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Abstract
Objective. Electrical impedance tomography (EIT) produces clinical useful visualization of the
distribution of ventilation inside the lungs. The accuracy of EIT-derived parameters can be
compromised by the cardiovascular signal. Removal of these artefacts is challenging due to spectral
overlapping of the ventilatory and cardiovascular signal components and their time-varying
frequencies. We designed and evaluated advanced filtering techniques and hypothesized that these
would outperform traditional low-pass filters. Approach. Three filter techniques were developed
and compared against traditional low-pass filtering: multiple digital notch filtering (MDN),
empirical mode decomposition (EMD) and the maximal overlap discrete wavelet transform
(MODWT). The performance of the filtering techniques was evaluated (1) in the time domain (2)
in the frequency domain (3) by visual inspection. We evaluated the performance using simulated
contaminated EIT data and data from 15 adult and neonatal intensive care unit patients.Main
result. Each filter technique exhibited varying degrees of effectiveness and limitations. Quality
measures in the time domain showed the best performance for MDN filtering. The signal to noise
ratio was best for DLP, but at the cost of a high relative and removal error. MDN outbalanced the
performance resulting in a good SNR with a low relative and removal error. MDN, EMD and
MODWT performed similar in the frequency domain and were successful in removing the high
frequency components of the data. Significance. Advanced filtering techniques have benefits
compared to traditional filters but are not always better. MDN filtering outperformed EMD and
MODWT regarding quality measures in the time domain. This study emphasizes the need for
careful consideration when choosing a filtering approach, depending on the dataset and the
clinical/research question.

List of abbreviations

BPM Breaths or beats per minute
DLP Digital low pass filter
ECG Electrocardiography
EIT Electrical impedance tomography
EMD Empirical mode decomposition
erel Relative error
erem Removal error
etime Timing error
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H/L High/low ratio
Hz Hertz
ICU Intensive care unit
IMF Intrinsic mode functions
MDN Multiple digital notch filtering
MODWT Maximal overlap discrete wavelet transform
Pclean Power of the clean data
Pfiltered Power of the filtered data
PSD Power spectral density
RR Respiratory Rate
sd etime Standard deviation of the timing error
SNR Signal to noise ratio
STBP Stable tidal breathing period

1. Introduction

EIT is a non-invasive imaging technique that dynamically visualizes the distribution of air in the lungs, as
measured by electrodes (either individually placed or as part of an electrode belt) around the thorax. Small
currents are injected over pairs of electrodes and resultant voltage changes are measured over the other
receiving electrodes. EIT is gaining popularity worldwide as an advanced and real-time bedside technique
that provides support to the clinician by monitoring changes in ventilation distribution and lung aeration in
response to mechanical ventilation strategies, therapeutic procedures, or owing to clinical evolution (Barber
and Brown 1984, Frerichs et al 2017, Tomicic and Cornejo 2019).

The measured impedance variations are mainly a result of variation in air content due to ventilation.
However, since the heart and major blood vessels are positioned within the same electrode plain, the
measured impedance changes are also affected by changes in blood volume within the thorax. Cardiac or
perfusion-related impedance changes are generally one order of magnitude smaller than ventilation-related
impedance changes, significantly affecting the measured signal (Graf and Riedel 2017). In most clinical uses
of EIT, the impedance changes induced by ventilation are the main feature of interest, and therefore, the
cardiovascular impedance changes are often removed from the signal. A commonly used method is low-pass
filtering, thereby removing the higher frequency cardiovascular impedance changes. This is also often
applied during real-time EIT processing directly at the bedside, in offline analysis tools from different
manufacturers, and in multiple research studies (Zadehkoochak and Blott et al 1992, Leathard et al 1994,
Frerichs et al 2009). However, this separation method does not take into account the occasional spectral
overlap of respiratory harmonics and cardiovascular frequencies. Cardiac and respiratory frequencies—and
thus their spectral overlap—often vary over time in the critically ill, making simple low-pass filtering less
effective. Removing respiratory harmonics results in loss of detail, which inherently affects the outcomes of
complex EIT analyses (Kerrouche et al 2001). This is especially important for computation of regional or
pixel-level EIT parameters, considering that spectral overlap is of greater magnitude in pixels with close
proximity to the heart.

