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Summary 31 

We sought to replicate and expand previous work showing that the more human-like 32 

a robot appears, the more willing people are to attribute mind-like capabilities and 33 

socially engage with it. Forty-two participants played games against a human, a 34 

humanoid robot, a mechanoid robot, and a computer algorithm while undergoing 35 

functional neuroimaging. We confirmed that the more human-like the agent, the 36 

more participants attributed a mind to them. However, exploratory analyses revealed 37 

that the perceived socialness of an agent appeared to be as, if not more, important 38 

for mind attribution. Our findings suggest top-down knowledge cues may be equally 39 

or possibly more influential than bottom-up stimulus cues when exploring mind 40 

attribution in non-human agents. While further work is now required to test this 41 

hypothesis directly, these preliminary findings hold important implications for robotic 42 

design and to understand and test the flexibility of human social cognition when 43 

people engage with artificial agents.   44 
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Introduction 45 

Robots have sparked curiosity and been romanticised in popular culture since von 46 

Kempelen’s “Chess Turk” was introduced in 1769. In the mid-20th century, Alan 47 

Turing formalised the philosophical debate as to whether “machines think”,1 a 48 

question that continues to captivate many philosophical and science fiction writers. 49 

With the present study, however, we ask what might be thought of as the opposite 50 

question: namely, regardless of whether robots think, do we humans perceive robots 51 

as having minds of their own? If so, do we do so primarily based on how human-like 52 

the robot looks, or does its perceived socialness also matter? 53 

Robots are already commonplace in assembly lines, factories, and dangerous 54 

jobs such as pipeline and fuel tank inspections, as well as underwater and space 55 

exploration.2,3 As the deployment of robots in these contexts grows, so does their 56 

introduction to social and leisure domains, aiding people with, for example, surgeries 57 

in healthcare, serving customers in restaurants, learning in schools, and supporting 58 

adults who need help with daily living skills (for example, 4–8). Robots’ roles in our 59 

day-to-day lives so far, however, are typically “single-use” (e.g., robot vacuum 60 

cleaners or a robot check-in assistant at a hotel), and the ability of even the most 61 

sophisticated social robots to engage us socially is still far removed from depictions 62 

in science fiction novels and films.9,10 Rapid advances in hardware and artificial 63 

intelligence are expected over the coming decades, making this a crucial time to 64 

examine human engagement with robots. This is particularly true in the social 65 

domain if we are to develop machines that can indeed engage and collaborate with 66 

humans in complex social contexts. 67 

As adults, humans typically and intuitively think of other humans as having a 68 

mind, thoughts, and intentions that are different from their own, a skill known as 69 
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mentalizing.11,12 Mentalizing is important for social interactions, allowing us to read 70 

and react to others’ unspoken mental and emotional states, and their intended 71 

actions.11 Neuroimaging studies have used implicit (e.g., economic games) and 72 

explicit (e.g., mind-in-the-eyes) tasks to probe human brain activity associated with 73 

mentalizing (for a review, see 13). This work has identified the so-called mentalizing 74 

network, a group of brain regions thought to support thinking about others’ minds. 75 

The core regions reliably included as part of the mentalizing network include bilateral 76 

temporal-parietal junction (TPJ), medial prefrontal cortex (mPFC), and Precuneus 77 

(PreC) but engagement of additional brain regions, including posterior superior 78 

temporal sulcus (pSTS), temporal poles, and posterior cingulate cortex (PCC), have 79 

also been implicated.13–18 Briefly, it is thought that the mPFC is at the top of the 80 

mentalizing hierarchy and the primary source of top-down signals as well as the hub 81 

of self-referential processing. The TPJ & pSTS are intermediary in the hierarchy, with 82 

the TPJ contributing to metacognitive representations and the pSTS contributing 83 

primarily to the processing of social agents and actions (see 19 for a discussion). The 84 

role of the precuneus in the mentalizing system is less clear, given that other 85 

cognitive functions have been attributed to it; thus, its functional role is often 86 

described as outside of the mentalizing realm (e.g. spatial navigation). Within the 87 

mentalizing literature, however, the precuneus’ is described as potentially belonging 88 

at the top of the mentalising hierarchy (along with mPFC) as a “staging post between 89 

implicit and explicit mentalizing”.19 For the purposes of the current study, we consider 90 

these regions collectively, focusing on engagement of the broader mentalizing 91 

system as a whole.  92 

The mentalizing network is readily engaged during interactions with other 93 

humans, especially when trying to predict their future actions. Very few neuroimaging 94 
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studies, however, have directly addressed the extent to which mentalizing brain 95 

regions, which have ostensibly evolved to interpret other people’s actions and 96 

intentions, also process non-human social partners such as robots. Understanding 97 

whether humans mentalize about robots is important for at least two reasons. First, 98 

the more we attribute a mind to robots, the more likely we are to interact with and 99 

engage with them socially.20–22 Second, examining mentalizing in response to robot 100 

social partners tests the flexibility of our social cognitive system by assessing the 101 

extent to which a system that evolved to support interactions with fellow humans can 102 

be engaged during interactions with non-human agents (in this case, robots).23 Prior 103 

neuroimaging studies studying the extent to which humans mentalize about robots 104 

have used empathy tasks,24,25 spatial cueing tasks,22,26 and economic games.27–29 105 

Several of these studies demonstrate that human—robot interactions (HRI) activate 106 

the mentalizing network, but to a lesser degree than human—human interactions 107 

(HHI).27,28,30  108 

One influential theory that might help to explain the pattern of activity reported 109 

so far is the ‘like-me’ hypothesis,31 which posits that the more human-like a non-110 

human agent appears, the more readily social brain networks are engaged. Indeed, 111 

behavioural data generally support this idea. For example, the more human-like a 112 

robot appears, the more a human user will expect that robot to behave like a 113 

human.32
  Furthermore, a robot’s appearance influences our assumptions about its 114 

behavioural capabilities33–35 and the extent to which we attribute intentionality or a 115 

mind to them.20–22,36,37 Likewise, the degree to which we anthropomorphize robots 116 

