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A B S T R A C T

In recent years, significant strides in Artificial Intelligence (AI) have led to various practical applications,
primarily centered around training and deployment of deep neural networks (DNNs). These applications,
however, require considerable computational resources, predominantly reliant on modern Graphics-Processing
Units (GPUs). Yet, the quest for larger and faster DNNs has spurred the creation of specialized AI chips and
efficient Machine-Learning (ML) software tools like TensorFlow and PyTorch have been developed for striking
a balance between usability and performance. Simultaneously, the field of computational neuroscience shares
a similar quest for increased computational power to simulate more extensive and detailed brain models, while
also keeping usability high. Although GPUs have also entered this field, programming complexity remains high,
resulting in cumbersome simulations. Inspired by AI progress, we introduce a workflow for easily accelerating
brain simulations using TensorFlow and evaluate the performance of various, cutting-edge AI chips – including
the Graphcore Intelligence-Processing Unit (IPU), GroqChip, Nvidia GPU with Tensor Cores, and Google Tensor-
Processing Unit (TPU) – when simulating a biologically detailed as well as simpler brain models. Our model
simulations explore the architectural tradeoffs of a modern-day CPU and these four AI platforms by varying
computational density, memory requirements and floating-point numerical accuracy. Results show that the
GroqChip achieves the best performance for small networks, yet is unable to simulate large-scale networks. At
the scale of mammalian brains, the GPU, IPU and TPU achieve speedups ranging from 29x to 1,208x times
over CPU runtimes. Remarkably, the TPU sets a new record for the largest, real-time simulation of the inferior-
olivary nucleus in the brain. Reduced-accuracy floating-point implementations make some simulation results
unreliable for brain research, notably for the GroqChip. Consequently, this work underscores the potential of
ML libraries for accelerating brain simulations as well as the critical role of AI-chip numerical accuracy for
biophysically realistic brain models.
1. Introduction

To date, Graphics-Processing Units (GPUs) have achieved spectacu-
larly better performance in deep learning (DL) than Central-Processing
Units (CPUs) [1]. Recently, novel, specialized Artificial-Intelligence
(AI) hardware platforms have begun to emerge, holding the promise
of accelerating training and inference even further. The workloads
targeted mainly are artificial, and specifically, deep neural networks
(DNNs), which have shown great potential in recent years. On the other
hand, highly biologically plausible brain models such as conductance-
based (e.g., Hodgkin-Huxley) neurons have not attracted similar at-
tention from AI-chip manufacturers and analysts alike. Nonetheless,
simulating these biological brain models is just as valuable. It improves
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our knowledge of the brain and can lead to advancements in treating
brain disorders and, additionally, catalyze the development of more
biologically realistic AI models [2,3]. Therefore, it is logical – for neu-
roscientists and AI researchers alike – to reach for these AI accelerators
and deploy them in brain simulations. Yet, at the time of this writing,
no feasibility and performance studies exist.

In this work, we evaluate multiple, cutting-edge AI chips – Graph-
core Intelligence-Processing Unit (IPU) [4], GroqChip [5], TensorRT-
capable Graphics-Processing Unit (GPU) [6] and Google Tensor-
Processing Unit (TPU) v3 [7] – when simulating a highly biologically
detailed model of a brain region, the Inferior-Olivary nucleus (IO).
Biologically detailed brain models, such as the IO, chiefly involve
vailable online 7 June 2024
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Fig. 1. Overview of the performance-analysis strategy followed in this work.

addition, multiplication, division and exponential operations, arranged
as sparse computations. There is, thus, a large operation overlap with
artificial networks. Therefore, new AI chips seem a good fit for these
types of models. This IO-model simulation represents timely, relevant
research and is constructed as an extended-Hodgkin-Huxley (eHH)
model. It is very suitable for stress-testing the different AI platforms
and highlighting architectural tradeoffs by adjusting the compute den-
sity, memory requirements and numerical accuracy of the model. For
completeness, we also simulate the simpler but very common Leaky
Integrate & Fire (LIF) and Hodgkin-Huxley (HH) models.

Evaluation is performed using the model encoded as a Tensor-
Flow 2 [8] kernel. TensorFlow is a high-level Application-Programming
Interface (API), requiring little to moderate intervention from the user.
Consequently, TensorFlow is suitable for a wide user base. This is
important for neuroscientists as it allows them to benefit from hardware
innovations without expert knowledge. For a fair comparison in the
analysis of the different accelerators, the exact same TensorFlow model
is used. However, not all AI chips – more specifically the GroqChip –
support TensorFlow. Therefore, in such cases the exact same model
is compiled to its ONNX [9] equivalent, using the Python package
tf2onnx. ONNX is an intermediary tool used to convert models
between different Machine-Learning (ML) frameworks. A schematic
overview of this strategy is shown in Fig. 1.

While all accelerators in this study support chip-to-chip commu-
nication, this work focuses on single-chip performance comparisons;
multi-chip deployment is left as future work. The contributions of this
work are as follows:

• We explore the suitability of four cutting-edge AI architectures fo
simulating biologically plausible spiking neural networks (SNNs).

• We build the first ML-library-based, efficient implementation of a
detailed brain model, the Inferior Olive (IO).

• We deploy the IO as well as less complex models onto the four
AI platforms and benchmark their performance and numerical
accuracy.

• We demonstrate that modern ML libraries are semantically able
to model classical problems in scientific computing, offering large
performance gains and reduced development times while remain-
ing hardware-agnostic.

• Lastly, this work is the first to ever simulate a realistic mouse-
sized IO model with real-time performance.

The paper is organized as follows: Section 2 presents related works
in the field. Section 3 introduces the IO model used as our main
benchmarking application, while Section 4 briefly presents the four
AI architectures under evaluation and attempts some performance pre-
dictions. Section 5 ensures experiment reproducibility by detailing the
experiment parameters and platform configurations used to acquire our
results presented in Section 6. A general discussion of our findings is
included in Section 7. Section 8 concludes this work.
2

2. Related works

Models of biological neurons come in various levels of detail, rang-
ing from population-level dynamics, from simplified models of single
neurons to highly detailed biophysically realistic neurons [10]. Coarse
models of single neurons, notably LIF-type models have seen a renewed
interest in the DL-community (often referred to as SNNs, here) as an
alternative to artificial neural networks (ANNs) [11].

