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Abstract

Background

Heart rate variability (HRV), an important marker of autonomic nervous system activity, is

usually determined from electrocardiogram (ECG) recordings corrected for extrasystoles

and artifacts. Especially in large population-based studies, computer-based algorithms are

used to determine RR intervals. The Modular ECG Analysis System MEANS is a widely

used tool, especially in large studies. The aim of this study was therefore to evaluate

MEANS for its ability to detect non-sinus ECG beats and artifacts and to compare HRV

parameters in relation to ECG processing. Additionally, we analyzed how ECG processing

affects the statistical association of HRV with cardiovascular disease (CVD) risk factors.

Methods

20-min ECGs from 1,674 subjects of the population-based CARLA study were available for

HRV analysis. All ECGs were processed with the ECG computer program MEANS. A refer-

ence standard was established by experienced clinicians who visually inspected the

MEANS-processed ECGs and reclassified beats if necessary. HRV parameters were calcu-

lated for 5-minute segments selected from the original 20-minute ECG. The effects of mis-

classified typified normal beats on i) HRV calculation and ii) the associations of CVD risk

factors (sex, age, diabetes, myocardial infarction) with HRV were modeled using linear

regression.

Results

Compared to the reference standard, MEANS correctly classified 99% of all beats. The

averaged sensitivity of MEANS across all ECGs to detect non-sinus beats was 76% [95%

CI: 74.1;78.5], but for supraventricular extrasystoles detection sensitivity dropped to 38%
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[95% CI: 36.8;38.5]. Time-domain parameters were less affected by false sinus beats than

frequency parameters. Compared to the reference standard, MEANS resulted in a higher

SDNN on average (mean absolute difference 1.4ms [95% CI: 1.0;1.7], relative 4.9%). Other

HRV parameters were also overestimated as well (between 6.5 and 29%). The effect esti-

mates for the association of CVD risk factors with HRV did not differ between the editing

methods.

Conclusion

We have shown that the use of the automated MEANS algorithm may lead to an overestima-

tion of HRV due to the misclassification of non-sinus beats, especially in frequency domain

parameters. However, in population-based studies, this has no effect on the observed asso-

ciations of HRV with risk factors, and therefore an automated ECG analyzing algorithm as

MEANS can be recommended here for the determination of HRV parameters.

1 Introduction

The rapid technological development in the field of wearables makes it increasingly easy to col-

lect health data such as heart rhythm and even the electrocardiogram (ECG) [1] from a large

number of people in the general population. Heart rate variability (HRV) is considered an

important measure of autonomic nervous system activity. A large number of studies have

demonstrated the prognostic significance of various HRV parameters, especially for total and

cardiovascular-specific mortality [2]. Further, they are related to risk factors for cardiovascular

and metabolic diseases [3] and can be influenced by lifestyle interventions [4]. HRV can also

play an important role in the long-term monitoring of Covid patients [5, 6]. To calculate HRV

parameters, RR-interval data of a pure sinus rhythm are necessary. However, ECGs often

include ectopic beats or artifacts that should be recognized before HRV analysis. Usually, in a

clinical setting detection of non-sinus beats is done by experienced cardiologists or at least

trained staff. However, this approach is time-consuming and costly and therefore difficult to

apply in large population-based studies. Therefore, a variety of algorithms were developed to

classify heartbeats automatically. An overview of many algorithms and their methods can be

found in Luz et al., 2016 [7]. For evaluation and reporting of the performance of those algo-

rithms in detecting the correct beat types, recommendations were given more than 30 years

ago by ANSI/AAMI (Association for the Advancement of Medical Instrumentation in cooper-

ation with the American National Standards Institute), updated in 2013 [8].

Some literature deals with the influence of non-corrected ectopic beats on HRV calculation.

This was investigated in several studies [9, 10]. However, to date, no study has evaluated the

impact of non-detected non-sinus beats on the association of HRV with well-known CVD risk

factors.

Therefore, our aim was i) to evaluate the performance of a widely used algorithm in the

classification of heartbeats in a general population, ii) to quantify the effect of undetected non-

sinus ECG beats on the calculation of HRV parameters, and iii) to analyze how these misclassi-

fications affect the statistical association of HRV with CVD risk factors.

