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Development of a novel non-invasive
biomarker panel for hepatic fibrosis
in MASLD
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Puria Nabilou 4, Mikkel Parsberg Werge4, Koen van Son2, Robert Kleemann1,
Amanda J. Kiliaan 5, Eric J. Hazebroek6, André Boonstra 7,WillemP. Brouwer7,
Michail Doukas 8, Saurabh Gupta9, Cornelis Kluft10, Max Nieuwdorp 2,
Joanne Verheij11, Lise Lotte Gluud 4, Adriaan G. Holleboom2,14,
Maarten E. Tushuizen12,14 & Roeland Hanemaaijer1,14

Accurate non-invasive biomarkers to diagnose metabolic dysfunction-
associated steatotic liver disease (MASLD)-related fibrosis are urgently nee-
ded. This study applies a translational approach to develop a blood-based
biomarker panel for fibrosis detection inMASLD. Amolecular gene expression
signature identified from a diet-induced MASLD mouse model (LDLr−/−.Lei-
den) is translated into human blood-based biomarkers based on liver biopsy
transcriptomic profiles and protein levels in MASLD patient serum samples.
The resulting biomarker panel consists of IGFBP7, SSc5D and Sema4D.
LightGBMmodeling using this panel demonstrates high accuracy in predicting
MASLD fibrosis stage (F0/F1: AUC=0.82; F2: AUC =0.89; F3/F4: AUC=0.87),
which is replicated in an independent validation cohort. The overall accuracy
of the model outperforms predictions by the existing markers Fib-4, APRI and
FibroScan. In conclusion, here we show a disease mechanism-related blood-
based biomarker panel with three biomarkers which is able to identify MASLD
patients with mild or advanced hepatic fibrosis with high accuracy.

Metabolic dysfunction-associated steatotic liver disease (MASLD)
comprises a spectrum of diseases, ranging from metabolic
dysfunction-associated isolated steatosis, in which the predominant
histological characteristic is lipid accumulation in hepatocytes, to
metabolic dysfunction-associated steatohepatitis (MASH), with addi-
tional hepatic injury leading to fibrosis, and may ultimately culminate
in MASH-related cirrhosis and hepatocellular carcinoma (HCC) in
some patients1,2. Obesity and insulin resistance are strongly associated
with MASLD, both via increased delivery of free fatty acids to the liver
and through increases of hepatic lipogenesis associated with hyper-
glycemia and hyperinsulinemia3. With the recent swift rise in

prevalence of MASLD to around 30% worldwide, an urgent need has
arisen to identify those patients who develop severe consequences
from this cardiometabolic liver disease1. Research in large cohorts has
shown that hepatic fibrosis is the major determinant of overall and
liver-related mortality in patients with MASLD3–5. At the molecular
level, the development of hepatic fibrosis is a dynamic process. In the
healthy liver and even at early stages of MASLD, the processes of
damage and repair are in balance6,7. A current hypothesis is that this
balancecanbecomedisturbedby repetitivehepatic injury as a result of
an overload of intrahepatic fat in MASLD/MASH7. Injured hepatocytes
trigger regenerative responses, recruiting immune cells,
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myofibroblasts, and hepatic progenitor cells. When the hepatic injury
is chronic and repetitive, or when the repair mechanisms become
maladaptive and dysregulated, these regenerative responses derail
and cause continuous deposition of collagen by myofibroblasts and a
loss of pro-resolution macrophages that can remodel extracellular
matrix6. This results in a net effect of an increase in extracellularmatrix
production in the liver: scarring, with hepatic fibrosis.

The current gold standard to detect and stage hepatic fibrosis is a
liver biopsy, an invasive procedure that carries risks such as post-
procedural bleeding and sampling error, and thus is far from ideal to
screen for hepatic fibrosis in the large population of patients with
MASLD. The search for non-invasive testing methods to diagnose
MASLD fibrosis is currently a trending topic in research8–10. Various
non-invasive tests have been developed to identify patients with
advanced liver fibrosis. Where analysis of single liver enzymes as
aspartate aminotransferase (AST) and alanine aminotransferase (ALT)
fail to predict the presenceof fibrosis inMASLD, extensivemulti-omics
studies have shown that combinations of multiple biomarkers are
useful for detection of different stages ofMASLD11–13, but large number
of omics biomarkers are difficult to implement in clinical practice. The
most clinically used blood-based biomarker panels for MASLD fibrosis
are the Fibrosis-4 (Fib-4) test, the enhanced liver fibrosis test (ELF) and
the APRI (AST-to-platelet ratio index). Although these have been
implemented in clinical care paths for patients with MASLD in several
countries14, they still have major drawbacks. The ELF test, which is
designed on coincidental expression of proteins in the disease state15,
has limitations in its predictive value and diagnostic accuracy, e.g. in
populations with low disease prevalence16–18. The Fib-4 and APRI test
do not include direct fibrosis markers and are a calculated score based
on AST and platelet count (APRI) and additionally age and ALT (Fib-
4)19,20. Fib-4 has a high risk of overdiagnosis and false negatives21 and
limitedperformance to identify advancedfibrosis among subjectswith
MASLD22, especially in the absence of diabetes23. In addition, the APRI
score shows conflicting results for advanced MASH fibrosis20,24. The
most clinically used imaging modality for advanced MASH fibrosis is
transient elastography with FibroScan®, which has demonstrated an
AUC of 0.83 in the LITMUS metacohort (available in n = 632)24 but
could potentially over-diagnosis patients as having a higher stage of
fibrosis25. Biomarkers that are mechanistically linked to the funda-
mental process of MASLD-related fibrosis, i.e. the overexpression and
deposition of new matrix proteins, may allow a more accurate identi-
fication and prediction of the fibrosis stages in patients26.

In previous studies we described a time-dependent sequence of
keymolecular processes during the development ofMASHandfibrosis
in a translational murine model, which enabled us to identify an early
molecular gene expression based of fibrogenesis27,28. In the current
study we used a targeted approach aimed at establishing a panel of
blood-based biomarkers that is mechanistically linked to the fibro-
genic process in patients with MASLD and can be used to non-
invasively and accurately diagnose the fibrosis stage in MASLD
patients. To this end, this work is based on a tracer study in high-fat
diet (HFD)-fed LDLr−/−.Leiden mice to identify candidate biomarkers
with a mechanistic link to the formation of new collagen. We then
translated these biomarkers to their human counterparts using dif-
ferent cohorts of patients with histologically confirmed MASLD. This
resulted in amathematical model using three blood-based biomarkers
that accurately predicts the fibrosis stage of MASLD patients.