Simplified SNN models have readily available general-purpose GPU
(GP-GPU) implementations of LIF and similar models as well. High-
level ML libraries like TensorFlow and PyTorch have allowed for the
hardware-agnostic implementation of their neural dynamics, consider-
ably lowering development efforts to build SNN simulators on GP-
GPUs. For example, Nengo DL [12] allows for the GPU-based simulation
of existing SNN models defined in the Nengo framework using Ten-
sorFlow. Beyond just simulating neural networks on the GPU, novel
developments in surrogate gradients for event-based SNNs and auto-
matic gradient calculation provided by ML libraries allowed for the
nearly simultaneous appearance of similar SNN deep-learning libraries
spyTorch [13], Norse [14], snnTorch [15] and SpikingJelly [16]. Bind-
sNET [17] is another, efficient SNN implementation in PyTorch with a
focus on reinforcement learning. Furthermore, simplified SNN models
led to the development of specialized ‘‘neuromorphic’’ (or AI) hardware
to simulate them, demonstrating promising improvements in energy
efficiency and performance. Numerous publications show the benefits
of using these chips for simplified SNN simulations. Examples are Loihi
2 [18], TrueNorth [19] and NeuroEngine [20]; for a concise review,
we point the reader to [21]. However, these chips do not support
conductance-based brain models and, thus, are not suitable for highly
biologically plausible brain models, our models of interest.

The ML libraries show the expressive power and performance re-
quired to run large-scale SNN models. Moreover, ML-library-based
models arguably can be developed faster than hardware-specific, low-
level code. However, all these efforts only focus on relatively simple
neural models and consequently do not meet the requirements of
realistic brain simulations. As computational neuroscience is usually
interested in biophysically accurate models that model the under-
lying biological processes in a way that makes it possible to gain
insights about these processes. These conductance-based models can
be made more realistic by modeling their 3-D structure (the morphol-
ogy) using multiple discretized compartments. Multi-compartmental,
conductance-based neurons are then simulated by explicit calculation
of electrical currents flowing within, between and into discretized
compartments [22].

Due to the computational resources needed for large-scale, con-
ductance-level brain simulations, computational neuroscience was an
early adopter of GP-GPUs in the High-Performance Computing (HPC)
environment. Notable GPU-based examples of large-scale, biologically
detailed brain simulators include CoreNeuron [23], which enabled
porting of existing conductance-level NEURON [24] models to the
GPU, and more recently, Arbor [25], a library-based approach to
performance-portable, large-scale brain simulation. Their success shows
that the computational problems of neuroscience map well to GP-
GPU platforms and result in significant speedups for large-scale brain
models. Still, even with hand-optimized CUDA code [26], the IO-
model simulation (to be detailed in the next section) at biological sizes
runs orders-of-magnitude slower than the biological brain, hampering
research.

In addition to GPUs, Field-Programmable Gate Arrays (FPGAs) offer
an alternative for brain simulations. At the cost of time-consuming
hardware synthesis, FPGAs offer high performance with a relatively low
energy consumption. Previous research has largely been limited to sim-
ulating relatively simple SNNs, which lack the biological detail required
for our studies. Notable projects are [27–31]. Standing out among other
FPGA implementations, flexHH [32] is a library which supports the

higher level of biological detail required. However, the library is unable



Neurocomputing 598 (2024) 127953L.P.L. Landsmeer et al.

l

1
p
i
i
r
p
c

t
b

3

𝐶

i
(
g
b
a
s
c

𝜏

to simulate at the size and speed of the biological brain. Moreover, the
programming of FPGAs has a steep learning curve. Coupled with their
lack of seamless integration with TensorFlow, we decided to exclude
FPGAs from our evaluation. Their limitation in usability contrasts with
the accessible high-level TensorFlow API, a feature that greatly benefits
the user experience on the selected AI platforms. With respect to
TensorFlow-based implementations of conductance-level models, there
is PymoNNto [33], an attempt to bring the Brian [34] API of neural
models to TensorFlow. While faster than the Brian simulator on a
GTX1080 GPU, performance was not a primary goal and the architec-
ture prohibits optimizations using TensorFlow’s JIT compiler backend,
by scattering the computational definitions across the codebase. Al-
though this shows that TensorFlow does express the right API surface
for neural models, no efficient ML-library-based, conductance-level,
GP-GPU simulators exist.

On AI chips that have the semantic power to capture more general
HPC workloads, little has been published about both simplified and
conductance-level SNNs. With respect to simplified SNN simulations,
we found just one preprint targeting an AI chip, introducing an IPU-
optimized version of snnTorch [35]. Training throughput of a dense
3-layer LIF network on an image-classification task is 3.4x higher on
the IPU than on the A100. The reported performance benefits de-
crease if the network size is increased, with the A100 being apparently
underutilized throughout the entire application. This shows the poten-
tial of using the IPU for simple SNN workloads but the performance
characteristics of other AI chips or more complex SNNs are not yet
obvious.

No works have been published targeting AI chips with conductance-
level models or other biologically realistic brain-simulation scenarios,
neither using high-level ML libraries or hardware-specific Software-
Development Kits (SDKs). To the authors’ knowledge, this is the first
work to implement an efficient, conductance-level, multi-compartmenta
neuron in an ML library and also the first to benchmark multiple AI
chips on this workload class.

3. The inferior-olive application

The IO is a brain region located in the brainstem and is key to motor
control and learning [36]. The estimated neuron population in the
mouse brain is approx. 104 neurons [37] and in humans between 106 −
07 neurons [38]. These numbers will be referred to during hardware-
erformance evaluation (Section 6). In this work, we will capture
n TensorFlow two the IO nuclei as an eHH model, first published
n [39]. The model is a good example of the computational load of
ealistic brain models and, also, a good fit for our benchmarking pur-
oses, since it captures complex neuron dynamics and fast interneural
ommunication (in the form of gap junctions), as will be shown next.

We restate the IO-neuron main equations in this section, but refer
he reader to [39] for more details. In addition, we model connectivity
ased on the network described in [40].

.1. The cable model

𝑚
𝑑𝑉 (𝑖)

𝑑𝑡
= −

∑

𝑘∈Channels
𝐼 (𝑖)𝑘 −

∑

𝑗∈Compartments
𝐼𝑖,𝑗 −

∑

𝑗∈Gap junctions
𝐼𝑔𝑗,𝑖,𝑗 − 𝐼 (𝑖)app

(1)

The eHH model describes the membrane that envelops the neurons
as a capacitor. The cell internal voltage can thus be calculated by
integrating currents flowing into and out of the cell (Eq. (1)), detailed
in the following sections. Finally, 𝐼app is an optional term describing
3

externally applied currents by the experimenter.
Listing 1: Axonal sodium-channel current

m_inf = 1/ (1+ t f . exp(−(V_axon+30) / 5 . 5 ) )
h_inf = 1/ (1+ t f . exp ( ( V_axon+60) / 5 . 8 ) )
tau_h = 1.5∗ t f . exp(−(V_axon+40) /33 )
dh_dt = ( h_inf−h) / tau_h
I_na = g_Na∗ (V_axon−V_Na)∗m_inf∗∗3∗h

Listing 2: Sparse gap-junction current

Vdi f f = t f . gather (V_dend , gj_src ) \
− t f . gather (V_dend , g j_ tg t )

I_per_gj = Vdi f f ∗ g_gj ∗ ( 0 .2 + \
0.8 ∗ t f . exp(−0.01∗Vdi f f∗Vdi f f ) )

I_gapp = t f . tensor_scatter_nd_add (
t f . zeros_ l i ke (V) ,
t f . reshape ( gj_tgt , (−1 ,1) ) , I_per_gj )

3.2. Channel currents

Channels (CaL, h, KCa, Na, Kdr, K, CaH, Na, K) allow currents
to flow through the cell membrane. They produce this current as a
function of internal state variables changing over time. In general, this
current (Eq. (2)) results from the potential difference to a channel-
specific reversal potential 𝐸 multiplied by the product of one or more
nternal gating variables, each optionally raised to an integer power
Eq. (2)). �̄� transforms the gated potential-difference into a current. The
ating variables follow an Ordinary Differential Equation (ODE) that
rings them to a certain cell voltage-dependent steady state 𝑛∞

(

𝑉 (𝑖))

t a given speed 1∕𝜏𝑛 (Eq. (3)). These latter equations are usually gaus-
ian or sigmoidal functions of the voltage. For certain, fast-operating
hannels we set 𝑛(𝑡) = 𝑛∞(𝑉 ) as a numerical-stability optimization.

