assuming a Gaussian distribution of the uncertainties,
being the mean flux in each A; the measured flux (F;,) value, and the
standard deviation is given by the errors derived in the data reduction
(which include the propagation of uncertainties over all the data
reduction steps).

During its likelihood-guided sampling process of the parameter
space, STARLIGHT offers a single best-fitting set of parameters from
the numerous trials during the fitting process. Nevertheless, it is
important to note that these individual solutions may not always be
mathematically unique. In light of this, we proceeded with stellar
population fitting on all the simulated spectra, aiming to derive an
average value for each galaxy, along with the associated standard
deviation. This approach allows us to gain a more robust and
comprehensive understanding of the results, considering the inherent
uncertainties present in the analysis.

4 RESULTS

4.1 Fitting approach

The results of the stellar population fitting are the fractional con-
tributions, in light and mass (in the case of the stellar ones), of

each one of the base components (the so-called population vector).
They can be separated into stellar population components and AGN
components. An example of the results of the fitting, the population
vectors, binned population vectors (see below), as well as mean ages
and metallicities are shown in Fig. 3, where we show the fits for four
sources, namely NGC 3081, NGC 4235,IC4653,and NGC 0718, two
AGN hosts and two control sources, respectively. For each galaxy,
we show on the upper top panel the observed spectrum (black)
and the synthetic spectrum (red); in the middle panel the ‘pure’
emission-spectrum (difference between the observed and synthetic
spectrum). On the bottom panel: from left to right, SFH summed over
all metallicities in light (x) and mass (u) fractions; SFH considering
different metallicities (they are labelled); binned population vectors
(see below); AGN FC continuum and HD contributions are on the
two last panels. The plots for the remaining spectra are shown in the
supplementary material.

To consider the impact of noise on the data, which can obscure
differences between similar spectral components, as well as the
age-metallicity degeneracy (e.g. Worthey et al. 1994), besides the
approach presented in Section 3.1 we also adopted the approach used
by Cid Fernandes et al. (2005) and used the binned (or condensed)
population vectors? as defined in Riffel et al. (2009, 2022):

xy: sum of the percent contribution of SSPs with ages 50 <t
< 100 Myr. This vector is representative of the younger (ionizing)
population.’

2By binning the data, we obtain coarser but more reliable fractions for
each bin, thereby accounting for uncertainties arising from noise effects and
spectral similarities.

3Note however that it is limited by the younger age available in the XSL
models.
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Figure 2. The base of elements comprises SSPs with four metallicities (Z
= 0.25, 0.63, 1, and 1.53 Zy) and 25 ages (r = 0.050, 0.063, 0.079, 0.1,
0.126,0.158,0.200, 0.251, 0.316, 0.398, 0.501, 0.631, 0.794, 1, 1.259, 1.585,
1.995, 2.512, 3.162, 3.981, 5.012, 6.310, 7.943, 10, and, 12.589 Gyr). The
accretion disc (FC) is described as a power law of the form F; oc A7% (we
used ¢ = 0.25, 0.5, and 0.75). Hot dust emission component are described as
eight Planck distributions (black-body, BB), with temperature ranging from
700K to 1400 K, in steps of 100 K. For display purposes on the bottom plot
we zoom in the SSPs. The identification of the components are on the labels.
For details see the text.

xiy: sum of the percent contribution of SSPs with ages in the
range 100 Myr <t < 700 Myr. This represents the peak of the Balmer
absorption lines.

xio: sum of the per cent contribution SSPs with ages in the range
700 Myr <t < 2Gyr. Being the representative of the AGB peak
contribution.

xo: sum of the per cent contribution 2 Gyr <t < 13 Gyr. Represents
the older underlying population.

HD: sum of the percent contribution of all Planck function
components, representing hot dust emission.

MNRAS 531, 554-574 (2024)

FC: sum of the per cent contribution of all power-law featureless
components, representing the AGN accretion disc contribution.

If limited to selecting only two parameters to describe the stellar
population composition of a galaxy, the optimal choice would
undoubtedly be its mean age and mean-metallicity. Therefore, we
have followed Cid Fernandes et al. (2005) and computed the mean
ages (the logarithm of the age, actually) for each galaxy weighted by
the stellar light

Na

(logt.) = > _ x;logt;, 3)
j=1

and weighted by the stellar mass,

N,

(logt,)p = Z wilogt;. C))

j=1

Subsequently, we convert these quantities into ages in Gyr (e.g.
removing the logarithmic scale).
The light-weighted mean metallicity is defined as

N,
(ZoL =) xZ;, )
j=1
and the mass-weighted mean metallicity is defined by:
N,
(Zow =D 1;Z;. (6)
j=I

Note that all these values are limited by the elements included in the
base. In principle, the mass-weighted properties are more physical,
but, since the stellar M/L is non-constant, they have a much less
direct relation with the observed spectrum than the light-weighted
ones. For more details see Cid Fernandes et al. (2005).

Besides the actual stellar mass of the galaxy* (M,), STARLIGHT
also outputs the mass that has been processed into stars throughout
the galaxy’s life (M™). Using this, one can compute the mass that
has returned to the interstellar medium, as MR = M - M, These
quantities are listed in Table 3.