Results
Identification of candidate biomarkers of fibrogenesis in mice
Ldlr-/-.Leiden mice fed a high-fat diet (HFD) for 24 weeks displayed
pronounced obesity in comparison to the age-matched control mice
that were fed a low-fat chow diet (Fig. 1a). Moreover, plasma levels of
ALT (Fig. 1b) and AST (Fig. 1c) aswell as the liver weight were increased
in HFD-fed mice in comparison with the chow-fed mice at sacrifice.

Biochemical analysis of hepatic lipids revealed a significant increase in
cholesterol esters (Fig. 1d), free cholesterol (Fig. 1e) and triglycerides
(Fig. 1f) in HFD-fed animals. Histological examination of hepatic stea-
tosis (Fig. 2a), inflammation (Fig. 2b), and perisinusoidal fibrosis
(Fig. 2c) showed development of hepatic inflammation and fibrosis in
the HFD-fed mice.

To examine the genes and pathways altered in response to HFD-
induced MASH and fibrosis, we conducted global gene expression
analysis. Our findings demonstrate significant alterations in gene
expression between the livers of HFD-fed versus chow-fed mice. Spe-
cifically, we identified 2696genes that exhibited statistically significant
differences (FDR <0.001). Out of these genes, 1048 were found to be
downregulated, while 1648 were upregulated following 24 weeks of
HFD treatment. Subsequent enrichment analysis of these differentially
expressed genes (DEGs) revealed an overrepresentation of pathways
associated with lipid metabolism, inflammation, and fibrosis (Fig. 3a).
Notably, theHepatic Fibrosis Signaling Pathway stoodout as oneof the
most significantly affected pathways (p-value < 0.0001; Fig. 3c). Next,
we evaluated the impact of 24 weeks of HFD feeding on liver fibrosis at
the protein level by analyzing protein turnover rates using deuterated
water labeling. Our dynamic proteomics analysis was focused on the
production of fibrillar collagens, viz. Collagen1α1 and Collagen1α2
from the guanidine-soluble and guanidine-insoluble fractions, and
Collagen3α1 from the guanidine-insoluble fraction. HFD feeding
resulted in significantlymore D2O-labeled hepatic fibrillar collagens as
compared to chow-fed animals, (Fig. 3b) indicating enhanced fibro-
genesis in mice fed HFD for 24 weeks.

Correlation analysis revealed that 1112 DEGs correlated sig-
nificantly with the fractional synthesis rate of at least one of the
selected fibrillar collagens (Supplementary Data 1). We prioritized
genes based on their minimum absolute correlation coefficient and
selected 645 DEGs with a correlation coefficient greater than 0.9 with
the fractional synthesis rate of at least two analyzed collagens. Thus,
these genes strongly correlate to the synthesis of at least two collagens
and could serve a candidate set of biomarkers for fibrosis deposition.

Verification of candidate markers on gene level in human liver
biopsies of translation cohort
To evaluate which of these genes were also regulated in liver tissue of
patients with MASLD, we collected formalin-fixed paraffin-embedded
liver biopsymaterial frompatients withMASLDas a translation cohort.
For this cohort, sixty-seven archived liver biopsy samples were selec-
ted for gene expression analysis. The average age of the patients was
49 years, 62%ofpatientswasmale, the averageBMIwas29.9 kg/m2 and
32% had type 2 diabetesmellitus. Liver biopsies showed various stages
of fibrosis (13%-F0, 25%-F1; 37%-F2; 15%-F3; 9%-F4), see Supplemen-
tary Data 2.

RNA sequencing analysis on these liver biopsies showed relatively
low DEGs in patients with MASLD fibrosis stage F1 and F2 (629 and
1049 DEGs, p <0.01) as compared to biopsies classified as fibrosis
stage F0. In biopsies classified as fibrosis stage F3 and stage F4 the
number of DEGs as compared to stage F0 was larger (5016 and 6299,
respectively) (Fig. 4a). Gene set enrichment analysis indicated regula-
tion of several pathways related to MASLD and hepatic fibrosis,
including lipid metabolism, inflammation, and hepatic fibrosis signal-
ing. The biopsies of patients with stage F3 or F4 fibrosis, as compared
to biopsies with fibrosis stage F0, showed high similarity in differen-
tially expressed pathways (Fig. 4b), with one of the most significant
pathways being Hepatic Fibrosis Signaling (Fig. 4c) indicating the
majority of genes are upregulated in patients with F4 stage fibrosis as
compared to F0 stage. In order to identify the most promising candi-
date biomarkers, a comparative gene expression analysis was per-
formed for the 645 mouse signature genes that strongly correlate to
the synthesis of collagens with significant genes in human patients
(DEGs in fibrosis stage F3 or F4 vs. no fibrosis). This analysis revealed
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that among 284 DEGs in F3 classified biopsies, 86% (n = 244) showed
regulation in the same direction as the mouse DEGs (Fig. 4d), and
among the 352 DEGs in F4 classified biopsies, 91% (n = 321) showed
regulation in the same direction as themouse DEGs (Fig. 4e). Based on
these data, a subset of 238 genes, showed a remarkable overlap across

both fibrosis stage F3 and fibrosis stage F4. This overlap in gene reg-
ulation was found to be in correspondence with the regulatory trends
observed in the signature genes of the mouse experimental dataset.