𝐼 (𝑖)𝑗 = �̄�𝑗

[

∏

𝑘
𝑛𝑗,𝑘(𝑡)𝑚𝑘

]

(𝑉 (𝑖) − 𝐸𝑗 ) (2)

𝑛
(

𝑉 (𝑖)) 𝑑𝑛
𝑑𝑡

= 𝑛∞
(

𝑉 (𝑖)) − 𝑛 (𝑡) (3)

3.3. Compartmental currents

A single IO cell consists of three separate compartments: the axon,
soma and dendrite. Currents flowing between different compartments
are modeled resistively as: 𝐼𝑖,𝑗 = 𝑔𝑖,𝑗

(

𝑉𝑗 − 𝑉𝑖
)

.

3.4. Gap-junction currents

Gap junctions are direct electrical connections between different IO
cells and allow current to flow between them. They follow experimen-
tally determined Connexin-36 protein dynamics:

𝐼𝑔𝑗,𝑖,𝑗 = 𝑔𝑔𝑗𝛥𝑉𝑖,𝑗
[

0.2 + 0.8 exp
(

−𝛥𝑉𝑖,𝑗2∕100
)]

(4)

with 𝛥𝑉𝑖,𝑗 being the potential difference between two connected cells.

3.5. Topology

The real IO looks like a large, folded sheet with mostly local
connectivity [36]. As approximating this structure is not a focus of this
paper; our model neurons are assumed to exist on a discrete 3D grid
with wrap-around connectivity (i.e., a hypertorus). This should exhibit
the same non-local memory-access patterns as a more realistic model.
Connections are sampled as a function of inter-neuron distance 𝑟 on
a radially symmetric distribution: 𝑝(𝑟) ∝ 𝑢(𝑟𝑚𝑎𝑥 − 𝑟)(𝑒−𝑟2 − 𝑒−𝑟2𝑚𝑎𝑥 )𝑛(𝑟),
where 𝑛(𝑟) is the density of neurons in the volume shell around 𝑟. This
distribution is sampled until we have 10 connections per neuron on

average.
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Table 1
Technical specifications of AI chips used in this work.

Device Memory Base/boost freq. Process node
software TDP Transistor cnt.

AMD 3955WX CPU* 128 GB DDR4 3900-4300 MHz 7 nm
TF 2.11.0 280 W 19.94 Bn

GroqChip TSP 220 MiB on-chip 900 MHz 14 nm
Groq SDK 0.9.1*** – 26.8 Bn

Nvidia A100 GPU 80 GB HBM2e 1275–1410 MHz 7 nm
TF 2.11.0 400 W 54.2 Bn

Graphcore IPU (GC200)** 900 MB on-chip 1330 MHz 7 nm
TF IPU 2.6.3+gc3.0.0 185 W 59.4 Bn

Google TPUv3 32 GiB HBM 940 16 nm
TF 2.11.0 450 W (est.) 11 Bn

* AMD Ryzen Threadripper PRO 3955WX (16-Core).
** Single M2000 in IPU-POD16 (with 4 GC200 chips).
*** TF2ONNX 1.13.0 and ONNX opset 16.
.6. TensorFlow translation

The previous equations sum up to a total of 14 ODEs per neuron.
his system of ODEs is translated into a series of TensorFlow operators

n Python. By defining the model in TensorFlow instead of using
latform-specific APIs we make sure that all platforms have equal opti-
ization opportunities. Furthermore, TensorFlow naturally translates

o ONNX models, which is the only high-level API available to the
roqChip at the moment. Straightforward translation to TensorFlow is
chieved by storing all state in a large 2D-array and direct substitution
f mathematical expressions by their TensorFlow counterparts (see
isting 1). When certain model parameters need to be user-specified
e.g., 𝑔𝑗 or 𝐼𝑎𝑝𝑝), they are passed to the TensorFlow kernel, which then
eeds to be recompiled before running again.

As already mentioned, IO neurons communicate via gap junctions.
ranslating gap junctions to both TensorFlow and ONNX in a per-
ormant way requires expressing them as vector operations, as op-
osed to more traditional for-loop-based approaches [26]. With
ust 10 connections per IO neuron on average, cell-to-cell communi-
ation is sparse. The effective operation from a TensorFlow perspec-
ive is two sparse-matrix (SpMV) multiplications. As a novel contribu-
ion in computational neuroscience, we model those as tf.gather
nd tf.tensor_scatter_nd_add operations (see Listing 2). Apart
rom being more specific and memory-efficient in describing SpMV
ultiplications, these functions have a direct mapping to ONNX op-

rators as Gather and ScatterND since ONNX specification opset 11,
contrary to SpMV multiplications which currently are not possible in
ONNX.

At each timestep, ODEs are integrated using Forward-Euler to pro-
duce the next state array, using a hardware-agnostic timestepping func-
tion that is kept the same for all platforms. For TensorFlow backends, a
Just-in-Time (JIT)-compilable TensorFlow function is constructed that
executes 40 timesteps at a 𝛥𝑡 of 0.025ms, resulting in a 1ms sampling
accuracy. For ONNX backends, the timestep function is converted to
an ONNX model and either the public onnx-runtime library or Groq
compiler is used to compile this into executable code. Direct execution
of this device code does not lead to the best possible performance by
default, mostly relating to redundant device-host data copies and call-
overhead. Corresponding hardware-specific optimizations are discussed
in Section 5.2.

4. Target platforms

Hardware platforms were selected from the top-performing AI accel-
erators in the MLCommons MLPerf training benchmark v2.0 [43]. From
this, the Intel Habana Gaudi was not available to us. The GroqChip was
included as it was already available through academic channels. An
4

overview of all AI chips is given in Table 1 and they will be presented
Table 2
Breakdown of all arithmetic operations used in neural models on NeuroML-db [41].
Cell model: Number of cell models (with multiple channels) containing at least one
such operation over all single-cell models, calculated from EDEN’s [42] intermediate
representation. Ion channel: Mean+std arithmetic-operation counts for a single-channel
integration step on one single compartment over 146 unique ion channels measured
using Arbor’s [25] modcc tool.

