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Abstract

Objectives: To determine the incremental yield of prenatal exome sequencing (PES)

over standard testing in fetuses with an isolated congenital heart abnormality

(CHA), CHA associated with extra‐cardiac malformations (ECMs) and CHA depen-

dent upon anatomical subclassification.

Methods: A systematic review of the literature was performed using MEDLINE,

EMBASE, Web of Science and grey literature January 2010‐February 2023. Studies
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were selected if they included greater than 20 cases of prenatally diagnosed CHA

when standard testing (QF‐PCR/chromosome microarray/karyotype) was negative.

Pooled incremental yield was determined. PROSPERO CRD 42022364747.

Results: Overall, 21 studies, incorporating 1957 cases were included. The incre-

mental yield of PES (causative pathogenic and likely pathogenic variants) over

standard testing was 17.4% (95% CI, 13.5%–21.6%), 9.3% (95% CI, 6.6%–12.3%) and

35.9% (95% CI, 21.0%–52.3%) for all CHAs, isolated CHAs and CHAs associated

with ECMs. The subgroup with the greatest yield was complex lesions/heterotaxy;

35.2% (95% CI 9.7%–65.3%). The most common syndrome was Kabuki syndrome

(31/256, 12.1%) and most pathogenic variants occurred de novo and in autosomal

dominant (monoallelic) disease causing genes (114/224, 50.9%).

Conclusion: The likelihood of a monogenic aetiology in fetuses with multi‐system

CHAs is high. Clinicians must consider the clinical utility of offering PES in

selected isolated cardiac lesions.

Key points

What is already known?

� Congenital heart abnormalities are the most commonly occurring congenital anomalies and

can be associated with chromosomal or monogenic conditions.

� With the increasing use of fetal sequencing, there is a need to define the association be-

tween monogenic conditions and specific cardiac abnormalities, particularly when isolated

to facilitate triaging for prenatal sequencing.

What does this study add?

� The incremental yield of prenatal exome sequencing over and above chromosome micro-

array for congenital heart abnormalities is 9.3% in isolated lesions and 35.2% in the pres-

ence of complex lesions/heterotaxy.

� Clinicians should consider the clinical utility of offering prenatal exome sequencing in

selected isolated cardiac lesions dependent on resources available.

1 | INTRODUCTION

Congenital heart abnormalities (CHAs) are the most common

congenital anomalies worldwide, occurring in 1% of live term births,

with a high incidence of perinatal morbidity and mortality.1‐4 Pre-

natal identification can optimise outcome, facilitating early referral to

tertiary units for investigation and management. Congenital heart

abnormalities have a complex and heterogenous aetiology including

environmental and genetic elements, although the pathophysiology is

yet to be fully elucidated.5 Timely detection is key to facilitate the

identification of the cardiac phenotype, associated extra‐cardiac

malformations (ECM), and enable discovery of a possible underlying

genetic diagnosis as this can have implications regarding pregnancy

course, neonatal management and surgical planning.6 It is estimated

that over half of fetuses remain without a genetic diagnosis under-

lying their CHA phenotype following standard prenatal genetic

testing with G‐banding karyotype and/or chromosome microarray

(CMA) with associated incremental diagnostic yields from either

technology around 20% and 8%, respectively.5,7 The recent

introduction of prenatal exome sequencing (PES) has facilitated a

significant shortening of the diagnostic odyssey for fetuses and ulti-

mately children with congenital anomaly; however, it is a resource

with limitations such as cost and interpretational burden with the

potential for variants of uncertain significance (VUS).8 Hence, case

selection is important, as demonstrated by the high diagnostic yield

generated when an evidence‐based phenotypic inclusion criteria is

utilised.9

A previous systematic review and meta‐analysis assessed the

incremental yield of PES for CHA and included 636 cases from

January 2000 to October 2019, demonstrating an incremental yield

in any prenatally detected CHA of 13%.10 Since this time there has

been an exponential rise in the literature published in this area,

hence, there is a need for updated summation of evidence. The ob-

jectives of this systematic review and meta‐analysis were to; (i)

determine the incremental yield of PES over and above standard

testing (G‐banding karyotype and/or CMA) in fetuses with a CHA

both isolated and in conjunction with other ECMs and; (ii) further

elucidate the yield based on different CHA sub‐classifications.
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2 | METHODS