(or attribute human-like qualities to them) has also been found to depend upon a 117 

robot’s human-like appearance and behaviour.38–41 Given the behavioural evidence, 118 

it is perhaps not surprising that similar results are found when examining socio-119 
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cognitive brain systems. For example, Krach and colleagues28 reported that the 120 

increasing human-likeness of game partners' physical features was associated with 121 

increasing engagement of mentalizing network regions during an implicit mentalizing 122 

task (in this case, an iterative prisoner’s dilemma game). Together, behavioural and 123 

brain imaging findings support the idea that the human-likeness of an interactive 124 

partner’s appearance plays a key role in engaging socio-cognitive processes like 125 

mentalizing. However, emerging evidence raises the possibility that human-likeness 126 

alone may not fully explain which robots are seen as more desirable social partners 127 

and, thus, which robot features might be most effective at eliciting the strongest 128 

human-like social-cognition processes.42,43 The influence of a robot’s social features, 129 

per se, on human perception and engagement is an emerging area of research that 130 

will benefit from expertise from the Human Robot Interaction (HRI), social robotics, 131 

and cognitive neuroscience communities.  132 

In the current study, we sought to replicate prior findings that the mentalizing 133 

network increases in responsiveness as the appearance of robots increases in 134 

human-likeness. In additional exploratory analyses, we sought to explore the extent 135 

to which a partner’s perceived socialness (independent from human-like physical 136 

features) might also contribute to this process. To do so, we used an established 137 

implicit mentalizing task where participants play rock-paper-scissors (RPS)43 against 138 

a human and several artificial agents. We followed an experimental design like that 139 

reported by Chaminade and colleagues.27 An important feature of our RPS design 140 

was that we examined how an individual’s beliefs regarding the nature of the 141 

interacting agents are influenced by the human-likeness and socialness of each 142 

agent, while tightly controlling all other aspects (i.e. visual, sensorimotor, etc) of the 143 

gameplay interaction. Specifically, participants viewed the same visual stimulus 144 
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during game play when playing against all 4 game partners. It was only the videos 145 

before and after game play that reminded participants against whom they were 146 

playing. This design, therefore, necessitates reliance on top-down knowledge cues 147 

regarding the other player to drive neural activation during game play.  The RPS 148 

game itself is familiar across cultures and age groups, and if it is unfamiliar, it is easy 149 

to learn. Also, like Chaminade and colleagues,27 we used videos of game partners to 150 

increase the sense of live interactions during game play. We controlled wins and 151 

losses across all game partners, and explicitly told participants that the robot 152 

competitors had been endowed with artificial intelligence and would play 153 

strategically. Similar to Krach and colleagues,28 we included two robotic partners that 154 

differed in their human-like appearance. One robot appeared humanoid, with clear 155 

human-like features including a body, torso, arms, hands, fingers, head and eyes. 156 

The other was a mechanoid robot, which had expressive eyes but no other human-157 

like physical features (refer to Figure 1). Importantly, both the humanoid and 158 

mechanoid robots in our study are designed to engage people with socially 159 

interactive behaviours.  160 

From prior data, we expected that both robots would engage the mentalizing 161 

network, though to a lesser extent than the human game-partner. Indeed, we 162 

preregistered a prediction that the magnitude of response of core brain regions 163 

within the mentalizing network (specifically TPJ, mPFC, and Precuneus) would 164 

linearly increase as game partners increased in human-like appearance. We further 165 

explored the extent to which participants found each robotic game partner fun, 166 

sympathetic, competitive, successful, strategic, intelligent, and competitive. Here we 167 

hypothesized, again based on previous findings27,28 that these factors would 168 

increase with increasing human-likeness. Finally, in an exploratory analysis, to 169 

Jo
urn

al 
Pre-

pro
of



SOCIALNESS & ROBOTICS 

8 

 

address questions related to participants’ perceptions of the socialness of the 170 

different game partners, we reversed the order of the robots (by changing the rank 171 

order) in our linear contrast models, allowing us to test the extent to which this 172 

“perceived socialness'' might explain differences in the engagement of the 173 

mentalizing network across game partners better than simply the agents’ physical 174 

appearance.   175 
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Results 176 

Neuroimaging Results 177 

Socialness and human-likeness influence mentalizing but socialness is more 178 

robust 179 

Pre-registered 180 

Repeated-measures ANOVAs with game partner as a within-subjects factor was 181 

significant in several key mentalizing ROIs during game play (bilateral TPJ and left 182 

middle frontal gyrus (lmFG)), as well as bilateral pSTS. All pairwise comparisons in 183 

this section were corrected for multiple comparisons (Bonferroni). Follow-up paired 184 

sample t-tests in bilateral pSTS and lTPJ revealed that this was largely driven by 185 

higher activity in response to the human compared to all other conditions, suggesting 186 

that these regions are more reliably engaged by human than artificial stimuli (see 187 

Supplementary Table 5). Right TPJ was an exception, in that, while the human 188 

significantly differed from both robots, no significant difference between the human 189 

and computer was found. No other significant comparisons during gameplay and 190 

within these ROIs remained after correcting for multiple comparisons.  191 

Results from the pSTS revealed significant differences between game players while 192 

playing the game (rpSTS: F(3, 123) = 12.39, p < 0.001, np = 0.23; lpSTS: F(3, 123) = 193 

6.96, p < 0.001, np = 0.15), which was unexpected as there were no visual 194 

differences during game play across the 4 conditions.  195 

Contrary to our expectations, mentalizing regions were not activated above baseline 196 

during the RPS games. Average activity across the group was close to zero or, 197 

indeed, slightly negative across nearly all conditions (refer to Figures 1, S2 & Table 198 

S5).  199 

Exploratory 200 
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Additionally, the pSTS revealed strong significant differences across game partners 201 

while participants watched the introductory video (video 1) of each game partner 202 

before playing commencing each game series (rpSTS: F(3, 123) = 29.40, p < 0.001, 203 

np = 0.42; lpSTS: F(3, 123) = 13.26, p < 0.001, np = 0.24). While none of the other 204 

ROIs revealed significant pairwise differences between either robot and the 205 

computer, there was a significant difference between MR and CP in rpSTS (and 206 

approached significance in lpSTS) during the video preceding gameplay (rpSTS: p < 207 

0.001, d = -0.73; lpSTS: p = 0.056, d = -0.32; See Supplementary Table S5).  208 

 209 

Linear effect of human-likeness in mentalizing ROIs during gameplay 210 

Pre-Registered 211 

All mentalizing ROIs which revealed a significant within subject effect of partner 212 

(Bilateral TPJ, lmFG, and bilateral pSTS) also revealed a significant linear within-213 

subjects contrast effect of human-likeness (HP > HR > MR > CP), as predicted (refer 214 

to Table S5).  215 

Exploratory  216 

We explored whether changing the rank order of the robots (in the 4-element 217 

hierarchy) in the within-subject contrasts according to socialness ratings further 218 

bolstered the linear effect (HP > MR > HR > CP, refer to Table S5). Results from 219 

behavioural ratings suggested that socialness (as assessed by perceived fun, 220 

competitiveness, and sympathy, see below) models were improved by reversing the 221 

order of the robots. Indeed, across ROIs, the mechanoid robot evoked numerically 222 

higher, though often not significantly so, responses than the humanoid robot. Despite 223 

the lack of statistically significant differences between the robots in pairwise 224 
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comparisons, the linear effect of ‘socialness’ resulted in a larger effect size than the 225 

‘humanness’ model, suggesting socialness may be even more important than 226 

humanness in mind attribution toward robots, as measured by engagement of brain 227 

regions associated with mentalizing.  228 

The mechanoid is more similar to the human than the humanoid or computer 229 

Pre-Registered 230 

No FWE (p < .05) or uncorrected (p < .001) clusters survived simple whole brain 231 

contrasts between the humanoid or mechanoid and the computer (refer to Table S4). 232 