Operation Cell model (%) Ion channel (#ops)

add/sub 100 13.5 ± 8.0
neg 100 1.5 ± 0.6
mul 100 20.0 ± 11.1
div 100 10.5 ± 5.2
exp 97.5 3.0 ± 2.1
log 96.5 0.6 ± 0.8

next. A modern, server-grade CPU is also included as a baseline for our
subsequent performance and numerical-accuracy comparisons.

All selected platforms implement the mathematical operations com-
mon to neuroscience models (Table 2) and also support the minimum
32-bit floating-point resolution required for neuroscience simulations.
The CPU and GPU support 64-bit floating-point arithmetic, as well.
Note that floating-point support does not necessarily mean IEEE754
compliance, and post-hoc numerical validation of simulation results
will be required, after performance evaluation.

NVIDIA GPUs [6] are well-established in the HPC world because
of their excellent performance on parallel problems. This is primarily
the consequence of the architecture of a GPU, which consist of multi-
ple Streaming Multiprocessors (SMs), each containing multiple cores.
Within each SM, threads are grouped into so-called warps. A warp
is a set of threads that execute simultaneously. The architecture of a
SM is shown in Fig. 2. Consequently, a GPU contains thousands of
cores capable of concurrent processing. A prerequisite is that multiple
cores execute the same instructions on different data. This is known
as the Single-Instruction Multiple-Data (SIMD) paradigm. Next to the
conventional cores, newer generation of GPUs contain Tensor Cores.
These Tensor Cores are specialized hardware to efficiently perform
matrix multiplications. Part of the efficiency can be obtained using the
TensorFloat −32 (TF) data type. A TF32 variable is a floating-point
number with the dynamic range of float 32 variable range but the
accuracy of float 16 variable.

4.1. Nvidia GPU

In addition to computational resources, memory management is
critical for the performance on a GPU. A GPU utilizes a hierarchical
memory architecture, consisting of different levels of memory includ-
ing registers, cache memory and RAM. In the hierarchy, the smallest
memory (registers) is the fastest and each subsequent level is larger but
slower. Therefore, memory management is crucial for the performance
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Fig. 2. Architectural overview of a modern-day GPU [6]. SM: Streaming
Multiprocessor, TC: TensorCore, SFU: Special Function Unit.

Fig. 3. Architectural overview of the first-generation GroqChip [5]. VXM: Vector
Execution Module, MXM: Matrix Execution Module, SXM: Switch Execution Module,
MEM: MEmory Module.

of GPU (e.g., frequently used data is placed in registers/cache and the
access to RAM is done by coalesced accessed).

For inter-thread communication within the same GPU, shared and
global memory can be used on the same GPU. In the context of inter-
GPU communication, interconnects such as NVLink offers a solution.
Communication between threads, if not possible to hide/overlap with
computation on the cores, can degrade the performance as it incurs an
overhead. This emphasizes on the importance of explicit parallelism for
optimal GPU utilization.

4.2. GroqChip

The GroqChip [5] is a deterministic Tensor Streaming Processor
(TSP), resembling a modified systolic-array architecture. The architec-
ture is a 2D mesh of cores, each with its own dedicated functionality,
as shown in Fig. 3. A column of these cores – all of the same type
– is called a functional slice. The functional slices consist of one
vector processor (VXM), two matrix-execution modules (MXM), switch-
execution modules (SXM) and memory modules (MEM). Data travels
horizontally, executing in 320 SIMD-style lanes. A single instruction
can control 16 lanes, effectively creating 20 superlanes that can all be
operated independently from each other. Each superlane implements a
4 × 4 mesh of vector Arithmetic–Logic Units (ALUs) capable of doing
16x SIMD operations. Each ALU has 32-bit input operands but, with
the exception of additions and multiplications, instructions are done in
a reduced-precision FP32 format compared to the IEEE754 standard.
5

Fig. 4. Architectural overview of the GraphCore IPU MK2 [45]. AMP: Accumulating
Matrix Product, RF: Register File.

Fig. 5. Architectural overview of the TPU v3 [46]. HBM: High-Bandwith Memory.

The memory on the GroqChip only consist of the memory modules.
These memory units are SRAM blocks, adding up to a total of 220 MiB
of on-chip SRAM. The reason for this relatively small, but fast, memory
is the decoupling of the memory subsystem from the functional units,
which is beneficial for the deterministic-computing paradigm.

Each functional unit (core) accepts a set of instructions; for example,
the MEM unit could receive the instruction to put a vector onto one of
the data streams or store the results from the data stream in its available
SRAM. As soon as data is loaded onto a data stream, it automatically
‘flows’ in the direction of the stream, which can be either EAST-bound
or WEST-bound. When an addition needs to be performed, both inputs
need to arrive at the same time as the add instruction at the corre-
sponding VXM core. This design choice puts the burden of optimization
on the software generating the instructions. This is either done by the
Groq compiler automatically from an ONNX-graph input or manually
controlled by a user through the exposed Groq API, which has various
levels of abstraction on top of the Groq Instruction-Set Architecture
(ISA). To support the creation of large-scale systems, the GroqChip has
dedicated chip-to-chip modules that are capable of performing off-chip
communication without losing their determinism [44].

4.3. Graphcore IPU

The Graphcore IPU [4], whose architecture is shown in Fig. 4,
contains multiple tiles. More specifically, the GC200 chip contains
1,472 tiles, each containing a core which supports up to 6 threads,
therefore, supporting a total of 8,832 threads on a single IPU. Moreover,
each of these cores contains an Accumulating Matrix Product
(AMP) unit. These units support IEEE754 compliant FP32 arithmetic
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and are designed to accelerate matrix multiplications and convolutions.
The memory of the IPU is located locally with the core within a
tile. Each tile contains 624KiB of SRAM memory creating a total of
900 MB on-chip memory. The intra-IPU communication relies on a
powerful, low-latency interconnect called IPU exchange and allows
for all-to-all data exchange. For inter-IPU communications, each chip
contains 10 so-called IPU links. Overall, the IPU offers true Multiple-
Instruction Multiple-Data (MIMD) parallelism. This unique style of
parallel-processor design adapts well to fine-grained computations that
exhibit irregular data-access patterns. With respect to the programming
model, the IPU adopts the Bulk Synchronous Parallel (BSP) model [47]
through which it organizes its compute and data-exchange operations.
This abstraction for parallel computations consists of multiple sequen-
tial supersteps. A superstep consists of a local computation phase; every
process (tile, in the IPU case) operates in isolation performing compute
only on its local memory, followed by a communication phase where
each process can exchange values needed by other tiles. These activities
are concluded with a barrier-synchronization phase; only when all
processes have reached the barrier can the next superstep be started.
Because of this, the IPU can be described as a true BSP machine.