The "Modular ECG Analysis System" (MEANS) is a validated [11] and widely used auto-

matic algorithm in population-based studies, e.g., the Rotterdam study [12], the HELIUS study

[13], the SHIP study [14], and the NAKO study [15]. The development of the program began
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several decades ago. It has a completely modular structure. Individual modules could therefore

be entirely redeveloped without disrupting the overall framework. In a testing of nine different

programs, MEANS showed excellent results [16]. However, the dependence of the calculated

HRV on such an ECG analysis system and, in particular, the dependence of association studies

involving HRV, have not yet been investigated. We, therefore, decided to perform the analysis

using the MEANS algorithm as an important example for heartbeat classification algorithms.

2 Materials and methods

The analyses are based on data from the baseline examination of the prospective, population-

based CARLA study (CARdiovascular disease, Living and Ageing in Halle). The original aim

of the CARLA study was to analyze the causes of increased cardiovascular morbidity and mor-

tality in the region and to investigate the importance of HRV as a marker of autonomic func-

tion and predictor of cardiovascular events. Details of the study have been described elsewhere

[17–19]. In brief, the CARLA study is a prospective cohort study of a representative sample of

the elderly inhabitants of the city of Halle (Saale). A random sample of 5.000 people aged 45 to

80 years at the time of the sampling (July 2002) was drawn from the population registry of the

city of Halle. The recruitment of study subjects has been done by inviting consecutive waves of

random sub-samples of the original population sample. Accordingly, not all persons originally

drawn from the population registry had to be invited in order to achieve a representative target

sample of 1750 subjects of the Halle population aged 45–80 years. Of the 3437 subjects invited

to participate in the study, 1779 participants aged 45–83 years at baseline were recruited, of

which 812 (46%) were women and 967 (54%) men, resulting in a final response proportion of

64.1% after exclusion of persons who deceased prior to the invitation, moved away or were

unable to participate due to illness. The recruitment of study subjects and the baseline exami-

nation began in December 2002 and ended in January 2006. All participants gave their written

informed consent.

2.1 ECG recording and processing

Fig 1 shows the basic steps of data collection, processing, and analysis. First 20-min 12-lead

resting ECG (CardioControl Working Station, Welch Allyn, Delft, the Netherlands) was

recorded in the supine position after a resting period of at least 10 minutes. Throughout the

ECG recording (performed with a sampling frequency of 600Hz), subjects were asked to

breathe at 15 respirations per minute (= 0.25Hz, guided by a visual metronome) to standardize

the effects of respiratory rate on HRV.

All ECGs were processed by MEANS to obtain the location and type of the QRS complexes

[11]. MEANS is a well-validated and widely used automated ECG processing and interpretation

system [16, 20, 21]. A detailed description and comparison of the MEANS algorithm with other

algorithms is outside the scope of our article. However, the MEANS algorithm has extensively

been described and evaluated before [22, 23], showing its validity in correct classification of QRS

complexes. For example, on the CSE multi-lead library containing 250 ECGs, all 2,081 QRS com-

plexes were correctly detected, and 99.6% of the complexes were correctly typified [22].

As already mentioned, MEANS has a completely modular structure. Signal evaluation is

mainly carried out serially by the modules. In addition to the input and output modules, 4 fur-

ther module groups are responsible for the following tasks [11]:

• detection of QRS complexes and disturbances as well as the P waves

• typification according to waveform for the QRS or ST-T complexes

• determination of the dominant complexes for contour analysis
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• segmentation of P and T waves and QRS complexes (recognition of start and end points)

• classification (rhythm, contour) of the ECG.

Afterward, all MEANS-processed ECGs were visually controlled for the correctness of

determination of QRS location and type by two trained medical students supervised by an

experienced cardiologist (in the following called "reference" = REF).

We differentiate three types of QRS complexes, normal sinus beats, supraventricular extra-

systoles (SVES), and ventricular extrasystoles (VES). MEANS considers any abnormally typi-

fied QRS complex as ventricular, while the distinction between normal and atrial complexes is

based on the timing and morphology of the preceding P waves. Artifacts were detected and

classified by MEANS QRS detector, resulting from sudden baseline shifts or spikes. Finally, we

group SVES, VES, and artifacts as non-sinus beats.