Next, we investigated whether the identified 238 fibrosis bio-
marker candidate were translated into a circulating protein. To define
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Fig. 1 | HFD feeding in LDLr−/−.Leiden mice results in obesogenic phenotype.
a Body weight in chow-fed (white bars; n = 6) and HFD-fed (gray bars; n = 15) LDLr
−/−.Leiden mice after 24 weeks (P =0.025); b ALT levels (pooled plasma of 3 mice;
n = 2 for chow;n = 2 forHFD;P =0.002);cAST levels (pooledplasmaof 3mice;n = 2
for chow; n = 2 for HFD; P =0.02); d Hepatic cholesterol ester concentration (n = 6
for chow; n = 14 for HFD; P <0.0001); e Hepatic free cholesterol concentration

(n = 6 for chow; n = 14 for HFD; P <0.0001); f Hepatic triglyceride concentration
(n = 6 for chow; n = 14 for HFD; P <0.0001). Values are shown in box and whisker
plots, data are median (horizontal line), interquartile range (boxes), and min. to
max. (error bars); Data consist of biological replicates where HFD-fed mice are
compared to control chow-fed mice. A two-sided Student’s t-test was used to test
the statistical significance; *p <0.01.

a b c
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*

Fig. 2 | HFD feeding induces liver pathology associated to MASH.
a Macrovesicular steatosis in chow-fed (white bars; n = 6) and HFD-fed (gray bars;
n = 14) LDLr−/−.Leidenmice after 24weeks (P <0.0001);bNumber of inflammatory
aggregates (n = 6 for chow; n = 14 for HFD; P =0.01); c Perisinusoidal fibrosis area

(n = 5 for chow; n = 14 for HFD; P =0.02). Values are shown as floating bars (min. to
max.), line indicatesmean. Data consist of biological replicateswhereHFD-fedmice
are compared to control chow-fed mice. A two-sided Student’s t-test with Welch’s
correction was used to test the statistical significance; *p <0.05.

Article https://doi.org/10.1038/s41467-024-48956-0

Nature Communications |         (2024) 15:4564 3



such proteins, we used information from the Cortellis Drug Discovery
Intelligence database (Clarivate, https://www.cortellis.com/), a human
biomarker atlas, and conducte a comprehensive literature search.
Consequently, this methodology yielded a curated set of 21 candidate
blood-based biomarkers to be futher validated on protein level in
serum samples of the translation cohort.

Verification of candidate markers on protein level in human
serum samples
Twenty-one biomarker assays were tested, optimized and validated, as
detailed in the methods section, to assess their sensitivity and per-
formance for the analysis of serum samples. Out of the 21 assays, 10

assays did notmeet the criteria, resulting in a selection of 11 biomarker
assays that were used to measure serum samples of the translation
cohort. The obtained data demonstrated that the candidate bio-
markers can be reliably detected, and further reveal an elevated con-
centration of certain biomarkers in samples exhibiting an increased
fibrosis score (Supplementary Fig. 2).

Serum biomarker verification in an independent testing cohort
The next step involved the assessment of serum protein levels for the
potential biomarkers in an independent testing cohort, which con-
sisted of a total of 128 patients with histologically confirmed MASLD.
The average age was 49 years, 64% of patients were male, the average
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BMI was 34.2 kg/m2 and 40% had type 2 diabetes mellitus. Liver his-
tology scores and clinical characteristics are given in Table 1, including
the average serum concentrations of the biomarkers in this cohort in
Table 2.

In order to test the capability of our candidate biomarkers in
detecting hepatic fibrosis, a machine-learning model was constructed
using Light Gradient Boosting Machine (LGBM). This model was first
used for feature selection of biomarkers with the highest contributory
effect on the prediction (Fig. 5). The results indicated that the three
best-performing features were Insulin-like growth factor-binding pro-
tein 7 (IGFBP7; Fig. 6a), Scavenger Receptor Cysteine Rich Family
Member With 5 Domains (SSc5D; Fig. 6b) and Semaphorin 4D
(Sema4D; Fig. 6c). Next, themodel was trained to classify patients into
three primary fibrosis categories: no fibrosis (F0 and F1; n = 38), mild
fibrosis (F2; n = 38), and advanced fibrosis (F3 and F4; n = 52). First,

samples were divided into a balanced training set (n = 30 no fibrosis;
n = 30 mild fibrosis; n = 30 advanced fibrosis) and a holdout test set
(n = 8 no fibrosis; n = 8 mild fibrosis; n = 22 advanced fibrosis). A ten-
fold cross-validation was applied to evaluate the overall prediction
accuracyof themodel. The trainingmodel had anoverall AUCof0.87±
0.083 based on all subgroups and its overall accuracy was
0.744 ±0.071. After selecting the top 3 performing components for
our non-invasive blood biomarker panel, we tested the model by
defining its accuracy in distinguishing the various fibrosis stages (no
fibrosis, mild fibrosis and advanced fibrosis). The model achieved an
area under the receiver operating curve (AUROC) of 0.82 for fibrosis
stage F0/F1, a robust AUROC of 0.89 for fibrosis stage F2, and a strong
AUROC of 0.87 for distinguishing fibrosis stages F3 and F4 (Fig. 6d).
The model’s effectiveness in discriminating fibrosis categories was
further evaluated by computing sensitivity and specificity metrics,
both derived from the associated confusion matrix (Fig. 6e, f). In
addition to the top-performing biomarkers, clinical variables such as
type 2 diabetes, sex, and BMIwere incorporated in themodel to assess
whether these covariates contribute to the model’s performance. Our
data showed that none of these clinical variables resulted in a sig-
nificantly improved prediction of fibrosis in the testing cohort (Sup-
plementary Fig. 3).