Finally, these quantities have been derived as the mean value of
all the fitting on the simulated spectra with the uncertainty being its
standard deviation (see Section 3.1).

4.2 Stellar population properties

In Fig. 4 we show the distribution (mean and median values are also
shown) of the results of the 100 simulated spectra for each galaxy
(see Section 3.1) for the binned population vectors as well as for
mean ages and metallicities for the AGN hosts (blue) and control
galaxies (red). The mean values and their standard deviations are
summarized in Table 3.

The stellar populations, using the UV/Optical arms of X-shooter
spectra, of part of the present sample (mostly Sy 2 sources) of
LLAMA AGN have been studied by Burtscher et al. (2021); however,
using the Bruzual & Charlot (2003) SSP models, including ages
younger than 50 Myr in the base of elements. Aiming to compare
the optical and NIR stellar population results fairly, we have fitted
the X-shooter UV/Optical® using the same approach as used for the

4Note that this is the mass inside the aperture size, see Section 4.2.5 for a
discussion.
SFrom 3850 A to 8800 A with Aporm = 6840 A.
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Figure 3. Spectral fitting results for NGC 3081 (AGN, Sy 2), NGC 4235 (AGN, Sy 1), IC 4653 (CNT, star-forming) and NGC 0718 (CNT, passive) for
the original spectrum (e.g. without the perturbations described in Section 3.1). For each galaxy, on top panel: observed (black) and synthetic (red) spectra,
light-weighted mean age, and metallicity. middle panel: emission-line free spectrum (observed—synthetic spectrum) and a horizontal line showing the zero
point for the continuum. bottom panel: from left to right, SFH summed over all metallicities in light (x) and in mass (u) fractions; SFH considering different
metallicities (they are labelled); binned population vectors; AGN feature-less continuum and hot-dust contributions are on the two last panels. The plots for the
remaining sources are shown in on-line material.
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Figure 4. Mean stellar population properties of the sample obtained after fitting the 100 simulated spectra (see Section 3.1). In blue AGN hosts and red control
galaxies. Mean (dotted line) and median (full line) are shown. Population vectors are defined as follows: xy < 100 Myr, 100 Myr <xiy < 700 Myr, 700 Gyr
<xio <2 Gyr, and 2 Gyr <xo < 13 Gyr. HD and FC are the sum of the per cent contribution of the Planck function and the power-law featureless components,
respectively. Mean age and metallicities are defined according to equations (3), (4), (5), and (6). The mean values and their standard deviations are listed in

Table 3.

NIR spectral range described above. The results of these fittings
are shown in Fig. 5 and summarized in Table 4. It is also worth
mentioning that the results obtained by Burtscher et al. (2021) using
the Bruzual & Charlot (2003) models are in good agreement with
those found here when fitting the X-shooter data with the XSL
models (see Section 4.2.5 for a comparison on the derived stellar
masses).

4.2.1 Optical versus NIR fits

The results of our optical and NIR fits are in very good agreement
(Figs 5 and 6) in terms of the stellar population ages. The main
difference between optical and NIR results is in the metallicities and
FC components.

The NIR fits, in general, show higher metallicities than the optical
ones, especially when looking at the control galaxies. The optical
results show small differences in Z between controls and AGN with
both samples spanning a large range of metallicities (on average
AGN presents a slightly higher metallicity than controls). On the
other hand, the NIR fits do show a larger difference between mean
metallicities in both samples. We attribute this difference to the
fact that the optical spectral range has more features sensitive to
metallicity than the NIR window and/or to the higher SNR of the
optical data when compared with the NIR ones. Regarding the FC
components in the NIR, we see a tail towards a larger fraction in the
distribution of FC fractions in AGN when compared with the optical
results. This may be related to the degeneracy between the FC and

HD components (see Riffel et al. 2022, for details). Finally, it is
worth mentioning that in the NIR we can fit also the type 1 sources.

4.2.2 Stellar population components

What emerges from this is that the AGN hosts have larger fractions
of intermediate-age, less metallic stellar populations when compared
with the control sample. Additionally, the AGN show higher redden-
ing and, as expected only they require significant fractions of FC and
HD components to fit their underlying spectrum.

In Burtscher et al. (2021) we have shown that the LLAMA AGN
show, in general, a recent cessation of their star formation, i.e. it
happened at least 6 Myr ago. We cannot examine this here because
of the very young age limitations in our base (see Section 3), but
in the younger stellar populations bin, we do not see any significant
difference in both samples, with AGN exhibiting only a slightly
higher mean value for xy.