For each study participant, both the 20-min tachograms of the MEANS and the REF-con-

trolled ECGs were then separately used for HRV calculation according to the following proce-

dure. First, sixteen 5-min segments of each of the 20-min tachograms were produced by a

sliding 5-min window moving over the entire tachogram in 1-minute steps. If in a 5-min

MEANS or REF segment the proportion of non-sinus beats or artifacts was greater than 10%,

both the MEANS and REF segments were removed. If all segments of an ECG contained more

than 10% non-sinus beats, the ECG was excluded from this analysis. Additionally, the remain-

ing segments were checked for stationarity of the RR intervals according to the reverse

Fig 1. Flow chart of the basic sequence of the individual processing steps for determining HRV values for MEANS and REF.

https://doi.org/10.1371/journal.pone.0304893.g001
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arrangement test at the 5% level to means and variances and removed when the stationarity z-

score cut-off exceeded 1.96 [24]. Removal of the segments with non-stationary data did not

lead to the exclusion of any of the study participants due to a lack of data. From the remaining

segments, the segment of the MEANS-processed ECG with the lowest percentage of non-sinus

beats and the corresponding REF segment was selected for HRV analysis. If several choices

were possible, the earliest segment occurring in time was chosen.

HRV parameters were calculated for each of the MEANS-analyzed and REF-edited 5-min

segments, independent of the selection procedure described above. In each of these segments,

first, the non-sinus beats were replaced by interpolated sinus beats, inserted at 50% of the

interval between the sinus beats preceding and following the non-sinus beats, thus creating a

pseudo-sinus-rhythm interval series. Then, like in Bootsma et al., 2003 [25], the HRV spec-

trum was calculated from this non-equispaced interval data series, without resampling, as

follows:

• normalization of the interval series by dividing the intervals by the average interval

• subtraction of the linear trend in the normalized interval series (creates a series of interval

fluctuations around zero)

• cosine tapering of the initial and terminal 10% of this data series (creates a fade-in and fade-

out effect, thus preventing an unwanted invasion of the spectrum by data-on and data-off

transients)

• adding zeroes to the normalized, detrended, and tapered interval fluctuation series till the

number of data in that series equals a power of 2 (a requirement for the FFT algorithm)

• computation of the FFT spectrum of this data series

• correction of the frequency spectrum for the energy loss as a consequence of the cosine

tapering and zero padding, by multiplying it by a factor larger than 1 in order to make the

total power of the frequency spectrum identical to the variance of the original time series

(thus satisfying Parseval’s theorem).

Standard time-domain (SDNN in ms), pNN50 (percentage of successive RR intervals that

differ by more than 50ms), RMSSD (root mean square of successive RR interval differences in

ms) and frequency-domain parameters (LF (absolute power of the low-frequency band (0.04–

0.15Hz) in ms2), HF (absolute power of the high-frequency band (0.15–0.4Hz) in ms2), LF/HF

(ratio of LF-to-HF power)) were computed according to the method used in previous studies

[25–28] and in compliance with the current guidelines for analysis of HRV [29].

2.2 Statistical methods

Performance analyses of MEANS regarding the correct detection of non-sinus beats were

done using the entire 20-min ECGs. The sensitivity and specificity of the non-sinus beat detec-

tion performance of MEANS were determined according to the AAMI guidelines [8]. Two

types of aggregated statistics are given: in the "gross statistics", all beats are weighted equally,

regardless of whether they originate from one or the other ECG. The dependency of beats

from one ECG is therefore not taken into account. This is in contrast to the average statistics,

in which the dependency of beats from an ECG is taken into account and beat statistics are cal-

culated individually for each ECG and then averaged.

Bland-Altman plots were used to visualize the differences between the HRV measures

resulting from the different editing methods. As the differences did not seem to be normally

distributed we took the logarithmically transformed data [30].
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To evaluate the influence of misclassified beats on the HRV parameters, we used linear

regression models with the percentage of false sinus beats as the independent variable and the

relative HRV difference between MEANS and REF as the dependent variable (here the non-

logarithmized data were used):

ðHRVMEANS � HRVREFÞ=HRVREF:

The association between selected CVD risk factors and the logarithmically transformed

HRV values was assessed by linear regression models for both editing methods. Analyzed