Serum biomarker validation in a second independent cohort
The final step was to perform an external validation of the LGBM
model, hereafter referred to as the TLM3 model (TNO LGBM MASLD
model, based on the three biomarkers). For this, we analyzed the
biomarkers in serum of patients with histologically confirmed MASLD
(n = 156). The average age was 55.8 years, 53.8% of patients was male,
the average BMI was 34.75 kg/m2 and 49.3% had type 2 diabetes mel-
litus. Liver histology scores and clinical characteristics are given in
Table 3. The average serum concentrations of the biomarkers in this
cohort are shown in Fig. 7a–c. To illustrate the dynamics of the bio-
markers over the patient subgroups in the independent validation
cohort, we also included data from the testing cohort. The confusion
matrix (Fig. 7d) and the AUROC curve (Fig. 7e) show the model per-
formance in discriminating fibrosis subgroups (F0/F1 vs. F2 vs. F3/F4)
in the validation cohort. These data confirm the predictive accuracy of
the model showing an AUC of 0.84 for both the F0/F1 and F3/F4 sub-
groups. The prediction of the F2 subgroup was more modest in this
independent validation cohort from Denmark as compared to the
Dutch testing cohort. We subsequently evaluated the performance of
our TLM3model against three known NITs: Fib-4, APRI, and FibroScan
in the independent validation cohort. Theoverall accuracyof theTLM3
model outperformed Fib-4, APRI, and FibroScan (Fig. 7f). While the
TLM3 model showed consistent robustness across various metrics, it
was particularly noteworthy in its predictive capabilities for both early
(F0/F1) andadvanced (F3/F4)fibrosis stages (Supplementary Fig. 4). To
perform a more comprehensive analysis, a comparison between Fib-4
and TLM3 was made across the combined patient cohorts, which
included the training set, the first validation set, and the second vali-
dation set (Supplementary Table 2). The analysis shows that TLM3
consistently outperformed Fib-4 across all performance metrics for
liver fibrosis stages F2 and F3/F4. For the early stages of fibrosis (F0/
F1), the specificity and sensitivity of the two biomarkers were nearly
identical (0.70 vs. 0.69 and 0.83 vs. 0.82, respectively).
TLM3significantly exceeds Fib-4prediction in termsof precision. In all,
this comprehensive evaluation demonstrates enhanced diagnostic
efficacy of our TLM3 model over Fib-4, APRI, and FibroScan.

Discussion
In this study, we present the development and validation of a reliable
blood-based biomarker panel that accurately predicts the fibrosis
categories F0-F1, F2, and F3–F4 in patients with MAFLD using only
three biomarkers that are molecularly linked to the active collagen

Table 1 | Clinical characteristics of the testing cohort

Demographics N = 128

Age [years], mean (SD) 49 (13)

Male, n (%) 72 (56%)

Clinical characteristics

BMI, mean (SD) 34.2 (6.0)

T2D diagnosis, n (%) 52 (40.6%)

Fasting glucose [mmol/L], mean (SD) 6.2 (1.2)

HbA1c [mmol/mol], mean (SD) 41.7 (9.5)

AST, mean (SD) 61.0 (53.0)

ALT, mean (SD) 75.6 (61.0)

GGT, mean (SD) 120.0 (203.2)

Thrombocytes, mean (SD) 224.0 (88.3)

Liver histology scoring

Steatosis grade, n (%)

0 19 (14.8%)

1 46 (35.9%)

2 35 (27.3%)

3 28 (21.9%)

Lobular inflammation grade, n (%)

0 10 (7.9%)

1 104 (81.9%)

2 13 (10.2%)

Ballooning, n (%)

0 55 (43.0%)

1 51 (39.8%)

2 22 (17.2%)

NAS score, n (%)

0 1 (0.8%)

1 19 (15.0%)

2 23 (18.1%)

3 23 (18.1%)

4 29 (22.8%)

5 20 (15.7%)

6 10 (7.9%)

7 2 (1.6%)

F-score, n (%)

0 7 (5.5%)

1 31 (24.2%)

2 38 (29.7%)

3 27 (21.1%)

4 25 (19.5%)
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turnover process in the liver. This biomarker panel allows to non-
invasively identify patients who would benefit most from specialized
clinical care. To achieve this, we adopted a mechanism-based transla-
tional approach to identify candidate biomarkers that are mechan-
istically linked to the fibrogenic process in a translational mouse
model28. We determined human relevance by comparison analysis of
hepatic transcription levels, ensuring that relevant fibrosis pathways in
MASLD were abundant in both the mouse model and the human
translation cohort. Serum samples from the human translation cohort
were subsequently used for the identification of blood-based bio-
markers on the protein level. In an independent testing cohort, a
model employing only three blood-based biomarkers showed a high
degree of accuracy and allowed identification of clinically relevant
fibrosis categories in MASLD. Validation of the LGBMmodel, hereafter
referred to as TLM3, was performed in samples from MASLD patients
in an independent validation cohort from Denmark. We successfully
replicated the high-performance predictions in the testing cohort and
showed that the overall accuracy of our model outperformed Fib-4,
APRI and FibroScan predictions.

The starting point was the LDLr−/−.Leiden mouse model which
closely mimics human pathophysiology and responds effectively to
exercise, nutritional, and pharmaceutical treatments27–29. The transla-
tional value of the LDLr−/−.Leiden mouse model in relation to human
biopsies was established through a direct comparison with the C57BL/
6 mouse model, fed a Western-type diet, as illustrated in Supplemen-
tary Fig. 5. This comparison revealed that the LDLr−/−.Leiden mouse

model shares a much higher overlap with human genes than the
C57BL/6 mouse model. This observation aligned with the previous
data27–29 that influenced our decision to choose the HFD-fed LDLr
−/−.Leiden mouse model for further analysis. Dynamic proteomics
analysis in mouse livers, using D2O-tracers, enabled the identification
of newly synthesized extracellular matrix proteins, including col-
lagens. Correlation analysis of the proteomics data with hepatic tran-
scription levels identified a gene-based fibrosis signature which is
closely associated with new collagen formation. Correlation analyses
that focus on the static mRNA levels of Col1a1 are frequently used for
identifying biomarkers. In our study, however, we identified bio-
markers by correlating them with dynamic proteomics. This approach
resulted in novel biomarkers that would not have been identified by
direct correlation with Col1a1 mRNA expression, either in mouse or in
human studies. Specifically, this approach led to the selection of 6 out
of 11 biomarkers that would not have been selected based correlation
withmouseCol1a1 expression, and none of the biomarkers would have
been identified using correlation with humanCol1a1 mRNA expression
(see Supplementary Table 1).

A rigorous approach was taken to translate murine candidate
biomarkers to humans, starting by translating the mouse hepatic
transcriptome responses to hepatic transcription levels in a cohort of
patients with MASLD across fibrosis stages (translation cohort). We
focusedon candidate genes showing consistent differential expression
between no fibrosis and advanced fibrosis in both mice and humans.
Following this, genes encoding serum proteins were selected, and a
pragmatic assortment of serum proteins amenable to detection
through enzyme-linked immunosorbent assay (ELISA) assays yielded a
set of 11 promising candidate biomarkers. Machine Learning has been
shown to be an eminently suitable tool to translate the protein levels
into predictions30. Here, we applied a LightGBM (LGBM) model, along
with its feature selection analysis, to demonstrate the ability to predict
fibrosis optimally using a panel consisting of three important bio-
markers, viz. IGFBP7, SSc5D and SEMA4D.