Our results (Fig. 4) show that AGN present a lower fraction of
the old stellar population when compared with controls (o panel).
The lower po fractions are therefore compensated by the higher
fraction of younger stellar populations® (e.g. one fraction comes

SNote that in the case of the light-weighted fractions, where the difference
between the AGN and controls are even more pronounced, one has to have
in mind that besides the SSP components the FC and HD also contribute,
however, they have no contribution in the stellar mass fraction.
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Figure 5. Mean stellar population properties of the Sy 2 sample obtained after fitting UV/Optical spectral region of the 100 simulated spectra (see Section 3.1).
In blue AGN hosts and red control galaxies. The mean (dotted line) and the median (full line) values are shown.

down, the other has to go up), thus, AGN present larger fractions
of intermediate-age populations when compared with the control
sources. This is directly reflected in the <7 > ; mean/median values
(4.7/4.5 Gyr for AGN and 7.5/6.9 Gyr for the controls) as well
as in the <t > j mean/median values (7.5/8.0 Gyr for AGN and
10.2/10.2 Gyr for the controls).

Based on high angular resolution integral field observations, Ritfel
et al. (2022) found that the inner region (R <125pc) of AGN is
primarily composed of intermediate-age SP (with an average age
<t > 1 S 1.5Gyr). They also observed a correlation between the
bolometric luminosity of AGN and the mean age of their stellar
populations, indicating that more luminous AGN tend to have larger
amounts of intermediate-age stars. This has been interpreted as
suggesting a delay between the formation of new stars and the
triggering/feeding of the AGN. In this sense, these intermediate-
age stars contribute to the gas supply around the supermassive black
hole through mass-loss during stellar evolution. This gas, which has
a low velocity (a few hundred kms™'), combines with the existing
gas which is flowing towards the central region of the host galaxy
(e.g. Cuadra et al. 2006; Fathi et al. 2006; Davies et al. 2007; Riffel
etal. 2008a, 2022, 2023b; Miiller Sanchez et al. 2009; Riffel, Storchi-
Bergmann & Winge 2013b; Audibert et al. 2019; Diniz et al. 2019;
Storchi-Bergmann & Schnorr-Miiller 2019; Audibert et al. 2021) and
feeding the SMBH.

Furthermore, studies have detected young to intermediate-age
populations in the inner regions of AGN host galaxies (e.g. Olivaetal.
1995; Gonzalez Delgado, Heckman & Leitherer 2001; Imanishi &
‘Wada 2004; Davies et al. 2005, 2007; Riffel et al. 2007, 2009, 2010,
2011a, 2015, 2022, 2023b; Storchi-Bergmann et al. 2012; Diniz
et al. 2017; Mallmann et al. 2018; de Lorenzo-Caceres et al. 2020;

MNRAS 531, 554-574 (2024)

Burtscher et al. 2021; Salvador-Rusifiol et al. 2021; Dahmer-Hahn
etal. 2022). These populations are predominantly composed of short-
lived stars (r ~ 0.2 — 2 Gyr; M =~ 2 — 6 M) that release significant
amounts of material into the nuclear environment (from ~30 per
cent—80 per cent of their masses; Bertolami 2016). This material
can fuel the SMBH with additional gas, thereby enhancing AGN
brightness or triggering its activity or alternatively, it can cool down
and form new stars (e.g. de Lorenzo-Céceres et al. 2020; Salvador-
Rusifiol et al. 2020, 2021; Benedetti et al. 2023).

4.2.3 The FC and HD components

As can be seen in Table 3 the FC component is required to fit
the spectral energy distribution of almost all the AGNs, being
the only exception NGC 5128. This component is also required
in 63 percent (12/19 sources) to fit the control galaxies, with a
maximum contribution of 10 per cent. The degeneracy of the FC and
a young stellar population is a well-known and common problem in
the study of the stellar content of active galaxies (e.g. Koski 1978;
Cid Fernandes et al. 2004, 2005; Riffel et al. 2009, and references
therein). This degeneracy is due to the fact that the continuum of a
reddened young starburst (f < 5Myr) is indistinguishable from an
AGN-type continuum. In the optical, broad components in polarized
light of Sy 2 galaxies only show up when this component is larger
than ~20 percent (Cid Fernandes & Terlevich 1995). Taking our
results into account, one could say that in the NIR the young and
FC components can be separated for values larger than 10 per cent
(the maximum value reached in the control sample). Thus, for
four AGN (ES0021-G004, ESO137-G034, NGC5728, and NGC
7172) the FC component could not be distinguished from a young
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Figure 6. Same as Fig. 4, but for the NIR spectral region.

stellar population component. This is in agreement with the results
presented in Riffel et al. (2022) who found that the FC can be
associated with the accretion disc emission only for sources with
FC = 15 percent.

The HD component is necessary to fit 60 percent (12/20) of
the AGN, while it is only required in one of the control galaxies
(NGC 3717), with a very low contribution (2 percent, within
the uncertainties of our fits, see supplementary material). This
component is very common in type 1 sources and is detected in
around 50 per cent of type 2 sources (e.g. Riffel et al. 2006, 2009,
2010, 2022; Martins et al. 2010; Gaspar et al. 2019). For caveats
on hot dust versus featureless continuum fitting see Riffel et al.
(2022).

