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ORIGINAL ARTICLE

The role of sleep in the link between cannabis use and memory function: 
evidence from a cross-sectional study
T. Browna, R. A. Ackermana, E. Kroonb,c, L. Kuhnsb,c, J. Cousijnb,c, and F. M. Filbeya

aDepartment of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, Texas, USA; bNeuroscience of 
Addiction (NofA) Lab, Department of Psychology, Education & Child Studies, Erasmus University Rotterdam, Rotterdam, The Netherlands; 
cDepartment of Psychology, University of Amsterdam, Amsterdam, The Netherlands

ABSTRACT
Background: It is known that cannabis use affects memory and sleep problems independently. 
However, to date, how memory and sleep problems may interact as a result of cannabis use 
remains unknown.
Objectives: We performed a secondary analysis of existing data to determine whether sleep quality 
mediates the association between cannabis use and memory and whether sex moderated these effects.
Methods: A total of 141 adults with cannabis use disorder (CUD) (83 men) and 87 without CUD (39 
men) participated in this study. Outcome measures included self-reported sleep problems from the 
past 7 days (Marijuana Withdrawal Checklist), learning and memory performance via the short 
visual object learning task (sVOLT), short visual object learning task delayed (sVOLTd), and verbal 
memory via the N-back. Bootstrapped mediation and moderated mediation analyses were run to 
test if sleep quality mediated the association between cannabis use and memory outcomes and 
whether sex moderated these effects, respectively.
Results: Sleep quality mediated the effect of group (i.e. adults with and without CUD) on sVOLT 
efficiency scores (indirect effect ß = −.08, 95% CI [−0.14, −0.04]) and sVOLTd efficiency scores (indirect 
effect ß = −.09, 95% CI [−0.14, −0.04]), where greater sleep difficulties was associated with poorer 
memory performance (decreased efficiency scores). Sex did not moderate these relationships.
Conclusion: These initial findings of a mediating role of sleep in the association between CUD and 
visual learning memory highlight potential critical downstream effects of disrupted sleep in those 
with CUD and suggest the importance of investigating sleep in CUD.
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Introduction

The most consistently reported cognitive impairment 
related to cannabis use is in episodic memory (1–12). 
This association is suggested to be dose-dependent with 
greater memory deficits associated with higher levels of 
Δ-9-tetrahydrocannabinol (Δ-9-THC), the primary psy-
choactive ingredient in cannabis (4). Δ-9-THC disrupts 
memory processes through its impact on the brain’s 
endocannabinoid system (ECS) which includes areas 
that underlie learning and memory functions such as 
the hippocampus, amygdala, and prefrontal cortex (13).

Because the ECS is also involved in circadian rhythm 
modulation and sleep (14), impaired memory due to 
long-term cannabis use may also in part be a downstream 
effect of Δ-9-THC’s impact on sleep, similar to what has 
previously been described in terms of depression (15,16). 
Indeed, sleep disturbances such as shorter sleep duration, 
reduced rapid eye movement (REM) sleep, and slow wave 
sleep (SWS) (17–20) are often reported in individuals 

who use cannabis at a higher rate compared to those 
who do not use cannabis (21–24). Reductions in REM 
and SWS are known to impair hippocampal-dependent 
learning (25), and inhibit memory consolidation (26), 
respectively. Reduction of glutamatergic activity in the 
hippocampus by Δ-9-THC (27) may also lead to 
decreased fast sleep spindle activity (13–15 Hz) efficiency 
associated with memory recall performance (28).

To date, however, findings on the effects of cannabis 
use on sleep have been mixed, suggesting a nuanced 
relationship that remains unresolved. Inconsistency in 
findings may be related to moderators related to canna-
bis use (e.g., age of onset, timing effects – acute vs. 
persistent effects) (29), or demographic characteristics 
such as sex. For instance, studies suggest that sleep is 
impacted in women at a higher rate than men from 
long-term cannabis use (30,31), especially in those 
with early onset of use (30), and particularly during 
abstinence (32). The moderating role of sex on these 
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effects is not surprising given known differences in 
sleep-wake cycles in men and women (33).