More advanced separation techniques that have been described involve principal component analysis
(Deibele et al 2008, Jang et al 2020), or singular value decomposition (Kerrouche et al 2001). While these
methods are promising, they are rather complex and computationally expensive. A simple, yet effective
method that is primarily aimed at enhancing ventilation monitoring is currently lacking. EMD and discrete
wavelet transform techniques are increasingly used in other physiological signal processing (including for the
electrocardiogram (ECG), electroencephalogram and electromyogram) (Sun et al 2020, Thangarajoo et al
2021, Hussein et al 2022) and may be a promising and viable alternative to traditional digital filters.

Therefore, the aim of the current study is to design and evaluate automated filtering methods for the
offline attenuation of cardiovascular impedance changes in EIT measurements. We focus on three filtering
techniques for extracting the respiratory signal while mitigating cardiac interference in EIT: MDN filters,
EMD and the MODWT. Their performances will be evaluated against traditional DLP using clinical and
simulated data. We hypothesize that EMD and MODWT perform better in removing cardiovascular
impedance changes considering the time-varying frequency content.

2. Methods

2.1. Subjects and signal acquisition
To evaluate the performance of the proposed filtering techniques we used both patient data and simulated
data (see paragraph ‘Simulations’ below). EIT data were gathered from three previously performed studies in
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Figure 1. Visual explanation of the heart rate detection algorithm in a representative case (adult patient) during pressure support
mechanical ventilation. Top: normalized periodogram of the global EIT signal. The respiratory rate is easily estimated as the
location of the maximum value within the viable range: 29 BPM. Middle: average normalized periodogram of all included pixels.
Note the peak around 78 BPM that was not present in the top plot. Bottom: the difference between the top and middle plot.
Averaging the normalized periodograms results in an apparent increase in power in the range of 0–5 BPM and around 78 BPM
(and its harmonics), and an apparent decrease in power around the respiratory rate (25–35 BPM). The heart rate is now easily
estimated as the location of the maximum value within the viable range: 78 BPM. Note that it would be visually impossible to
detect the heart rate correctly solely based on the periodogram of the global EIT signal.

the Adult ICU and Neonatal ICU of the Erasmus medical center, Rotterdam, the Netherlands (local informed
consent procedures were followed). EIT recordings were performed with the Pulmovista 500 (Dräger, Lübeck
Germany) or LumonTM (Sentec AG, Therwil Switzerland) (Somhorst et al 2022, Wisse et al 2024). The
sampling rate for Pulmovista was 20 Hz and the sampling rate for Lumon was 50.2 Hz. The spatial resolution
was 32 by 32 pixels for both devices.

To evaluate performance of our filtering techniques under various conditions and within a wide and
variable range of respiratory and cardiac frequencies, data from 5 adult patients on controlled ventilation
(Pulmovista), 5 adult patients on pressure support ventilation, 5 adult spontaneously breathing patients
without ventilator support, and 5 prematurely born neonates on synchronized intermitted positive pressure
ventilation (Lumon) were randomly selected from our larger studies. We selected stable one-minute intervals
from longer recordings of these patients. All data processing and development of algorithms and simulations
were performed in Python version 3.11.4.

2.2. Heart rate detection algorithm
Some filter algorithms we designed depend on prior knowledge of the heart rate, for which we developed a
heart rate detection algorithm (figure 1 and see supplement 1 for more detailed description). If not
separately recorded, acquiring the heart rate from EIT data is a non-trivial problem. To note, the
periodogram of the global EIT signal generally shows three main frequencies: an offset in the range from 0 to
6 breaths or BPM, the RR, and the heart rate. The highest peak in the periodogram>6 BPM is generally the
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RR, and the second highest peak is the heart rate or the first harmonic of the RR. However, these two latter
peaks might overlap. Therefore, simply finding the second or third highest peak in the periodogram, even
when ignoring harmonics, does not always accurately reflect the heart rate. Hence, we propose an algorithm
that uses the periodogram of each individual EIT pixel and compares it to the periodogram of the global EIT
signal. Some pixels contain mostly the respiratory signal, while others contain more cardiovascular
information. We first enlarged the cardiovascular component by normalizing the periodogram of each pixel
by dividing by the area under the curve. This artificially enlarges the power of those pixels with a large
cardiovascular signal. The difference between the normalized periodogram and the global periodogram
shows which frequencies were enlarged during this process, resulting in an overrepresentation of the heart
rate that can be easily detected (figure 1). For comparison and evaluation of performance, we obtained the
patient’s heart rate from the digital clinical patient record at the time of EIT recording.