CVD risk factors were sex, age, previous myocardial infarction (MI), and prevalent type 2 dia-

betes mellitus. In the case of age, a quadratic term was additionally taken into account to reflect

the non-linear relationship between age and HRV in our study [18]. Beta values and 95% con-

fidence intervals (CI) for the correlation of the logarithmized HRV values of the respective

editing method were obtained directly from the data, whereas the betas and the CI of the dif-

ference were obtained by bootstrapping beforehand, utilizing the non-parametric bootstrap-

ping method with 10,000 resamples and a fixed seed. Nonparametric bootstrapping allows

reliable estimation of statistical parameters, especially CI, without model assumptions. It is a

kind of resampling procedure. Samples of the same size as the original sample are taken from

the distribution of values of interest, with replacement. In each of these new samples, the statis-

tics of interest are calculated, and the CI sought is estimated from the distribution of these

results. The accuracy of this estimate depends on the quality of the initial sample. We use the

percentile approach to calculate the CI, which is a very simple method but gives good results

for approximately symmetric distributions [31].

Of the 1,779 participants of the CARLA study, 1,674 had an evaluable 20-min ECG (non-

sinus rhythm or pacemaker subjects were excluded, n = 105), which was analyzed by both

MEANS and REF. Further 33 ECGs were excluded because of more than 10% non-sinus beats

in all 5-min segments, resulting in 1,641 participants remaining for evaluation of the 5-minute

HRV.

All statistical analyses were performed using SAS 9.4 University Edition [32].

3 Results

The baseline characteristics of the cohort are shown in Table 1. Overall, our study group

showed a high burden of CVD risk factors and diseases.

Based on a total of more than 2.2 million beats of the 1,674 20-min ECGs, we found an

overall agreement of MEANS and REF in the beat classification of 99.05% [95% CI: 99.04;

99.06]. The overall sensitivity of MEANS in detecting non-sinus beats was 65.5% [95% CI:

64.9; 66.1] in gross statistics. Table 2 shows the performance of MEANS subdivided according

to different beat types. In detail, the MEANS algorithm failed mainly in correctly classifying

SVES (supraventricular extrasystoles) and artifacts. About one-third (7.284 of 21.580 beats) of

erroneously determined beat types were SVES, typified by MEANS as sinus beats, and more

than half (12.135 of 21.580 beats) were sinus beats typified as an artifact. However, 90% of all

beats incorrectly classified as sinus beats were found in only 6% of all ECGs. The resulting sta-

tistics are shown in Table 3, separated into gross and average statistics. The values are consis-

tently higher for the averaged statistic than for the gross statistic, especially those for the

sensitivity. In particular, the sensitivity for SVES is almost doubled in the averaged approach,

which can be explained by the low proportion of ECGs with frequent ectopic beats and

artifacts.

Fig 2 shows the Bland-Altman plot of HRV derived via MEANS versus REF exemplarily for

SDNN. The corresponding plots for RMSSD, pnn50, LF, and HF (not shown) manifest a
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similar pattern. In contrast, the pattern for the HRV parameter LF/HF ratio differs (Fig 3).

Overall, MEANS resulted in higher HRV values compared to the reference, except for LF/HF.

A vast majority of data points lying above the zero line (green diamonds) represent ECGs with

prevailing SVES false detections. Two ECGs exhibit a high proportion of non-sinus beat detec-

tions that were in reality sinus beats (black circle outlier points).

The impact of undetected non-sinus beats on the calculated HRV values is demonstrated in

Figs 4 and 5 for time- and frequency domain parameters (note the different scaling of the y-

axis). About 90% of all data points are densely located around zero because of the high percent-

age of ECGs with none or sparse non-sinus beats. The slopes for the regression line related to

time and frequency parameters are given in Table 4. On average, a proportion of only 7% of

Table 1. Baseline characteristics of subjects included in ECG analyses (1641 subjects).