The three biomarkers, directly correlated with the mechanism
underlying dynamics of collagen deposition, each play a different role
in the regulation and development of fibrosis. Insulin-like growth
factor-binding protein 7 (IGFBP7) regulates insulin-like growth factors
(IGFs) and modulates IGF binding to its receptors31. IGFBP7 has pre-
viously been identified as a potential biomarker for various cancer
types, including hepatocellular carcinoma32. In the context of liver
fibrosis inMASLD, IGFBP7 contributes to fibrogenesis by playing a role
in the activation and transdifferentiation of hepatic stellate cells33.
Hepatic IGFBP7 expression was found to be consistently increased in
advanced liver fibrosis, as observed in both pediatric and adult com-
parative cohorts34. Knockdown of IGFBP7 in a mousemodel of MASLD

Fig. 5 | Biomarker selection.Box andWhisker plot showing feature importance list
of the machine learning model, showing the contribution of each of the 11 serum
biomarkers to the classification into fibrosis groups in 128 patients of the testing
cohort. Data are median (vertical line), interquartile range (boxes) and 10–90%
percentile (error bars). The diamonds indicate outliers.

Table 2 | Average biomarker concentrations of the patient cohort

F0–F1 F2 Pval F3–F4 Pval

Average stdev Average stdev vs F0-F1 Average stdev vs F0–F1

IGFBP7 (ng/ml) 183.5 33.3 210.1 49.4 0.008 363.8 198.5 0.000

SSC5D (ng/ml) 1.9 1.5 5.6 2.9 0.000 13.0 11.1 0.000

SEMA4D (μg/ml) 0.8 0.3 1.1 0.2 0.000 1.3 0.7 0.000

TNC (ng/ml) 11.1 4.0 8.3 2.5 0.001 12.7 7.7 0.239

PLAU (pg/ml) 895.1 673.3 988.0 416.7 0.476 1346.9 774.7 0.005

CXCL10 (pg/ml) 166.1 76.2 174.5 64.5 0.612 208.9 92.3 0.024

THBS1 (μg/ml) 23.7 17.2 27.0 20.6 0.447 35.8 22.5 0.007

PAM (ng/ml) 91.1 36.5 83.4 30.7 0.323 85.4 43.6 0.517

VCAN (ng/ml) 103.1 18.5 103.8 31.7 0.904 98.8 44.9 0.579

ADAMTS2 (ng/ml) 8.7 6.8 16.4 8.9 0.000 24.1 14.7 0.000

FBN1 (ng/ml) 19.9 14.9 27.5 12.8 0.020 41.0 21.4 0.000

Values are expressed as concentration in g/ml. A two-sided Student’s t-test was used to test the statistical significance.
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resulted in a reduction of insulin resistance and hepatic steatosis35.
Soluble Scavenger with 5 Domains (SSc5D) is a soluble receptor that is
expressedbymacrophages andTcells36. There is a scarcity of literature
on the role of SSc5D as a fibrosis biomarker. However, a recent study
on SSc5D in heart failure found that the Ssc5d gene is also expressed by
cardiac fibroblasts, and serum SSc5D concentrations were increased in

patients with heart failure compared to healthy individuals37. Further
research is required to explore its mechanism of action and broader
implications in various contexts. Semaphorin-4D (Sema4D or CD100)
is a transmembrane homodimeric glycoprotein member of the sema-
phorin family38. Shedding of membrane-bound Sema4D, either spon-
taneously or as a through proteolytic cleavage by matrix

* *
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Fig. 6 | Biomarker verification in an independent cohort. Serum levels of
a IGFBP7, b SSc5D, c SEMA4D in samples from 128 patients with MASLD fibrosis
score (F0–F4) in testing cohort (F0/F1, n = 38; F2, n = 38; F3/F4, n = 52). Values from
biological replicates are shown in box and whisker plots, data are median (hor-
izontal line), interquartile range (boxes) and 10–90% percentile (error bars). A two-
sided Student’s t-test was used to test the statistical significance. *p <0.05, vs. F0/F1

samples. d AUROC curve to show the predictive value of this set of biomarkers to
distinguish the individual MASLD fibrosis F-scores (F0–F1 versus F2 versus F3–F4);
e Confusion matrix of the hold-out set (n = 8 F0/F1; n = 8 F2; n = 22 F3/F4) of pre-
dicted and true classes; f Sensitivity and specificity as calculated from the LGBM
classifier Confusion Matrix.
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metalloproteases (MMPs), releases soluble Sema4D, which has been
proposed as a potential biomarker in several autoimmune or inflam-
matory diseases39. A recent prospective case-control study demon-
strated significantly higher Sema4D levels in patients with MASLD
compared to healthy controls, with Sema4D levels increasing with
advancing fibrosis stages40.

The combination of these three biomarkers in a panel for MASLD
enabled the LGBM model to classify patients with advanced hepatic
fibrosis (F ≥ 3) with high accuracy, with an AUC of 0.87. Moreover, the
model could also effectively classify patients with fibrosis in an earlier
stage (F2) with an AUC of 0.89. Next, the validation of the model in an
independent second patient cohort (n = 156) demonstrate that the
prediction of the TLM3model could successfully be replicated for the
F0/F1 and F3/F4 fibrosis stages with an AUC of 0.84. The model dis-
played a modest accuracy in predicting F2 fibrosis (AUC 0.62) in this
cohort, which was also observed for the other NITs, e.g. Fib-4, APRI,
and FibroScan. Direct comparison in the same cohort of the TLM3
model with other NITs (Fib-4, APRI and FibroScan) showed that our
model showed better overall accuracy as compared to the other NITs.
Future investigation will focus on combining various other NITs with
our TLM3 model to further enhance the diagnostic power.

While the testing cohort was not designed for subclassification
into clinical subgroups, the addition of clinical variables including type
2 diabetes, BMI, or sex did not improve the panel’s performance,
indicating its robustness across clinically diverse patient groups. The
presenceofHCCdid not influence the performanceof the panel either.
Considering that HCC or cirrhosis is often an exclusion criterion in
biomarker studies, these findings further support the biomarker
panel’s broad applicability in diverse patient populations, however,
further validation in clinical diverse populations are needed.

