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Abstract
Censoring occurs when an outcome is unobserved beyond some threshold value. Methods that do not account for censoring
produce biased predictions of the unobserved outcome. This paper introduces Type I Tobit Bayesian Additive Regression
Tree (TOBART-1) models for censored outcomes. Simulation results and real data applications demonstrate that TOBART-1
produces accurate predictions of censored outcomes. TOBART-1 provides posterior intervals for the conditional expectation
and other quantities of interest. The error term distribution can have a large impact on the expectation of the censored outcome.
Therefore, the error is flexibly modeled as a Dirichlet process mixture of normal distributions. An R package is available at
https://github.com/EoghanONeill/TobitBART.
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1 Introduction

Censoring occurs when, beyond some threshold value, the
observed outcome is equal to the threshold instead of the
true latent outcome value. For example, scientific equipment
can often only make accurate measurements within a known
range of outcome values, and observations outside this range
are set to its limits. Often the estimand of interest is the con-
ditional expectation or conditional average treatment effect
on the outcome before censoring. Estimation of a standard
regressionmodel using data without censored values, or with
censored observations set equal to threshold values, results
in biased estimates. Tobit models directly model the latent
outcome and censoring process (Tobin 1958).

In this paper, we combine the Bayesian Type I Tobitmodel
(Chib 1992)with BayesianAdditive Regression Trees (Chip-
man et al. 2010). The latent outcome (before censoring) is
modeled as a sum-of-trees, which allows for nonlinear func-
tions of covariates. The error term is modeled as a Dirichlet
process mixture of normal distributions, as in fully nonpara-
metric BART (George et al. 2019). Smooth data generating
processes with sparsity are modelled by soft trees with a
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Dirichlet prior on splitting variable probabilities, as intro-
duced by Linero and Yang (2018).

In simulations and applications to real data, TOBART-1
outperforms a Tobit gradient boosted tree method, Grabit
(Sigrist and Hirnschall 2019), a Tobit Gaussian Process
model (Groot and Lucas 2012), standard linear Tobit, and
simple hurdle models based on standard machine learning
methods. Unlike other methods, TOBART-1 accounts for
model uncertainty and can non-parametrically model the
error term. Posterior intervals are available for censored out-
comes, uncensored outcomes, conditional expectations, and
probabilities of censoring. Grabit, Gaussian Processes, and
other methods rely on cross-validation for parameter tun-
ing and are sensitive to the tuned variance of the error term,
whereas TOBART-1 performswell without parameter tuning
and accounts for uncertainty in the variance of the error term.

TOBART-1 with a Dirichlet process mixture of normal
distributions for the error term (TOBART-1-NP) removes the
restrictive normality assumption often imposed in censored
outcomemodels. We observe that this can lead to more accu-
rate outcome predictions in simulations with non-normally
distributed errors, and in real data applications, which may
involve non-normally distributed outcomes.1

1 A Dirichlet process mixture for the error term distribution has previ-
ously been included in a censored outcomemodel byKottas andKrnjajić
(2009).
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Avariety of methods have been proposed for nonparamet-
ric and semiparametric censored outcome models. Lewbel
and Linton (2002) describe a local linear kernel estimator
for the setting in which both the uncensored outcome mean
function of regressors and error distribution are unknown.
Fan and Gijbels (1994) describe a quantile-based local linear
approximation method. Huang (2021) introduces a semi-
parametric method involving B-splines. Chen et al. (2005)
use a local polynomial method. Other papers on the topic
of semiparametric and nonparametric censored outcome
regression include Cheng and Small (2021), Heuchenne and
Van Keilegom (2007, 2010), Huang et al. (2019), Oganisian
et al. (2021). Gaussian Process censored outcome regression
methods are applied by Groot and Lucas (2012), Cao et al.
(2018), Gammelli et al. (2020, 2022), Basson et al. (2023).
Zhang et al. (2021), Wu et al. (2018) implement censored
outcome neural network methods.

A number of recent papers have considered Tobit model
selection and regularization. Zhang et al. (2012) describe
Focused Information Criteria based Tobit model selection
and averaging. Jacobson and Zou (2024) provide theoretical
and empirical results for Tobit with a Lasso penalty and a
folded concave penalty (SCAD). Müller and van de Geer
(2016) and Soret et al. (2018) describe a LASSO penal-
ized censored outcomemodels. Bradic andGuo (2016) study
robust penalized estimators for censored outcome regression.

The Bayesian Tobit literature includes quantile regression
methods (Ji et al. 2012; Yu and Stander 2007; Alhamzawi
2016), and Bayesian elastic net Tobit (Alhamzawi 2020).
Ji et al. (2012) account for model uncertainty by implement-
ing Tobit quantile regression with Stochastic Search Variable
Selection.However, the outcome and latent variable aremod-
eled as linear functions of covariates. TOBART-1 provides
a competing approach to the methods referenced above that
does not impose linearity.

The remainder of the paper is structured as follows: In
Sect. 2 we describe the TOBART-1 model andMarkov chain
Monte Carlo (MCMC) implementation, Sect. 3 contains sim-
ulation studies for prediction and treatment effect estimation
with censored data, Sect. 4 contains applications to realworld
data, and Sect. 5 concludes the paper.

2 Methods

2.1 Review of Bayesian Additive Regression Trees
(BART)

Suppose there are n observations, and the n × p matrix of
explanatory variables, X , has i th row xi = [xi1, ..., xip].
Following the notation of Chipman et al. (2010), let T be
a binary tree consisting of a set of interior node decision
rules and a set of terminal nodes, and let M = {μ1, ..., μb}

denote a set of parameter values associated with each of the
b terminal nodes of T . The interior node decision rules are
binary splits of the predictor space into the sets {xis ≤ c} and
{xis > c} for continuous xs . Each observation’s xi vector is
associated with a single terminal node of T , and is assigned
the μ value associated with this terminal node. For a given
T and M , the function g(xi ; T , M) assigns a μ ∈ M to xi .

For the standard BARTmodel, the outcome is determined
by a sum of trees,

Yi =
m∑

j=1

g(xi ; Tj , Mj ) + εi

where g(xi ; Tj , Mj ) is the output of a decision tree. Tj refers
to a decision tree indexed by j = 1, ...,m, where m is the
total number of trees in the model. Mj is the set of terminal

node parameters of Tj , and εi
i .i .d∼ N (0, σ 2).

Prior independence is assumed across trees Tj and across
terminal node means Mj = (μ1 j ...μb j j ) (where 1, ..., b j

indexes the terminal nodes of tree j). The form of the prior
used by Chipman et al. (2010) is p(M1, ..., Mm, T1, ..., Tm,

σ ) ∝
[∏

j

[∏
k p(μk j |Tj )

]
p(Tj )

]
p(σ ) where μk j |Tj

i .i .d∼
N (0, σ 2

μ) where σμ = 0.5
κ
√
m
and κ is a user-specified hyper-

parameter.
Chipman et al. (2010) set a regularization prior on the

tree size and shape p(Tj ). The probability that a given node
within a tree Tj is split into two child nodes is α(1+ dh)−β ,
where dh is the depth of (internal) node h, and the parame-
ters α and β determine the size and shape of Tj respectively.
Chipman et al. (2010) use uniform priors on available split-
ting variables and splitting points. The model precision σ−2

has a conjugate prior distribution σ−2 ∼ Ga( v
2 , vλ

2 ) with
degrees of freedom v and scale λ.

Samples from p((T1, M1), ..., (Tm, Mm), σ |y) can be
made by aBayesian backfittingMCMCalgorithm. This algo-
rithm involvesm successive draws from (Tj , Mj )|T( j), M( j),

σ, y for j = 1, ...,m, where T( j), M( j) are the trees and
parameters for all trees except the j th tree, followedby a draw
of σ from the full conditional σ |T1, ..., Tm, M1, ..., Mm, y.
After burn-in, the sequence of f ∗ draws, f ∗

1 , ..., f ∗
Q , where

f ∗(.) = ∑m
j=1 g(. T ∗

j , M∗
j ), is an approximate sample of

size Q from p( f |y).

2.2 Soft trees and sparse splitting rules

In addition to the standard Bayesian tree model for f (xi )
described in Sect. 2.1, we also implement TOBART and
TOBART-NP with soft trees and sparse splitting rules as
described by Linero and Yang (2018). Predictions from soft
trees are weighted linear combinations of all terminal node
parameter values, with the weights being functions of dis-
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tances between covariates and splitting points. The prediction
from a single tree function is

g(xi ; Tj , Mj ) =
L j∑

�=1

μ j,�ξ(xi , Tj , �)

ξ(xi , Tj , �) =
∏

b∈A(�)

ζ

(
x jb − Cb

τb

)I{x jb>Cb}

×
{
1 − ζ

(
x jb − Cb

τb

)}I{x jb≤Cb}

where L j is the number of leaves in the j th tree, μ j,� is the
�th terminal node parameter of the j th tree, A(�) denotes
the set of ancestor nodes of terminal node �. The splitting
variable, splitting point, and bandwidth parameter at internal
node b are denoted by x jb ,Cb, and τb respectively. The gating
function ζ is the logistic function ζ(x) = (1+ exp(−x))−1.