Women Men

N �x� or % 95% CI N �x� or % 95% CI

Age (yrs) 768 63.3 62.6;64.0 873 64.1 63.4;64.7

Weight (kg) 768 73.5 72.5;74.6 873 84.2 83.3;85.1

Drug use:
Betablockers (%) 261 34.0 30.6;37.3 264 30.2 27.2;33.3

Antiarrhythmics (%) 5 0.6 0.1;1.2 4 0.5 0.0;0.9

ACE-inhibitors (%) 235 30.6 27.3;33.9 291 33.3 30.2;36.5

Diuretics (%) 69 9.0 7.0;11.0 76 8.7 6.8;10.6

Ca-channelblockers (%) 113 14.7 12.2;17.2 124 14.2 11.9;16.5

Disease prevalence:
Myocardial infarction (%) 15 2.0 1.0;2.9 72 8.2 6.4;10.1

Stroke (%) 21 2.7 1.6;3.9 34 3.9 2.6;5.2

Cardiovascular disease (CVD)a(%) 40 5.2 3.6;6.8 126 14.4 12.1;16.8

Hypertensionb (%) 548 71.4 68.2;74.6 663 76.0 73.1;78.8

Diabetes mellitusc (%) 109 14.2 11.7;16.7 128 14.7 12.3;17.0

aCVD: including prevalent myocardial infarction, coronary artery bypass graft (CABG), percutaneous transluminal coronary angioplasty (PTCA), stroke, carotid

surgery
bHypertension defined as SBP� 140 and/or DBP� 90 mmHg, and/or use of antihypertensive medication by ATC code
cDiabetes defined as self-reported physician-diagnosed diabetes mellitus and/or use of anti-diabetic medication by ATC code

https://doi.org/10.1371/journal.pone.0304893.t001

Table 2. Cross table for beat type classification by MEANS and reference standard (SVES, VES: Supraventricular, ventricular extrasystole).

beat-by-beat performance ("gross statistics")

REF (visual controlled beat typification)
MEANS Artifact SVES Sinus VES Total

Artifact N 586 68 12,135 64 12,853

% 40.61 0.56 0.54 0.62 0.57

SVES N 0 4,591 10 327 4,928

% 0.00 37.61 0.00 3.18 0.22

Sinus N 668 7,284 2,220,020 307 2,228,279

% 46.29 59.67 99.44 2.98 98.75

VES N 189 265 263 9,597 10,314

% 13.10 2.17 0.01 93.22 0.46

Total N 1,443 12,208 2,232,428 10,295 2,256,374

% 100.00 100.00 100.00 100.00 100.00

https://doi.org/10.1371/journal.pone.0304893.t002
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false detections (corresponding to a beta of about 0.14) produced a doubling of SDNN, for

instance. It is remarkable that mostly the time-domain parameters were less susceptible to

false sinus beats than the frequency-domain parameters.

The results of the analyses of the association of HRV with CVD risk factors are shown in

Table 5. Beta estimators represent the strength of the association between HRV and CVD risk

Table 3. Performance statistics in % for MEANS in beat type detection.

Parameter Non-sinus 95% CI SVES 95% CI VES 95% CI Artifact 95% CI

Gross statistics (calculated without considering individual ECGs)
Sensitivity 65.51 64.90–66.11 37.61 36.75–38.47 93.22 92.72–93.70 40.61 38.06–43.20

Specificity 99.44 99.43–99.45 99.98 99.98–99.99 99.97 99.97–99.97 99.46 99.45–99.47

Average statistics (calculated first within each ECG and then averaged)
Sensitivity 76.29 74.06–78.51 61.48 58.37–64.58 97.50 96.34–98.66 56.24 49.33–63.14

Specificity 99.48 99.30–99.66 99.98 99.95–100 99.97 99.94–99.99 99.50 99.32–99.67

https://doi.org/10.1371/journal.pone.0304893.t003

Fig 2. Bland-Altman plot of the differences (Y-axis) and means (X-axis) of the logarithmic transformed values of SDNN (measured in ms) by

MEANS-processed ECG versus reference standard. Symbols correspond to the majority of beat-type corrections by REF in this 5-min segment. A vast

majority of data points lying above the zero line (green diamonds) represent ECGs with prevailing SVES false detections; two ECGs exhibit a high

proportion of non-sinus beat detections that actually were sinus beats (black circle outlier points).

https://doi.org/10.1371/journal.pone.0304893.g002
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factor. For example, the beta for the association of SDNN and sex means that men have a

higher SDNN on average (0.06 on the logarithmized scale). The smaller the difference between

the two beta estimators, the more independent the association is of ECG processing method.

We found that the association between HRV parameters and CVD risk factors remained

essentially unaltered by the editing method both in extent and even in direction, measured as

covered by CI.