2.1 | Data sources

A systematic review was conducted in line with the Preferred

Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA)

guidance.11 A systematic electronic search of MEDLINE, EMBASE,

Web of Science and the grey literature was conducted from January

2010 on February 2023 inclusive. Keywords including ‘exome

sequencing’, ‘prenatal’ and ‘anomaly’ were used. Alternative terms for

‘exome sequencing’ included ‘genome sequencing’. Alternative terms

for ‘prenatal’ included ‘fetal’, ‘fetus’ or ‘antenatal’. Alternative terms for

‘anomaly’ included ‘abnormality’ and ‘defect’. Bibliographies of all

relevant papers were searched to identify further potentially appro-

priate studies. Studies that were not in the English language or were

not based on human studies were excluded. The full search strategy

can be acquired from the corresponding author upon request. The

systematic reviewwas registeredprospectively on11thOctober2022,

PROSPERO No. CRD 42022364747.

2.2 | Eligibility criteria for study selection and data
extraction

Once all searches were completed, the relevant abstracts were

uploaded to Covidence®.12 All study abstracts, and subsequently

when required full texts, were screened by two reviewers (K.R. and S.

S.). Where there was disagreement, this was decided by the senior

author (F.M.). Studies that were selected for inclusion were those that

had; (a) twenty or more cases of CHA, (b) testing initiated due to pre-

natal phenotyping only, and (c) a negative CMA and/or G‐banding

karyotype result. Where testing was carried out postnatally, the

cases were included if the decision to test was based on the prenatal

phenotype. The relevant data extracted included ultrasound pheno-

type, exome sequencing approach, genomic variants, source of fetal

DNA, turnaround time for testing, gestational age and pregnancy

outcome. The genomic variants considered diagnostic were those that

were graded ‘likely pathogenic’ or ‘pathogenic’ and causative to the

fetal phenotype in line with the American College of Medical Genetics

and Genomic (ACMG) guidance and the Association for Clinical

Genomic Science (ACGS) in line with authors' local reporting prac-

tice.13,14 Where phenotypic information was incomplete, the corre-

sponding authors were contacted for further information. All cases of

CHA from the review were then categorized as being isolated, asso-

ciated with ECMs (multisystem) and broken down in line with the

anatomical sub‐classification which was agreed upon by three paedi-

atric cardiologists with expertise in prenatal CHA (N.M., F.C. and A.S.)

2.3 | Quality assessment and data synthesis

The incremental yield of PES in chromosomally normal fetuses was

calculated for each study and reported as the proportion of

pathogenic and likely pathogenic variants detected by ES in fetuses

with non‐diagnostic CMA and/or G‐banding karyotype with 95%

confidence intervals (CI), and as a pooled value for (a) all CHA; (b)

isolated CHA; (c) CHA associated with ECM and; (d) CHA sub‐
classified using anatomical classification.10 Studies that did not

include full information on whether the CHA was isolated or not

were not included in the subgroup analyses. Incremental yield esti-

mates were pooled through a meta‐analysis of proportions using the

Freeman‐Tukey double‐arcsine transformation and inverse‐variance

weighting. Results for each of these analyses were displayed in for-

est plots with the associated 95% CI. Statistical heterogeneity was

assessed using the Higgins I2 statistic. The risk of publication bias was

graphically assessed by inspecting the asymmetry of a funnel plot of

standard errors against the double‐arcsine transformed proportions

only for the main analysis of all CHAs, and formally tested using the

Peters' test for meta‐analyses of proportions.15 Analyses were con-

ducted using the package meta in the statistical package R.16,17 p‐
values below 0.05 were considered statistically significant. Quality

assessment was evaluated using the modified Standards for Report-

ing of Diagnostic Accuracy criteria.18 The quality criteria deemed

most important to optimize accuracy were: (1) whether trio analysis

was performed; (2) whether ACMG/ACGS criteria were used for

variant interpretation; and (3) whether there was Sanger validation

of variants. Owing to the limited number of studies available, beyond

the predefined inclusion criteria, the quality of the studies could not

be incorporated into the analysis.