Sparse splitting rules are introduced by placing a Dirichlet
prior on the splitting probabilities (s1, . . . , sp) ∼ D( ap , . . . ,
a
p ). The parameter a controls the level of sparsity and has the
prior Beta(0.5, 1). Linero and Yang (2018) demonstrate that
soft trees allow BART to model smooth functions, and the
Dirichlet prior on splitting probabilities adapts to unknown
levels of sparsity to provide improved predictions on high
dimensional data sets.

2.3 Type I Tobit and TOBART

2.3.1 Type I Tobit model

The Type I Tobit model with censoring from below at a and
censoring from above at b is:

Y ∗
i = xiβ + εi εi ∼ i .i .d. N (0, σ 2)

Yi =

⎧
⎪⎨

⎪⎩

a if Y ∗
i ≤ a

Y ∗
i if a < Y ∗

i < b

b if b ≤ Y ∗
i

where a normal prior is placed on β, and an inverse gamma
prior is placed on σ 2 (Chib 1992).

2.3.2 Type I TOBARTmodel

The Type I TOBART model replaces the linear combination
xiβ with the sum-of-trees function f (xi ):

Y ∗
i = f (xi ) + εi εi ∼ i .i .d. N (0, σ 2)

Yi =

⎧
⎪⎨

⎪⎩

a if Y ∗
i ≤ a

Y ∗
i if a < Y ∗

i < b

b if b ≤ Y ∗
i

where aBARTprior is placed on f (xi ) and an inverse gamma
prior is placed on σ 2.2

2.3.3 Type I TOBART Gibbs sampler

Tobit can be implemented by MCMC with data augmenta-
tion (Chib 1992). The realization, y∗

i , of the variable Y ∗
i is

observed for uncensored outcomes, and is sampled from its
full conditional for censored outcomes.

y∗
i = yi if yi ∈ (a, b) and

y∗
i ∼

{
T N [−∞,a]( f (xi ), σ 2) if yi = a

T N [b,∞]( f (xi ), σ 2) if yi = b

where T N [l,u] denotes a normal distribution truncated to
the interval [l, u]. The full conditionals for f (xi ) and σ 2

are standard full conditionals for BART with y∗
i as the

dependent variable and xi as the potential splitting variables.
AppendixA contains a description of a sampler that produces
draws f (1)(xi ), . . . , f (D)(xi ) and σ (1), . . . , σ (D).

2.3.4 Predicting outcomes with TOBART

The conditional mean of the latent variable is f (xi ). If cen-
soring is also applied to the test data, then the outcomes are
predicted by averaging the standard Tobit expectation for-
mula across MCMC iterations:

For all MCMC iterations d = 1, ..., D calculate

E[Yi |Xi = xi , f (d), σ (d)] = a�
(a − f (d)(xi )

σ (d)

)

+ f (d)(xi )
[
�
(b − f (d)(xi )

σ (d)

)
− �

(a − f (d)(xi )

σ (d)

)]

+σ (d)

(
φ
(a − f (d)(xi )

σ (d)

)
− φ

(b − f (d)(xi )
σ (d)

))

+b

[
1 − �

(b − f (d)(xi )
σ (d)

)]

Thepredictedoutcome is 1
D

∑D
d=1 E[Yi |Xi = xi , f (d), σ (d)].

The expectation conditional on the outcome not being in the

2 σ−2 ∼ Ga( v
2 , vλ

2 ). For standard BART, λ is set such that the qth

quantile of the prior distribution of σ is the sample standard deviation of
the residuals from a linear model. For censored outcomes, this may give
poor calibration of the σ prior. We consider four options in a simulation
study in appendix E. A sample standard deviation estimate from an
intercept-only Tobit model generally gives good results, although often
there is little difference across λ values.
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censored range is:

E[Yi |a < Yi < b, Xi = xi , f (d), σ (d)]

= f (d)(xi ) + σ (d)
φ
(
a− f (d)(xi )

σ (d)

)
− φ

(
b− f (d)(xi )

σ (d)

)

�
(
b− f (d)(xi )

σ (d)

)
− �

(
a− f (d)(xi )

σ (d)

)

2.4 Nonparametric Type I TOBART

2.4.1 Nonparametric Type I TOBARTmodel

The accuracy of the conditional expectation of the TOBART
model depends on the validity of the assumption of normality
of the errors. More general censored outcomes can be mod-
elled by assuming a Dirichlet Process mixture distribution
for the error terms.

y∗
i = f (xi ) + εi yi =

⎧
⎪⎨

⎪⎩

a if y∗
i ≤ a

y∗
i if a < y∗

i < b

b if b ≤ y∗
i

εi ∼ i .i .d. N (γi , σ
2
i ) ϑi = (γi , σi ) ∼ G

G ∼ DP(G0, α)

The distribution of the error term is specified similarly to
George et al. (2019). The base distribution G0 is defined as
follows:

p(γ, σ |ν, λ1, γ0, k0) = p(σ |ν, λ)p(γ |σ, γ0, k0)

σ 2 ∼ νλ

χ2
ν

γ |σ ∼ N
(
γ0,

σ 2

k0

)

where, in contrast to the standard BART prior of Chipman
et al. (2010), ν is set to 10 instead of 3.3 The parameter λ is set
such that the qth quantile of the prior distribution of σ is the
sample standard deviation of the outcome, or of the residuals
from a linear model. For TOBART-NP, q = 0.9 instead of
0.95.4 The prior on α is the α ∼ �(2, 2) prior introduced by
Escobar andWest (1995) and applied byVanHasselt (2011).5

3 George et al. (2019) recommend ν = 10 as the spread of the error
increases when there are many components and the spread of a single
components can be reduced by increasing ν. This gives better results
than ν = 3 for some DGPs in a simulation study in Appendix E.
4 This is complicated by the censoring of the outcome. Some options
are: 1. Estimate the standard deviation assuming that censored outcome
is normally distributed. 2. Estimate the standard deviation of a linear
type I Tobit model (contains option 1 as a special case but not fea-
sible when there are more regressors than observations). 3. Estimate
the standard deviation of the censored outcome without accounting for
censoring. We use option 2 for TOBART-NP.
5 The TobitBART package also includes an option for the prior
described by Rossi (2014) and George et al. (2019), p(α) ∝(
1 − α−αmin

αmax−αmin

)ψ

, where αmin and αmax are set so that the modal num-

The outcome is scaled by subtracting the sample mean
before applying the Gibbs sampler, therefore George et al.
(2019) set γ0 = 0.6 The parameter k0 is scaled with the

marginal distribution of γ ( γ ∼
√

λ√
k0
tν). Given ks (set to

10 by default), k0 is set such that maxi=1,...,n |ei | = ks
√

λ√
k0

where ks = 10. and e1, ..., en are the residuals from a linear
model.7 The Gibbs sampler for TOBART-NP is described in
Appendix A.

For each MCMC iteration, d, and observation i , we
obtain ϑ

(d)
i = (γ

(d)
i , σ

(d)
i ). The conditional expectation,

E[yi |xi , f (d), γ
(d)
i , σ (d)], is calculated as outlined in

Sect. 2.3.4.

2.5 Treatment effect estimation for censored
outcomes

Let a binary variable Ti equal 1 if unit i is assigned to
treatment and 0 if i is assigned to the control group. The
potential outcomes under treatment and control group allo-
cation are denoted by Yi (1) and Yi (0) respectively. Similarly,
the potential outcomes of the latent outcome are denoted by
Y ∗
i (1),Y ∗

i (0). Assume the data generating process is as fol-
lows:

Y ∗
i = μ(xi ) + τ(xi )Ti + εi εi ∼ N (0, σ 2)

Yi =

⎧
⎪⎨

⎪⎩

a if Y ∗
i ≤ a

Y ∗
i if a < Y ∗

i < b

b if b ≤ Y ∗
i

where μ(xi ) and τ(xi ) are possibly nonlinear functions
of covariates. Assume conditional unconfoundedness, i.e.
Y ∗
i (1),Y ∗

i (0) ⊥ Ti |Xi . The estimand is the conditional aver-
age treatment effect onY ∗

i , i.e., E[Y ∗
i (1)−Y ∗

i (0)|Xi = xi ] =
τ(xi ). However, a model naively trained on only uncensored
outcomes estimates the following effects8

bers of components are Imin = 1 and Imax = [(0.1)n] respectively, and
ψ = 0.5.
6 However, the mean cannot be estimated for censored data without
making further assumptions. Options include: 1. Estimate the mean
(and variance) of a censored normal distribution. 2. Calculate the sample
mean of the censored outcome without accounting for censoring. We
use option 1.
7 The residuals likely underestimate the true errors for censored obser-
vations.
8 This bias occurs if all the uncensored observations are included in
one regression and differences in predictions for Ti = 1 and Ti = 0
are obtained, i.e. an S-learner approach (Künzel et al. 2019), or if the
two conditional expectations are obtained from separate regressions
for treated and untreated uncensored observations, i.e. a T-Learner
approach. In both cases, the conditional expectations are not equal to
the expectation of the latent outcome.
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E[Yi (1)|a < yi < b, Xi = xi ]
−E[Yi (0)|a < yi < b, Xi = xi ] = τ(xi )

+σ

(φ
(
a−(μ(xi )+τ(xi )))

σ

)
− φ

(
b−(μ(xi )+τ(xi ))

σ

)

�
(
b−(μ(xi )+τ(xi ))

σ

)
− �

(
a−(μ(xi )+τ(xi ))

σ

)

−
φ
(
a−μ(xi )

σ

)
− φ

(
b−μ(xi )

σ

)

�
(
b−μ(xi )

σ

)
− �

(
a−μ(xi )

σ

)
)

.