The intercept in the regression of association between HRV parameters and all risk factors

(except age) was greater than zero, which indicates an overestimation of HRV values by the

influence of false sinus beats (values not shown in Table 5).

4 Discussion

Our study aimed to investigate if for HRV analyses in large population-based studies, visual

editing of ECGs for ectopic beats and artifacts can be replaced by an automatic beat classifica-

tion algorithm, in our case MEANS.

Fig 3. Bland-Altman plot of the differences (Y-axis) and means (X-axis) of the logarithmic transformed values of LF/HF by MEANS-processed ECG

versus reference standard. Colors correspond to the majority of beat type corrections by REF in this 5-min segment.

https://doi.org/10.1371/journal.pone.0304893.g003
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4.1 Performance of MEANS in discriminating sinus from non-sinus beats

We found that compared to the reference standard, MEANS classified 99% of all beats cor-

rectly. However, the average sensitivity of MEANS across all ECGs to detect SVES was low.

In their survey, Luz et al. [7] list results of sensitivity for SVES detection from different stud-

ies between 60 and 91%. In our study, we found a global sensitivity (calculated without consid-

ering individual ECGs) for SVES detection of 38%. It is therefore obvious that MEANS has

some deficiency in detecting SVES (and artifacts) in single ECGs of our cohort. Whereas

events classified as artifacts were mostly in reality sinus beats (in this case, the HRV values usu-

ally are not dramatically altered), the SVES were often recognized as sinus beats by MEANS

(and could thus influence HRV values). Such misclassifications may have been caused by diffi-

culties of MEANS in identifying deformed or low-amplitude P-waves. The recognition of

SVES is one of the most compelling challenges for the developers of automatic algorithms at

all [33].

As outlined by AAMI [8], we compared not only the global (i.e. gross statistics) but also the

average performance data. In our study, average performance is noticeably higher than the

global, but there is a lack of published data to compare our results with those in the literature.

Fig 4. Association between the proportion of false sinus beats and the relative HRV difference between MEANS only and REF for time domain HRV

parameter.

https://doi.org/10.1371/journal.pone.0304893.g004
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The difference between global and average statistics in our data is likely caused by the fact that

the majority of false detections occurred in only a few ECGs. This means that in a study with

participants from the general population, average performance may be more informative than

Fig 5. Association between the proportion of false sinus beats and the relative HRV difference between MEANS only and REF for frequency domain

HRV parameter.

https://doi.org/10.1371/journal.pone.0304893.g005

Table 4. Association between the proportion of false sinus beats and the relative HRV difference between MEANS only and REF (R2 and β estimates (per % of false

sinus beats among all beats in the segment) from linear regression model).

N R2 β estimate* 95% CI

HRV parameter
SDNN 1,640 0.32 0.14 0.13;0.15

pNN50 925 0.20 0.21 0.18;0.24

RMSSD 1,640 0.24 0.28 0.26;0.31

LF 1,640 0.13 0.39 0.34;0.44

HF 1,640 0.16 0.70 0.62;0.78

LF/HF 1,640 0.02 -0.03 -0.04;-0.02

*- per one 1% of false sinus beats among all beats

https://doi.org/10.1371/journal.pone.0304893.t004
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global performance. For SVES, we observed average sensitivity (calculated first within each

ECG and then averaged) of 61%. Huang et al. [33] reported an average sensitivity of 62,8%,

and Chazal et al. [34] 25,7%, which can be interpreted as a result of differences in performance,

but may also be caused by differences in the study population.

4.2 Impact of QRS misclassifications on HRV

The fact that misclassifications of beats in the ECG cause distorted HRV values is quite com-

mon [9, 10, 35]. However, the strength of the impact was little known until recently. Few

recent studies are showing that time domain parameters are more robust with respect to

ectopy and artifacts than frequency domain parameters [36–39]. In contrast, Bourdillon et al.

found that RMSSD and SDNN are much more sensitive to a single artifact than LF and HF

[40]. Our results support the finding, that time domain parameters are more robust. Reasons

for different findings, among others, could be differences in the study population and its char-

acteristics (e.g., numerical size, age, health status) and ECG recording conditions (e.g., supine

or standing, breathing conditions, short- or long-term).