3 | RESULTS

3.1 | Study selection and characteristics

In total, 73 studies were identified as suitable for inclusion; however,

52 of these were excluded for reasons including less than 20 cases,

overlap with data reported in other papers, testing based on single

gene sequencing and postnatal phenotype (Figure 1). Corresponding

authors for 18 of the original 52 papers were emailed for further

information where this was incomplete and four of these responded

with complete data for inclusion, of which one was excluded as it had

less than 20 cases.19–22 This left 21 studies included in the final meta‐
analysis (incorporating 1957 cases).19–21,23–40 Of the 21 studies in

this paper, 8 were used in the previous analysis by Mone, et al.10

Table S1 outlines the study characteristics. Supplementary Figure S1

demonstrates the quality assessment.

3.2 | Overall outcomes

Whether the fetus had an isolated CHA, or CHA associated with

ECMs, was specified in 1793 cases (91.6%). Where recorded, the

primary source of fetal DNA was amniocytes; 47.3% (864/1828),

followed by fetal blood (cordocentesis); 40.8% (745/1828). Where

reported (20.5%; 402), the median turnaround time for obtaining an
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ES result was 42 days (range 14–271 days). The commonest preg-

nancy outcome for the entire cohort was termination of pregnancy;

52.8% (254/481).

3.3 | Incremental yield of pathogenic variants

The pooled incremental yields for all CHAs, isolated CHAs associated

with ECMs were 17.4% (95% CI, 13.5%–21.6%), 9.3% (95% CI, 6.6%–

12.3%) and 35.9% (95% CI, 21.0%–52.3%), respectively [Figure 2A–

C], with significant asymmetry evident in the corresponding funnel

plot (Peters' test p‐value <0.001) [Figure S2].

In fetuses with non‐isolated CHA associated with ECMs with a

causative variant, the most common associated anomalies were

gastrointestinal; 26.7% (35/131), central nervous system; 25.2% (33/

131) and neck/skin anomalies (cystic hygroma and thickened nuchal);

22.1% (29/131).

Subgroup analyses of phenotypic categories of non‐isolated

cardiac lesions revealed the greatest yield in complex lesions/isom-

erism; 35.2% (95% CI, 9.7%–65.3%) and right‐sided lesions; 23.2%

(5.9%–45.9%) [Table 1 and Supplementary Figure S3–S9]. Further

subgroup analysis of phenotypic categories in isolated cardiac lesions

only [Table 2] overall demonstrated a lower yield for all categories

other than conotruncal abnormalities and complex lesions/isomerism.

Where reported, causative pathogenic and likely pathogenic

variants are demonstrated in Table S2. Where stated, the commonest

genetic syndromes were Kabuki syndrome (31/256, 12.1%), Noonan

syndrome (21/256, 8.2%), CHARGE (Coloboma, Heart defects,

Atresia choanae, Retardation of growth, Genital abnormalities, ear

abnormalities) syndrome (16/256, 6.3%), and Primary ciliary dyski-

nesia (14/256, 5.5%). Table 3 highlights the genes associated with

these and the other most common syndromes alongside the pre-

senting cardiac phenotype and the number of affected fetuses. The

commonest nature of inheritance pattern was autosomal inheritance

with de novo variants (114/224, 50.9%). In isolated cardiac lesions

with a causative pathogenic variant, these syndromes were typically

associated with multi‐system anomalies in 32.8% (84/256).

Incidental findings and VUS were reported with incremental

yields of 6.4% (95% CI, 3.1%–10.6%) and 15.5% (95% CI, 6.8%–

26.5%) respectively [Tables S3 and S4].