2.3. Filter algorithms
The following paragraphs briefly present the algorithms under analysis to remove the cardiovascular
impedance changes from the EIT data.

DLP (comparator filter) is a popular and widely used filtering method for the time domain. This rather
simple filter can be applied to EIT data assuming that heart rate and RR can be adequately separated in
frequency. We applied a 5th order Butterworth filter with a low-pass frequency of 40 BPM (0.67 Hz,
minimum heart rate) for adults and 90 BPM (1.5 Hz, minimum heart rate) for neonates.

MDN was designed as an extended version of the DLP filter. It uses individualized cut-off frequencies for
each patient. To achieve this, we applied multiple 5th order Butterworth notch filters. For the first filter, the
stopband frequencies were set to heart rate± 10 BPM. Subsequent notch filters were applied to the
harmonics of the heart rate± 10 BPM, until the harmonic reached a frequency above 210 BPM (3.5 Hz).
These notch filters were combined with a low pass filter with a cut-off frequency at 210 BPM (3.5 Hz). To
individualize the cut-off frequencies for each data set we utilized our heart rate detection algorithm.

EMD is a time-domain filtering technique that separates a signal into groups of similar frequencies
known as IMF, by a process called sifting. At each sifting iteration, the technique identifies local extrema in
the signal, creates upper and lower envelopes and extracts the mean envelope. This process is repeated
iteratively until all IMFs are obtained, with each iteration revealing a lower-frequency component in the data
(Huang et al 1998). However, it often occurs that an IMF fails to isolate a single oscillatory component and
that the cardiovascular components are included in multiple IMFs making it challenging to subtract a single
IMF from the original signal. This phenomenon is called mode-mixing (Xu et al 2019). To prevent
mode-mixing, we designed a modified EMDmethod using a frequency-depended mask.

Masking involves adding a sinusoid with a known frequency to the original signal (Wu and Huang 2004,
Deering and Kaiser 2005). After estimation of the first IMF, the mask is subtracted from the filtered signal.
Then, the next IMF is estimated by addition of a new, lower frequency mask (see supplement 4, figures 1
and 2). We chose masks with frequencies that forced the circulatory information to be extracted at
predictable sifting iterations. Fosso et al (Fosso and Molinas 2018) also demonstrated that using powers of 2
times the heart rate introduces mode-mixing of lower frequencies into the masked IMF. A mask with
frequency fm results in an IMF with frequencies between 0.67× fm and fm. If a signal is masked with a 1 Hz
sinusoid, the resulting IMF will also contain frequencies between 0.67 and 1 Hz. Accordingly, to get the
optimal mask frequency, the heart rate should be divided by 0.67 to obtain a ground mask frequency (GMF).
The masks can be constructed based on the GMF by: [22, 21, 2◦]× GMF.

MODWT is a powerful tool for analyzing varying time series data and is useful for detecting patterns and
changes in signals with time-varying frequency content. The signal is decomposed by repeated application of
a wavelet filter to the signal. The wavelet filter decomposes the EIT signal in a detail part (representing the
high–frequency information) and an approximation part (representing low-frequency information). The
decomposition process of the approximation part is repeated at multiple levels, each level providing more
detailed information about the signal’s frequency (Khawaja 2007, Daud and Sudirman 2022). MODWT
differs from other discrete wavelet transform methods as each level of decomposition overlaps with adjacent
scales to provide a more comprehensive representation of the signal’s spectral content. We evaluated the
performance of different orthogonal wavelets (Haar, discrete Meyer, Daubechies, Symlet, and Coiflet) and
decomposition levels for building the MODWT filter. We found the Symlet (Sym) 13 wavelet with 5 levels of
decomposition to be a useful choice for filtering for 50 Hz EIT signals, and the Sym 13 wavelet with 4 levels
op decomposition for 20 Hz EIT signals (for further details, see supplement 2). All detail coefficients were set
to zero, leaving only the last approximation part.
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2.4. Simulation
To obtain simulated EIT waveforms, a clean respiratory signal was generated and contaminated with cardiac
artefacts and random noise. The clean respiratory signal was generated by convolving a repetitive square
block (with its frequency set to the RR), with an exponentially decaying signal. The cardiovascular artefacts
were selected from EIT data during in-and-expiratory holds and periods with apnea. During these periods
there was no ventilation and the measured impedance changes were only generated by the cardiovascular
system. Ten periods with cardiac artefacts were selected from neonatal and adult patents and resamples over
multiple heartrate frequencies. Random noise was created with random samples from a Gaussian
distribution. To obtain the full simulated EIT waveform affected with noise, the simulated respiratory signal,
cardiovascular signal and the random noise were summed up. A detailed description of the generation of the
EIT data simulation method can be found in supplement 3.