Hence, the effects of cannabis use on circadian 
rhythm via the ECS could further potentiate underlying 
sex-specific effects on sleep (34). In sum, the moderat-
ing effect of sex is important to consider when deter-
mining the effects of cannabis on sleep and memory.

Despite the understanding that cannabis impacts 
both sleep and memory independently, and the crucial 
role of sleep on learning and memory processes, there is 
a need to examine how sleep may mediate these out-
comes from cannabis use. In this explorative study, we 
tested if poorer learning and memory performance (y) 
in individuals with a cannabis use disorder (CUD) rela-
tive to controls (x) are mediated by sleep problems (m). 
Furthermore, we predicted that this relationship would 
be moderated by biological sex (z) where greater effect 
of sleep on learning and memory will be found in 
females compared to males.

Methods

This study was approved by the Institutional Review 
Board of the University of Texas at Dallas and the 
Department of Psychology at the University of 
Amsterdam, and all participants completed a consent 
form before participating. Methods were standardized 
across the two sites to ensure consistency. Specifically, 
research assistants from each site received side-by-side 
training including regular reliability and matching 
checks.

Participants

Participants were recruited from two sites using similar 
protocols in Dallas, TX, United States (US) and 
Amsterdam, the Netherlands (NL) for a larger study 
investigating the neurocognitive effects of cannabis use 
[e.g (35). The participants consisted of 141 adults with 
CUD (18–31 years of age, Mage = 22.78, SD = 3.36, 
NL: 79; US: 62) and 87 non-CUD controls (18–30 years 
of age, Mage = 23.04, SD = 3.35, NL: 48; US: 39). Adults 
with CUD were defined as using cannabis >5 days per 
week during the previous year and with mild to severe 
CUD as determined by the Mini International 
Neuropsychiatric Interview 7.0.2 (MINI (36)). The non- 
CUD control group consisted of adults without cannabis 
use in the past 3 months as well as ≤25 lifetime separate 
occasions of cannabis use with ≤5 times in the past year. 
Participants were excluded if they had ever been diagnosed 
with a severe physical condition, a psychological condition 
other than anxiety, depression, or ADHD, had lifetime 
monthly uses of drugs other than alcohol, nicotine, 

excessively used alcohol (Alcohol Use Disorder 
Identification Task; AUDIT score >12 (37)), used psycho-
tropic medications or had a positive urine drug screen for 
other illicit substances. To minimize the effect of acute 
cannabis intoxication during the time of testing, partici-
pants with CUD were asked to refrain from cannabis use 
24 hours prior to their appointment, which was verified 
through self-report (see Table 1 for participant 
characteristics).

Outcome measures

Standardized assessments were translated from English 
to Dutch. CUD severity was assessed using the Cannabis 
Use Disorder Identification Task-Revised (CUDIT-R). 
Substance Use History (SUH) questionnaire was used to 
assess other drug use as well as frequency and quantity 
of cannabis use (i.e. weekly cannabis use, grams used per 
day). A single item from the Marijuana Withdrawal 
Checklist (MWC (38)) was used to assess sleep. Of 
note, the MWC instructions and questions were gener-
alized to experiences within the past week and not con-
strained to those related to cannabis withdrawal. 
Additionally, the survey was not labeled as MWC and 
instructions for both CUD and non-CUD participants 
were as follows: “Below is a list of physical and psycho-
logical symptoms. Please indicate to what extend you 
experienced these symptoms during the past week.” 
Thus, ratings of sleep were not explicitly within the 
context of cannabis withdrawal. Self-reported sleep pro-
blems were rated as past week level of “sleep difficulty” 
on a Likert-type scale of 0 (none) − 3 (severe) (see 
Supplemental Table 1).