4 | DISCUSSION

This meta‐analysis has identified an apparent incremental yield for

PES over standard prenatal genetic testing of 9.3%, with the highest

yields identified in the presence of ECAs and in complex cardiac le-

sions/heterotaxy at 35.9% and 35.2%, respectively. The most com-

mon clinical syndromes identified, based on the variant genes

detected, were Kabuki and Noonan syndrome. Over half of the

causative pathogenic variants occurred de novo and in autosomal

dominant (monoallelic) disease genes.

This is an extension to a previous meta‐analysis conducted by

Mone, et al., with over twice the number of cases included and

considering a different anatomical classification, demonstrating a

similar yield in isolated CHAs and a more significant yield for complex

lesions/heterotaxy (35.2% vs. 23%).10 The latter may be secondary to

the greater number of cases included as well as potential selection

bias for performing and reporting PES in such instances, where

obtaining a genetic diagnosis may have a more significant clinical

impact regarding management in pregnancy and postnatal surgical

planning.7 Analysis of the fetal heterotaxy cases in isolation and the

complex cases in isolation, was not feasible due to too small numbers

in each group. Rates of VUS were lower than previously reported,

likely reflective of; (i) the fact that many more recent studies and

clinical pathways do not routinely report prenatal VUS and; (ii) the

predicted reduction of VUS reported with time as variant classifica-

tion has become more refined and more population data and case

reports have become available. This phenomenon is akin to what has

occurred with microarray technology.42

Similar to our previous study, we echo the need for a robust

prenatal CHA classification system which may or may not align with

genetic diagnoses which will likely be based upon embryological

origin. Where an isolated CHA and associated phenotype was

described (n = 970) this did not fit into any of the four anatomical

categories (i.e., septal, left‐sided obstructive, right‐sided conotruncal

and complex) in 52 cases (5.4%) for example, cardiomyopathy and

persistent left superior vena cava and in 70 cases (7.2%) fitted into

more than one anatomical subcategory, highlighting the complexity

and challenge with categorising cardiac lesions. Given a relatively

F I GUR E 1 PRISMA flow diagram.
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modest yield with PES compared to other structural anomalies for

example, 68% in suspected skeletal dysplasia,43 one could argue that

isolated CHAs are not primarily due to single gene mutations, and

propose that the association with post‐translational modifications

and epigenetic change needs to be elucidated further with a partic-

ular focus on transcriptomics. Embryological development of the

F I GUR E 2 (A) Forest plot depicting the incremental yield of prenatal exome sequencing over standard testing in fetuses with

prenatally detected congenital cardiac anomalies. Only the first author of each study is given. (B) Forest plot depicting the incremental
yield of prenatal exome sequencing over standard testing in fetuses with prenatally detected isolated congenital cardiac anomalies. Only
the first author of each study is given. (C) Forest plot depicting the incremental yield of prenatal exome sequencing over standard

testing in fetuses with prenatally detected congenital cardiac anomalies associated with extra‐cardiac anomalies. Only the first author of
each study is given.
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heart starts from the end of the second week of human development

and involves an interplay of cell differentiation, migration, prolifera-

tion, folding, looping, compaction, and ultimate development of a

four‐chamber organ with outflow tracts and a conduction system.

Regulation of development is highly complex, involving multiple

genes controlling interacting molecular signalling pathways which

can be influenced by a range of transcription factors (e.g., MESP1,

GATA4/6, TBX5, SRF, ISL1) and micro‐RNAs which can reappear at

several steps in the embryological process. One example is that of the

NOTCH signalling pathway which is important throughout embryo-

logical development and within which mutations may present with a

range of cardiac phenotypes as evident through animal knock‐out

studies.44,45 Further to this, the genes involved in embryological

cardiac development do not fully explain the causative list of path-

ogenic variants from our study for example, the KMT2D gene where

loss‐of‐function variants are associated with Kabuki syndrome, the

commonest identified syndrome within our cohort. KMT2D encodes

an enzyme called lysine‐specific methyltransferase 2D which is a

histone marker associated with DNA methylation and chromatin

remodelling, core mechanisms in epigenetic modification,46 support-

ing the theory that origins are beyond that of the genetic code.