4.4. Google TPU

The TPU (version 1) was designed as a systolic-array processor
for inference, only supporting 8/16-bit operations; see Fig. 5. By sup-
porting only matrix-multiply and basic nonlinear activation functions,
it was unfit for training neural networks. Consequentially, an HPC
application – for example, the one demonstrated in this paper – would
also not be a suitable fit for this processor. However, with the TPUv2
whose architectural overview is shown in Fig. 5, Google shifted their
focus towards supporting training on their TPU chips. Google added
a vector-processing unit (VPU) and changed the matrix-multiply units
to support the FP16 format (FP32, with only a 7-bit mantissa). The
VPU most likely supports higher precision, as can be deducted from
results in this work but no confirmation of this is found in the public
domain. These two major (micro)architectural changes made it possible
to run a wider range of applications including training neural models
on the TPU. All are supported through the Google XLA compiler [48]
taking TensorFlow as input. The TPUv3 [7], assessed in this work, is an
upgrade in terms of functional-unit count, higher memory speed and
optimized chip layout, but did not include any fundamental changes.
Recently it has been disclosed that TPUv2 onwards also contains Sparse
Cores for optimized embedding access [49].

4.5. Performance predictions

In this section, we attempt to predict the performance of the IO
workload on the different types of hardware. Therefore, it is impor-
tant to realize that the IO workload has two components that map
differently onto different types of hardware:

1. Neuron local state dynamics
These dynamics are autonomous for each neuron and, therefore,
are embarrassingly parallel calculations. Consequently, these are
calculations for updating the state of every single neuron. This
boils down to element-wise vector operations.

2. Gap-junction dynamics
These dynamics require communication in each timestep and,
therefore, are not embarrassingly parallel. As described previ-
ously, gap-junction communication employs the gather-scatter
operations (essentially, SM operations) from TensorFlow.

Based on these components, next we will discuss the expected
performance per hardware platform.
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4.5.1. CPU
We expect very accurate results because of full FP32 support. Yet,

the multi-core CPU is only expected to give decent performance. Simply
because of the lack of supported parallelism/ computational power
in comparison to the other hardware accelerators. However, because
of the limited degree of parallelism, the performance impact for the
communication of the gap junctions is expected to be less than for the
other platforms. For the execution of the program on the CPU we use
two versions: One version uses TensorFlow, that is, JIT compilation
through the XLA compiler will be used; it will automatically utilize the
many threads available in the CPU over the whole program. The other
version uses ONNX instead of TensorFlow; we expect a slight decrease
in performance as it does not perform program-wide optimization.

4.5.2. GPU
The GPU architecture featuring one warp execution per SM or

multiple Tensor Cores is very well-suited for local neuron-state dy-
namics because the element-wise vector operations map very well on
the architecture of the GPU. As described previously, gap-junction
communication employs the gather-scatter operations (essentially, SM
operations) from TensorFlow. These operations can be handled within
the architecture by design. However, they require synchronization
and non-coalesced memory accesses which can negatively affect the
performance. The TensorFlow backend for CUDA uses Tensor Cores
sacrificing FP32 accuracy. However, this only happens when explicit
matrix multiplications are requested and not as an optimization. So in
our case, the compiler will only use float32 CUDA operations and CUDA
cores.

With TensorFlow as design entry, the XLA compiler is used, which
optimizes the graph resulting in a single kernel launch. Among other
techniques, it does this by ‘‘fusing’’ the calculations. Moreover, this
fusion keeps intermediate values stored in GPU registers [50]. By
comparison, the use of ONNX results in small single-kernel invocations
without ‘‘fusing’’ the calculations. The invocation overhead for small
GPU kernels is expected to hurt the performance of the ONNX-GPU-
runtime. TensorRT, which is a NVIDIA backend for improving inference
performance, is also a supported backend in ONNX and is expected to
outperform the CUDA runtime in performance. However, this comes
at a loss of accuracy as the Tensor Cores perform operations at TF32
precision.

4.5.3. GroqChip
The GroqChip is based upon a systolic-array architecture, support-

ing Matrix-Multiplication and Vector-Operation operations that can be
utilized for the calculations of the neuron local state dynamics. In fact,
since neuron updates require only 1D-data, the Matrix-Multiplication
units (which is the focus of this chip) are effectively underutilized in
this architecture.

The strategy for the calculation of the gap-junction dynamics is
a naive approach: the calculations enforce dense-matrix operations
via one-hot encoding of operands and, then, utilizing the matrix-
multiplication hardware. With the use of this approach we expect that
performance will deteriorate very rapidly or memory will be depleted
with increasing IO-network sizes.

The compiler of the GroqChip takes in the ONNX graph but is
not limited to executing this on an operation-per-operation basis, as
opposed the use of ONNX on the CPU and GPU, as it recompiles the
full ONNX graph at once. Therefore, it can potentially perform the same
optimizations as the XLA compiler for the TPU. Besides, the GroqChip
VXM is not capable of doing all operations in IEEE754 FP32 arithmetic.
Because of this, it can be expected to perform slightly better than the
TPU at the cost of reduced accuracy. As this is the first version of the
architecture, current compiler development is still exploring ways to
map non-standard ML-operations to the hardware. Therefore, future
compiler releases will likely improve performance of brain simulations

on the GroqChip.
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4.5.4. Graphcore IPU
The IPU, with a large amount of very small general-purpose cores,

should do well in parallelizing local neuron-state calculations, however,
its architecture is geared towards irregular data-access patterns, which
is not essential to the particular task. The extra overhead of such
advanced features, therefore, will not help performance in terms of
computing this embarrassingly parallel part of the simulation. In con-
trast, for the gap-junction communication which employs the gather-
scatter operations, the MIMD architecture and the BSP model is very
well-suited. Because of the MIMD architecture, the non-coalesced mem-
ory accesses are not expected to introduce a significant overhead, in
contrast to the GPU. However, as the topology is given as an unknown
parameter to the model, the IPU compiler cannot be expected to
allocate neighboring cells on adjacent tiles, resulting in sub-par commu-
nication performance. Furthermore, we expect that even though having
the smallest available memory among the AI chips under evaluation,
the IPU should easily be able to handle large problem sizes.

4.5.5. Google TPU
Similarly to the GroqChip, the TPU is based on a systolic-array

architecture which, again, supports Matrix-Multiplication and Vector-
Operation operations natively. However, similarly to the GroqChip, the
Matrix-Multiplication unit is expected to be underutilized in the case of
the local-neuron state calculations.

As Google put much effort into TensorFlow support, the gather-
scatter operations (used in the gap-junction calculations) are expected
to be optimized both in terms of hardware support and the XLA
compiler. We expect that the so-called Sparse Cores created for embed-
ding retrieval in DNNs, as disclosed in the recently published TPUv4-
architecture paper [49], can also be heavily utilized for the gap-
junction calculations in our model. Therefore, the TPU is expected to
outperform the other platforms, especially in this part of the model.
Still, the large-scale sparse communication patterns used in the IO
network are very atypical of embedding-based ANN workloads, and
the exact operations supported by the Sparse-Core vector units are
unknown, leaving a lot of prediction uncertainty.