Memory assessments

Cognitive assessments were conducted using the Penn 
Computerized Neurocognitive Battery’s CNB (39). 
Given high English proficiency in the NL, instructions 
were not translated in English. Visuospatial learning 
and memory outcomes from the Short Visual Object 
Learning Task (sVOLT) and the Short Visual Object 
Learning Task delayed (sVOLTd) from the Penn CNB 
were used as variables of interests in the analyses. 
Participants completed the sVOLT to assess their 
immediate recall of 20 shapes, then completed other 
Penn CNB tasks for ~19 minutes before assessing their 
delayed recall with the sVOLTd that consisted of cor-
rectly identifying 10 previously presented shapes after a 
1 minute time delay.

Outcome variables from both sVOLT and sVOLTd 
included total correct and mean reaction time (RT) for 
the correct trials. Additional memory efficiency scores 
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Table 1. Characteristics of the participants across demographic variables (1a), memory variables (1b) and cannabis use variables (1c).
(a) Demographic variables

Variables Individuals with CUD (N = 141) Individuals without CUD (N = 87)

Group by Sex
Males 

Mean (SD)
Females  

Mean (SD) All Mean (SD)
Males 

Mean (SD)
Females  

Mean (SD) All Mean (SD)
CUD vs. non-CUD  

p-value & Cohen’s d

Sex (N) 83 58 − 39 48 − p = .02, 0.28
Age 22.29 23.53 22.78 22.46 23.39 23.04 p = .28
mean (3.25) (3.39) (3.36) (3.14) (3.41) (3.35)
Within group t-test between males and females p = .02 p = .09
Years of formal 15.56 15.24 15.38 16.54 16.65 16.63 p < .001, 0.46
education (2.66) (2.61) (2.65) (2.33) (2.96) (2.68)
Within group t-test between males and females p = .24 p = .43
Drinking days per month 4.78 3.48 4.21 4.92 5.44 5.15 p = .09

(5.39) (5.39) (4.94) (5.89) (5.03) (5.41)
Within group t-test between males and females p = .07 p = .33
Sleep difficulty rating .89 .9 .89 .33 .29 .31 p < .001, 0.71

(.92) (.89) (.9) (.66) (.71) (.68)
Within group t-test between males and females p = .97 p = .78

(b) Memory Variables

Variables With CUD Without CUD

Group by Sex
Males 

Mean (SD)
Females 

Mean (SD)
All 

Mean (SD)
Males 

Mean (SD)
Females 

Mean (SD)
All 

Mean (SD)
CUD vs. non-CUD 

p-value & Cohen’s d

sVOLT 
total correct

16.34 15.49 15.94 17.2 16.1 16.61 p = .04, 0.29
(2.49) (2.3) (2.43) (1.95) (1.99) (2.04)

Within group t-test between males and females p = .11 p = .04
sVOLTd 15.93 15.08 15.53 16.6 15.83 16.19 p = .11
total correct (2.07) (2.76) (2.44) (2.39) (2.4) (2.41)
Within group t-test between males and females p = .15 p = .19
Ln sVOLT 3.25 3.25 3.25 3.25 3.27 3.26 p = .26
RT (0.1) (0.08) (0.09) (0.09) (0.11) (0.1)
Within group t-test between males and females p = .89 p = .34
Ln sVOLTd 3.19 3.16 3.18 3.17 3.19 3.18 p = .78
RT (0.08) (0.37) (0.26) (0.06) (0.10) (0.08)
Within group t-test between males and females p = .35 p = .77
sVOLT 1.96 1.72 1.85 1.94 1.89 1.91 p = .99
efficiency score (0.49) (0.47) (0.49) (0.55) (0.43) (0.49)
Within group t-test between males and females p = .16 p = .87
sVOLTd 1.95 1.7 1.84 1.97 1.93 1.95 p = .58
efficiency score (0.45) (0.47) (0.48) (0.55) (0.47) (0.51)
Within group t-test between males and females p = .12 p = .97
N-back 1 total correct 56.38 54.43 55.56 57.29 56.5 56.5 p = .04, .38