There were no significant clusters during the [Humanoid (HR) > Mechanoid (MR)] but 233 

the inverse contrast revealed a significant cluster (k = 313) in nucleus accumbens 234 

(MNI: -4 10 -10). The [Human Partner (HP) > Computer Partner (CP)] contrast 235 

resulted in significant mentalizing clusters in bilateral TPJ, mFG, mPFC, precuneus, 236 

rpSTS, IFG, nucleus accumbens, and cerebellum.  237 

To assess whether regions outside our pre-selected ROIs might be sensitive to 238 

Human-likeness, we tested whether any brain regions showed a pattern of activity 239 

such that Human Partner (HP) > Humanoid Robot (HR) > Mechanoid Robot (MR) > 240 

Computer Partner (CP). This analysis revealed that rTPJ, precuneus, mPFC, 241 

bilateral mFG, and nucleus accumbens all survived the FWE-corrected peak-level 242 

threshold. 243 

Exploratory 244 

When the human was compared to the humanoid and mechanoid robots, several 245 

regions associated with mentalizing were significant at the cluster level after FWE 246 

correction (refer to Figure 2). The [HP > HR] contrast resulted in significant clusters 247 

in bilateral TPJ, precuneus, rmFG, rIFG, rpSTS after FWE corrections. The [HP > 248 
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MR] contrast yielded significant engagement of rTPJ, precuneus, rpSTS, and 249 

cerebellum after FWE corrections.  250 

In line with our socialness questions, we also tested whether any brain regions 251 

showed a pattern of activity if we reversed the order of the robots in our parametric 252 

analysis; i.e., so that the order was now: Human Partner (HP) > Mechanoid Robot 253 

(MR) > Humanoid Robot (HR) > Computer Partner (CP). Results revealed a similar 254 

pattern to both HP>CP and the HP>HR>MR>CP model above but now also included 255 

significant clusters in: bilateral pSTS, supplementary motor area, rIFG,& lTPJ. Refer 256 

to Figure S1 and Table S4.  257 

 258 

Behavioural Results 259 

Manipulation Check 260 

During verbal debriefing with participants, six out of 42 neuroimaging participants 261 

questioned whether the videos were live during our verbal debriefing. Given this, we 262 

re-ran all behavioural and neuroimaging analyses with only the “true believers” (see 263 

OSF project page for details). Doing so did not change the findings in either degree 264 

or direction of significance. Therefore, the analyses are reported with the full sample, 265 

including the non-believers.  266 

Debrief Questions: Mechanoid perceived as more social, but not intelligent, 267 

than the humanoid 268 

Pre-Registered 269 

All pairwise comparisons in this section were corrected for multiple comparisons 270 

(Bonferroni). Greenhouse-Geisser corrections were made if any rmANOVA was 271 
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found to violate Mauchley’s tests of sphericity (refer to Figures 3, S3, & Table S6 for 272 

details from this section).  273 

We found no effect of perceived success in winning (F(3, 123) = 0.50, p = 0.685, ηp2  274 

= .012) or strategy employed (F(3, 123) = 0.32, p = 0.811, ηp2   = .008) against each 275 

game partner, despite stressing to participants that the computer was using a 276 

random algorithm, while the other partners were all trying to win.  277 

Fun (F(3, 123) = 33.90, p < 0.001, ηp2   = .453), Competitiveness (F(3, 123) = 17.24, 278 

p < 0.001, ηp2 = .296), Sympathy (F(2.50, 102.58) = 58.59, p < 0.001, ηp2   = .588; 279 

Greenhouse-Geisser corrected) and Intelligence (F(2.51, 102.91) = 12.16, p < 0.001, 280 

ηp2  = .229; Greenhouse-Geisser correction) were all significantly different amongst 281 

the four conditions and followed a significant linear pattern based on human-282 

likeness.  283 

Exploratory  284 

However, Fun, Competitiveness, and Sympathy, revealed a stronger linear pattern 285 

based on socialness, wherein we changed the rank order of the robots in the 4-286 

element hierarchy. However, only post-hoc tests on ratings of Fun and 287 

Competitiveness showed differences between robots, where mean ratings for the 288 

mechanoid robot were higher than for the humanoid robot (p=0.006 & p=0.049, 289 

respectively).  290 

 291 

Inclusion of Others and Self (IOS): No difference in perception of closeness 292 

between the robots or a human stranger 293 

IoS scores varied significantly between the 6 agents (F(3.70, 148.02) = 122.40, p < 294 

0.001, ηp2 = 0.754). Pairwise comparisons of the computer, human game partner, and 295 
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close friend significantly differed from all other agents and each other on the IoS, 296 

even after correcting for multiple comparisons (Bonferroni). Pairwise comparisons of 297 

the mechanoid robot, humanoid robot, and human stranger did not significantly differ 298 

from each other (Please see our OSF page for details). 299 

 300 

DISCUSSION 301 

With the present study, we have replicated and extended previous findings, 302 

demonstrating that both human-likeness and perceived ‘socialness’ shape the extent 303 

to which participants engage mentalizing regions while playing games against 304 

robotic partners. We found that although human-likeness models showed increased 305 

theory-of-mind network engagement (as predicted and pre-registered), the 306 

socialness model was even more robust. While this analysis was exploratory and will 307 

require replication via hypothesis-confirming follow-up work, it is important for two 308 

reasons. First, it suggests that mentalizing processes during interactive exchanges 309 

(in this case, a game) are better predicted by how social we find our interaction 310 

partner, rather than being solely based on how human-like they look. This finding 311 

has the potential to update our models of how mentalizing systems can be engaged, 312 

particularly by non-human interactants. Secondly, the extent to which humans will 313 

ascribe mental states to robots is likely to become increasingly relevant as roboticists 314 

develop increasingly sophisticated embodied artificial agents designed to engage 315 

human users on a social level. Successful social interactions with such social robots 316 

will require people to think about how the robot “thinks”. A better understanding of 317 

the factors that influence mentalizing towards and about robots should lead to higher 318 

quality and more sustained long-term interactions with robots in social domains (e.g., 319 

43).  320 
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As with the two previous neuroimaging studies on which we based our current study, 321 

we found increasing activation in mentalizing regions with increasing human-322 

likeness.27,28 We also found similar behavioural ratings, showing that while 323 

participants did not perceive strategy and success differently across game partners 324 

(suggesting participants did not feel that they won or lost more against any one 325 

game partners), participants did perceive the game partners differently based on 326 

social factors like perceived intelligence, fun, competitiveness, and sympathy. 327 

However, unlike previous studies, we explored how these social factors might 328 

contribute to mind attribution and found that changing the rank order of robots in the 329 