Our population is from an urban elderly general population and is quite large in number by

comparison. For HRV, we examine 5-min segments, i.e., short-term. We do not look at the

number of ectopy or artifacts itself in the ECG but at the amount (in % related to all beats of

Table 5. Linear regression for logarithmized HRV parameters on selected risk factors and method comparison (non-parametric bootstrapping with 10.000 samples

and fixed seed, 95% CI derived from percentile approach).

sex (male = reference) diabetes mellitus (non-
diabetics = reference)

myocardial infarction
(no MI = reference)

age (linear term) age (quadratic term)

regression on risk factors and: beta 95% CI beta 95% CI beta 95% CI beta 95% CI beta 95% CI

ln(SDNN)

MEANS 0.07 0.02;0.12 -0.22 -0.29;-0.16 -0.06 -0.17;0.05 -0.08 -0.11;-0.04 0.0005 0.0003;0.0008

REF 0.06 0.02;0.11 -0.24 -0.30;-0.17 -0.04 -0.14;0.06 -0.07 -0.10;-0.04 0.0004 0.0002;0.0007

bootstrapped difference 0.01 -0.01;0.02 0.01 -0.01;0.03 -0.02 -0.07;0.02 -0.01 -0.02;0.00 0.0001 0.0000;0.0001

ln(HF)

MEANS 0.43 0.32;0.54 -0.37 -0.53;-0.22 -0.20 -0.45;0.05 -0.25 -0.33;-0.18 0.0003 0.0013;0.0024

REF 0.43 0.33;0.54 -0.42 -0.57;-0.28 -0.15 -0.39;0.08 -0.23 -0.30;-0.16 0.0016 0.0011;0.0022

bootstrapped difference 0.00 -0.04;0.04 0.05 -0.04;0.04 -0.05 -0.16;0.12 -0.02 -0.05;0.00 0.0002 0.0000;0.0004

ln(LF)

MEANS 0.01 -0.09;0.12 -0.53 -0.69;-0.38 -0.42 -0.66;-0.18 -0.18 -0.25;-0.11 0.0011 0.0006;0.0017

REF 0.00 -0.10;0.11 -0.54 -0.69;-0.40 -0.39 -0.63;-0.16 -0.17 -0.24;-0.10 0.0010 0.0005;0.0016

bootstrapped difference 0.01 -0.01;0.04 0.01 -0.03;0.05 -0.02 -0.12;0.06 -0.01 -0.03;0.01 0.0001 0.0000;0.0002

ln(RMMSD)

MEANS 0.14 0.08;0.20 -0.18 -0.26;-0.09 0.04 -0.10;0.18 -0.12 -0.16;-0.07 0.0009 0.0006;0.0012

REF 0.14 0.08;0.19 -0.21 -0.29;-0.13 0.06 -0.06;0.19 -0.10 -0.13;-0.06 0.0007 0.0004;0.0010

bootstrapped difference 0.00 -0.02;0.03 0.03 -0.01;0.07 -0.02 -0.09;0.04 -0.02 -0.03;0.00 0.0002 0.0000;0.0003

ln(pNN50+0.1)

MEANS 0.63 -0.25;1.51 -1.36 -2.61;-0.11 1.80 -0.16;3.76 -1.13 -1.73;-0.53 0.0086 0.0039;0.0132

REF 0.71 -0.13;1.55 -1.47 -2.66;-0.27 1.87 -0.01;3.75 -1.04 -1.61;-0.47 0.0078 0.0034;0.0122

bootstrapped difference -0.08 -0.22;0.04 0.11 -0.08;0.33 -0.07 -0.29;0.19 -0.09 -0.19;0.01 0.0008 0.0000;0.0016

ln(LF/HF)

MEANS -0.42 -0.51;-0.34 -0.16 -0.28;-0.04 -0.22 -0.41;-0.02 0.08 0.02;0.13 -0.0007 -0.0012;-0.0002

REF -0.43 -0.52;-0.35 -0.12 -0.24;0.00 -0.24 -0.43;-0.05 0.06 0.00;0.12 -0.0006 -0.0010;-0.0001

bootstrapped difference 0.01 -0.01;0.04 -0.04 -0.09;0.00 0.02 -0.01;0.05 0.01 0.00;0.03 -0.0001 -0.0003;0.0000

https://doi.org/10.1371/journal.pone.0304893.t005
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the segment) of beats falsely classified as sinus by our algorithm MEANS. Ectopic beats or arti-

facts are distributed quite unevenly across all ECGs. We consider each beat separately and do

not take into account whether, for example, there is a burst of artifacts, as it is typical for

motion artifacts.