(2.67) (4.69) (3.76) (2.35) (2.47) (2.47)
Within group t-test between males and females p = .02 p = .5
N-back 2 total correct 52.29 49.53 51.13 54.33 51.92 52.88 p = .11

(6.83) (8.07) (7.46) (4.43) (6.23) (5.67)
Within group t-test between males and females p = .1 p = .21
N-back total correct 166.55 161.74 164.54 168.5 167 167.6 p = .16

(11.33) (12.67) (12.09) (8.67) (8.78) (8.69)
Within group t-test between males and females p = .1 p = .7
Ln N-back 1 RT 6.3 6.34 6.32 6.28 6.32 6.3 p = .52

(0.12) (0.13) (0.13) (0.16) (0.09) (0.13)
Within group t-test between males and females p = .24 p = .31
Ln N-back 2 RT 6.33 6.36 6.34 6.31 6.34 6.33 p = .67

(0.12) (0.13) (0.12) (0.16) (0.1) (0.12)
Within group t-test between males and females p = .44 p = .4
Ln N-back total RT 6.31 6.34 6.32 6.23 6.32 6.31 p = .63

(0.12) (0.13) (0.12) (0.15) (0.1) (0.12)
Within group t-test between males and females p = .31 p = .33
N-Back 1 efficiency score 8.95 8.59 8.8 9.13 8.94 9.02 p = .052

(0.47) (0.8) (0.65) (0.46) (0.4) (0.43)
Within group t-test between males and females p = .01 p = .32
N-Back 2 efficiency score 8.26 7.79 8.06 8.6 8.19 8.36 p = .09

(1.1) (1.28) (1.2) (0.77) (0.98) (0.92)
Within group t-test between males and females p = .08 p = .16
N-Back total efficiency score 26.4 25.53 26.03 26.51 25.91 26.22 p = .14

(1.9) (2.14) (2.04) (1.83) (1.89) (1.88)
Within group t-test between males and females p = .07 p = .49

(Continued)

THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 3



were computed to detect group differences in accuracy 
and speed together rather than separately (40). The 
efficiency scores were computed by dividing the number 
of total correct responses by the natural log of the mean 
RT of correct trials. Higher efficiency scores indicated 
better performance.

Verbal memory was assessed using the N-back task 
with letter stimuli collected during a functional MRI 
scan (41–43). The task consisted of 12 blocks with 3 
memory loads that were presented 4 times in a fixed 
order beginning with high memory load (2-back), fol-
lowed by recognition (0-back), and low memory load 
(1-back). The participants were instructed to indicate if 
the letter presented on the screen matched a previous 
letter displayed by pressing a target or non-target for 1- 
back and 2-back trials. For the 0-back trials, participants 
were asked to indicate only when the letter “X” was 
presented. Participants were not provided with feedback 
during or after the task. Outcome measures from the 
task included RT’s for correct trials and accuracy for 
overall (i.e., all trials combined), 0 back, 1 back, and 2 
back. Efficiency scores for overall performance and each 
condition was computed by dividing the number of total 
correct responses to the task by the natural log of the 
mean RT of correct trials. Only the behavioral data were 
analyzed in this report. The fMRI data are reported in 
Kroon et al. (35).

Mediation model specification

The mediation analyses were computed using Hayes 
Macro Process v4.2 (model 4) in SPSS v27 specified 
covaried mediation models using path analysis. The 
moderated mediation models were computed with 
Macro Process 4.2 v (model 59).

We computed mediation analyses that specified sleep 
disruptions as a mediator of the effect of group (i.e., 
participants with or without CUD) on memory 

accuracy, RTs, and efficiency scores on the sVOLT 
task, sVOLTd task, and N-back loads (i.e. overall, 1 
back, and 2 back). Mediation analyses were replicated 
with the same specifications as the models testing effects 
of CUD (i.e. covariates, mediation of sleep, and memory 
outcomes) but only included participants with CUD to 
test cannabis use metrics’ (i.e. CUD severity, years of 
weekly use, and grams used per day) effects on sleep and 
memory outcomes. Considering the number of models 
tested, we applied a conservative threshold of p < .01, 
and confidence intervals for indirect effects and model 
paths were bootstrapped with 5000 samples.