Asufficientlyflexible nonparametricmethod,without restric-
tive assumptions on the error term, will produce estimates
that approximate the expression above. A model naively
trained on the full data set with censoring similarly gives
biased estimates (see Appendix B). By directly modelling
Y ∗
i , censored outcomemodels avoid the bias described above.

Similar biases occur if the error term is not normally dis-
tributed.

3 Simulation studies

3.1 Description of prediction simulations

We adapt the data generating processes (DGPs) introduced
by Friedman (1991) to a censored regression setting. This
DGP has often been applied in comparisons of semiparamet-
ric regression methods. We also make use of the censored
outcome simulations described by Groot and Lucas (2012),
Sigrist and Hirnschall (2019), and Jacobson and Zou (2024)
for fair comparison against competing methods with existing
synthetic censored data.

The covariates x1, ...., xp are independently sampled from
the uniform distribution on the unit interval. The outcome
before censoring is generating from one of the following
functions:

• y∗ = 10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5+ε ε ∼
N (0, σ 2) with censoring from below at the 15th per-
centile of the training data y∗ values (Friedman 1991).9

• y∗ = 10 sin(πx1x2)+20(x3−0.5)2+10x4+5x5+ε ε ∼
N (0, σ 2) with censoring from below at the 15th per-
centile of the training data y∗ values, and from above at
the 85th percentile of the training data y∗ values (Fried-
man 1991).

• y∗ = 6(x1 − 2)2 sin(2(6x1 − 2)) + ε ε ∼ N (0, σ 2)

with censoring from below at the 40th percentile of the
training data y∗ values (Groot and Lucas 2012).

• y∗ =∑5
k=1 0.3max(xk, 0)+∑3

k=1
∑4

j=k+1 max(xkx j ,

0) + ε ε ∼ N (0, σ 2) with censoring from above at the
95th percentile of the training data y∗ values (Sigrist and

9 The original Friedman simulations did not involve censoring.

Hirnschall 2019). For this simulation, x1, ...., xp are uni-
formly distributed on [−1, 1] instead of [0, 1].10

• y∗ = 3 + 5x1 + x2 + x3
2 − 2x4 + x5

10 + ε ε ∼ N (0, σ 2)

with censoring from below at the 25th percentile of the
training data y∗ values (Jacobson and Zou 2024).

The variance of the error, σ 2, is set to 1. See the Supplemen-
tary Appendix (Online Resource 1) for the results obtained
from simulations with σ ∈ {0.1, 2}. We also consider devi-
ations from the assumption of normally distributed errors.
In particular, we include results for simulations in which ε

is generated from Skew-t, and Weibull(1/2, 1/5) distribu-
tions.11 The number of covariates, p, is set to 30.We generate
500 training and 500 test observations.

3.2 Prediction simulation results

We compare the performance of TOBART-1, TOBART-1-
NP, Soft TOBART-1, and Soft TOBART-1-NP against Grabit
(Sigrist and Hirnschall 2019), linear Tobit (Tobin 1958),
BART(Chipmanet al. 2010),RandomForests (RF) (Breiman
2001), Gaussian Processes, and a Tobit Gaussian Process
model (Groot and Lucas 2012).12 The results for a Gaus-
sian Process (GP) with only 5 variables (always including
all informative variables) are included because GPs were
observed to produce inaccurate predictions when applied
to data with 30 variables.13 Censored outcome predictions
are evaluated using Mean Squared Error (MSE), and pre-
dicted probabilities of censoring are evaluated using theBrier
Score.14 15 All results are averaged over 5 repetitions. 16

The results for simulations with normally distributed
errors are presented in Tables 1 and 2. The TOBART algo-
rithms generally outperform competing methods across all
DGPs, except unsurprisingly for the linear Jacobson and Zou
(2024) simulations linear Tobit is outperformed only by Soft

10 This simulation differs somewhat from the original simulation of
Sigrist and Hirnschall (2019) for which the variable determining cen-
soring was not perfectly correlated with the observed outcome before
censoring.
11 Bradic and Guo (2016) considered Weibull(1/2, 1/5) errors in a
simulation study.
12 Standard BART for continuous outcomes is trained on censored
outcomes. Probit BART is trained on a binary variable indicating cen-
sorship. Similarly, RandomForests are separately trained on continuous
censored outcomes and a binary censorship indicator.
13 TheGPMatlab codewas obtained fromhttps://www.cs.ru.nl/~perry/
software/tobit1.html.
14 See the Supplementary Appendix (Online Resource 1) for imple-
mentation details and parameter settings.
15 Latent outcomepredictions similarly demonstrate that TOBARTout-
performs other methods, and these results are available on request.
However, it is unsurprising that Tobit based latent outcome predictions
outperform naive approaches due to the aforementioned censoring bias.
16 Computational times are included in Appendix D.
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TOBART.TOBART-NPcan slightly improve onTOBART in
some cases, but generally the results are similar when errors
are normally distributed. The differences in criteria across
methods are small for the more linear DGPs from Sigrist and
Hirnschall (2019) and Jacobson and Zou (2024), as linear
Tobit is designed for a linear DGP, and the nonlinear methods
BART and RF can model the relatively simple response sur-
facewell. It isworth noting thatTOBARToutperformsGrabit
even though the true standard deviation, σ = 1, is included
as one of five possibleGrabit hyperparameter values in cross-
validation. The same pattern of results can be observed for
simulations with σ = 0.1 and σ = 2 in the Supplementary
Appendix. The Supplementary Appendix contains compar-
isons of Area Under the Curve for all methods and DGPs,
from which similar conclusions can be drawn.

The results for Skew-t and Weibull distributed errors are
also presented in Tables 1 and 2.17 The TOBART models
outperform all other methods for almost all DGPs and crite-
ria. The results for the Weibull distribution generally favour
TOBART-NP and Soft TOBART-NP, indicating that there is
some improvement from the Dirichlet Process model when
the errors are sufficiently non-Gaussian.

The average coverage and length of 95% prediction inter-
vals for the latent outcomes and the observed outcomes are
given in the Supplementary Appendix (Online Resource 1).
For most DGPs and error distributions, TOBART and Soft
TOBART provides the closest to 95% coverage of predic-
tion intervals for both latent and observed outcomes. For
some DGPs with non-normal errors, the more conservative
intervals produced by TOBART-NP and Soft TOBART-NP
provide better coverage.

3.3 Description of treatment effect simulations

A number of recent simulation studies have demonstrated
that BART is among the most accurate treatment effect
estimation methods (Wendling et al. 2018; McConnell and
Lindner 2019; Dorie et al. 2019; Hahn et al. 2019). How-
ever, in practice many data sets, including randomized trial
data sets, contain censored outcomes. For example, antibody
concentrations or environmental levels of chemicals can only
be measured accurately within a certain range as a result of
limitations of measuring equipment. Often economic data is
censored due to privacy considerations, for example income
might be censored above a certain threshold. TOBART pro-
vides a machine learning treatment effect estimation method
with uncertainty quantification that can be applied to this
data while still making use of the information provided by
censored observations. We demonstrate the effectiveness of
TOBART by censoring the outcomes of DGPs from pub-

17 Results for t-distributed errors with ν = 3 are in the Supplementary
Appendix.

lished studies of machine learning methods for treatment
effect estimation. The chosen data generating processes con-
tain linear and non-linear functions of covariates, constant
and heterogeneous effects, and various degrees of confound-
ing.

3.3.1 Censored Caron et al. (2022) simulations

P = 10 covariates are generated from a multivariate Gaus-
sian distribution, X1, . . . , X10 ∼ MVN (0, �), with � jk =
0.6| j−k| + 0.1I( j 
= k). The binary treatment variable is
Bernoulli distributed, Zi ∼ Bern(π(xi )), where

π(xi ) = �(−0.4 + 0.3Xi,1 + 0.2Xi,2)

and �(·) is the cumulative distribution function of the stan-
dard normal distribution.
The prognostic score function, μ(xi ), and CATE function,
τ(xi ), are defined as

μ(xi ) = 3 + Xi,1 + 0.8 sin(Xi,2) + 0.7Xi,3Xi,4 − Xi,5

τ(xi ) = 2 + 0.8Xi,1 − 0.3X2
i,2

The outcome before censoring is generated as:

Y ∗
i = μ(xi ) + τ(xi )Zi + εi where εi ∼ N (0, 1)

The number of sampled observations is 200. The observed
outcome Yi is censored from below at the 15th percentile
of the generated Y ∗

i values, and from above at the 85th per-
centile.