We generated a total of 225 simulations with various RRs, heart rates and shape combinations,
representing the clinical range and variability of these frequencies.

2.5. Quality measures
The performance of the filtering techniques was evaluated as follows: (1.) in the time domain, by comparing
the removal error, timing error and amplitude difference; (2.) in the frequency domain, by comparing the
median frequency, relative error, SNR and the H/L ratio; and (3.) by visual inspection (Chen et al 1994,
Jonkman et al 2021, Petersen et al 2020, Zhan et al 2010). Table 1 gives an overview of all quality measures
and figure 2 provides additional visual explanation of the time-domain quality measures; a more detailed
description can be found in supplement 5. As we cannot obtain the true clean EIT signal of patient
recordings, it is not possible to assess most of these measures in clinical patient data. Therefore, only the
median frequency and the H/L ratio was calculated to objectify the performance of the filters in clinical data.

2.6. Statistical analysis
Differences between the quality measures as extracted from the filtered signals using the various algorithms
and when applied to both the simulated signals and the patient data were analyzed by repeated measures
ANOVA with Greenhouse–Geisser correction at the 95% significance level; pairwise comparison was
performed after Bonferroni correction. The performance of the heart rate detection algorithm was evaluated
using Bland-Altman analysis by comparing the heart rate as detected by the algorithm with that obtained
from the digital patient file. Normality was checked with the Shapiro–Wilk test and appropriate
transformation was applied if necessary; for the data to be considered a normal distribution after such
transformation, we accepted a 90% significance level of the Shapiro–Wilk test. Statistical analysis was
performed using R-statistics (version 4.3.1).

3. Results

3.1. Heart rate detection algorithm
When comparing the heart rate detected using the proposed heart rate detection algorithm with that
reported clinically, the Bland-Altman analysis revealed a bias of 0.8 BPM with limits of agreement between
−2.9 and 4.6 BPM (supplemental figure S1-1).

3.2. Filtering performance
Examples of the different filtering methods and their performance is demonstrated in figure 3 in both the
time and frequency domain, presenting a representative case of patient data (adult and neonatal ICU patient)
as well as simulated data. Details around the peaks and throughs of the signal were followed well by MDN
and MODWT. Generally, DLP MODWT and EMD resulted in more loss of detail around the peaks and
throughs of the signal. The performance of MODWT to filter out the heart action was variable in adult
patients, and failed in some cases to filter out bumps due to the heart action. MODWT seemed to perform
better in the neonatal and simulated cases. Most filters removed a broad range of high frequency content
from the signal. MDN was more discriminatory and successfully removed the frequencies surrounding the
heart rate and its harmonics.

Below, we provide a quantitative analysis of quality measures.
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Figure 2. Visual explanation of the quality measures in the time domain. This example is created to exaggerate the difference for
visual purpose and does not represent real filtered and clean data. The sum of all gray marked areas is the Removal Error. The
Timing Error is the difference between the detected peaks and through in the filtered and simulated signal. The amplitude of the
filtered signal (Afiltered) and the amplitude of the clean signal (Aclean) are used to calculate the Amplitude Ratio.