Results

ANOVAs with Bonferroni-corrected comparisons 
revealed differences in participants recruited across the 
two sites. The US sample was significantly older and had 
less years of formal education than the NL sample. 
Individuals with CUD in the US had significantly 
more females and reported more years of weekly can-
nabis use compared to the NL. Individuals without 
CUD in the NL reported more monthly days of drinking 
alcohol and had faster RT’s during the N-back tasks (see 
Supplemental Table 2).

Pearson’s correlation analyses were computed to 
determine whether demographic variables (i.e. alcohol 
use, sex, education, and age) may be correlated with 
memory and sleep outcomes and revealed significant 
correlations between these variables (Table 2). Thus, 
alcohol use, education, sex, and age were used as cov-
ariates for the mediation models, while sex was changed 
to the moderator in the moderated-mediation models.

Mediation analyses in adults with and without CUD

The 15 mediation models testing the mediating role of 
sleep on CUD and memory indicated an indirect effect 

Table 1. (Continued).
(c) Cannabis Use Variables

Variables With CUD Without CUD

Group by Sex
Males 
(SD)

Females 
(SD)

All Mean 
(SD) n/a

Grams used per day 2.52 1.58 2.31 n/a
(4.15) (2.06) (3.48)

Within group t-test between males and females p = .12 n/a
Years of 4.65 6.39 5.38 n/a
weekly use (3.33) (6.91) (5.19)
Within group t-test between males and females p = .06
CUD 16.42 15.67 16.11 n/a
severity (5.74) (5.11) (5.49)
Within group t-test between males and females p = .43

CUD  = Cannabis Use Disorder, sVOLT = Short Visual Object Learning Task, sVOLTd = Short Visual Object Learning Task Delayed, Ln = Natural log, RT = Reaction 
Time, MWC = Marijuana Withdrawal Checklist.

4 T. BROWN ET AL.



of sleep problems on CUD and sVOLT efficiency (indir-
ect effect ß= −.08, 95% CI [−0.14, −0.04]) and sVOLTd 
efficiency (ß = −.09, 95% CI [−0.14, −0.04]). The 

efficiency scores for the sVOLT and sVOLTd were 
highly correlated (r = .88) (see Figures 1 and 2). CUD 
group reported more sleep problems than non-CUD 
group (a path). The effect of sleep problems on 
sVOLT efficiency scores and sVOLTd efficiency scores 
(b path) indicated that sleep problems negatively 
affected memory efficiency (ab path). CUD and non- 
CUD groups were not significantly different in their 
memory performance (c’ path).

There was no mediation effect of sleep on N-back 
performance measures or sVOLT and sVOLTd RTs or 
the total correct trials (see Supplemental Figure 1). The 
sex moderated-mediation models did not indicate a 
moderating role of sex on the mediation of sleep on 
CUD and sVOLT efficiency or sVOLTd efficiency (see 
Supplemental Figure 2).

Mediation analyses in those with CUD

Sleep did not mediate the relationships between canna-
bis use measures (i.e. CUD severity, years of weekly use, 
and grams used per day) and memory variables (see 
Supplemental Figure 1), and the sex moderated-media-
tion models did not indicate sex moderated any of the 
relationships (see Supplemental Figure 2).

Test of temporal precedence

Because of the cross-sectional nature of the data, we 
performed a test of temporal precedence by interchan-
ging the predictor and mediator variables. Given that 
group is a categorical variable, we used Mplus v.8.4 (44) 

Table 2. Pearson’s correlations between demographic variables 
and memory outcomes.