4-element hierarchy in our linear contrast models to reflect participants’ evaluations 330 

of socialness resulted in numerically stronger models than those based on the 331 

human-likeness of physical features alone.  332 

Quantifying and exploring human-likeness vs. socialness 333 

While the human and social models were both significant and strong, one possibility 334 

for the numerically stronger social model is that the mechanoid robot was perceived 335 

as more social because it exhibited higher levels of hedonic factors (as rated by fun, 336 

competitiveness, and sympathy) than did the humanoid robot. This finding is 337 

consistent with participant qualitative perceptions and behavioural ratings of this 338 

same robot in recently published work.44,45 For example, in one scenario from our 339 

study, when the mechanoid robot lost the RPS series, it pouted and slammed its 340 

forklift on the table while moving around in circles in protest. Whereas, when the 341 

humanoid robot lost, it responded similarly to the human in a more measured 342 

manner, by lowering its arms and shaking its head and/or looking down in defeat. 343 

While these differences in personality and behaviour were not objectively measured 344 

in our study, others report that manipulating social features of robots such as 345 
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personality,46,47 emotional arousal,48 and other hedonic features such as enjoyment 346 

and sociability49  can increase user engagement, acceptance, and/or satisfaction.  347 

The neuroimaging evidence from this study supports both human-likeness and 348 

socialness models when attributing mental states. Bilateral TPJ, bilateral pSTS, and 349 

lmFG showed significant increases with human-likeness and a numerically stronger 350 

linear increase with socialness. While we expected the whole mentalizing network 351 

and pSTS to show a similar response pattern, the exceptions were in mPFC, 352 

precuneus, and rmFG.  353 

We were unable to clearly assess the role played by our mPFC, Precuneus, and 354 

rmFG ROIs in this study, as we found no significant differences to emerge between 355 

the agents during game play. However, a wealth of research has proposed that 356 

these regions are central to mentalising and animacy (e.g.13,16,18). As our localisers 357 

did not reliably elicit mPFC or rmFG response in this participant cohort, we created 358 

ROI from coordinates in the original localiser paper.50 It is possible that our “generic” 359 

ROIs failed to capture individuals’ peak mentalizing voxels across these regions. 360 

However, mPFC and rmFG activation clearly emerges in many of our group whole 361 

brain contrasts. Precuneus clusters in our localizer and main experimental task were 362 

large and the peak cluster from the localiser was more inferior and lateral than the 363 

peak clusters in the main experimental task. Last, it is also possible that our 364 

localisers produced coordinates for offline social cognition or mentalizing and not for 365 

online social cognition.51 Thus, mPFC, rmFG, and Precuneus may play a role in 366 

mentalizing in our study but were perhaps not well captured by our choice of ToM 367 

localiser and, thus, the resulting ROI coordinates. Future studies may consider 368 

creating simple spheres from t-value peaks reported from our main task 369 

experimental data or from peaks reported in other similar papers.   370 
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We also explored the response profile of a region in the pSTS that is sensitive to 371 

interactive information in observed dyadic social interactions.52 This region is nearby, 372 

but distinct from the TPJ, and might plausibly discriminate between game partners. 373 

Response in the pSTS discriminated between game partners both during game play 374 

and during the video preceding each game series. This was somewhat surprising as 375 

the pSTS is largely responsive to the perceptual features of interactions, particularly 376 

biological motion.53,54 In our design, there were no social perceptual features to 377 

process during game play as players observed the same visual stimuli during game 378 

play across all four conditions. This suggests that perhaps top-down knowledge cues 379 

may be more influential in this region than previously thought. We further explored 380 

this data by testing our linear human-likeness and socialness models on the pSTS 381 

data from video 1 and gameplay. Both models were significant, but in this case the 382 

social model was numerically stronger during both gameplay (rpSTS only) and video 383 

1 (bilateral pSTS). The pSTS has been implicated as a part of the social cognition 384 

and mentalising networks and has previously been shown to integrate both 385 

perceptual and social features.52,55–57 The pSTS also responds strongly to social 386 

interactions between non-human agents such as moving shapes and dots of light 387 

that mimic social scenarios (e.g. 55,57,58), and does so even more strongly when 388 

participants are led to believe an object is animate versus inanimate.37,59 One 389 

possibility is that because participants were engaging in a real-time interaction in our 390 

study, the pSTS was more strongly driven by the social features of game partners 391 

rather than their visual features. When motion and visual cues to humanness conflict 392 

or are not reliably aligned with more top-down attributions of socialness, the more 393 

superior regions in the pSTS may prioritise top-down knowledge cues to humanness 394 

in social interactions.  395 
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While our neuroimaging and behavioural results indicate a linear effect of human-396 

likeness and socialness across conditions, pairwise comparisons from our ROIs also 397 

show that the human partner is perceived significantly differently from all others 398 

game partners. While this result is perhaps unsurprising, it suggests that a uniquely 399 

human factor still differentiates people from animate non-human entities, even when 400 

they are quite ‘human-like’ in appearance or behaviour. This result has been 401 

reported previously,37,43 and is consistent with the idea that the mentalizing system 402 

may be best tuned to human actors and human social cues. It is possible with 403 

advancing technology and design that the line between robots and humans may blur, 404 

and mentalising regions will become increasingly recruited.  405 

One surprise in our results is that game play did not drive responses in mentalizing 406 

regions above baseline. Our expectation, based on prior research,27,60 was that this 407 

task would indeed drive engagement of the mentalizing network, at least for the 408 

human partner, above baseline. Previous studies27,28 found negative activation to the 409 

computer condition and to the non-android robots in mentalizing ROIs, but above-410 

baseline response to the human partner. One possibility here is that our task was 411 

particularly demanding, requiring not only mentalizing but also analysing and 412 

remembering strategies for each opponent. It is possible that the negative responses 413 

seen in our results are a result of most mentalizing regions being part of, or close to, 414 

the default mode network, which tends to deactivate during difficult or demanding 415 

tasks.61 Additionally, the DMN is also thought to reflect involvement in perceptually 416 

decoupled thought processes. 62 More specifically, our use of a passive rest 417 

condition as a baseline could have obscured important changes in activation in 418 

response to the task. For example, during minimal baseline tasks (such as passive 419 

rest), mind-wandering and other internally generated thoughts (as opposed to those 420 