3.3.2 Censored Friedberg et al. (2020) simulations

P = 20 covariates are generated from independent stan-
dard uniform distributions X1, ..., X20 ∼ U[0, 1]. There is
no confounding as π(xi ) = 0.5 and Zi ∼ Bern(π(xi )). The
prognostic score function, μ(xi ), and CATE function, τ(xi ),
are defined as μ(xi ) = 0 and

τ(xi ) =
(
1 + 1

1 + exp
(−20

(
Xi,1 − 1

3

))
)

×
(
1 + 1

1 + exp
(−20

(
Xi,2 − 1

3

))
)

.

The outcome before censoring is generated as:

Y ∗
i = μ(xi ) + τ(xi )Zi + εi where εi ∼ N (0, 1)

The number of sampled observations is 200. The observed
outcome Yi is censored from below at the 15th percentile
of the generated Y ∗

i values, and from above at the 85th per-
centile.
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Table 1 Simulation study, mean squared error

Data Tobit BART RF Grabit TOBART TOBART NP

Normal distribution, σ = 1

Friedman (1991) 4.764 1.765 4.559 2.291 1.162 1.154

Friedman (1991) 1 side 6.444 1.768 6.004 2.743 1.457 1.509

Groot and Lucas (2012) 12.886 2.247 4.612 0.702 0.631 0.617

Jacobson and Zou (2024) 0.694 0.722 0.855 0.739 0.718 0.720

Sigrist and Hirnschall (2019) 1.353 1.142 1.170 1.146 1.072 1.074

Skew-t distribution, location = 1, scale = 1, ν = 4

Friedman (1991) 5.075 2.172 4.790 2.495 1.648 1.597

Friedman (1991) 1 side 6.815 2.352 6.190 3.197 2.163 2.060

Groot and Lucas (2012) 14.700 2.999 5.563 1.204 1.149 1.071

Jacobson and Zou (2024) 1.195 1.264 1.301 1.271 1.238 1.184

Sigrist and Hirnschall (2019) 1.519 1.333 1.337 1.340 1.279 1.267

Weibull distribution, shape = 0.5, scale = 0.2

Friedman (1991) 4.599 1.502 4.576 2.099 0.871 0.811

Friedman (1991) 1 side 6.221 1.624 5.962 2.650 1.344 1.154

Groot and Lucas (2012) 11.297 1.746 4.071 0.760 0.787 0.648

Jacobson and Zou (2024) 0.721 0.814 0.873 0.783 0.960 0.696

Sigrist and Hirnschall (2019) 0.739 0.473 0.536 0.447 0.426 0.362

Data Sof t BART GP GP 5 vars GP Tobit Soft TOBART Soft TOBART NP

normal distribution, σ = 1

Friedman (1991) 0.942 50.248 0.985 50.331 0.743 0.745

Friedman (1991) 1 side 1.101 85.594 1.076 85.532 0.929 0.927

Groot and Lucas (2012) 2.187 16.045 2.728 16.042 0.546 0.546

Jacobson and Zou (2024) 0.684 7.109 0.681 7.053 0.675 0.675

Sigrist and Hirnschall (2019) 1.002 2.460 0.949 2.487 0.973 0.973

Skew-t distribution, location = 1, scale = 1, ν = 4

Friedman (1991) 1.250 47.049 1.316 47.099 1.066 1.027

Friedman (1991) 1 side 1.579 81.482 1.604 81.415 1.405 1.367

Groot and Lucas (2012) 2.769 19.210 3.348 19.210 0.947 0.933

Jacobson and Zou (2024) 1.170 8.877 1.138 8.823 1.142 1.133

Sigrist and Hirnschall (2019) 1.146 4.487 1.100 4.556 1.135 1.127

Weibull distribution, shape = 0.5, scale = 0.2

Friedman (1991) 0.721 46.692 0.758 46.730 0.492 0.436

Friedman (1991) 1 side 1.054 80.639 1.001 80.573 0.787 0.733

Groot and Lucas (2012) 1.712 15.435 1.903 15.436 0.610 0.598

Jacobson and Zou (2024) 0.718 7.447 0.716 7.392 0.705 0.691

Sigrist and Hirnschall (2019) 0.338 2.708 0.338 2.744 0.340 0.305

Minimum values, excluding GP trained with only the 5 relevant variables, are in bold

3.3.3 Censored Nie andWager (2021) simulations

The covariates are generated as follows across scenarios A
to D. In simulation A, X1, ..., X12 ∼ U[0, 1]. In simulations
B to D, X1, ..., X12 ∼ N (0, 1).

π(xi ) is defined as follows across scenarios A to D: (A)
trim0.1{sin(πXi,1Xi,2)}, (B) constant equal to 0.5, (C) 1/{1+
exp(Xi,2 + Xi,3)}, (D) 1/{1 + exp(−Xi,1) + exp(−Xi,2)}.

μ(xi ) is defined as follows across scenarios A to D:
(A) sin(πXi,1Xi,2) + 2(Xi,3 − 0.5)2 + Xi,4 + 0.5Xi,5, (B)
max{Xi,1 + Xi,2, Xi,3, 0}, (C) 2 log{1 + exp(Xi,1 + Xi,2 +
Xi,3)}, (D) 1

2 [max{Xi,1 + Xi,2 + Xi,3, 0} + max{Xi,4 +
Xi,5, 0}].

τ(xi ) is defined as follows across scenarios A to D: (A)
(Xi,1 + Xi,2)/2, (B) Xi,1 + log{1+ exp(Xi,2)}, (C) constant
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Table 2 Simulation study, Brier score

Data Tobit BART RF Grabit TOBART TOBART NP

Normal distribution, σ = 1

Friedman (1991) 0.140 0.165 0.195 0.135 0.069 0.070

Friedman (1991) 1 side 0.061 0.058 0.077 0.067 0.032 0.033

Groot and Lucas (2012) 0.287 0.121 0.171 0.158 0.116 0.115

Jacobson and Zou (2024) 0.099 0.104 0.123 0.105 0.102 0.102

Sigrist and Hirnschall (2019) 0.052 0.052 0.053 0.050 0.047 0.047

Skew-t distribution, location = 1, scale = 1, ν = 4

Friedman (1991) 0.152 0.173 0.197 0.143 0.083 0.081

Friedman (1991) 1 side 0.074 0.071 0.094 0.070 0.047 0.044

Groot and Lucas (2012) 0.281 0.122 0.172 0.177 0.119 0.119

Jacobson and Zou (2024) 0.098 0.103 0.121 0.141 0.106 0.101

Sigrist and Hirnschall (2019) 0.049 0.049 0.050 0.049 0.047 0.046

Weibull distribution, shape = 0.5, scale = 0.2

Friedman (1991) 0.137 0.163 0.197 0.170 0.058 0.053

Friedman (1991) 1 side 0.060 0.059 0.081 0.061 0.028 0.024

Groot and Lucas (2012) 0.290 0.058 0.144 0.116 0.077 0.073

Jacobson and Zou (2024) 0.056 0.061 0.088 0.072 0.072 0.046

Sigrist and Hirnschall (2019) 0.046 0.045 0.046 0.040 0.041 0.038

Data Soft BART GP GP 5 vars GP Tobit Soft TOBART Soft TOBART NP

Normal distribution, σ = 1

Friedman (1991) 0.116 0.477 0.120 0.477 0.055 0.055

Friedman (1991) 1 side 0.033 0.455 0.055 0.456 0.025 0.025

Groot and Lucas (2012) 0.107 0.241 0.233 0.241 0.106 0.107

Jacobson and Zou (2024) 0.100 0.440 0.168 0.444 0.099 0.099

Sigrist and Hirnschall (2019) 0.050 0.054 0.050 0.055 0.042 0.042

Skew-t distribution, location = 1, scale = 1, ν = 4

Friedman (1991) 0.135 0.489 0.144 0.489 0.064 0.062

Friedman (1991) 1 side 0.047 0.459 0.078 0.459 0.034 0.033

Groot and Lucas (2012) 0.110 0.251 0.258 0.251 0.111 0.111

Jacobson and Zou (2024) 0.098 0.444 0.171 0.447 0.098 0.097

Sigrist and Hirnschall (2019) 0.048 0.049 0.046 0.050 0.044 0.044

Weibull distribution, shape = 0.5, scale = 0.2

Friedman (1991) 0.120 0.488 0.120 0.488 0.037 0.032

Friedman (1991) 1 side 0.031 0.463 0.060 0.463 0.016 0.012

Groot and Lucas (2012) 0.050 0.247 0.206 0.247 0.067 0.065

Jacobson and Zou (2024) 0.049 0.440 0.144 0.444 0.054 0.039

Sigrist and Hirnschall (2019) 0.044 0.045 0.037 0.046 0.036 0.034

Minimum values, excluding GP trained with only the 5 relevant variables, are in bold

equal to 1, (D) max{Xi,1 + Xi,2 + Xi,3, 0} − max{Xi,4 +
Xi,5, 0}.
The outcome before censoring is generated as:

Y ∗
i = μ(xi ) + τ(xi )(Zi − 0.5) + εi where εi ∼ N (0, 1)

The number of sampled observations is 200. The observed
outcome Yi is censored from below at the 15th percentile

of the generated Y ∗
i values, and from above at the 85th per-

centile.