While our study holds significant promise, it is important to
acknowledge its limitations. This work represents the initial steps in
the translational development of amechanism-based biomarker panel,
and the evaluation of its accuracy in our testing cohort should be
considered exploratory. Themechanistic basis of this biomarker panel,
involving the process of active extracellular matrix remodeling during
fibrogenesis, could not be tested in the single-biopsy cohorts investi-
gated in this study. Future investigations using double-biopsy pro-
spective cohorts or intervention trials will be essential to assess the
panel’s performance in diagnosing ongoing fibrogenesis, which will be
crucial for identifying patients who rapidly progress in fibrosis stage
and will most likely benefit from pharmacological intervention. These

future steps will provide further valuable insights into the clinical uti-
lity of this biomarker panel.

In conclusion, this study describes a novel approach in success-
fully identifying and translating a blood-based biomarker panel for
non-invasive diagnosis and staging of hepatic fibrosis in patients with
MASLD. By connecting the intricate process of extracellular matrix
remodeling inMASLD-related fibrosis with the development of clinical
biomarkers, we have devised a promising and robust biomarker panel
that directly correlates with collagen deposition. Future studies
involving prospective cohorts and intervention trials will offer deeper
insights into the panel’s potential to detect ongoing fibrosis and guide
treatment strategies in the care of MASLD patients. The potential of
non-invasively assessing liver fibrosis holds significant promise for
clinical application in the continuously growing population of patients
with MASLD across the globe.

Methods
Animal studies
Twelve-week-old male LDL-receptor knockout.Leiden (LDLr−/−.Lei-
den) mice were obtained from the breeding facility at TNO Metabolic
Health Research (Leiden, Netherlands). The mice were assigned to
either a standard rodent chow diet (Sniff-R/M-V1530; Uden, Nether-
lands; n = 6) or a high-fat diet (HFD) (D12451; Research Diets, Inc, New
Brunswick, NJ; n = 15) for a duration of 24 weeks. One group of mice
(n = 15)was sacrificed before the start of the diets to define the starting
condition. Themicewere housed in a temperature-controlled roomon
a 12-h light/dark cycle in a specified pathogen-free animal facility with
unlimited access to food and water. Mice were sacrificed after
24 weeks of HFD or chow feeding. One week before sacrifice, an
intraperitoneal injection of deuterated water (35mL/g body weight)
was administered and 8% deuterated water was added to the drinking
water to enable dynamic proteomics analysis27. The studies were
approved by an independent AnimalWelfare Body (IVD TNO; approval
numbers DEC-3553) under project licenses granted by the Netherlands
Central Authority for Scientific Procedures on Animals (CCD; project
license numbers AVD5010020172064 and AVD5010020172931). An
overview of the steps taken in the biomarker identification approach is
highlighted in Supplementary Fig. 1, created with BioRender.com.

Biochemical analysis and liver lipid analysis
Plasma ALT and AST were measured using a spectrophotometric
activity assay (Reflotron-Plus, Roche). Liver lipids were extracted from
liver homogenates using theBligh andDyermethod41 and separatedby
high-performance thin layer chromatography (HPTLC) on silica gel
plates. Lipid spots were stained with color reagent (5 g of MnCl2·4H2O,
32ml of 95–97% H2SO4 added to 960ml of CH3OH:H2O 1:1 v/v) and
triglycerides, cholesteryl esters and free cholesterol were quantified
using TINA version 2.09 software (Raytest, Straubenhardt, Germany).

Histological assessment of MASH in LDLr−/−.Leiden
Histological changes were assessed in haematoxylin and eosin-stained
liver sections (3 μm thick). Steatosis was determined at a ×40 magni-
fication by analyzing the percentage of the total liver slice area affec-
ted. Hepatic inflammation was analyzed by counting the number of
inflammatory foci per field at a ×100magnification (view size 3.1 mm2)
in five different fields per specimen, and was expressed as the average
number of foci per field. Hepatocyte ballooning is sporadically
observed in this model and was not quantitatively scored. Hepatic
collagen content was stained histochemically using Picro-Sirius Red
staining (Chroma, WALDECK-Gmbh, Münster, Germany).

Dynamic targeted protein analysis
A dynamic proteomics platform42 was used to quantify the fractional
synthesis rates of a specific set of extracellular matrix proteins (ECM)
using stable isotope labeling and a liquid chromatography-mass

Table 3 | Clinical characteristics of the validation cohort

Demographics n = 156

Age [years], mean (SD) 55 (13)

Male, n (%) 84 (53.8)

Clinical characteristics

BMI, mean (SD) 34.75 (6.88)

T2D diagnosis, n (%) 77 (49.3)

HbA1c [mmol/mol], mean (SD) 46.59 (14.19)

AST, mean (SD) 55.8 (38.8)

ALT, mean (SD) 65.3 (63.2)

Thrombocytes, mean (SD) 229.5 (73.0)

Liver histology scoring

F-score, n (%)

0 38 (23%)

1 31 (19%)

2 30 (19%)

3 30 (19%)

4 33 (20%)
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spectrometry (LC-MS)-based mass isotopomer analysis. Briefly, after
receiving deuterated water for 7 days, mice were sacrificed and cel-
lular, guanidine-soluble ECM proteins and residual insoluble ECM
proteins was extracted and fractionated from liver tissue. The follow-
up analysis was focused on collagen1α1 and collagen1α2 in the guani-
dine soluble fraction and collagen1α1, collagen1α2 and collagen3α1 in
the insoluble fraction. The protein fractional synthesis rates (the
fraction of each newly synthesized protein during the 7-day labeling
period) were calculated using mass isotopomer analysis as previously
described43.