Jo
urn

al 
Pre-

pro
of



SOCIALNESS & ROBOTICS 

19 

 

evoked by external stimuli) are likely to occur, and this could comprise similar social 421 

cognitive processes at equal or greater magnitude to those required by the more 422 

focused task-related processing.61,63 If social processes (e.g. mentalising) are higher 423 

at rest than in the task, then we should see what looks like deactivation when 424 

comparing the experimental conditions to the passive baseline. Future studies might 425 

consider using an active, rather than passive, baseline 64 for teasing out the 426 

difference in social responses to different partners and computing response 427 

differences across those experimental conditions. 428 

 It is also possible that the activation in the mentalising network was 429 

attenuated because participants were not actively viewing their game partners during 430 

game play, and therefore were not receiving a constant stream of visual and social 431 

feedback in real-time as they would have in ‘real life’. Instead, perhaps they were 432 

relying on memory or impressions of their game partners when playing. Future 433 

studies might more robustly activate ToM regions during the game with real-time 434 

feedback and/or actual live gameplay. Overall, however, the results are consistent 435 

with our pre-registered hypothesis as higher activation levels (or less deactivation) 436 

for humans emerged as compared to robots and for robots as compared to the 437 

computer condition.  438 

As with previous studies, and unbeknownst to the participants, we controlled wins 439 

and losses amongst game partners so our findings could not be explained by 440 

winning or losing more to any one partner. Participants’ ratings of success and 441 

strategy against each of the 4 game partners did not significantly differ, suggesting 442 

that they accurately perceived their own performance, including that their strategy 443 

did not work any more efficiently for one partner than another, like previous 444 

findings.27 Therefore, it is unlikely that our findings are due to perceived differences 445 
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in difficulty in playing each partner. Employing a strategic approach to the game 446 

likely relates to thinking about the mind of the other player, and thus to activity in the 447 

mentalizing network. As a result, participants in this study may have reduced their 448 

mentalizing about game partners as they found that their strategies were not 449 

working. Future studies might look at manipulating wins and losses or alter initial 450 

briefing instructions to create different impressions of each game partner’s fun and 451 

competitiveness to explore the extent to which socialness can be manipulated to 452 

influence mind attribution toward robots. 453 

Theoretical implications 454 

Our results support growing evidence emerging from the intersection of social 455 

robotics and social neuroscience that multiple routes exist to non-human agents 456 

being perceived as “like-me”,37,43 including not only a human-like appearance or 457 

motion profile, but also being perceived as ‘social’ based on behaviours or 458 

background knowledge about a robot. Significant R&D investment continues to fuel 459 

the development of socially interactive robots with whom human users can intuitively 460 

and effectively collaborate, which often attempt to capture as much human-likeness 461 

as possible while also avoiding the uncanny valley.65–70 However, the extent to which 462 

an agent is perceived as “like-me” extends beyond physical form, capabilities, and 463 

movement, and growing evidence supports that prior knowledge about and the 464 

perceived socialness of a robot may more strongly influence their reception (and 465 

people’s ability to collaborate or cooperate with them in an intuitive manner) in social 466 

settings.42,44,71–76  467 

A few neuroimaging studies have investigated how these top-down knowledge cues 468 

and bottom-up stimulus cues influence perceptions of animacy and the flexibility of 469 
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our social cognitive system. One study found that stimulus cues overrode knowledge 470 

cues to animacy77; whereas, others found the inverse, knowledge, not stimulus, cues 471 

more strongly influenced animacy perception.43,78 Yet, a key mentalizing region 472 

(rTPJ) was most sensitive when both stimulus and knowledge cues to animacy were 473 

presented compared to when only one (or none) of those cues were present.37 474 

These various findings are likely influenced by the type of task and cues used, and 475 

our study adds to the narrative that top-down knowledge-based cues of socialness 476 

can be just as, if not more, powerful for driving mind attribution during social 477 

interactions with artificial agents than bottom-up visual cues to human-likeness 478 

alone.   479 

Therefore, physical features denoting human-likeness may not be the most important 480 

consideration for those designing socially engaging robots, and instead a 481 

reorientation toward an emphasis on socialness may be more fruitful for fostering 482 

social behaviours and attitudes toward robots. Ultimately, our findings set the stage 483 

for future work to disentangle not only which physical and social features play the 484 

most important roles in mind attribution to artificial agents, but also how ongoing 485 

experience with such agents changes and develops such perceptions. 486 

Limitations & Future Directions 487 

Throughout our study we examined human-likeness and socialness using linear 488 

models. However, it is noteworthy that these concepts are frequently regarded as 489 

non-linear, especially when applied to social robotics.79,80 Even in our study, results in 490 

one of the ROIs (the rTPJ) may have been better explained using a non-linear 491 

function. One possibility to explain why our linear models for human-likeness and 492 

socialness were still robust in most ROIs is that, while our humanoid had a human 493 
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shape (with a torso, arms, and head), neither our humanoid nor mechanoid robots 494 

approached realistic human-likeness. If we had included more realistic human-495 

looking robots (androids) in the design, non-linear models may have offered a better 496 

model fit.80 During the experimental design phase in future studies, consideration of 497 

which conditions might best test whether linear or curvilinear functions most 498 

parsimoniously account for neural activity, and whether which function best fits the 499 

data could vary across regions of interest, should be driven by several factors, 500 

including robot physical and social features.    501 

Next, while we designed our video stimuli to be as believable as possible, 502 

ultimately 6 of our 42 participants did not believe that they were playing a live game. 503 

Removing the non-believers from analyses, however, did not change our overall 504 

findings (see OSF for more details). Thus, we consider our results to reflect brain 505 

response when participants are engaged in true real-time interactions with their 506 

game partners. In the past decade, a discussion has emerged around designing 507 

real-time social interactions in a genuinely interactive context. This movement is 508 

grounded in the understanding that social cognition may be fundamentally different 509 

during active versus passive social interactions, termed ‘second-person 510 

neuroscience.81 A growing but comparatively small proportion of fMRI studies have 511 

attempted second-person neuroscience in human interactions; even fewer, to date, 512 

have attempted work at the intersection of social neuroscience and social robotics. 513 

However, in one fMRI study, participants engaged in real-time discussion via a live-514 

feed interface with either a human or a conversational robot.82 Their findings 515 

revealed increased neural activity during HHI compared to HRI in specific 516 

mentalising regions, most notably the TPJ (but not mPFC) and social motivation 517 

regions, including hypothalamus and amygdala. More neuroimaging work to date 518 
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has deployed technologies such as EEG or fNIRS to examine direct, embodied 519 