The level of IEEE754 compliance of the chip is not documented,
but it is known that matrix-multiplications are performed in 16-bit
precision, suggesting that the designers choose to trade some numer-
ical precision for performance. How this translates into accuracy of
other operators is not known and the resulting numerical validity of
simulation results can thus not be estimated.

5. Experimental setup

5.1. Benchmarking parameters

Each platform is benchmarked for performance on a set problem
(i.e., network) size as well as for its performance scalability by simulating
the IO network for small population sizes in the range [43, 53,… , 203]
and, again, for larger sizes in the range [303, 403,… , 1003], where the
third power is an artifact of the cubic network-topology generation
method. These experiments are focusing on four different aspects of
each AI platform, discussed next.

5.1.1. Unconnected network
By removing the communication step (gap junctions) from the

model, we obtain a (biologically unrealistic) compute-heavy, embar-
rassingly parallel workload. First, we measure the setup time for each
AI platform, including on-chip buffer allocation, Ahead-Of-Time (AOT)
compilation or definition of Just-In-Time (JIT)-enabled functions. Next,
we simulate an IO network for 100 ms of biological time and take the
minimum wall-clock time from 5 runs (including data-transfer times).
For JIT targets, the first runtime (if outside the other runtimes’ standard
deviation) minus follow-up runtimes is taken as the JIT compilation
time, such that we can compare setup times between AOT and JIT
7

targets.
5.1.2. Connected network
By restoring gap junctions into the IO network, we assess communi-

cation overhead. Runtimes are obtained in an identical way as before,
yet the expectation here is that they are markedly longer than the
unconnected case.

5.1.3. Numerical validation
Measuring performance is our main focus, yet this must not come

at the cost of functional correctness. Here, we simulate connected
networks up to 729 neurons for 10 s of biological time and numerically
compare the various results to the reference CPU output.

5.1.4. Numerical stress-test
Here, we simulate the IO in a more biologically realistic way that

is of interest to neuroscientists: We add more variance to the neural
parameters and, most importantly, a lot of external current inputs (sim-
ulating other brain regions) that will evoke action potentials (spikes)
in the IO dynamics. These fast transients will stress-test the numerical
performance of the AI hardware, especially non-IEEE754 targets (Ten-
sor Cores and GroqChip). We perform this experiment on the smallest
64-neuron network and then compare it for numerical accuracy against
the CPU.

Benchmarking is implemented in a publicly available and modular,
extensible framework, downloadable from GitLab.1 The main bench-
marking script auto-discovers available hardware, runs the appropriate
benchmarks and records results. Used software versions are also shown
in Table 1.

5.2. Hardware-specific optimizations

As detailed in Section 3.6, the IO is represented as hardware-
agnostic TensorFlow kernel updating its internal state from one time-
step to the other. While our original goal was not to write platform-
specific code, we found that, by default, some of the AI platforms
did not perform very well. For example, most platforms defaulted to
copying over the entire parameter arrays for each kernel invocation,
which was not needed for this mostly constant data. For a fair com-
parison between hardware platforms, we allowed optimizations to be
applied to hardware-specific code that either led to operation fusion
across different execution kernels or prevented unnecessary device-
host data transfers. The exact optimizations have been applied in close
collaboration with Graphcore and Groq for the respective chips, and
are as follows:

5.2.1. TensorFlow XLA
The TensorFlow graph executor typically performs each operation

separately when a graph is run with a corresponding kernel invoca-
tion. A different way to run TensorFlow models is made available
by XLA, which turns a TensorFlow graph into a series of kernels
created for a particular application. These kernels can take advan-
tage of application-specific information for performing optimizations,
e.g., operation fusion. The CPU, GPU, and TPU are the three available
backends for the XLA compiler. For the IO application, a Tensor-
Flow wrapper function was implemented that fuses up to 40 timesteps
together for each call in order to fully exploit the XLA compiler.

5.2.2. ONNX
Except for the GroqChip, all ONNX implementations build on top

of onnxruntime or onnxruntime-gpu. We enable all backend-supported
graph optimizations. Explicit IOBindings are used to prevent un-
needed host-device data copies. Parameters are copied once to the
device at simulation start. Then, state is allocated twice, with each
timestep toggling between two buffers, one as the input state and the
other as the output (next) state. For TensorRT, we leave the default
behavior of using TF32 enabled, otherwise, it will not utilize its Tensor
Cores.

1 https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/ioperf

https://gitlab.com/neurocomputing-lab/Inferior_OliveEMC/ioperf
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Fig. 6. Runtime performance (lower is better), comparison between CPU baseline, GPU and AI chips. For scale, the mouse (∙) and human (▴) Inferior Olive are shown as
running in realtime in all figures. The CPU is included twice to explain the observed switching behavior of the IPU. On the CPU, while the XLA optimizer builds a single-core,
connected-network simulation, it builds a multicore, unconnected-network simulation (as observed by load-testing), leading to an unexpectedly slow simulation for the latter case.
The same behavior can be observed for the IPU, which uses the XLA compiler as well.
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5.2.3. Groq
After the compilation of an ONNX graph with the Groq Compiler,

the binary can be executed directly on the GroqChip. A naive approach
here would be to invoke this binary 40 times for 40 timesteps and
move the data back and forth continuously since the GroqChip only
has SRAM which is fully managed at compile time. However, the Groq
Compiler is able to tie input and output tensors together into a persistent

emory buffer in the on-chip SRAM. Utilizing this results still in 40
nvocations of the binary but skips the continuous I/O between host
nd accelerator. A more radical way to improve the performance is
o compile the 40 timesteps into a single ONNX graph that can then
e converted with the Groq Compiler; this method will reduce 40
nvocations to a single invocation. We implemented all optimizations
s long as the compiler was able to compile them. The 40 timesteps at
nce quickly ran into compiler errors with growing networks.

.2.4. Graphcore
The IPU has architectural support for streaming memory. This means

hat we can run a single program on-chip for the entire simulation that
ill stream out samples every 40 timesteps. The inner, unsampled 1-
sec 40-timestep loop, is run using ipu.loops.repeat, after which

he recorded voltages are pushed to an IPUOutfeedQueue with a
00-sample size. This is, then, looped once more using
pu.loops.repeat for the required amount of milliseconds to sim-
late and wrapped in a TensorFlow JIT function. Furthermore, the
ast-math optimization is enabled, 128 IPU tiles are reserved for I/O
ith place_ops_on_io_tiles = True and program execution is
8

imited to a single IPU. o
. Experimental results

Except for the reference CPU, for brevity we report here either
ensorFlow or ONNX results, depending on which of the two leads to
etter performance. Overall performance plots are shown in Fig. 6 and
ill be detailed in the next sections. In general, it is found that, for the

O application, the ONNX ports are outperformed by their TensorFlow
ounterparts. This is due to the fact that the onnx-runtime library cur-
ently does not perform as extensive optimizations as the XLA compiler.
or example, the CUDA target translates each compute step into a
ingle predefined kernel call. The TensorRT backend performs operator
usion, resulting in multiple kernels that chain arithmetic operations.
till, the CUDA XLA-backend vastly outperforms both ONNX CUDA
argets, and as such we removed the corresponding findings from
he main analysis. Note that the Groq platform only supports AOT
ompilation of ONNX models.