3.3. Simulated data
Quality measures indicating the filtering performance in both the time and frequency domain using the
simulated contaminated EIT data are presented in figure 4. For reference and interpretation of the effect of
different filters, we also plot the quality measures when comparing the contaminated unfiltered signal to the
clean signal. All filters caused a time shift of the filtered signal compared to the clean signal. This time
difference was consistently negative, identifying a shift of the peak to an earlier point in time. The timing
difference of MDN and EMD is small and EMD comes with a relatively small standard deviation of the time
difference but has a large number of outliers. An optimal amplitude ratio is achieved at a value of one. DLP
tends to underestimate the amplitude while MDN approximates an amplitude ratio of one. The median
frequency was low in all signals. The median frequency of MDN was higher compared to the other filters,
indicating that MDN removes less high frequency content from the signal. The SNR performance was best
for DLP; however, this comes at the cost of a high relative error and removal error. MDN, EMD and
MODWT exhibited comparable performance regarding the SNR, with the best performance in relative error
and removal error for MDN. Analysis of the H/L ratio emphasizes the loss of high frequency data after
filtering, demonstrating that DLP removes most high frequency content and MDN the least high frequency
content compared to the other filters.

3.4. Clinical data
The H/L ratio and median frequencies of the EIT signals from all patients after DLP, MDN, EMD and
MODWT filtering are presented in figure 5. All filtering techniques reduced the power of the higher
frequency content with a corresponding decrease in the H/L ratio and a decrease in the median frequency.
Post-hoc tests revealed a significant decrease in the H/L ratio of all filtering techniques, with effects more
pronounced for DLP. The median frequency of the unfiltered data was significantly different compared to all
filtering techniques. DLP removed most high frequency content and has the lowest median frequency. The
median frequencies of the signal after MDN is closest to the unfiltered signal. The median frequency of
MDN, EMD and MODWT filtering did not differ significantly. The figures in supplement 6 show the
difference in behavior of the filters between neonates and adults. A remarkable difference is the performance
of MODWT regarding the H/L ratio in neonates which is remarkable lower, indicating that more high
frequency content was removed.

4. Discussion

In the current study we present and compare methods for suppression of cardiovascular artefacts from EIT
recordings. We designed and evaluated four filter techniques: DLP, MDN, EMD and MODWT. The filter
performances were evaluated in simulated EIT data and in neonatal and adult patient data. The performance
of the filters was determined in both the time and frequency domains by computing quality measures related
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Figure 3. Top: Time interval containing two breaths of the raw and filtered signal using the digital low pass filter (DLP), multiple
digital notch filters (MDN), empirical mode decomposition (EMD) and maximum overlap discrete wavelet transform (MODWT)
for three different cases: an adult during controlled mechanical ventilation (corresponds to figure S1-2), a neonate during support
ventilation (corresponds to figure S1-3) and a simulated signal (RR 30 bpm, heart rate 70 bpm). DLP and EMD generally result in
loss of detail around the peaks and troughs of the signal. MDN and MODWT seem to better follow the shape of the troughs
compared to the other methods. MODWT fails to filter out a bump due to heart action between t = 3 s and t = 4 s in the adult
case, but performs better in the neonate and simulated case. MDN functions similarly in all three cases. Bottom: fast Fourier
transform of the 1-minute recording from which the time interval in the top plots were taken. Note that the y-axis is log-scaled. All
filters remove especially higher frequencies from the signal. MDN is successful in mainly removing the frequencies surrounding
the heart rate and its harmonics. All other filter techniques are less discriminatory in the removal of high frequency data.
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Figure 4.Quality measures of the filter performance of the simulated data. Significant difference (p< 0.05) in the quality measure
between the filters is indicated with a horizontal bar. The quality measures are the time difference, standard deviation of the time
difference, amplitude ratio, median frequency, signal to noise ratio, relative error, removal error and the H/L ratio.

Figure 5. Performance quality measures (high/low ratio and median frequency) of the filters for the patient data. Significant
difference (p< 0.05) in the quality measure between the filters is indicated with a horizontal bar.
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to the signal’s timing, amplitude, error/SNR and frequency components. These measures can be interpreted
as follows:

• Timing: MDN had the best performance in the time domain, with relatively small timing error. The small
timing error of MDN, EMD and MODWT filtering come with a small standard deviation of the time dif-
ference but a large number of outliers. Leading to a considerable variation in performance from one signal
to another.

• Amplitude: MDN performs best regarding amplitude preservation. While DLP filtering tends to underes-
timates the amplitude, the amplitude estimation after MDN best reflected the true respiratory amplitude
variations.