Outcome 
Measures

Age 
r

Sex 
r

Educa- 
tion 

r

Alcohol 
Use 

r
Sleep 

r

sVOLT 
Total Correct

−.122* .177** −0.009 .153* −0.01

sVOLTd 
Total Correct

−0.072 .148* 0.106 0.106 −0.11

sVOLT 
RT

0.041 −0.043 −0.082 −0.060 0.11

sVOLTd 
RT

.129* 0.016 −0.014 0.016 .129*

sVOLT 
Efficiency

−.301** .146* .193** .277** −.277**

sVOLTd 
Efficiency

−.283** .149* .251** .225** −.325**

N-Back 1 Correct −.152* .206** .174* 0.092 −0.07
N-Back 2 

Correct
−0.084 .165* .128* 0.108 −0.11

N-Back 
Total Correct

−0.081 .138* .204** 0.122 −0.1

N-Back 1 
RT

0.013 −0.097 −.168* −0.083 0.06

N-Back 2 
RT

−0.004 −0.063 −.167* −0.086 0.06

N-Back 
Total RT

0.030 −0.117 −.131* −0.052 0.03

N-Back 1 
Efficiency

0.022 0.028 0.064 −0.100 −0.004

N-Back 2 
Efficiency

−0.046 0.086 0.021 −0.023 −0.04

N-Back 
Total Efficiency

−0.086 .164* .221** .128* −0.1

Education = number of years of formal education; Alcohol Use = total score 
on the Alcohol Use Disorder Identification Task (AUDIT); sVOLT= short 
visual object learning task, sVOLTd= short visual object learning task 
delayed, RT= reaction time, *p < .05, **p < .01.

Figure 1. Sleep problems mediate the relationship between cannabis use disorder (CUD) and Short Visual Object Learning Task 
(sVOLT) efficiency scores. Dotted lines indicate no significant effect while solid lines indicate significant effects. The unstandardized 
effects are noted with (a) and (b) while the standardized effects are noted with (β). *p < .05; **p < .01. Figure created with Biorender. 
com.
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(vs. SPSS). Covariates were controlled for by regressing 
them on the mediator (a path) and outcome variable (b 
path) while confidence intervals for indirect effects were 
obtained by bootstrapping with 5000 samples. The 
results did not indicate a mediating relationship of 
group (i.e. individuals with and without CUD) on the 
relationship between sleep and sVOLT or sVOLTD 
efficiency scores (see Figure 3).

Discussion

To date, how cannabis affects sleep and memory is 
widely studied but evaluated independently of each 
other (3,20,45–50). This study is the first, to our knowl-
edge, to examine how sleep mediates the relationship 
between cannabis use and memory performance. Using 
existing cross-sectional data, these initial findings indi-
cate (1) a mediating relationship of self-reported sleep 
quality on group (i.e. those with or without CUD) and 
immediate and delayed visual learning and memory; 
where CUD increased reported sleep difficulties and 
sleep difficulties related to poorer learning and memory 
performance (i.e. decreased efficiency scores), and (2) 
sex did not moderate these relationships. Given THC’s 
influence on CB1 receptors that leads to reductions in 
REM and SWS (34), it is not surprising to find a mediat-
ing relationship on learning and memory outcomes. 
Against expectations, we did not find that sex moder-
ated these outcomes. It is possible that our ability to 
detect sex effects was limited by the relatively small 
number of males compared to females in our study 
sample.

The relationship of sleep and CUD on memory 
performance was found primarily on spatial memory 
outcomes, and not verbal memory outcomes. Although 
this finding is unexpected, previous studies of sleep 
impacts on spatial memory, but not verbal memory 
suggested a potential lateralization effect of persistent 
(vs. acute) sleep deficiencies (e.g. reduced amounts of 
sleep for consecutive days) (43). Specifically, persistent 
sleep problems may have a greater impact on right 
hemispheric functions such as spatial memory due to 
lower amounts of SWS that affect right hippocampal 
function related to spatial memory formation 
(41,51,52). This is in contrast to sleep deprivation (e. 
g. ≥24 hours with no sleep) (41,53), which affects left- 
hemispheric functions such as verbal memory. The 
notion of right-lateralized effects of persistent sleep 
problems is further supported by reports that improve-
ments in general sleep quality resolve spatial memory 
deficits (54–60). These right-lateralized effects may 
explain our findings of sleep-mediated impairment in 
visuospatial memory but not verbal memory given that 
our sleep outcome variable assessed general (i.e., per-
sistent) sleep problems rather than sleep deprivation 
per se.