3.4 Treatment effect simulation results

All methods are evaluated in terms of Precision in Estima-
tion of Heterogeneous Effects (PEHE), which is defined as
1
N

∑N
i=1(τ̂ (xi )−τ(xi ))2. Confidence intervals are evaluated
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Table 3 Treatment effect simulation results

Method Caron et al. (2022) DGP Friedberg et al. (2020) DGP Nie and Wager (2021) DGP A
PEHE Cov Len PEHE Cov Len PEHE Cov Len

BART all 0.943 0.311 0.873 1.301 0.378 0.814 0.058 0.638 0.453

BART uncens 1.345 0.235 0.931 2.772 0.122 0.770 0.122 0.385 0.436

Soft BART all 0.609 0.640 1.491 0.538 0.558 1.325 0.060 0.778 0.616

Soft BART uncens 1.048 0.428 1.412 2.067 0.294 1.139 0.145 0.387 0.445

CF 0.863 0.415 0.891 0.953 0.365 0.784 0.259 0.767 0.683

LLF 0.850 0.462 1.069 0.876 0.443 1.037 0.281 0.791 0.776

Grabit 0.722 – – 0.512 – – 0.128 – –

TOBART 0.536 0.863 1.917 0.329 0.900 1.905 0.043 0.993 1.121

TOBART-NP 0.528 0.935 2.470 0.314 0.970 2.318 0.043 1 1.655

Soft TOBART 0.390 0.935 1.970 0.218 0.905 1.738 0.043 0.968 0.867

Soft TOBART-NP 0.394 0.972 2.657 0.211 0.9855 2.261 0.043 1 1.471

Method Nie and Wager (2021) DGP B Nie and Wager (2021) DGP C Nie and Wager (2021) DGP D
PEHE Cov Len PEHE Cov Len PEHE Cov Len

BART all 1.041 0.2912 0.661 0.126 0.283 0.560 1.628 0.360 0.502

BART uncens 1.435 0.1972 0.579 0.319 0.048 0.591 1.699 0.346 0.461

Soft BART all 0.548 0.577 0.976 0.102 0.516 0.700 1.102 0.565 1.181

Soft BART uncens 0.966 0.398 0.929 0.265 0.291 0.804 1.674 0.340 0.423

CF 0.650 0.686 1.148 0.555 0.013 0.543 1.165 0.391 0.722

LLF 0.550 0.846 1.570 0.543 0.038 0.563 0.933 0.535 1.096

Grabit 0.650 – – 0.242 – – 1.500 – –

TOBART 0.305 0.902 1.694 0.032 0.994 1.192 0.948 0.759 1.913

TOBART-NP 0.316 0.954 2.307 0.032 1 2.114 0.937 0.818 2.304

Soft TOBART 0.145 0.968 1.480 0.025 0.996 0.975 0.679 0.807 1.897

Soft TOBART-NP 0.153 0.986 2.231 0.025 1 1.975 0.684 0.864 2.252

Caron et al. (2022), Friedberg et al. (2020), and Nie and Wager (2021) simulations with censoring from below at 15th percentile and from above
at 85th percentile. PEHE Precision in Estimation of Heterogeneous Effects, Cov average coverage of 95% intervals, Len average length of 95%
intervals. Minimum PEHE values are in bold. Coverage values closest to 0.95 are in bold.

in terms of average coverage of 95% intervals and average
length of intervals.

The results are presented in Table 3. For all DGPs, at
least one TOBART method attains lower PEHE than all
other methods, often by a large margin. Local Linear Forests
(Friedberg et al. 2020) attain similar PEHE to TOBART
and TOBART-NP for Nie and Wager (2021) DGP D, which
involves partly linear prognostic and treatment effect func-
tions, although soft TOBART is notably more accurate. The
average coverages of TOBART and soft TOBART credible
intervals for τ(xi ) are generally much closer to 95% than
the coverages of intervals produced by competing methods.
TOBART-NP produces very wide credible intervals relative
to TOBART. TOBART-NP produces better coverage than
TOBART for four DGPs.

4 Data application

For the data application, we consider the same methods as in
Sect. 3.2, excluding Gaussian Processes and adding a hurdle
model combining linear regression and probit. For each data
set, we average results over 10 training-test splits. Each split
is defined by taking a random sample of floor(0.7n) train-
ing observations stratified by censorship status. Categorical
variableswere encoded as sets of dummyvariables. The num-
bers of observations, covariates, and proportions of censored
observations are given in Table 4. Appendix C contains data
descriptions with references to original sources.
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Table 4 Data application:
number of observations (n),
number of covariates (p), and
proportions censored from
below and above

Data Set n p % cens. below % cens. above

Real censoring

antibody 330 3 26.1 0

Recon 423 108 11.1 0

Atrazine 48 2 29.2 0

SedPb 42 2 3.6 0

Pollen_Thia 204 4 42.6 0

Missouri 127 3 26.8 0

BostonHousing 506 108 0 3.2

Fake censoring

ozone 330 8 15 15

ankara 1609 9 15 15

bbb 208 133 15 15

tri 185 58 15 15

ais 202 10 15 15

hatco 100 13 15 15

servo 167 11 15 15

cpu 209 6 15 15

diamonds 308 14 15 15

tec 240 122 15 15

4.1 Data application results

The data application results are presented in Table 5. For
most data sets the results are similar across methods, partic-
ularly when methods are evaluated in terms of Brier score
for predicted probabilities of censoring. Soft TOBART-NP
performs best in terms of area under the receiver operating
characteristics curve (AUROC). TOBART can give notably
lower MSE of outcome predictions relative to other methods
for some data sets. Prediction interval coverage is generally
similar across methods, although prediction interval length
for TOBART-based methods can be notably smaller than for
standard BART.

In contrast to the simulation studies above, there is not
a clear winning method in Table 5. Although censored out-
come models have been applied to these data sets in previous
work, perhaps other models are more suitable for some data
sets. This is evidenced by the fact that for many data sets the
combination of probit and a linear model outperforms Tobit.
Therefore for some data sets zero inflated, hurdle, or sample
selectionmodels might bemore appropriate. For the data sets
onwhichTobit outperformsprobit and a linearmodel in terms
of MSE, namely Recon and Atrazine, the best method
is Soft TOBART. The TOBARTmodels also notably outper-
form other methods when applied to the BostonHousing
and Missouri data sets.

A lesson from this study is that it is important to select
the appropriate model for the data set. The TOBART and
Grabit methods are designed for the same form of DGPs,

therefore it is arguably fairer to compare these two methods.
Soft TOBART produces lower MSE predictions than Gra-
bit across almost all data sets.18 Nonetheless, the results are
less impressive than those observed in the simulation study.
Possible explanations for this include slow mixing of the
TOBART Markov Chain, small sample sizes for some data
sets, and very small or very large proportions of censored
outcomes.

Censored outcome models are intended for prediction of
latent outcomes, and it is not possible to evaluate these pre-
dictions by only using censored outcome data. In order to
demonstrate the usefulness of TOBART for modelling of
latent outcomes using real data, we artificially censor out-
comes from some real datasets. The data sets summarized
in Table 4 were previously studied by Kapelner and Bleich
(2016) (Ozone and Ankara) and Linero and Yang (2018)
(all other data sets).19 We introduce fake censoring from
below and above at the 15th and 85th percentiles respec-
tively. Therefore the true values of “censored” outcomes are
known.

The results in Table 6 suggest that TOBART-based meth-
ods can produce much more accurate predictions of latent
outcomes than competing methods even if differences in

18 Potentially Grabit could produce better results with more hyperpa-
rameter tuning, although this would be computationally costly.
19 The outcomes for all data except Ozone and Ankara were trans-
formed to resemble normally distributed using code provided by Linero
and Yang (2018).
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Table 5 Data application results: mean squared error of outcome pre-
dictions relative to TOBART; Brier score and AUROC for predicted
probabilities of censoring; 95% posterior predictive interval average

coverage and length. Average over 10 random splits into 70% training
data 30% test data. Minimum MSE, minimum Brier score, maximum
AUROC, and coverage values closest to 0.95 are in bold

Data Set TOBART TOBART NP Soft TOBART Soft TOBART NP Grabit BART RF Probit+LM Tobit