Human—Robot interactions (see 9,23,83 for a discussion). For example, in live-520 

interactive paradigms with robots, most people used mechanistic terms to describe 521 

robots.84 Further, whether someone tends to favor mentalistic or mechanistic 522 

explanations for robot behavior can be predicted from resting-state EEG signals 523 

before participants engage in describing robot behavior.85 These studies highlight the 524 

value of a number of different neuroimaging techniques for exploring second-person 525 

neuroscience perspectives in the context of HRI. Our comprehension of real-time 526 

mechanisms and the outcomes of social engagement with robots hinges on 527 

combining these approaches with rigorous and theoretically driven experimental 528 

designs.  529 

A further possible limitation in our study is that we used only people who identified as 530 

male and, therefore, we were not able to comment on gendered effects of 531 

mentalizing in the context of social interactions with robots. We chose male 532 

participants because one aim of the study was to replicate previous designs,27,28  533 

which also used only male samples. However, the influence of participant’s gender 534 

on mentalising in the context of social robotics is an area of much needed 535 

investigation. The broader literature on gendered effects in mentalizing is mixed 86,87 536 

but the prevailing narrative suggests that females have a “female advantage”, across 537 

cultures, on many social cognition measures, outperforming males on mentalizing 538 

tasks.88–91 Indeed, one study found variations in mPFC activation during a ToM task 539 

to be more pronounced in women compared to men.92 To further complicate matters, 540 

the gender of the human player may also be important. Both previous studies that 541 

informed our study design used a male human player; in our study, the human player 542 

was female. It is possible that this difference in study design could have influenced 543 
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participant strategy and possibly neural activation. Indeed, prior work suggests that 544 

participants play differently depending on the gender of their game partner.93,94 It will 545 

be important to thoughtfully consider gender effects of the participants, human 546 

confederates, and perhaps even the perceived gender of the robots when planning 547 

future research studies using similar designs.  548 

Concluding thoughts 549 

Our primary findings confirm previous research that human-likeness plays an 550 

important role in the attribution of mind to robots. However, our exploratory analyses 551 

suggest that the perceived socialness of a robot also plays an equally, if not more 552 

important role than physical features denoting human-likeness in mind attribution. 553 

Incorporating knowledge- or experience-based social cues and features into robots 554 

who are designed to engage human users on a social level has the potential to 555 

increase user engagement and interest for more lasting and higher quality 556 

relationships with our robotic partners.   557 
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Main Figure Titles and Legends 577 

Figure 1. Average percent signal change (PSC) during gameplay in mentalizing 578 

ROIs and pSTS with significant within subject rmANOVA (Error bars are SEM). See 579 

also Table S5 & Figure S2. 580 

Figure 2. Whole brain T-map overlap analysis (Human > Computer (Red); Human > 581 

Humanoid (Blue); Human > Mechanoid (Green)). See also Table S4 & Figure S1.  582 

Figure 3. Average Likert (0-10) scale ratings of Debrief questions (Error bars are ± 583 

SEM).  See also Table S6 & Figure S3.   584 
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STAR Methods 585 

Resource Availability 586 

Lead contact 587 

Further information for resources should be directed to Emily Cross 588 

(emily.cross@gess.ethz.ch) 589 

Materials availability 590 

Robot videos and example human and computer videos are provided on our OSF 591 

page (https://osf.io/t4apv/). See the key resources table for details.  592 

 593 

Data and code availability 594 

• The de-identified fMRI data have been compressed and deposited across 3 sites 595 

at Mendeley data and are publicly available as of the date of publication. See the 596 

key resources table for details.   597 

• Code for the robot introduction and main experiment have been deposited on 598 

Github and are publicly available as of the date of publication. See the key 599 

resources table for details.   600 

• Any additional information required to re-analyze the data reported in this paper 601 

is available from the lead contact upon request.  602 

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS 603 

Human Participants 604 

Due to the availability of scanning resources, participants were recruited from 2 sites: 605 

(i) the greater Glasgow area (Scotland, UK); and (ii) the greater Bangor area (Wales, 606 

UK). Glasgow participants completed the study at the Centre for Cognitive 607 
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Neuroimaging (CCNi) at the University of Glasgow, while Bangor participants 608 

completed the study at the Bangor Imaging Unit (BIU) at Bangor University.  609 

Twenty right-handed males (mean age = 20.95 years; SD = 1.82; range = 19-26) 610 

participated from the greater Bangor area and 24 right-handed males (mean age = 611 

22.45 years; SD = 3.63; range = 18-32) participated from Glasgow. There were no 612 

significant differences in either age (t(40) = 1.76,p = .087) or education (U = 206.50, 613 

Z = -.391, p = .696) between data collection sites. Only males were recruited, 614 

consistent with previous studies in this area,27,28 in order to control for any potential 615 

effects of gender on mentalizing.92 Two participants withdrew from the study due to 616 

claustrophobia (1 subject from each site). The final fMRI participant sample included 617 

a total of 42 participants (mean age = 21.74 years; SD = 3.03; range = 18-32).  618 

All participants reported normal or corrected-to-normal vision, no history of 619 

neurological or psychiatric disorders, and were right-handed as confirmed on the 620 

Edinburgh Handedness Questionnaire95; mean = 1.48, sd = .34).  621 

All participants reported low familiarity with robots. Median engagement with robots 622 

in daily life (measured from 1 (never) to 7 (daily)) was 2 (IQR 1). Median number of 623 

robot-themed movies or TV shows seen was 4 (IQR 1) out of the 14 listed (Riek et 624 

al, 2011).96 625 

All participants provided written informed consent prior to their involvement and 626 

received monetary compensation for study participation (£12/hour). All study 627 

procedures were approved by the respective university ethics boards: (i) Bangor 628 

University (Approval no. 2019-16639) and (ii) Glasgow University (Approval no. 629 

300180110).  630 
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Study site was a significantly different between subjects factor in rmANOVA for rTPJ, 631 

rmFG, & Precuneus but when we ran site separately for each of those ROIs, the 632 

results did not differ from the combined group or change the outcome; therefore, 633 

both sites were kept together in the results reported in this paper. Please see our 634 

OSF for details on the results from the separate groups. Further, we ran site as a 635 

covariate of no-interest in our model estimation and did not find differences in our 636 

whole brain data; therefore, the sites were subsequently analysed and reported 637 

together (please see our OSF for more details).  638 

METHOD DETAILS 639 

Experimental Design 640 

We designed a Rock-Paper-Scissors (RPS) task similar to a previous study,26 and 641 

followed a similar briefing procedure.27,28 RPS was chosen for its familiarity across 642 

ages and cultures, and ease of rule learning. Previous studies have shown this game 643 

to engage mentalizing regions when played against human and non-human 644 

partners.27,30,97 645 

Participants saw videos of their respective game partners before and after each 3-646 

game series (refer to Figure 2). Each video was unique and all participants saw the 647 

same set of videos. During the pre-recorded videos, the human and robots reacted 648 

emotively to winning and losing a round. For example, the human and humanoid 649 

often put their hands up (or the forklift for the mechanoid) in exasperation when 650 

losing or happiness when winning. The mechanoid had expressive, pixelated eyes 651 

and was capable of moving within a restricted space on the table. Whereas, the 652 

humanoid had two lights for eyes that could flash but were not expressive and while 653 

the humanoid’s arms, head, and torso could move, it did not move its position on the 654 
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floor during any interactions with participants. All robot videos, and example human 655 

videos, are available on our OSF and Mendeley data (see link in STAR table). The 656 

computer condition, which participants were told did not have an algorithm to win, 657 

involved a screensaver (Apple iMac ‘Flurry’) for both the pre- and post-game videos.  658 

During the game play, participants saw the same visual input across all 4 conditions, 659 

namely a score card across the top of the screen (for win/loss/tie in each series), 660 

pictures of the rock paper and scissors, and a countdown from 2 to 0 (refer to Figure 661 