From a clinical perspective, given the associated high mortality

associated with complex CHA, obtaining a genetic diagnosis may be

more important than in many other types of structural anomalies as

it may influence surgical planning and prognostication.47 This is

especially true of those with complex CHA associated with ECAs as

this may affect the suitability of patients for surgical procedures

and the overall outcomes following intervention. To further the

complexity, detection in the first instance and accurate prenatal

classification of CHA remain limited internationally, although

improved ultrasound technology has improved the ability to make

more accurate diagnoses as early as the first trimester and specific

fetal Human Phenotype Ontology terms are being developed.48,49 A

third of the syndromes identified in this study were typically those

with a multi‐system phenotype presenting as an isolated CHA in

utero. While it is known that the postnatal examination of fetuses

with a prenatally suspected ‘isolated’ CHA may reveal undiagnosed

extra‐cardiac anomalies in up to a quarter of cases prenatally, given

that some of these may represent subtle dysmorphology or certain

anomalies only evident at clinical or post‐mortem examination, this

highlights the need for deeper phenotyping and reconsideration of

the description of syndromes prenatally and postnatally which has

only come to light with the provision of next‐generation

sequencing.50‐52

Postnatally CHAs have a low absolute sibling recurrence risk of

around 2.5%, which is suggestive of the predominance of de novo

variants (as seen in our own study), incomplete penetrance and so-

matic mosaicism.53 This is important as given advances in the man-

agement of CHAs, many fetuses will survive into reproductive age

where mitigation of recurrence in off‐spring may be an option.

Interestingly, abnormal dysmorphic facial features are almost always

present neonatally where a single gene disorder is identified in a

CHA, again highlighting the limitations of prenatal phenotyping.54

Few post‐natal studies have assessed the use of NGS in non‐
syndromic (i.e., apparently isolated) CHAs, although within a high‐
risk cohort with familial recurrence where a cardiac gene panel

was applied, the yield ranged from 31% to 46% with variants in

NOTCH1 and TBX5 most prevalent.55

The strength of this systematic review is that to our knowl-

edge, it is the largest of its kind and the first to be classified by

F I G U R E 2 (Continued)
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paediatric cardiologists. We had international collaboration from

associated authors to ensure full data sets when possible. A robust

methodology was applied and the quality of the included studies

was also checked based upon the previously mentioned stan-

dards.11 The main limitation is the high heterogeneity, which is

evident and which we attempted to minimise by only including

studies with case numbers greater than 20 and through subgroup

analyses. Additionally, the cohort represents selection bias given

the uptake of invasive testing in CHAs, particularly in isolated

CHAs is low and that many affected fetuses will be terminated

before genetic testing is performed.7 Whilst we know that prenatal

phenotyping is more limited than what can be done postnatally, a

significant limitation of this meta‐analysis is that we do not know

when cases were scanned, the standard of scanning delivered, if

CHAs were confirmed postnatally or if findings such as increased

nuchal translucency were reported. These factors may inflate the

rates of monogenic conditions in “isolated” lesions as we would not

expect such high rates in postnatally ascertained cases.56 A further

limitation is that there were inadequate numbers in either complex

or heterotaxy sub‐groups to determine the incremental yield in

isolation for either group.

5 | CONCLUSION

This meta‐analysis has identified an apparent incremental yield for

PES over standard prenatal genetic testing of 17.4% in cases of CHA,

with highest yields identified in the presence of extra‐cardiac

anomalies and complex cardiac lesions/heterotaxy. While the over-

all yield in isolated lesions may be lower compared to other systems,

it is still an important yield likely to contribute to clinical impact and

clinicians must consider the clinical utility of offering prenatal exome

sequencing in isolated cardiac lesions dependent on resources

available and the potential outcomes.
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