MSE relative to TOBART

antibody 1.00 0.98 1.01 0.97 0.96 1.00 0.99 0.99 0.99

Recon 1.00 0.74 0.63 0.77 0.66 0.74 0.68 0.85 0.81

Atrazine 1.00 0.98 0.97 0.98 0.99 1.01 1.01 1.02 1.00

SedPb 1.00 0.97 0.94 0.95 1.03 0.93 1.08 1.02 1.02

Pollen_Thia 1.00 0.99 1.00 1.00 0.99 0.99 0.99 0.99 1.00

Missouri 1.00 0.66 0.58 0.73 0.88 0.76 0.77 0.93 0.93

BostonHousing 1.00 1.49 1.02 1.06 1.38 1.18 1.31 113.37 125.10

Brier score

antibody 0.22 0.20 0.22 0.20 0.23 0.19 0.19 0.19 0.22

Recon 0.17 0.12 0.17 0.11 0.15 0.09 0.09 0.22 0.24

Atrazine 0.11 0.12 0.19 0.17 0.22 0.01 0.02 0.00 0.10

SedPb 0.04 0.04 0.05 0.05 0.07 0.04 0.05 0.05 0.05

Pollen_Thia 0.17 0.16 0.18 0.16 0.22 0.13 0.13 0.13 0.17

Missouri 0.17 0.15 0.17 0.14 0.18 0.13 0.13 0.18 0.22

BostonHousing 0.02 0.03 0.01 0.02 0.02 0.03 0.02 0.13 0.03

AUROC

antibody 0.49 0.57 0.49 0.58 0.44 0.58 0.58 0.58 0.50

Recon 0.71 0.83 0.83 0.85 0.76 0.85 0.75 0.57 0.74

Atrazine 1.00 1.00 1.00 1.00 0.50 1.00 1.00 1.00 1.00

SedPb 0.77 0.77 0.77 0.78 0.74 0.60 0.52 0.39 0.77

Pollen_Thia 0.86 0.87 0.86 0.87 0.87 0.86 0.86 0.86 0.86

Missouri 0.90 0.90 0.91 0.91 0.86 0.90 0.87 0.70 0.73

BostonHousing 0.97 0.91 0.99 0.99 0.96 0.96 0.99 0.74 0.52

95% prediction interval coverage

antibody 0.96 0.98 0.96 0.98 0.95

Recon 0.74 0.98 0.97 0.98 0.96

Atrazine 0.97 0.96 0.97 0.96 0.96

SedPb 0.90 0.90 0.94 0.92 0.92

Pollen_Thia 0.98 0.97 0.98 0.97 0.97

Missouri 0.97 0.97 0.99 0.98 0.98

BostonHousing 0.95 0.96 0.96 0.96 0.94

95% prediction interval length

antibody 5.91 7.92 5.74 7.91 8.56

Recon 8.63 31.48 21.50 33.55 33.47

Atrazine 18.51 12.85 22.63 13.51 39.60

SedPb 13.89 13.61 15.28 14.67 16.06

Pollen_Thia 11.27 8.80 11.38 8.97 20.02

Missouri 11.95 10.79 12.00 13.07 19.89

BostonHousing 10.08 13.94 10.68 11.33 10.93
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Table 6 Fake censoring data application results: MSE of outcome and
latent outcome predictions relative to TOBART; latent outcome 95%
posterior predictive interval average coverage and length. Average over

5 random splits into 70% training data 30% test data. Minimum MSE,
and coverage values closest to 0.95 are in bold

Data Set TOBART TOBART NP Soft TOBART Soft TOBART NP Grabit BART RF

Observed censored outcome MSE relative to TOBART

ozone 1.00 1.02 1.04 1.04 1.77 1.03 1.00

ankara 1.00 1.04 0.79 0.79 1.27 1.03 1.29

bbb 1.00 1.02 0.98 1.01 1.09 0.90 0.84

tri 1.00 0.94 1.00 0.93 1.39 0.26 0.23

ais 1.00 1.00 1.00 1.00 1.01 1.01 1.09

hatco 1.00 1.14 0.84 1.08 1.56 1.22 1.05

servo 1.00 1.11 0.74 0.98 1.90 0.97 1.42

cpu 1.00 1.02 0.92 0.94 1.35 0.80 0.78

diamonds 1.00 1.75 0.39 1.89 2.64 0.15 2.77

tec 1.00 1.29 0.42 0.66 1.61 1.39 3.14

Latent outcome MSE relative to TOBART

ozone 1.00 1.00 1.03 1.03 1.91 1.13 1.09

ankara 1.00 1.06 0.84 0.87 2.39 3.46 4.14

bbb 1.00 1.00 1.01 1.02 1.26 1.17 1.10

tri 1.00 1.00 1.02 1.03 1.00 1.07 0.96

ais 1.00 1.00 1.01 1.02 1.00 0.97 0.98

hatco 1.00 1.13 1.13 1.24 2.29 1.31 1.30

servo 1.00 1.06 1.29 1.17 3.15 1.47 2.32

cpu 1.00 1.02 0.83 0.84 1.54 1.42 1.55

diamonds 1.00 1.76 2.39 5.17 5.71 5.29 24.91

tec 1.00 1.16 0.62 0.91 2.13 1.77 4.38

Latent outcome 95% prediction interval coverage

ozone 0.97 0.94 0.96 0.94 0.85

ankara 0.99 0.98 0.95 0.94 0.74

bbb 0.91 0.93 0.91 0.92 0.79

tri 0.92 0.92 0.92 0.92 0.84

ais 0.95 0.95 0.96 0.95 0.83

hatco 0.95 0.97 0.92 0.97 0.84

servo 0.95 0.97 0.90 0.97 0.86

cpu 0.96 0.96 0.97 0.98 0.80

diamonds 1.00 1.00 0.97 1.00 0.71

tec 0.98 0.99 0.93 0.99 0.73

Latent outcome 95% prediction interval length

ozone 20.86 18.28 20.57 18.77 13.79

ankara 11.47 9.00 6.71 6.49 5.33

bbb 1.85 2.09 1.84 2.04 1.46

tri 0.45 0.46 0.49 0.49 0.36

ais 2.28 2.25 2.35 2.29 1.64

hatco 1.70 2.40 1.48 2.43 1.39

servo 1.36 1.78 1.24 1.82 1.22

cpu 1.82 2.06 1.69 1.97 1.24

diamonds 0.41 0.82 0.38 0.93 0.14

tec 2.07 2.88 1.19 2.20 1.17

123



Statistics and Computing           (2024) 34:123 Page 13 of 19   123 

MSE of observed outcome predictions are relatively small.
Latent outcome posterior predictive interval coverage is gen-
erally much better for TOBART than for BART. This is
unsurprising, as the BART posterior predictive intervals are
not designed for latent outcomes.

5 Conclusion

Type I TOBART produces accurate predictive probabilities
of censoring, predictions of outcomes, and treatment effect
estimates. TOBART-NP, gives better uncertainty quantifi-
cation for some simulated DGPs. Advantages of TOBART
over competingmethods include the fact that hyperparameter
tuning is not required, and the straightforward combination
of the method with other variations on BART to allow for
smooth DGPs and sparsity (Linero and Yang 2018).

Supplementary information

The online supplementary appendix contains (A) additional
simulation study results, (B) additional data application
results, and (C) implementation details and parameter set-
tings.

Appendix A TOBART-1 Gibbs sampler

A.1 Gibbs sampler algorithms

For completeness of exposition,wedescribe here the full con-
ditional samples from p((Tk, Mk)|{(Tj , Mj )} j 
=k, σ, y∗) k =
1, . . . ,m introducedbyChipman et al. (2010) inAlgorithm1.
This sample is separated into a Metropolis-Hastings draw of
p(Tk |{(Tj , Mj )} j 
=k, σ, y∗) k = 1, . . . ,m following by a
closed form (multivariate normal) draw from
p(Mk |Tk, {(Tj , Mj )} j 
=k, σ, y∗) k = 1, . . . ,m).

The TOBART and TOBART-NP Gibbs samplers are
described in algorithm 2.

A.2 TOBART-NP out of sample distribution of the
error

For test data predictive intervals, we may sample TOBART-
NPerror termvalues for out of sample observations.VanHas-
selt (2011) describes the sampling method as follows. Let ñ
denote the index of an out of sample observation. At iteration
t ∈ {1, ..., T } of the Markov chain, given {ϑi,t }ni=1, generate
an out-of-sample value ϑñ,t according to:

ϑñ,t

{
= ϑi,t with probability 1

α+n for i = 1, ..., n

∼ G0 with probability α
α+n

An estimate of the posterior predictive distribution of the
error is

f̂ (u|y, s) = 1

T

T∑

t=1

f (u|μñ,t , σ
2
ñ,t )

Also, samples u(t)
ñ can be made fromN

(
μñ,t , σ

2
ñ,t

)
for each

iteration t of the MCMC sampler.

Appendix B Treatment effect with censored
outcomes; additional details

A model naively trained on the full dataset with censoring
estimates the following:

E[Yi (1) − Yi (0)|xi ] = τ(xi )

×
(

�
(b − μ(xi ) − τ(xi )

σ

)
− �

(a − μ(xi ) − τ(xi )
σ

))

+μ(xi )
(

�
(b − μ(xi ) − τ(xi )

σ

)

−�
(a − μ(xi ) − τ(xi )

σ

)
− �

(b − μ(xi )
σ

)

+�
(a − μ(xi )

σ

))

+σ

(
φ
(a − (μ(xi ) + τ(xi )))

σ

)

−φ
(b − (μ(xi ) + τ(xi ))

σ

)
− φ

(a − μ(xi )
σ

)

+φ
(b − μ(xi )

σ

))

+a

(
�
(a − μ(xi ) − τ(xi )

σ

)
− �

(a − μ(xi )
σ

))

+b

(
�
(b − μ(xi )

σ

)
− �

(b − μ(xi ) − τ(xi )
σ

))

Appendix C Description of data sets

• antibody: Measles vaccine response data set obtained
from Moulton and Halsey (1995), originally from Job
et al. (1991). The outcome is an antibody measurement
censored from below at 0.1, n = 330 and p = 3.