Selection of translation cohort
To translate the murine findings to humans, 74 patients with MASLD
were selected of whom stored liver biopsymaterial was available at the
pathology department of the Erasmus Medical Center and Utrecht
Medical Center, the Netherlands. A patient list was generated with the
following search criteria: “steatosis OR steatohepatitis OR NASH OR
NAFLD” from 1997 onwards. Patient records were reviewed and
patients diagnosed with HBV, HCV, alcohol-related steatohepatitis,
and auto-immune hepatitis were excluded. In addition, patients with
other comorbidities, treated with steroids, hormonal therapy
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Fig. 7 | Biomarker validation in a second independent cohort. Serum levels of
a IGFBP7, b SSc5D, c SEMA4D as measured in samples from 156 patients from the
independent validation cohort from Denmark (F0/F1, n = 66; F2, n = 30; F3/F4,
n = 60). Values are shown in box and whisker plots, data are median (horizontal
line), interquartile range (boxes) and 10–90% percentile (error bars). A two-sided

Student’s t-test was used to test the statistical significance. *p <0.05, vs. F0/F1
samples. d AUROC curve to show the predictive value of this set of biomarkers to
distinguish the individual MASLD fibrosis F-scores (F0/F1 versus F2 versus F3/F4).
e Confusion matrix of the hold-out set of predicted and true classes. f Overview of
model performances (accuracy) of different NITs in predicting fibrosis.
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including anticonception and with benign liver tumors were excluded.
Then, biobanked stained liver tissue slides were collected and
reviewed by an external pathologist (JV). All patients who passed this
review and were diagnosed as true MASLD patients were then inclu-
ded. Stored tissue blocks containing the biopsy sample were then
requested from the tissue biobank and further processed for RNA
isolation and next-generation sequencing. Stored serum samples col-
lected at or close to the biopsy date (<1 year) were available for 29 of
these patients with various grades of fibrosis (F0, n = 4; F1, n = 2; F2,
n = 10; F3,n = 9; F4,n = 4). Due to the retrospective natureof this study,
written informed consent was not obtained fromeach patient. Instead,
the ethical review board of the Erasmus MC approved this study as it
was in accordance with the COREON guidelines, which describes the
use of coded-anonymous residual human tissue for scientific research
(www.coreon.org).

Transcriptome analysis
Next Generation Sequencing (NGS) was performed on frozen mouse
liver tissue and human-archived formalin-fixed paraffin-embedded
(FFPE) liver biopsies (using 10 μm tissue sections) from the translation
cohort. Total RNA from the HFD-fed mice (n = 12) and the chow-fed
mice (n = 6) was extracted using the Ambion RNAqueous total RNA
isolation kit (ThermoFisher Scientific, Inc,Waltman,MA, kit #AM1912).
The RNA concentration was determined using a Nanodrop
1000 spectrophotometer (Isogen Life Science, De Meern, Nether-
lands), and RNA quality was evaluated using the 2100 Bioanalyzer
(Agilent Technologies, Amstelveen, Netherlands). From the mouse
liver RNA samples, strand-specific mRNA sequencing libraries for the
Illumina platform (San Diego, CA) were generated and sequenced at
BaseClear BV (Leiden, Netherlands). The libraries were multiplexed,
clustered, and sequenced on an Illumina HiSeq 2500 using a single-
read 50-cycle sequencing protocol, with 15 million reads per sample
and indexing. Differentially expressed genes (DEGs) were identified
using the DEseq2 method44 with a statistical cut-off for false discovery
rate of <0.001. The DEGs were used as input for pathway analysis
through the Ingenuity Pathway Analysis (IPA) suite (www.ingenuity.
com, accessed 2024).

From the human FFPE liver samples, a subset of 67 samples out of
the 74 samples passed Quality Control (QC) and was selected for RNA
sequencing. The QC process involved evaluation of the total RNA
concentration and DV200 values, which represent the proportion of
RNA fragments exceeding 200 nucleotides as determined from the
outcomes of electropherograms45. From the selected samples, ribo-
somal RNA (rRNA) was depleted from total RNA (rRNA depletion kit
NEB# E6310, Biolabs), the total RNA was processed into tagged ran-
dom sequence libraries (NEBNext Ultra II Directional RNA Library Prep
Kit, NEB #E7760S/L for Illumina, Biolabs) and sample quality was
checked for proper size distribution (300–500 bp peak, Fragment
Analyzer). The mixed (multiplex) sample libraries were sequenced on
an Illumina NovaSeq6000 sequencer with a paired-read 150-cycle
sequencing protocol at GenomeScan BV (Leiden, the Netherlands),
resulting in at least 40 million reads per sample. The dataset of this
study is accessible at the NCBI Gene Expression Omnibus (GEO)
database with accession number GSE240729. DEGs across fibrosis
stages were identified by DESeq2 (p-value < 0.01 and (2logR >0.5 OR
2logR < −1) and avg(nCnts)>20. DEGs were used as the input for
pathway and upstream regulator analysis using the Ingenuity Pathway
Analysis (IPA) suite (www.ingenuity.com, accessed 2024).

Candidate biomarker selection
Based on the combined gene expression results from the murine and
human liver analyses,we identified a set of genes that correlated (using
Spearman’s rank and Pearson correlation analysis; Padj < 0.01) with
newly synthesized collagens in the mice and were also expressed in
liver tissue of patients with MASLD. Next, we determined which of

these translatable candidate genes formproteins that can bemeasured
in serum using ELISA assays. To this end, several steps were taken.
First, candidate genes were selected that have a soluble protein as
documented in the Cortellis Drug Discovery Intelligence database
(Clarivate, https://www.cortellis.com). Next, proteinswere selected for
which ELISA assays were available. We evaluated whether these ELISA
assays could measure the proteins in serum. Lastly, the accuracy of
these assays was evaluated using spike-ins with protein from another
supplier than the assay. From this selection process, 11 proteins that
could be detected with the spike-in procedure and showed a good
antibody recovery, were selected for analysis in serum samples from
the cohorts.

Selection of testing cohort
A testing cohort of 128 patients with MASLD from three academic
centers in the Netherlandswas selected to evaluate the accuracy of the
chosen biomarker panel. Since this cohort is used for feature selection
and the development of the machine learning model, the testing
cohort should also be considered a discovery cohort. MASLD was
defined as the presence of hepatic steatosis with at least one cardio-
metabolic risk factor andnoother causes of hepatic steatosis2. Patients
with potential other causes of liver damage besides MASLD, including
excessive alcohol use (women >14 units/week, men >21 units/week),
were excluded. Of the 128 patients, 68were enrolled in the Amsterdam
MASLD-MASH cohort (ANCHOR) study46. Twenty-two participants
were randomly selected from the group of patients with fibrosis stage
F0 or F1 in the BARICO (Bariatric Surgery Rijnstate and Radboudumc
Neuroimaging and Cognition in Obesity) study47 to enrich the testing
cohort with patients without fibrosis. The remaining 38 patients
underwent liver biopsies as part of their clinical evaluation and staging
process at the Leiden University Medical Center. All patients were
above 18 years of age and provided written informed consent. Studies
were approved by both the local Medical Ethics Committee and the
local institutional ethics committee, and were conducted in com-
pliancewith the Declaration of Helsinki and according toGoodClinical
Practice guidelines.