S4 for an example). To minimize movement in the scanner, we did not utilize 662 

synchrony through a “fist-swing” as players might in real-life, rather participants were 663 

instructed to select their RPS choice from a button box on ‘0’ in the coutndown.  The 664 

button press for rock, paper, and scissors and order of the items on the screen 665 

during gameplay were assigned randomly across participants.  666 

In-line with previous designs,27,28,97 participants were told that they were playing a 667 

live game and viewing their game-partners through a live video feed, but in reality, 668 

neither the remote practice nor the in-scanner games (described below) were live. All 669 

videos were pre-recorded and designed to give the impression of a live game. Wins 670 

and losses were controlled across the four conditions so that each participant won 671 

10 rounds and lost 10 rounds against each partner. The order in which participants 672 

played partners was pseudo-randomized across four 8-minute functional runs.  673 

To give the impression of a live game, participants met all game partners in person 674 

in the “game room” and played one truly live, in-person, round of rock-paper-scissors 675 

with each partner. They went to the imaging suite to play a “live” practice round of 676 

RPS with their partners via the “video feed”. This practice round served to familiarise 677 

participants with the game and practice pushing the buttons to register their answer 678 
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with the correct timing. Participants played each partner twice in each practice round 679 

and could complete up to 3 practice rounds (24 total games) to ensure they 680 

understood the game before entering the scanner. All participants demonstrated 681 

understanding of the game and button presses by the 3rd practice round.  682 

Participants then completed the fMRI task, playing the same RPS game. Each fMRI 683 

run contained 5 rounds with each of the 4 partners (20 rounds per partner across all 684 

4 runs), pseudorandomized across participants. In total, each participant completed 685 

four, 8-minute RPS runs. After the scan, participants completed several 686 

questionnaires (listed below) on a laptop and were then debriefed. The debriefing 687 

unveiled the study deception (that the various game partners were pre-recorded, not 688 

live, and that all partners used the same random algorithm and were not 689 

independently controlled). Both the practice round and game in the scanner were 690 

programmed in Python 3.7 and run from the command line (see STAR Methods 691 

Table).  692 

MRI Parameters, Pre-processing, & GLM Estimation 693 

At both data collection sites (CCNI and BIU), stimuli were projected onto a mirror 694 

from a projector located behind the scanner. Responses were recorded with an MRI-695 

compatible keypad.  696 

A dual-echo EPI sequence was used to improve signal-to-noise ratio (SNR) in frontal 697 

and temporal regions.98 All structural and functional sequence parameters are 698 

detailed in Tables S1 & S2.   699 

Data pre-processing was carried out in SPM12 (Wellcome Trust Centre for 700 

Neuroimaging, London) implemented in Matlab 2018a (Mathworks, Natick, MA, 701 

USA). Pre-processing consisted of standard SPM12 defaults for slice time 702 
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correction, realignment and re-slicing, co-registration, unified segmentation & 703 

normalisation, and smoothing; except for a 6mm FWHM Gaussian smoothing kernel. 704 

All analyses were performed in normalized MNI space. Block durations and onsets 705 

for each of the 4 experimental conditions during Video 1, the RPS game, and Video 706 

2 were modelled by convolving the hemodynamic response function and with a high 707 

pass filter of 128s. Head motion parameters were modelled as nuisance regressors. 708 

Functional scans provided whole brain coverage.  709 

ROI Creation & Analyses 710 

Our choice of ROIs was informed by previous studies27,28; however, ROI placement 711 

was based on peak activation from the independent localizers (refer to Figure S2 & 712 

Table S3). Participants undertook two passive-viewing tasks to help identify brain 713 

regions of interest after playing the RPS game.  714 

Mentalizing. Localizer 1 was a short-animated film (‘Partly Cloudy’; Pixar Animation 715 

Studios, 2009) coded for event type (mentalizing, pain, social, and control). We used 716 

the mentalizing > pain contrast to identify ROI coordinates in bilateral TPJ, bilateral 717 

mFG, and Precuneus independently from our main experimental task. Neither Medial 718 

Prefrontal Cortex (mPFC) nor rmFG activation appeared as expected in Localiser 1, 719 

therefore, we used mPFC & rmFG coordinates from the original localiser paper50 and 720 

created 6mm spheres around those coordinates.  721 

Social Interaction. To localize pSTS, we employed an established localizer which 722 

involves passive viewing of 3 conditions: (i) interacting, (ii) non-interacting, and (iii) 723 

scrambled point-light figures.52,57 We used the interaction > scrambled contrast (i.e., 724 

two human point light figures interacting vs. scrambled dot motion) to derive our 725 

pSTS coordinates independently from our experimental task.  726 
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We used a control ROI (V1/BA17) from the WFU PickAtlas99 as a form of verification 727 

that activity differences seen between conditions during game play was not 728 

attributable to non-specific whole brain activation differences. In other words, we 729 

would not expect differences between conditions in V1 activity during game play, as 730 

participants saw the same set-up across all conditions, and this control ROI allowed 731 

us to evaluate this possibility. 732 

Group-constrained, subject specific ROIs were created like the methods described 733 

elsewhere52 using an uncorrected height threshold of p < .0001. This protocol 734 

creates subject-specific ROIs based on independent data (i.e. localizers). Briefly, we 735 

established an initial 6mm bounding sphere centred around the peak T-value from 736 

group activation in our pre-registered localizer contrasts (i.e. interacting vs non-737 

Interacting, mentalizing vs pain). Within this initial bounding sphere, we employed a 738 

leave one subject out (LOSO) iterative process based on group level analyses, 739 

resulting in a more refined search sphere. Finally, we generated subject specific 740 

regions of interest (ROIs) within this constrained search space by selecting the top 741 

100 contiguous voxels for each subject, thereby accounting for inter-subject 742 

variability within these restricted search spaces. Percent signal change was then 743 

extracted from ROIs using in-house scripts in Matlab 2018a and the MarsBar 744 

toolbox.  745 

None of the ROIs overlapped. Both right and left TPJ were slightly shifted so the 746 

entire sphere was within the boundaries of the brain; all other ROIs created from the 747 

localisers remained true to the peak activation. Please refer to Supplementary 748 