Although the conclusion that in general frequency parameters are less robust to false sinus

beats than time domain parameters, in our and other studies, the quotient of LF and HF seems

less vulnerable to false sinus beats. However, despite that LF/HF is sometimes considered to be

a measure of sympathovagal balance [41], current literature doubts this concept [25, 42–44]. It

is still unclear to which physiological and psychological effects of the sympathovagal system

LF/HF corresponds in detail. Furthermore, it seems to be problematic from a mathematical

point of view to use a quotient of two measured quantities, which are separately very suscepti-

ble to false sinus beats.

Similar to Stapelberg et al. [38], we also observed a large spread in the relative change of

HRV values. Only one or a few misclassified sinus beats can cause large changes in HRV val-

ues. In contrast, many false sinus beats may have a small effect on HRV. This could be the case

if artifacts or SVES hardly disturb the sinus rhythm and thus have only a minor impact on the

tachogram. On the other hand, there are examples where a single false sinus beat has strong

effects, especially on RMSSD and HF.

4.3 Impact of QRS misclassifications on the association between HRV and

CVD risk factors

We also investigated the influence of the beat classification method on the association of CVD

risk factors with HRV. To our knowledge, this has never been done before. We found that

using MEANS without an additional visual control does not substantially change the associa-

tion between HRV (here SDNN, RMSSD, LF, HF, and quotient of LF and HF) and common

CVD risk factors.

Assuming a linear relationship, it is easy to get a slope estimator for the single association.

For the difference of these two estimators for both methods, we had no distributional informa-

tion. Therefore, the non-parametric bootstrap and percentile method were applied [31]. To

successfully implement these methods, some requirements have to be fulfilled. The most

important assumption of the bootstrap procedure is that the sample must represent the popu-

lation well. Since the bootstrap procedure uses only the information from the sample, the data

must have enough variation in each variable to adequately represent the population. The per-

centile approach, which is used for computing CI, requires a not heavily skewed and approxi-

mately symmetrical probability distribution of the variable. The CARLA cohort fulfills these

requirements because it is a large representative sample that reflects the characteristics of the

underlying population with little selection bias, and the (logarithmized) HRV indices appear

to be approximately symmetrically distributed.

4.4 Limitations

Our study has some limitations. Our reference was not based on the highest possible level of

expertise. Instead, two trained students generated the reference standard (every ECG was

assessed by one student only, without a cross-control) while being supervised by an experi-

enced cardiologist. However, the agreement of the ratings of both students with MEANS was

very similar, so that we can exclude substantial interrater differences. Furthermore, since our

reference standard was a combination of a computer algorithm and visual reading, we expect

even a higher validity of this reference than for an exclusively visual reading [45].
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Furthermore, the within- and between-subject reliability of HRV estimates can be poor as it

is affected by a range of factors during ECG recording [46]. However, in the present study, the

conditions during the ECG recordings were highly controlled and standardized; thus, the mea-

surement protocol is likely to have contributed to the improved reliability of the data. HRV

parameters derived from ECGs with different durations and recording conditions are hardly

comparable. Hence, we cannot extend our conclusions to setups with for example 24-h-ECGs.

Additionally, we concentrated on the most crucial time- and frequency-domain parameters

and did not consider others, like non-parametric parameters. Lastly, we have evaluated only

one beat typification algorithm, and, therefore, our results in detail cannot be applied to every

ECG processing program.

5 Conclusion

The automated ECG beat classification algorithm in the MEANS program appears to be suit-

able for ECG processing prior to HRV analysis in large population-based studies since the

amount of beat misclassifications is low and its influence on the association of HRV with car-

diovascular risk factors is marginal. However, it remains a challenge to improve automatic

algorithms in detecting SVES or at least in identifying ECGs for additional visual reading.

Machine learning and artificial intelligence systems are playing an increasingly important role

in the processing of large datasets and can therefore further improve the performance of ECG

analysis systems in the near future.
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