4.2.4 Comparison of Seyfert 1 and Seyfert 2 fits

In Fig. 7 we compare the fitting results obtained for Sy 1 (green)
and Sy 2 (yellow). In general, type 1 objects show higher fractions
of xy and xiy than the type 2 objects, while Sy 2 sources present
higher fractions of the older populations (xio and xo0). In terms of
mean ages, the Sy 1 galaxies display a mean value of <t > ~3 Gyr
while the type 2 objects are characterized by slightly older mean ages
(<t > ~5Gyr). In terms of mass fractions, the mean values of all
population vectors are quite similar. The same trend is also seen in
the <t > ), values. Both samples have similar reddening distributions
with type 1 galaxies displaying a tail towards higher Ay values. In
terms of the stellar metallicities, Sy 2 galaxies have slightly higher
mean metallicities when compared with the Sy 1 ones. Finally, the
FC and HD components are higher in type 1 sources, with the latter
showing up only in one source (with a quite spread solution around
its value, see Section 4.2.3 for more details). The results presented
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here suggest that LLAMA type 1 and type 2 AGN essentially host
stars with the same ages, with type 1 sources showing a small bias
to younger values.

4.2.5 Stellar masses comparison

One of the derived quantities when fitting the stellar populations
using STARLIGHT is the stellar mass. The values we derived when
fitting the NIR (optical) stellar populations are listed in Table 3 (and
in Table 4 for optical).

In Fig. 8 we compare the masses derived by Davies et al. (2015)
using the H-band luminosity, Ly,” with those obtained with the SP
fits (top panels). We also compare in the bottom histograms of Fig. 8
the masses we obtained with those obtained by Burtscher et al. (2015,
B21) for the Sy 2 of our sample and our fits using the X-shooter data
(SP-OPT) with our NIR fits (SP-NIR) and those derived by Davies
et al. (2015, D15) for the entire galaxy.

The median mass derived for our sample using STARLIGHT fits of
the NIR spectral range is log(M,/Mg) = 9.04 and for the optical
log(M./Mg) = 8.7. The median mass we have previously inferred
from the optical (Burtscher et al. 2021) is log(M,/Mg) = 8.8 and the
median total mass of the galaxy inferred from the H-band luminosity
(Daviesetal.2015)islog(M,/Mg) = 10.35. These values are roughly
consistent with the fact that our apertures® cover 10-15 per cent of the

7Obtained using the equation log(Mx/Mg) = log(Ly/Le) — 0.06, which
has been derived comparing multiband photometry, to the integrated H-band
luminosity of the galaxies studied in Koss et al. (2011).
8The aperture of the NIR data (see Table 1) is in median 70 per cent of the
aperture of the X-shooter data (1.8 arcsec x 1.8 arcsec).

20z AINf 0 uo 3senb Aq z/2G99//%5G/1/1 €G/oIP1E/SEIUW/WOD dNO"dlWapEedE.//:SARY WOy papeojumod



The role of recycled gas in AGN feeding 567

o015 median Sy1 versus Sy2 0.10
E """ mean E 0.10 b
G 0.10 Syl @ @
g sy2 g 0.0 goos
0.05 :
0.00 L =— T T - . 0.00 1— — T - : 0.00 v - y - :
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
xy (%) Xiy (%) Xio (%)
0.04 H 0.2 0.15
2 2 20.10
2 : 201 g
g 0.02 i § S
a | : a 2 0.05
E |
0.00 NS 0.0 L+ 0.00 -
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
X0 (%) Hy (%) iy (%)
0.075
0.10
> > > 0.04
£ £ 0.050 £
 0.05 S z
° 2 0.025 i 2 0.02 ! ]
- | [S
0.00 : , : : : 0.000 1 . v - : 0.00 L - : v — :
0 20 40 60 80 100 0 20 60 80 100 0 20 40 60 80 100
pio (%) Ho (%) FC (%)
03 : 0.4
2010 z : 2
I 5 02 ] I
3 0.05 g | i g 02 :
0.1 : H
S ‘ Ml ]
0.00 1 . y . 0.0~ . i | L 001~ SEEE L .
0 20 40 60 80 100 0 2 4 8 10 12 ] 2 4 6 8 10 12
HD (%) <t>, (Gyn) <t>y (Gyr)
2 3
0.75
z 2 2
[ @2 % 0.50
g1 5 5
o o : o H
1 ; 0.25 ‘ :
. I . | Lo 000 D11 ]
02 04 06 08 1.0 12 14 16 02 04 06 1.0 12 14 16 -1 0 1 2 3 4 5
<Z>,(Zo) <Z>u(Zo) Av (mag)

Figure 7. Mean stellar population properties of the Sy 1(green) and Sy 2 (yellow) sources obtained after fitting the NIR spectral region of the 100 simulated
spectra (see Section 3.1). The mean (dotted line) and the median (full line) values are shown.

mass of bulge of the LLAMA sample (see Burtscher et al. 2021, for
a discussion) which has a median bulge/total ratio of 0.25 (Lin et al.
2018). It is worth mentioning that the values we have derived with
the NIR data are on average two times larger than those obtained with
optical data (16 times lower than those derived using Ly, while when
using the optical range the values are 35 times lower than those using
the Ly). We attribute this to the fact that the NIR is more sensitive
to the less luminous redder population, thus reflecting better the Ly
galaxy mass estimates.