Interestingly, we did not find significant associa-
tions between sleep problems and memory perfor-
mance when testing differences in cannabis use 
behaviors among individuals with CUD. This is sur-
prising given previous studies suggesting the effects of 
cannabis use on sleep are dose-dependent (2,3). This 
lack of association with cannabis use measures may be 
due to the limited variability in our sample of 

Figure 2. Sleep problems mediate the relationship between cannabis use disorder (CUD) and Short Visual Object Learning Task Delay 
(sVOLTd) efficiency scores. Dotted lines indicate no significant effect while solid lines indicate significant effects. The unstandardized 
effects are noted with (a) and (b) while the standardized effects are noted with (β). *p < .05; **p < .01. Figure created with Biorender. 
com.
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individuals with CUD given the study’s inclusion 
requirement of near daily use in addition to meeting 
the requirement of CUD. Alternatively, the literature 
suggests that cannabis has differential effects over time 
related to tolerance. Specifically, sleep-promoting 
effects are more observable among cannabis-naïve 
individuals during initial use (20) whereas chronic 
cannabis use is thought to disrupt sleep due to dysre-
gulation in ECS from prolonged exposure to THC (61). 
Regardless, future studies of dose-dependent effects of 
cannabis should consider including a wider range of 
CUD severity and other cannabis use measures such as 
frequency and duration of use.

Limitations and conclusions

While these initial findings of the mediating effect of 
sleep on the relationship between CUD and memory 
indicate the importance of taking sleep into considera-
tion in future CUD research, some limitations are worth 
bearing in mind. First, the cross-sectional nature of this 
study limits inferences on causation. Despite our test of 
temporal precedence, longitudinal designs are needed to 
better understand the temporal relationship between 
CUD, sleep, and memory impairment. Second, given 
our parameter demanding models, a larger sample size 
may be needed to better account for covariates (i.e. 

Figure 3. Test of temporal precedence. These models tested group (m) as a mediator of the association between problems with sleep 
(x) and memory performance (y): Short Visual Object Learning Task (sVOLT) efficiency (1a) and sVOLT delay efficiency (1b). No 
significant mediating effect emerged. Dotted lines indicate no significant effect while solid lines indicate significant effects. *p < .05; 
**p < .01. Figure created with Biorender.com.
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gender, age, alcohol use, and education) related to mem-
ory and sleep outcomes. Lastly, although sleep problems 
were evaluated in a generalized context despite being 
derived from a single item from the MWC, it is possible 
that participants still viewed this question as it pertains 
to cannabis withdrawal. Furthermore, the narrow rating 
scale (i.e. 0–3) for the sleep item may have likely reduced 
our ability to detect effects. Future studies should con-
sider using comprehensive sleep measures (e.g., 
Pittsburgh Sleep Quality Index (4)).

The use of cannabis for sleep is one of the most 
prevalent reasons for using cannabis in both clinical 
and non-clinical populations (62). Thus, these initial 
findings suggesting a role of sleep between CUD and 
memory function are important to consider for the 
optimization of cannabis’ potential therapeutic effects 
on sleep, while mitigating potential harm. These initial 
findings also indicate that sleep may be an important 
entry point to improve cognitive function in those with 
CUD. Determining these risks and benefits of cannabis 
use is important for informed decision making for clin-
ical guidance and risk management. These initial find-
ings can also inform regulations around cannabis use, 
particularly concerning its availability as a sleep aid.
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