.1. Compilation time

Both software stack and hardware influence program setup time, as
llustrated in Fig. 7 for the largest network (729 cells) that could fit
n all AI chips. The CPU compiles the fastest across the board as we
ave a direct translation of ONNX operations to their CPU-optimized
allbacks. The TensorFlow (XLA) version, not included in the figure,
as much slower due to the increased compiler complexity. Both the

PU and GPU exhibit similar JIT compilation speeds. The GroqChip’s
OT compiler takes significantly longer for this workload due to the
xplicitly concatenated 40 timesteps. The GroqChip version with a
ingle timestep per program compiles much faster than the Graphcore
r A100 versions, but at a small performance loss.
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Fig. 7. (A) Setup (AOT+JIT compile + memory allocation) times for a network of 729 neurons in both Unconnected- and Connected-network configurations. JIT compile times
are extracted from the first run of 5 performance runs and added to the initial setup time (if outside one standard deviation). (B) Performance and speedup of different AI chips
vs. the CPU reference on the Connected benchmark, for different network sizes. Sizes were chosen to be the smallest (64) and largest connected networks that could fit on the
GroqChip (729) and the TPUv3 (125,000). The rightmost GroqChip bar is absent, corresponding to the model that could not be compiled.
6.2. Runtime performance

6.2.1. Unconnected network (embarrassingly parallel)
For unconnected cells, neural dynamics are expressed only using

vectorized operations. As predicted, this fits the compute paradigm
of the GPU very well. Performance scales linearly with problem size
(horizontal line), showing that the GPU cores are underutilized for all
simulated network sizes.

The TPU and GroqChip, as systolic-array-based processors, were
expected to be a poorer architectural fit because large parts of the
chip would be left unused. Still, the focus on efficient vector operations
could result in speedups. We can indeed observe this in Fig. 6, although
in different ways. The TPU, similar to the GPU, flatlines across all prob-
lem sizes, although being 4.1x slower. Consequently, memory capacity
is not a problem for the TPU but performance capping in raw single-
cell computations due to architectural design choices. In contrast, the
GroqChip starts out 2.0x faster than the GPU, quickly loses this edge
and, between 103 and 104 cells, starts to hit its memory-capacity limits,
degrading performance with higher problem sizes. Networks of more
than 640,000 cells simply do not fit on the chip. The GroqView analyzer
confirms that the problem is core-to-core-memory communication and
that most dedicated cores are not used most of the time.

The IPU was expected to perform well given its large core count but
the very homogeneous compute load proved a poor fit for its MIMD
design, leading to large under-utilization of the chip. With respect
to real-time performance, only the GPU followed by the GroqChip
(ignoring memory issues) and marginally the TPU makes the 1-sec cut.

6.2.2. Connected network (high communication overhead)
As predicted, communication patterns induced by a small number

of gap junctions lead to a large performance reduction of 4.6x for small
networks on the GPU. For higher problem sizes, performance drops at a
growing rate, with a 141x degradation for networks of 106 cells. The AI
chips fare much better here, most of which initially shows a less than
20% reduction in performance against their unconnected counterparts.
9

As an exception, the GroqChip’s connected-network simulation runs
2.5x slower than the unconnected version; even so, it outperforms the
GPU on very small, connected neural networks by a 3.7x speedup.
However, the GroqChip (as expected) converts the SM communica-
tion into a dense-matrix multiplication, making the best out of its
deterministic-execution hardware. This quickly leads to prohibitively
large matrix multiplications and, beyond 729 cells, the scheduler is
unable to allocate the necessary instructions. In effect, the GroqChip
loses its edge over the GPU for larger networks.

In contrast, the TPU shows nearly identical behavior to the uncon-
nected case and its performance does still not scale with problem size.
This changes around networks larger than 105, where the JIT compiler
seems to run into performance problems. Here, we observed large ran-
dom fluctuations in performance that either led to approx. 1-sec or very
long more than 400-sec run-times over the 5 repeated runs. We expect
that these originate from memory limits of the TPU and had to stop
benchmarking due to impractically large run times. However, we could
not determine the true source of variation. The high performance,
and absence of performance-scaling with respect to problem size, after
adding communication overhead, most likely shows that Sparse Cores
are indeed heavily utilized for gather-scatter operations and allow for
efficient sparse communication between neurons.

The IPU – severely underutilized for the unconnected case – sees in
fact a performance improvement when we increase the communication
overhead in small networks. While counterintuitive, this is actually
the same effect we see on the XLA-based CPU backend. Here, we see
that gap junctions force the simulation to become single-core, which
becomes faster than the parallel, multi-core, unconnected case due to
the lower synchronization overhead. Around 104 cells, this behavior
changes, gap-junction communication becomes a fixed overhead on
top of normal simulation. At a certain point, this growth becomes
exponential and the largest simulated network does not fit on a single
IPU anymore.
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Fig. 8. Numerical-accuracy validation (lower is better). Box plots show deviations from CPU baseline, as recorded over two 1-sec timespans, one at the start (left) and one at the
end (right) of the 10-sec numerical-validation simulation. The GroqChip result, showing the largest deviation, is plotted in the upper left corner together with the two recording
spans.
6.3. Numerical validation

While all AI chips outperform the CPU baseline, it is wise to also
explore any potential decrease in numerical accuracy of the different
runs with respect to that of the same CPU. Here, we compare 1-msec
sampled cell somatic voltages of an extended, 10-sec simulation for a
729-cell, connected network (the largest population supported by all
platforms); results are shown in the box plots of Fig. 8.

As expected, platforms supporting IEEE754 floating-point numerics
(IPU, GPU, TPU) show accurate reproduction of voltage traces. The IPU,
even with fast-math enabled, is the most faithful to the CPU baseline.
The GPU and TPU exhibit increasingly large deviations but still fall
within limits explainable by floating-point instruction reordering. The
GroqChip, while supporting FP32 number storage, implements certain
operations at lower precision including exponent calculation. This is
visible by a quite large mV-order deviation from the CPU baseline, for
a process that happens at the 10−100 mV-scales. This voltage difference
mostly stems from a slowly accrued phase difference for the oscillating
cells. TensorRT (not shown in this plot) is by default using Nvidia’s
TF32, for which accuracy was found similar to that of the GroqChip.

6.4. Numerical stress-test

The numerical stress test increases neuronal variation and adds ex-
ternal inputs that lead neurons to spike. These fast transients cannot be
simulated using FP16 precision, but reduced-accuracy FP32 operations
as used in Tensor Cores or GroqChip (and possibly the TPU) are still
untested. Once more, we compare the deviation of the somatic-voltage
traces of the various AI chips against the CPU baseline.