5 DISCUSSION

5.1 Comparison between the stellar population and host galaxy
properties

Molecular gas serves as the essential fuel for the birth of stars. Un-
derstanding the SFH and SFR linked to each unit mass of molecular
gas offers critical insights into both: the physical characteristics of
the molecular phase and the surrounding conditions of star-forming
regions within it.

To facilitate a comprehensive comparison of stellar population
properties with the broader characteristics of host galaxies, we
conducted measurements of emission line fluxes of the [O 111] A5007
A and of the warm H, line A 2.1213 um on the pure emission line
spectrum.’ To do this we have employed the IFSCUBE code (Ruschel-
Dutra et al. 2021) fitting one single Gaussian to each line.

Additionally, following the methodology presented in Riffel et al.
(2021b, 2023b) we have computed the star formation rate over the

9With the underlying stellar population contamination subtracted.

last 100 Myr for our sources using the stellar population fits. We also
collected the CO luminosities, L, from Rosario et al. (2016) for all
the LLAMA galaxies (AGN and controls). The comparison of these
quantities with the stellar population properties is shown in Fig. 9.

When comparing the AGN and controls distribution, it becomes
clear that in terms of [O 111] both samples show different distributions,
but this is expected as discussed in Rembold et al. [2017, see also
Riffel et al. (2023b) and references therein]. When comparing the
[O 1] luminosity with <t > ; there and <Z > pno correlations are
seen for AGN and controls. However, AGN tend to show lower ages
and metallicities when compared with their controls.

The hot molecular H; is not correlated with <t > ;. This may
indicate that in AGN the excitation of the molecular gas is mostly
due to AGN. In fact, this is in agreement with the fact that H, emission
is mostly due to thermal excitation mechanisms associated with the
AGN (e.g. Reunanen, Kotilainen & Prieto 2002, 2003; Rodriguez-
Ardila et al. 2004; Rodriguez-Ardila, Contini & Viegas 2005; Riffel
etal. 2013a, 20214, b; Colina et al. 2015; Motter et al. 2021; Bianchin
et al. 2022; Holden et al. 2023).

L shows an increasing trend with <¢ > ;, however, there is
no significant difference relative to the control ones. We also found
that the H, luminosities are well correlated with L., with no clear
separation between AGN and controls. In general, our results show
that AGN hosts tend to have higher SFR over the last 100 Myr than
the control sources.

When considering the total returned mass, a difference in the
amount of returned mass over the galaxy’s lifetime is seen in AGN
when compared with the parent control sample. However, it is
worth mentioning that taking the ME<t by populations younger than
2 Gyr (ML) and taking the ratio over the total returned mass
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Figure 8. Stellar masses comparisons. The dotted line on the top panels is a linear regression over all data points using a bootstrap scheme of 1000 realizations.
In the bottom panels, the different samples are labelled as follows: SP-OPT (black) our fits using the x-shooter data from Burtscher et al. (2021, with B21 (blue)
being the fits obtained by these authors). SP-NIR (red) are our fits in the NIR and D15 (orange) are the masses estimated by Davies et al. (2015) for the entire

galaxy.

(Mf et(2Gyn) /MRy AGN do show a higher fraction than the control
galaxies. The mean value for AGN (0.07) is ~2.3 higher than the
value found for the controls (0.03; see Fig. 9). Additionally, when
dividing by M,, AGN show smaller values for this ratio than the
controls. This means that AGN have essentially the same M, as the
controls, but since they are still forming stars, they are still building
their mass up, and thus this indicates that AGN are currently receiving
an extra amount of gas.

To assess whether the material released by stars is sufficient to fuel
the AGN, we conducted a straightforward analysis by calculating the
mass accretion rate, M, needed to generate the AGN luminosity. This
calculation is expressed as follows:

. L
M= b(;l
nc

@)

The bolometric luminosity, Lo, was determined based on the
methodology outlined in Ichikawa et al. (2017), given by the
equation:

IOg Lb(,] = 00378(10g Lx;2_|0)2 —2.00 lOg LX:2—10 + 605, (8)

where the intrinsic hard X-ray luminosity from Table 2 was em-
ployed. Adopting an efficiency value of n = 0.1 (e.g. Laor & Netzer
1989; King 2008), we determined M for our galaxy sample.

Upon comparing M with the stellar mass returned (in Mg yr™!), we
observed that, on average, the returned mass from the intermediate
population (MF elaGm/2Gyr) is of the same order as the mass required
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to sustain AGN luminosity. Note however that this is the lower limit
of mass that is being released since the older population (¢ >2 Gyr)
is also present in the galaxies and is also releasing mass during these
last two Gyr.! When considering the mean returned mass per year
over the entire galaxy lifetime (MR**/13 Gyr), the returned mass is
approximately six times the mass necessary to maintain the AGN. It
is noteworthy that if this analysis were conducted using Ly instead of
bolometric luminosity, the resulting ratios would be approximately
20 and 120 for the mass returned over the last 2 Gyr and the galaxy’s
entire lifetime, respectively.

This simple exercise clarifies that there is sufficient recycled
material being released by the stars in the central region (inner 100—
200 pc) of the galaxies to sustain AGN luminosities (e.g. there is no
need for extra gas to feed the AGN).