• Recon: Atrazine concentrations in streams throughout
the Midwestern United States. Data available in the R
package NADA (Helsel 2005) sourced fromMueller et al.
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Algorithm 1 Full conditional sampler for Bayesian trees (Chipman et al. 2010)
Input: (Latent) outcome values y∗, covariates X , constant error variance for TOBART σ 2, trees and terminal node parameters {(Tk , Mk)}mk=1 or
observation-specific error means and variances for TOBART-NP {γi , σ 2

i }ni=1 .
for k = 1, . . .m do

1. Create partial residuals. For TOBART Rk,i = y∗
i −∑s 
=k gk(xi ). For TOBART-NP Rk,i = y∗

i − γi −∑s 
=k gk(xi ).
2. Draw from Tk |{(Tj , Mj )} j 
=k , σ, y∗ using a Metropolis-Hastings Sampler. Propose T ′

k using a PRUNE, CHANGE, or GROW proposal.
The PRUNE proposal removes (uniformly at random) a split that results in two terminal nodes from Tk . i.e. remove the children nodes from a
random internal node without grandchildren.
The CHANGE proposal uniformly at random selects an internal node without grandchildren from tree Tk and randomly samples a new splitting
variable (uniformly) and splitting point (uniformly).
The GROW proposal uniformly at random selects a terminal node of tree Tk (with some minimum number of observations) and uniformly at
random samples a new splitting variable and splitting point to create tree T ′

k .
3. The log-likelihoods of trees Tk and T ′

k , marginalizing out the terminal node parameters Mk (or M ′
k ), are standard weighted linear regression

log-likelihoods log
(
p(Rk |Tk , {σ 2

i }ni=1)
) =

bk∑

l=1

⎡

⎢⎢⎢⎣−|nkl | log
(√

2π
)

−
∑

i∈nkl
log(σi ) − 1

2
log

⎛

⎝1 +
∑

i∈nkl

σ 2
μ

σ 2
i

⎞

⎠−
∑

i∈nkl

R2
ik

2σ 2
i

+

(∑
i∈nkl

Rik
σ 2
i

)2

2

(
1
σ 2

μ
+∑i∈nkl

1
σ 2
i

)

⎤

⎥⎥⎥⎦

bk is the number of terminal nodes in Tk . There are nkl observations in the lth terminal node.

4. The Metropolis-Hastings step accepts the new tree proposal T ′
k with probability equal to

p(T ′
k→Tk )

p(Tk→T ′
k )

p(Rk |T ′
k ,{σ 2

i }ni=1)

p(Rk |Tk ,{σ 2
i }ni=1)

p(T ′
k )

p(Tk )
, where p(Tk → T ′

k )

is the probability of proposing tree T ′
k given the current tree is Tk .

The terminal node parameters Mk = (μ1k , . . . , μbkk)
′ are drawn from the full conditional p(Mk |Tk , {(Tj , Mj )} j 
=k , σ, y∗) k = 1, . . . ,m),

which separates into independent univariate normal draws. For � = 1, . . . , bk sample from

p(μ�k |{Rk,i }i∈�, {σ 2
i }ni=1, σ

2
μ) = N (μ�|μ̃�, σ̃

2
� ) , σ̃ 2

� = 1
1
σ 2

μ
+∑i∈�

1
σ 2
i

, μ̃� = σ̃ 2
�

(∑

i∈�

Rk,i

σ 2
i

)

end for

(1997). The outcome is Atrazine concentration, censored
from below at 0.05, n = 423 and p = 108.

• Atrazine:Atrazine concentrations inNebraskaground
water. Data available in the R package NADA (Helsel
2005) sourced from Junk et al. (1980). The outcome
is Atrazine concentration, censored from below at 0.01,
n = 48 and p = 2.

• SedPb: Lead concentrations in stream sediments before
and after wildfires. Data available in the R package NADA
(Helsel 2005). The outcome is Lead concentration, cen-
sored from below at 4, n = 82 and p = 2.

• Pollen_Thia: Thiamethoxamconcentrations in pollen
from theOntario PollenMonitoringNetwork. Data avail-
able in the R package NADA2 (Helsel 2005) sourced from
Junk et al. (1980). The outcome is Thiamethoxam con-
centration, censored from below at 0.05, n = 204 and
p = 4.

• Missouri: TCDDconcentrations used byZirschky and
Harris (1986) in a geostatistical analysis of Hazardous
waste data in Missouri. Data available in the R package
CensSpatial (Helsel 2005). The outcome is censored
from below at 0.1, n = 127 and p = 3.

• BostonHousing: Housing data for 506 census tracts
of Boston from the 1970 census available in the R pack-

age mlbench (Leisch and Dimitriadou 2021), sourced
from Harrison Jr and Rubinfeld (1978), Pace and Gilley
(1997). Outcome is median value of owner-occupied
homes in USD 1000’s censored from above at 50. n =
506, p = 108.

• ankara: Mean temperature and other weather data for
Ankara from 1994 to 1998.

• ozone: Ozone concentrations and weather data for Los
Angeles in 1976.

• bbb: Log of the ratio of the concentration of a compound
in the brain and in the blood (Mente andLombardo 2005).
Availeble in R package caret.

• tri,ais,hatco,servo,cpu,diamonds,tec: See
Kim et al. (2007) for data sources.

Appendix D Comparison of simulation study
computational times

This appendix contains a comparison of average computa-
tional times, inminutes, across iterations for eachDGP of the
simulation study. The times for BART,RF, and Soft BARTdo
not contain the time taken to train separatemodels for estima-
tion of binary censoring probabilities. The Grabit time does
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Algorithm 2 TOBART and TOBART-NP Gibbs Sampler
Input: Number of MCMC iterations, B. Outcome values y, covariates X , censoring limits a and b, hyperparameter values α, β, κ , ν, λ (or q).
For TOBART-NP, hyperparameters γ0 and k0.

0. Set initial values of fy , intialize allm trees as stumps with no splits. For TOBART, initialize σ . For TOBART-NP, set initial values of γi , σi .
for b = 1, . . . B do

1. Draw latent variable from y∗|γi , σi , fy, y

y∗
i ∼

⎧
⎪⎨

⎪⎩

T N (−∞,a]
(
f (xi ) + γi , σ

2
i

)
if yi = a

yi if a < y∗
i < b

T N (b,∞]
(
f (xi ) + γi , σ

2
i

)
if yi = b

2. Draw the sum of trees fy | y∗, γi , σi , by applying Algorithm 1.

3. [TOBART] Draw σ 2 from an inverse gamma distribution IG
(
n+ν
2 ,

∑n
i=1(y

∗
i −ŷi )2+νλ

2

)
.

3. [TOBART-NP]
for i = 1, ..., n do

Sample from (γi , σi )| y∗, {(γk , σk), k 
= i}, fy . This follows the procedure described in Escobar (1994), Escobar and West (1995), Escobar
and West (1998). For a similar context see step 3 of algorithm 1 of Chib and Greenberg (2010). Define ϑi = (γi , σi ). Let ϑ−i = {(γ−i , σ−i )} =
{(γk , σk), k 
= i} be the set of pairs of parameters excluding (γi , σi ). Let (γ ∗−i,r , σ

∗−i,r ) with r = 1, ..., k−i be the set of k−i unique pairs of
parameters in the set {(γ−i , σ−i )}.
(i) Calculate qi,0 = αtν

(
y∗
i | fy(xi ), λ(1 + 1

k0
)
)
where tν denotes the probability density function of a t distribution with ν degrees of freedom.

(ii) For r = 1, ..., k−i calculate q−i,r = n−i,rN
(
y∗
i |γ ∗−i,r + fy(xi ), (σ ∗−i,r )

2
)
.

(iii) Scale qi,0 and q−i,r to q̃i,0 = qi,0

qi,0+∑k−i
r=1 q−i,r

, and , q̃−i,r = q−i,r

qi,0+∑k−i
s=1 q−i,s

for r = 1, ..., k−i .

(iv) Draw r ′ ∈ {0, 1, ..., k−i } from a categorical distribution with probabilities {q̃i,0, q̃i,1, ..., q̃i,k−i }

(v)

⎧
⎪⎨

⎪⎩

If r ′ 
= 0, set (γi , σi ) = (μr ′ , σr ′ )

If r ′ = 0, draw σ 2
i ∼ IG

(
ν+1
2 , νλ

2 + (y∗
i − fy (xi ))2

2

(
1+ 1

k0

)
)
then γi |σ 2

i ∼ N
(

1
k0+1 (y∗

i − fy(xi )),
σ 2
i

k0+1

)

end for
4. [TOBART-NP] The following mixing step speeds up convergence of the Markov chain. Steps of this form were introduced by Bush and

MacEachern (1996) and West et al. (1994).
Let n j denote the number of observations in cluster j , N j = {i : �i = j} where the variable �i equals the index of the cluster to which

observation i belongs. Let ui = y∗
i − fy(xi ) and let ū( j) =

∑
i∈N j

ui

n j
be the mean of ui values for all observations in cluster N j .