Selection of independent validation cohort
A validation cohort was performed in a prospective cohort study of
patients with MASLD (NCT04340817), which was approved by the
Research Ethics Committee of the Capital Region of Denmark (H-
17029039). Patients were recruited from January 2017 to December
2022 from the outpatient clinic at the Gastro Unit, Copenhagen Uni-
versity Hospital Hvidovre. The study conforms to the guidelines of the
1975 Declaration of Helsinki. All patients gave their informed consent
to participate. After the collection of informed consent, patients with
possibleMASLDwere assessed at a screening visit. In total, 156 patients
were characterized based on their history, clinical assessments, blood
tests (general screening including liver and metabolic tests), Fib-4,
APRI, and FibroScan. Alcohol use was evaluated based on interviews
combined with the Alcohol Use Disorders Identification Test-Concise
(AUDIT-C) questionnaire. MASLD was defined as described above. If
clinically significant fibrosis was suspected based on Fib-4 or FibroS-
can, patients were referred to a liver biopsy and a subsequent clinical
visit where the patient was informed about the biopsy results.

Liver histology assessment
Liver biopsy readings for both cohorts were performed in tandem by
two specialized liver pathologists (JV andMD). The assessment of liver
histology was conducted using the NAS scoring method and the
MASLD scoring system devised by Kleiner and Brunt48,49. Steatosis was
scored in grades 0-3. Grade0 indicates that less than 5%ofhepatocytes
display lipid droplets, grade 1 corresponds to 5–33%, grade 2 repre-
sents 33–66%, and grade 3 denotes more than 66% of hepatocytes
affected. Lobular inflammation is also scored on a scale of 0–3. Grade
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0 signifies no inflammatory foci, grade 1 corresponds to less than 2
foci, grade 2 reflects 2–4 foci, and grade 3 indicates more than 4
inflammatory foci per 200× field. Hepatocyte ballooning is graded
from 0 to 2. Grade 0 signifies no ballooned cells, grade 1 indicates few
ballooned cells, and grade 2 represents the presence of many bal-
looned cells or prominent ballooning. To provide an overall assess-
ment of NAFLD activity, the NAFLD activity score (NAS) was calculated
as the sumof individual scores for steatosis, lobular inflammation, and
hepatocyte ballooning. Lastly, fibrosis was assessed on a scale from
stages F0–F4. Stage F0 denotes no fibrosis, stage F1 indicates perisi-
nusoidal or periportal fibrosis, stage F2 reflects perisinusoidal and
(peri)portal fibrosis, stage F3 signifies bridging fibrosis, and stage F4
represents cirrhosis.

Machine learning analysis
We applied a Light Gradient Boosting Machine (LightGBM) model(38)
to enable prediction into three subclasses: no fibrosis (F0/F1), mild
fibrosis (F2) and advanced fibrosis (F3/F4). LightGBM is a machine
learning technique, which is similar to random forests, and creates and
combines an ensemble of decision trees. To train the model, the
samples of the testing cohort were split into a balanced training set
comprising of 30 samples each for each subclass, as well as a holdout
test set consisting of 8 samples for no fibrosis, 8 samples for mild
fibrosis, and 22 samples for advanced fibrosis. The feature importance
is computed as previously described50,51. To compute feature selection
using the LightGBMmodel, we first trained themodel on the complete
dataset and obtained the feature importance using the Genie index.
Next, we selected the three most relevant features (SSc5D, Sema4D,
and IGFBP7). Thereafter, we retrained the LightGBM model with the
selected features and evaluated its performance to ensure the effec-
tiveness of the feature selection. We performed linear discriminant
analysis (LDA) on training data (limited to the testing cohort) and
extracted two additional features (LD1 and LD2) to optimize the
LightGBMmodel. Using the same LDA model we transformed the test
data such thatwe had the same features for the test set. These features
were provided together with the biomarkers to the LGBMmodel. The
same LDAmodel as developed with the training data, was also used to
predictfibrosis stages in the independent validationcohort. Inorder to
assess the performance of the model, a 10-fold cross-validation
approach was utilized. This involved dividing the training set further
into 10 subsets, where the model was trained and evaluated using
different combinations of these subsets as training and validationdata.
To evaluate the effect of adding clinical variables to the model, 20×
cross validation was used. The accuracy and area under the receiver
operating characteristic curve (AUROC) were calculated as perfor-
mance metrics to evaluate the model’s predictive capabilities. By
employing this cross-validation strategy, the accuracy of the model
was determined by comparing the predicted labels with the actual
labels from the validation subsets. To evaluate the model, we used
normalized serum protein levels from the independent validation
cohort to assess accuracy, sensitivity and specificity. Normalization
was performed by adjusting the mean of the validation set relative to
the mean of the training set. Additionally, the AUROCmetric was used
to evaluate the model’s ability to discriminate between different
fibrosis stages, providing a measure of its overall performance.

Statistical analyses
Continuous variables were expressed as means ± SD or SEM, or med-
ians and inter-quartile ranges (IQR), categorical variables were
expressed as numbers and percentages. Differences in clinical char-
acteristics and fibrosis biomarkers between the fibrosis stages were
tested by the unpaired Student’s t-test and the Mann–Whitney U-test
(for either normally or not normally distributed continuous 2 vari-
ables) or the chi-square test for categorical variables. Statistical tests
are performed using two-sided statistics unless otherwise stated.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The transcriptome data generated in this study have been deposited in
the NCBI Gene Expression Omnibus (GEO) database under accession
code GSE240729. GEO Accession viewer (nih.gov). Source data are
provided with this paper.

Code availability
The codes used in this study are available via repositories https://
codeberg.org/serdar-/TLM3-Fibrosis-Predictor.
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