5.2 Stellar ages and AGN properties

We have also explored the impact/regulation that the energy injected
by the AGN in the host galaxy may have on the star formation of
our sources. Therefore we have collected several properties from
literature such as LY, LM, N; which are only available for the AGN
sample (listed Table 2). We have computed the Eddington luminosity

107t is not just the intermediate age population that is releasing mass, but the
older populations are also releasing mass during this time
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Figure 9. Comparisons of stellar population properties with the host galaxy properties.

using the SMBH, M,, masses listed in Table 2 and the following
equation (Rybicki & Lightman 1979):

M, 9
108 Mg~ ©)
Also, following Riffel et al. (2022) the Eddington ratio was obtained
from Lp, [see equation (8)] and calculated using the observed
and intrinsic hard X-ray luminosities (Aghs = L%‘ff,/ Lggq and Ajp =
L5/ Liaa)-

We have compared these properties with <z > ;. No clear
correlation is seen between these properties and the host galaxy’s
mean age for the stellar population, as shown by their Pearson rank
correlation coefficients (R and p): log Ny (R = —0.30, p = 0.19),
log LY (R = —0.29, p =0.21),log L™ (R = —0.20, p = 0.40), log
Aobs (R =—0.29, p = 0.22), and log Aip (R = —0.21,p = 0.37).

In Riffel et al. (2022) we have found that there is a positive
correlation between the bolometric luminosity of the AGN with <7 >
u, however, if we consider only the LLAMA sample, no correlation
is found (R = —0.44, p = 0.0542), but when including the lower
luminosity Gemini NIFS survey sources (AGNIFS survey Riffel et al.
2017, 2022) fitted with the XSL models as described in Section 3, a
positive correlation is observed (for LLAMA + AGNIFS we found
R =0.37, p = 0.0234). Thus, our results reinforce the conclusion
that there is a delay between the formation of new stars and the
triggering/feeding of the AGN.

Lpag = 1.26 x 10% erg s

5.3 Metallicities

We find that the mean stellar metallicity of the AGN hosts is lower
than those of the controls. This result is in agreement with the finding

of Riffel et al. (2023b) who found that for regions R < 0.5 R, the
AGN hosts metallicity has lower values when compared with their
control galaxies and larger radii values.

These results are additionally in agreement with those derived
using the nebular emission. do Nascimento et al. (2022) derived the
oxygen abundances in Seyfert galaxies from MaNGA, and found
that the inner regions of these galaxies display lower abundances
than their outer regions. Armah et al. (2023), for instance, studying
the BASS sample (Koss et al. 2022; Oh et al. 2022) have shown
that the more luminous Seyfert galaxies have lower gas metallicities.
Our stellar metallicity estimates are qualitatively in agreement with
those obtained through the gas phase abundances.!! However, it is
not a direct comparison as the gas metallicity represents the recent
chemical evolution of galaxies, since it depends on the ionizing
source (and on the production and release of oxygen to the galaxy
ISM), whereas the mean stellar metallicity is an average over the
entire lifespan of galaxies, including all generations of stars. Thus,
stellar and nebular metallicities indeed indicate distinct evolutionary
phases and respond differently to various processes that govern
the chemical evolution of galaxies (Asari et al. 2007). It is worth
mentioning that the stellar and gas metallicities are derived using
radically different methods that they should not be compared in
quantitative terms (Cid Fernandes et al. 2007). There is a huge scatter
on such a comparison, but the metallicities estimated using the stellar

n the sense that the stellar metallicities are lower in AGN than in controls
and that in the gas phase oxygen abundances are lower in the AGN dominated
regions when compared with the SF dominated regions.
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population fitting tend to be higher when compared with the nebular
one [see fig. 5(e) of Asari et al. 2007].

5.4 AGN feedback energy considerations

The AGN’s accretion energy release can be approximated using
its hard X-ray luminosities to infer its bolometric luminosity. Here
the bolometric luminosity was calculated using the intrinsic X-ray
luminosity together with equation (8).

During the typical accretion phase duration when the power
emanating from the central engine remains relatively constant (fagn),
a portion of the emitted energy will interact with the molecular gas.
However, this interaction (termed radiation coupling: €,) is very
uncertain (e.g. Harrison et al. 2018), but theoretical models of AGN
feedback propose a value of ~5 per cent (e.g. Di Matteo et al. 2005).
From the above, we can roughly estimate the accretion power that
could influence the molecular gas as Erag = €, Lo fagn (see Rosario
et al. 2018, for details) and thus affect the star-formation in the AGN
hosts. Here we adopted €, = 0.05 (Di Matteo et al. 2005) and fagn
= 1 Myr (Hickox et al. 2014; Schawinski et al. 2015).

According to Rosario et al. (2018) the coupling mechanism can
take several forms, including direct radiation absorption by molecular
or atomic clouds, or the influence of a mechanical agent like a thermal
wind or relativistic particles within a jet. Assuming that Eg,g is
distributed across all the molecular gas within the central region of
AGN hosts, then its effect on the molecular gas by comparing it to the
gravitational potential energy experienced by this gas, and so, this
can give us some insight if the feedback might have enough power
to affect the stability of this gas parcel.