Figures for all ROI coordinates. 749 

Behavioural Measures 750 

Debrief Questions   751 
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Pre-Registered. After scanning, participants answered questions about their 752 

experience of the study using FormR.100 Participants rated responses to the 753 

following questions on a scale from 0-10: (i) how well they were able to adopt an 754 

efficient strategy against each partner, (ii) how successful they were against each 755 

partner, (iii) how much fun it was to play each partner, (iv) how much sympathy they 756 

had for each partner when they lost, and then each partner’s (v) competitiveness, 757 

and (v) intelligence. 758 

Inclusion of Others and Self (IOS) 759 

The Inclusion of Others and Self (IOS) is a measure of closeness and 760 

interconnectedness between two individuals.101 A series of 7 increasingly 761 

overlapping circles are presented to the participant on paper. Each pair of circles 762 

contains the word “self” in one circle and “other” in the other circle. Participants are 763 

then asked to choose which circle represents their relationship to the agent in 764 

question. We asked participants to show which set of overlapping circles best 765 

describes the following agents: (1) computer, (2) mechanoid robot, (3) humanoid 766 

robot, (4) a human stranger, (5) the human from the experiment (LEJ), and (6) a 767 

close friend. Non-robot items were included for comparison to determine where the 768 

robot stood relative to other people in the participant’s lives. The IOS provides 769 

another way to address the participant’s view of their relationship to various humans 770 

and robots. Responses from the paper and pencil format of the IOS were recorded 771 

onto a 7-point scale from 1 (no overlap) to 7 (nearly complete overlap). 772 

QUANTIFICATION AND STATISTICAL ANALYSES 773 

fMRI Analyses 774 

ROI 775 
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Pre-Registered. Repeated measures ANOVAs were run for each ROI to assess the 776 

effect of game-partner and pairwise comparisons were run only if a main effect of 777 

game-partner was found. All pairwise comparisons were corrected for multiple 778 

comparisons (Bonferroni). Greenhouse-Geisser corrections were made if any 779 

rmANOVA was found to violate Mauchley’s tests of sphericity. We assessed the 780 

linear effect of human-likeness using a linear repeated contrast in a within-subject 781 

ANOVA, which compares means across the different levels of the independent 782 

variable according to the following order: computer < mechanoid < humanoid < 783 

human.  784 

Exploratory. Ratings results from the Fun, Competitiveness, and Sympathy 785 

questions in the Debrief, suggested swapping the robot orders in the linear model 786 

(see below). As an exploratory analysis, we ran a linear repeated contrast in a 787 

within-subject ANOVA to compare means across different levels of the independent 788 

variable according to the following order based on socialness ratings: computer < 789 

humanoid < mechanoid < human.  790 

Additionally, we assessed whether the pSTS would show a linear pattern based on 791 

human-likeness or socialness during game play and whilst watching the video 792 

introduction which preceded each round.  793 

Whole Brain  794 

Pre-Registered. A GLM comprising the four conditions (CP = Computer Partner, MR 795 

= Mechanoid Robot, HR= Humanoid Robot, HP = Human Partner) was specified for 796 

each participant. Simple contrasts were compared against: (1) HP > CP, (2) HR > 797 

CP, (3) MR > CP, (4) HR > MR, (5) HP > HR. Based on previous findings (Krach et 798 

al, 2010) and our hypothesis, we expected to see a linear increase in neural activity 799 

based on human-likeness of agent. To evaluate this, we calculated a parametric 800 

Jo
urn

al 
Pre-

pro
of



SOCIALNESS & ROBOTICS 

36 

 

modulation of gameplay partner (actual model weights used: CP = -3, MR = -1, HR = 801 

1, HP = 3). For the second level group analyses, we used a FWE-corrected 802 

threshold (puncorr < 0.001) and a minimum cluster size (k = 100). 803 

Exploratory. While not pre-registered, we also included the following simple 804 

contrasts: (6) HP > MR, (7) MR > HR. We also calculated the parametric modulation 805 

of gameplay partners based on socialness (actual model weights used: CP = -3, HR 806 

= -1, MR = 1, HP = 3). 807 

Behavioral Analyses 808 

Debrief Questions   809 

Pre-Registered. As pre-registered, rmANOVAs were run on each question to assess 810 

the effect of agent. Pairwise comparisons between agents were run only if an agent 811 

effect was identified. All pairwise comparisons were corrected for multiple 812 

comparisons (Bonferroni). Greenhouse-Geisser corrections were made if any 813 

rmANOVA was found to violate Mauchley’s tests of sphericity. We assessed the 814 

linear effect of human-likeness using a linear repeated contrast in a within-subject 815 

ANOVA, which compares means across different levels of the independent variable.  816 

Exploratory. Furthermore, based on participant-reported perceptions of socialness of 817 

the individual agents, we ran an exploratory (not pre-registered) linear repeated 818 

contrast in a within-subjects ANOVA that reversed the order of the robots in the 4-819 

element hierarchy within the linear model.   820 

Inclusion of Others and Self (IOS) 821 

Pre-Registered. As pre-registered, rmANOVA was run to assess the effect of agent 822 

and pairwise comparisons were run only if an effect of agent was found. All pairwise 823 

comparisons were corrected for multiple comparisons (Bonferroni). Greenhouse-824 
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Geisser corrections were made if any rmANOVA was found to violate Mauchley’s 825 

tests of sphericity. 826 

 827 
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Highlights 
 

• The more human-like an agent, the more we engage the mentalizing network 
in the brain.  
 

• Perceived socialness was even more influential in engaging the mentalizing 
network.  

 

• Humans still hold a unique advantage over robots during social interactions. 
 

• Implications for robotic design and the flexibility of human social cognition.  
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Key resources table 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

   

   

   

   

   

Bacterial and virus strains  

   

   

   

   

   

Biological samples   

   

   

   

   

   

Chemicals, peptides, and recombinant proteins 

   

   

   

   

   

Critical commercial assays 

   

   

   

   

   

Deposited data 

fMRI data Mendeley Data DOI: 
10.17632/2x9ykks2x
x.1 
DOI: 
10.17632/693ty6chc
d.1 
DOI: 
10.17632/c48324drr
w.1 

Group level whole brain results This paper; Neurovault https://identifiers.org/
neurovault.collection
:17268 

Behavioral data, stimuli, and additional analyses This paper; OSF https://osf.io/t4apv/ 

Preregistration AsPredicted.org https://aspredicted.or
g/CBG_ZPG  
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https://aspredicted.org/CBG_ZPG


 

 

Experimental models: Cell lines 

   

   

   

   

   

Experimental models: Organisms/strains 

   

   

   

   

   

   

Oligonucleotides 

   

   

   

   

   

Recombinant DNA 

   

   

   

   

   

Software and algorithms 

MATLAB 2018a MathWorks Inc 
 

 
RRID:SCR_001622 

Statistical Parametric Mapping 12 (SPM12) 
 

https://www.fil.ion.ucl.
ac.uk/spm/ 

 
RRID:SCR_007037 

Python 2.7 Python Software 
Foundation 

RRID:SCR_008394 

Python 3.5 Python Software 
Foundation 

RRID:SCR_008394 

Psychopy https://www.psychopy.
org/ 

RRID:SCR_006571 

Psychtoolbox-3 (PTB-3) Psychophysics 
Toolbox 

 
RRID:SCR_002881 

R Studio The R Foundation RRID:SCR_001905 

Code for robot introduction & main experiment GitHub https://github.com/ch
audhuryB 

Other 
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