• Error/SNR: as expected, all filtering techniques reduced the noise. Although DLP increases the SNR most,
this is at the expense of removal of respiratory information, as demonstrated by the high relative and removal
error of this filter. MDN, EMD and MODWT demonstrated the similar performance regarding the SNR,
whereas MDN showed the lowest relative error and removal error.

• Frequency:All filtering techniques eliminate high frequency components from the signal, leading to a reduc-
tion in the median frequency across all methods. The median frequency of MDN, EMD and MODWT is
most closely aligned with the original signal. DLP is very coarse and removes most high frequency content.

These results confirm that performance of the EIT processing methods varies depending on the parameter of
interest. The advantages and disadvantages of each filtering technique should be weighed when considering
the data type and specific research/clinical question. Researchers should also be aware that EIT recordings are
dynamic with regard to frequency content and they should be stimulated to transparently publish their
precise methodology. This will allow generalizability and comparability of studies and eventually improves
EIT implementation in clinical practice. In current clinical and research practice the presence of cardiac
artifacts may compromise the accuracy of clinical interpretations and the reliability of advanced EIT
parameters. Choosing the right filtering technique could lead to more reliable research and eventually more
reliable bed-side treatment decisions. We encourage the establishment of standardized procedures in
preprocessing EIT data, applicable for both clinical and research purposes.

4.1. Heart rate detection
Since evaluation of the filter performance was limited to one-minute selections of patient data, heart rate
variability could be rather limited in this short period. The performance of MDN and EMD filters may
decrease during longer recordings with changing heart rate frequencies. Therefore, our suggested heart rate
detection algorithm should be repeatedly applied when analyzing longer time intervals, in order to
continuously update the input heart rate; this will require some computational effort but is certainty feasible.

MODWT has the benefit that it does not require an input heart rate and could thereby better handle
time-varying frequency contents. However, substantial changes in the heart rate—which is not uncommon
in the critically ill—might change the optimal level of signal decomposition, which was fixed for this study.
Future work should focus on adaptive thresholds and individualized selection of decomposition levels. This
will likely improve the performance of this filter.

4.2. Simulations
Simulated data was used to test the performance of the proposed filter techniques, for two main reasons.
First, the RR and heart rate could be set to specific ratios (i.e. the heart rate could be set as a harmonic
multiple of the RR to enhance spectral overlap). Second, data without cardiovascular artefacts and noise (i.e.,
true ‘clean’ data) allows to test the performance of the filter techniques using several objective quality
measures. There is no clean data available for patient measurements, limiting the possibilities to evaluate to
what extend the filter affected the original signal. Visual inspection remains an important evaluation step to
determine the filter performance on patient data.

4.3. Strengths and limitations
This study has some strengths and limitations. Strengths are that we included data from different cohorts, age
groups, and measured under various ventilation modes and during spontaneous breathing. Additionally, we
performed extensive simulations using real patient-derived cardiovascular artefacts. The characteristics of the
EIT data and types of disturbances differ between neonates and adults, and between controlled ventilation,
support ventilation and spontaneous breathing. We comprehensively compared several filtering techniques
that have been used or are being studied for application in the field, describing their benefits and limitation.
We used stable parts of recordings of limited length. Selection of stable intervals was done manually. For fully
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automated analysis, this step should be automated as well. Even though we strive towards a one-size-fits-all
filter technique, some preselection of filter settings was required, e.g., depending on the sample frequency of
the recorded data and the average RR. For fully automated analysis, this should be done automatically.
Furthermore, our techniques were developed and applied for offline data processing and are not (yet)
suitable for online analysis; employing these methods for online processing should be explored in future
studies. All filter performances were evaluated on the global EIT signal. All filters are applicable to filter
pixel-level EIT measurements. Similar performances are hypothesized but not confirmed with this study.

4.4. Conclusion
This study demonstrates the performance of new advanced filtering techniques including MDN, EMD and
MODWT in filtering cardiac artefacts from EIT data. Each technique exhibited varying degrees of
effectiveness and limitations. MDN had the best performance in the time domain and amplitude
preservation. EMD demonstrated the best performance regarding the SNR, whereas MDN showed the lowest
relative error and removal error. All filtering techniques eliminate high frequency from the signal, with the
median frequency of MDN, EMD and MODWTmost closely aligned with that of the original signal. The
advantages and disadvantages of each filtering technique should be weighed when considering the data type
and specific research/clinical question.
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