Since the areas we are probing are small and in the central region of
the galaxies (see Table 1) the dominant factor governing gravitational
potential is the baryonic matter, encompassing both stars and gas.
However, the molecular gas fraction (fy,) in the LLAMA galaxies
is small and corrections for H I mass are small for disc galaxies (see
Bigiel et al. 2008; Rosario et al. 2018, for details), we can assume that
the potential energy experienced by this molecular gas is dominated
by the stellar mass within this region (e.g. the values we have derived
for it inside the extracted area of each spectrum) and its modulus can
be approximated as:

M* MH2
Epg ~ GTIT(I_"fgas)s (10

where R is the radius of a circular region that will enclose the same

area as the area extracted for each spectrum'? and Seas = W:ZiHJrZM)
with My, = acox Lio. We have followed Rosario et al. (2018) and
adopted aco = 1.1 Mgpc2/(Kkms™2) which is the most adequate
value for metal-rich nearby galaxies (Sandstrom et al. 2013). We
assumed n = 1, which means that the gas is uniformly distributed
in a disc of size R within a uniform gravitational potential. Finally,
we have corrected the L, for aperture size'? using the half-power
beamwidths quoted by Rosario et al. (2018) as the radius of the CO
observations. Finally, for M, we have used the values quoted in Table
3.

Taking the above assumptions as our baseline, since log(Eraq/Epc)
> 0 for all the sources (in fact, it ranges from 1.5 to 4.5 dex; Fig. 10) it
means that the energy injected by the AGN is enough to dynamically
disturb the molecular gas within our aperture. The Eg,g/Epg ratio is
compared with the AGN hosts <t > ; (top panel) and <t > ), (bottom

2R = /(slitwidth x aperture)/7.
13L/CO corrected = L (Area NIR aperture/Area Radio Aperture).
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Figure 10. Comparison of the AGN power with the <7 > ;(top) and <¢ >
m(bottom).

panel) in Fig. 10, where a anticorrelation is observed with the stellar
population mean age ages (with Pearson coefficients R = —0.51 and
p =0.0294 for <t > ; and R = —0.53 and p = 0.0241 for <t > ).
This can be interpreted as the fact that the AGN is affecting the star
formation in these galaxies, in the sense that more energetic AGN
[log(Eraa/Epc) 2 3] tend to host younger nuclear stellar populations
<t > | S4Gyr (<t > y<TGyr) or that these galaxies do have a
more extended SF history since the LLAMA AGN do no have a
larger amount of molecular gas when compared with their controls
(Rosario et al. 2018).

It is worth mentioning that the trend observed here might be a
caveat of the correction for aperture of the L5, which assumes a
uniform distribution of the molecular gas within the APEX beam
collecting area. For instance, high-resolution ALMA observations of
a volume-limited sample of X-ray selected AGN part of the galactic
activity, torus, and outflow survey (GATOS) revealed the imprint of
AGN feedback in the central gas concentration of Seyfert galaxies.
The GATOS AGN with higher luminosity show more outflows and
more molecular gas deficits, supporting a scenario in which AGN
winds are more likely to push away the gas in the centre as the AGN
luminosity increases (Garcia-Burillo et al. 2021). The same is also
observed in hot molecular gas (H,; Riffel et al. 2023a). To confirm
the results obtained for the LLAMA AGN sample, we need resolved
observation of the cold gas with ALMA.

5.5 The role played by the recycled material in AGN fuelling

Basically to trigger or sustain an AGN what is required is that
enough fuel reaches the accretion disc. Such fuel (e.g. gas) can have
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an external origin, coming from mergers or tidal interactions (e.g.
Araujo et al. 2023; Raimundo, Malkan & Vestergaard 2023; Rembold
et al. 2024, and references therein). In the case of the LLAMA AGN,
Davies et al. (2017) has studied the environment of these sources.
They mostly are in small or large groups, so external gas could be
stripped out of other galaxies or minor mergers could play some role.
However, this gas will unlikely directly feed the AGN, since it would
have to reach the inner region of the galaxy. Such gas could perturb
the gas already in the galaxy [LLAMA galaxies are mostly spirals,
see Table 1, thus having enough recycled + pristine gas to keep
SF and AGN activity (Vazdekis et al. 1996)], making it reach the
central region more efficiently, however, while it moves inwards it
would also form stars. Finally, Davies et al. (2017) concluded that the
LLAMA AGN do not show evidence of environmental dependence.

The observational results presented here show that AGN do
have a larger fraction of intermediate-age stellar populations when
compared with their matched analogues. Such an intermediate age
population is dominated by massive (M >~ 1.5 — 10 M; 200 Myr < ¢
< 2 Gyr) evolved stars (e.g. Dottori et al. 2005; Maraston 2005; Riffel
et al. 2007, 2008b, 2015, 2022, 2023b; Salaris et al. 2014; Dahmer-
Hahn et al. 2022, in the RGB and TP-AGB phases), that do release
a high amount of enriched material to the nuclear environment.