Note that p(γ ∗
j , σ

∗
j | y∗, fy) ∝∏n j

i=1 N
(
y∗
i | fy(xi ) + γ j , σ

2
j

)
N
(
γ j |0, σ 2

j
k0

)
IG
(
σ 2
j | ν

2 , νλ
2

)
.

A standard conjugacy result implies that we can sample σ ∗
j
2 ∼ IG

(
ν+n j
2 , νλ

2 + 1
2

∑
∀i∈N j

(ui − ū( j))2 + n j k0
k0+n j

(ū( j))2

2

)
, γ ∗

j ∼
N
(

n j ū( j)

k0+n j
,

(σ ∗
j )

2

k0+n j

)

5. [TOBART-NP] Sample an auxiliary variable κ ∼ Beta(α + 1, n) and sample α from the mixture distribution
α|k ∼ pκGamma(c1 + k, c2 − log κ) + (1 − pκ )Gamma(c1 + k − 1, c2 − log κ)

where k is the current number of mixture components, i.e. unique elements of {ϑi }ni=1 = {γi , σi }ni=1. pκ is the mixing probability, set so that
pκ

1−pκ
= c1+k−1

n(c2−log κ)
.

If the prior on α is the prior applied by George et al. (2019), McCulloch et al. (2021) and Conley et al. (2008), then samples are obtained
from α|k by noting that p(α|k) ∝ p(k|α)p(α) ∝ αk �(α)

�(n+α)
× (1 − α−αmin

αmax−αmin
)ψ (Antoniak 1974). A sample can be obtained by discretizing the

support and making a multinomial draw. McCulloch et al. (2021) use an equally spaced grid of 100 values from αmin to αmax .
end for

not contain the considerable time required for parameter tun-
ing by 5-fold cross-validation (the model was re-trained 135
times in each fold for different parameter settings).

TheGaussian ProcessMATLAB codewritten byGroot and
Lucas (2012) was called in R via the R package R.matlab.
All other functions were implemented in R. Therefore the
Gaussian Process times are omitted for fair speed compari-
son. The Gaussian Process functions were fast, and ran for
at most a few minutes per iteration. Tables 7, 8 and 9 contain
the computational times for simulations with normal, skew-t,
and Weibull distributed errors respectively.

Appendix E Simulation study - TOBART prior
settings

This appendix contains a comparison of simulation study
results for different prior parameter settings.

For standard TOBART, we present results for different
λ parameter settings. Recall that σ−2 ∼ Ga( v

2 , vλ
2 ) and λ

is set such that the qth quantile of the prior distribution of
σ is equal to some estimate σ̂ . For standard BART, σ̂ is
the sample standard deviation of the residuals from a linear
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Table 7 Simulation study, normal distribution, σ = 1, computational times, in minutes

Data Tobit BART RF Grabit TOBART TOBART NP

Friedman (1991) 0.028 6.800 9.912 0.675 3.142 27.762

Friedman (1991) 1 side 0.035 5.713 10.269 1.747 1.106 56.761

Groot and Lucas (2012) 0.167 6.046 40.916 1.153 33.681 26.193

Jacobson and Zou (2024) 0.030 7.508 13.267 0.364 3.563 11.993

Sigrist and Hirnschall (2019) 0.030 6.262 11.670 0.265 13.910 41.027

Soft BART Soft TOBART Soft TOBART NP

Friedman (1991) 22.214 24.416 109.241

Friedman (1991) 1 side 16.938 34.236 89.566

Groot and Lucas (2012) 30.325 89.028 103.573

Jacobson and Zou (2024) 33.373 9.905 150.921

Sigrist and Hirnschall (2019) 17.918 44.855 97.271

Table 8 Simulation study, Skew-t distribution, computational times, in minutes

Tobit BART RF Grabit TOBART TOBART NP

Friedman (1991) 0.011 6.543 9.505 0.461 2.912 48.585

Friedman (1991) 1 side 0.086 6.802 28.386 0.560 16.317 29.928

Groot and Lucas (2012) 0.026 6.438 11.567 0.352 3.527 20.167

Jacobson and Zou (2024) 0.054 6.813 19.126 0.404 8.625 19.915

Sigrist and Hirnschall (2019) 0.068 7.536 22.446 0.353 10.291 79.636

Soft BART Soft TOBART Soft TOBART NP

Friedman (1991) 18.040 40.479 88.207

Friedman (1991) 1 side 32.417 31.089 117.085

Groot and Lucas (2012) 22.372 17.976 132.344

Jacobson and Zou (2024) 29.291 20.369 131.629

Sigrist and Hirnschall (2019) 36.055 100.532 166.530

Table 9 Simulation study, Weibull distribution, computational times, in minutes

Tobit BART RF Grabit TOBART TOBART NP

Friedman (1991) 0.011 6.705 17.705 0.489 9.170 39.305

Friedman (1991) 1 side 0.094 7.075 30.974 0.634 21.699 21.012

Groot and Lucas (2012) 0.083 6.531 22.959 0.469 16.355 11.189

Jacobson and Zou (2024) 0.123 6.695 39.388 0.657 28.227 30.822

Sigrist and Hirnschall (2019) 0.074 7.479 26.137 0.386 13.289 80.480

Soft BART Soft TOBART Soft TOBART NP

Friedman (1991) 25.684 38.256 103.480

Friedman (1991) 1 side 35.920 22.301 136.298

Groot and Lucas (2012) 33.716 10.948 130.280

Jacobson and Zou (2024) 33.999 12.964 120.808

Sigrist and Hirnschall (2019) 39.141 12.418 151.876
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Table 10 Simulation study, mean squared error. Different Prior calibration settings for error term distribution

Data TOBART naive
sd

TOBART Tobit
sd

TOBART cens
sd

TOBART lm sd TOBART NP,
ν = 3, Tobit
sd

TOBART NP,
ν = 10 Tobit
sd

normal distribution, σ = 1

Friedman (1991) 1.196 1.269 1.162 1.180 1.176 1.154

Friedman (1991) 1 side 1.478 1.510 1.457 1.462 1.518 1.509

Groot and Lucas (2012) 0.638 0.634 0.631 0.644 0.625 0.617

Jacobson and Zou (2024) 0.717 0.717 0.718 0.716 0.720 0.720

Sigrist and Hirnschall (2019) 1.072 1.072 1.072 1.075 1.075 1.074

Skew-t distribution, location = 1, scale = 1, ν = 4

Friedman (1991) 1.715 1.725 1.648 1.696 1.677 1.597

Friedman (1991) 1 side 2.220 2.307 2.163 2.200 2.079 2.060

Groot and Lucas (2012) 1.170 1.189 1.149 1.170 1.068 1.071

Jacobson and Zou (2024) 1.236 1.242 1.238 1.240 1.186 1.184

Sigrist and Hirnschall (2019) 1.281 1.280 1.279 1.283 1.268 1.267

Weibull distribution, shape = 0.5, scale = 0.2

Friedman (1991) 0.933 0.910 0.871 0.928 0.807 0.811

Friedman (1991) 1 side 1.447 1.396 1.344 1.371 1.146 1.154

Groot and Lucas (2012) 0.771 0.782 0.787 0.846 0.649 0.648

Jacobson and Zou (2024) 0.942 0.920 0.960 0.906 0.697 0.696

Sigrist and Hirnschall (2019) 0.417 0.424 0.426 0.424 0.365 0.362

t distribution, ν = 3

Friedman (1991) 2.406 2.498 2.459 2.420 2.339 2.369

Friedman (1991) 1 side 3.761 3.786 3.667 3.679 3.629 3.538

Groot and Lucas (2012) 2.073 2.113 2.028 2.105 1.963 1.964

Jacobson and Zou (2024) 2.427 2.401 2.394 2.454 2.301 2.306

Sigrist and Hirnschall (2019) 2.635 2.603 2.615 2.599 2.493 2.498

model. However, a standard linear model does not account
for censoring, and therefore may give poor prior calibration.

We consider the following options:

• naive sd: The sample standard deviation of the outcomes
without accounting for censoring.

• Tobit sd: The maximum likelihood estimate of the stan-
dard deviation of the error term from a linear Tobit model
(with covariates).

• cens sd: The maximum likelihood estimate of the stan-
dard deviation of the error term from an intercept-only
linear Tobit model. This is an estimate of the standard
deviation of y∗ that adjusts for censoring, assuming nor-
mality and no effects of covariates.

• lm sd: The default BART setting. The sample standard
deviation of residuals from a linear model.

A limitation of the options that account for censoring is
that the estimates rely on the assumption of normality. unsur-
prisingly, we observe that no setting provides the best results
for all DGPs in Table 10. The σ̂ estimate from an intercept-

onlyTobitmodel gives good results. It is generally larger than
the estimates from other options and results in a less infor-
mative prior. Therefore we apply this option for our main
results.
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