Very recently Choi et al. (2023) have used the suite of cosmological
hydrodynamical simulations of massive galaxies and supermassive
black hole formation presented in Choi et al. (2017) to investigate
the origins of the gas-accreted by the SMBH. They have found
that recycled gas generated within the host galaxies, e.g. ejected
from evolved stars (SN and AGB stars) contributes, on average,
with ~40 per cent of the fuel for AGN. This gas also contributes to
the formation of new stars but in a lower fraction (~ 20 per cent),
being the external gas the major source of fuel for the formation of
new stars. In their simulations, in-sifu star formation has a higher
contribution from pristine and cosmic web accretion compared to
black hole feeding.

Nevertheless, they argue that this does not imply that a higher
proportion of the overall recycled gas released by evolved stars
contributes directly to the feeding of the black holes. In reality, given
that the total gas used in star formation far exceeds the gas accreted
by black holes, the sheer volume of recycled gas consumed by star
formation greatly surpasses the quantity acquired by black holes.
However, they show that the relatively higher proportion of recycled
gas within the black hole mass budget, as compared to that attributed
to star formation, suggests that recycled gas is notably efficient in
feeding the SMBH, surpassing the other sources of gas entering the
host galaxy. This is because this high metallicity gas cools down
very efficiently and because it is abundantly released very close to
the centre of the galaxy. Finally the lower (but still high, <Z > |
> 0.4 Z) stellar metallicity found in the AGN when compared with
the control galaxies can be attributed to the fact that spiral galaxies
do have a high amount of gas that has never been converted into stars
(Vazdekis et al. 1996). This is associated with the fact that molecular
gas is very turbulent in more luminous AGN (Garcia-Burillo et al.
2021), thus making the mix of the low and high metallicity gas more
efficient in AGN than in the control galaxies. Therefore diluting the
overall gas phase metallicity in AGN.

The gas released by the intermediate age stars has a low velocity
(a few hundred km s~') and is accreted together with the gas already
available in the central region (e.g. Cuadra et al. 2006; Davies et al.
2007; Riffel et al. 2022, 2023b). It has been demonstrated in previous
works that this extra amount of gas will trigger the AGN or make it
more powerful and/or form new stars (e.g. Ciotti & Ostriker 2007;
Ciotti, Ostriker & Proga 2010; Leitner & Kravtsov 2011; Segers et al.
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2016; Salvador-Rusifiol et al. 2020, 2021 ; Benedetti et al. 2023; Riffel
et al. 2023a, and references therein).

The larger fractions of stellar material released by the AGN when
compared with the controls agree with the results found in the
simulations, in the sense that besides being more abundant on AGN
than in the controls, this gas is released very close to the AGN and
the stars provide an efficient angular momentum sink making the
gas falling more efficiently towards the SMBH (Hopkins 2012). In
this way, this recycled material acts as a ‘seasoning,” making the
supermassive black hole ‘food” more flavourful.

6 CONCLUSIONS

We have used near-infrared spectroscopy to study the stellar popu-
lation of the complete LLAMA sample (20 AGNs) and compared
them with their matched analogues (19 inactive galaxies). Therefore
we have employed the new XSL models together with the STARLIGHT
code. Our main conclusions can be summarized as follows:

(i) The star formation history of the sources is very complex,
presenting many episodes of star formation during their lifetimes.

(ii) Optical and NIR properties derived for type 2 AGNs and
controls are in very good agreement. For the NIR we have also
fitted the type 1 sources and provided their stellar properties.

(iii) AGN hosts have higher fractions of intermediate-age, less
metallic stellar populations when compared with the control sample.
The AGNs are more affected by reddening and, as expected, only
they require significant fractions of FC and HD components to fit
their underlying continuum. We have obtained mean/median values
of the <t > ; (4.7/4.5 Gyr for AGNs and 7.5/6.9 Gyr for the controls)
as well as in the mean/median values for <t > y (7.5/8.0 Gyr for
AGNSs and 10.2/10.2 Gyr for the controls).

(iv) No correlations between host galaxy gas properties (e.g. CO
luminosity, hot H, luminosity, [O 111] luminosity) have been observed
with age.

(v) The Era4/Epg ratio for AGN is compared with the <¢ > ; and
an anticorrelation is observed with the stellar population mean age
(with Pearson coefficients R = —0.48 and p = 0.043). This suggests
that the AGN is affecting the star formation in these galaxies, in the
sense that more energetic AGNs (log(Erad/Epg) 2 3) tend to host
younger nuclear stellar populations <t > ; <4 Gyr (<t > <7 Gyr).

(vi) The role played by the stellar recycled material in AGN
fuelling is discussed. We found that the recent (¢ <2 Gyr) returned
(recycled) stellar mass is higher in AGN than in the controls. We dis-
cuss and provide evidence to models that support that AGN feeding
is, at least, partially driven by the recycled material originating from
stellar evolution.

In general, our results point towards the fact that the central
region of AGN are dominated by young to intermediate-age stellar
populations when compared with their control galaxies. We also
provide evidence that the mass-loss of stars would be enough to feed
the AGNs, thus providing observational constraints for models that
predict that AGN feeding is primarily due to the recycled gas from
dying stars.
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