Again, the platforms with native FP32 support show the lowest devi-
ation (over a 10-sec simulation run): The maximum absolute difference
from the CPU baseline is 0.087 mV for the IPU, 0.135 mV for the GPU
and 0.672 mV for the TPU. These moderate, mV-order differences can
be explained by small spike-time differences which, due to the large
neuronal-spike sizes, quickly lead to large voltage discrepancies. If
there were any differences in neuronal dynamics including missing or
surplus spikes, or oscillation phase-lag, then deviations much larger
than 10 mV in absolute magnitude would be observed. Importantly,
all simulations run stably; i.e., they do not cause this chaotic IO-
model simulator to crash. The GroqChip simulation initially starts out
the same as in the numerical-validation test, but as soon as input
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Table 3
Chip-measured, average power consumption during a 100ms simulation over 5 trials,
connected, 729-cell simulation, including measured execution time.

Platform Power Execution Time for
consumption (W) 1-sec simulated time (s)

A100 103.8 0.70
Graphcore 85.8 2.81
GroqChip 68.0 4.71

perturbations are applied, it becomes unstable and settles on voltage
deviation at a measured maximum of 8.51 × 1036 mV, unacceptable for
scientific applications. Notably, the error stabilizes at this point and
does not explode to infinity or 𝑁𝑎𝑁 values, as observed with FP16
simulations. To regain numerical stability, we tried lowering the time-
stepping constant 𝛥𝑡 10-fold and 100-fold for the GroqChip simulation
but this did not lead to results more closely in range with the CPU ones.

6.5. Energy usage

Reduced energy usage on deep-learning loads is one of the main
selling points of AI chips. Here, we will briefly explore how this
feature holds for the Inferior-Olive application. We measured the power
consumption of each chip with the caveat that this is a very coarse
and possibly biased measurement of actual power usage and not repre-
sentative for the entire system for a single 729-neuron, gap-junctioned
simulation. For each platform, native power-profiling tools have been
used; namely, nvidia-smi for the GPU, gc-monitor for the IPU,
tsp-ctl monitor for the Groq; regarding the TPU, we were unable
to find any power-monitoring tool.

The results are reported in Table 3. After factoring in the simulation
performance, the A100 GPU scores the lowest energy cost (73 J) though
exhibiting the highest power consumption. The GroqChip does not fare
well in this comparison (323 J) but this is mainly due to the bad
gather-scatter performance of the chip – picking a smaller network
would result in better performance-per-watt metric. The GraphCore
chip draws much less power than the A100 during simulation as well,
however runs significantly longer, resulting in an overall larger energy
draw (241 J).
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Fig. 9. Best-performing AI platform per model type and network size. Model complexity increases from LIF to HH to IO. A fixed timestep of 25 μs is used across models. LIF and
HH communicate via spikes using the same method as outlined in Listing 2.
6.6. Model complexity

Until now, the results focused on IO simulation performance. In
Section 4, it was shown that the IO is representative of general
conductance-based neural models. While our primary focus with this
work lies in biophysically plausible models of the brain, it is still
interesting to explore how varying the model complexity affects the
results. To that effect, we have extended our experiments to include
also the more simplified LIF and HH model.

In terms of characteristics, the (non-conductance-based) LIF model
is the simplest model including one state variable (membrane potential)
plus an additional one (exponential synaptic current), in its connected
form. The HH model is the simplest model exhibiting biophysically
realistic spiking, containing only four state variables (membrane poten-
tial, two sodium gates and one potassium gate) plus an additional one
(exponential synaptic current), when connected. Finally, the IO model
is an eHH model with 14 state variables with, as extra characteristics,
multiple cell compartments and calcium-concentration modeling.

Performance results are shown in Fig. 9. For the unconnected case,
with increasing problem sizes, we observe no significant change in the
optimal platform, though for the largest IO networks, the GPU appears
to be reaching its compute capacity, signified by the rapidly rising
runtimes. For the connected case, behavior changes mildly only for
larger problem sizes. Effectively, the TPU is performing best across the
board, with the exception of the IO case where it seems to run out
of resources faster than the GPU, also denoted by the steeply rising
runtimes (obscured by GPU runtimes).

7. Discussion

As this work has shown, utilizing AI platforms for executing highly
biologically plausible SNN workloads is made exceedingly user-friendly
when using a ML library like TensorFlow. Arguably, even better perfor-
mances could be obtained by coding via the various hardware SDKs
(Software Development Kits), but it is unrealistic to expect compu-
tational scientists to learn the low-level optimization options of each
hardware platform made available to them these days.

As shown, the added benefits from JIT compilation make a hand-
coded CUDA implementation perform on par with the XLA-compiled
TensorFlow version while, at the same time, allowing one to move
easily to a new piece of hardware when this is released. We expect
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that, in the future, more classical HPC workloads will see ML-library,
that is, tensor-based implementations.

The benchmarks also highlight the various strengths and weaknesses
of the platforms with respect to brain simulation. The GroqChip is
very fast for small and unconnected networks, but is limited by small
on-chip memory size and due to its focus on deterministic-compute,
inefficient sparse communication execution and most notably numer-
ical stability due to non-IEEE floating point implementation, limiting
its use for biophysical realistic brain simulation. The GPU performs
well in general, but for large networks, sparse communication between
neurons leads to increasingly large runtimes. The TPU is not limited by
sparse communication in large networks but exhibits highly arbitrary
compilation and/or run times for very large networks (> 105). The IPU
is architecturally not a good fit for the workloads at hand, across the
board. The homogeneous nature of the solved equations is a poor fit
for its MIMD architecture.

For promising upcoming accelerators like those by Graphcore and
Groq, we believe that future speedups will chiefly come from software
and compiler upgrades, as current SDKs are mostly optimized for ML
workloads. For instance, gather-scatter operations on the GroqChip
could potentially be improved upon, memory can be better utilized,
and better support for iterative programs must also be introduced.
The TPU which is architecturally similar to the GroqChip, clearly per-
forms gather-scatter operations in a more efficient way than arguably
encoding indexing as one-hot vectors as the GroqChip seems to do.

Speedups could be gained by effective use of mixed precision on
the IPU or reduced accuracy FP32 operations using Tensor Cores or
GroqChip. For the IPU, this would constitute a separate numerical
sensitivity analysis to find out which parts of the compute graph can
be lowered to (stochastic rounded) FP16. As shown, the accuracy loss
on Tensor Cores and GroqChip does in its current form not allow for
brain simulation, but these could possibly be put to use by switching
the integration scheme or other numerical optimizations.

This work has steered clear from multi-chip topologies. All discussed
architectures do support specifically developed, low-latency, chip-to-
chip hardware and assorted communication protocols. In many ways,
such coherent communication is a bigger and more timely challenge
than acceleration speed itself, which would deliver massive benefits for
large-scale SNN simulation (or training). However, tapping into those
platform-specific interfaces requires SDK-specific coding of the IO ap-
plication; relying on TensorFlow or ONNX frameworks will, generally,
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not work. Careful and platform-specific coding is necessary, which we
leave as future work.

Other future work related to brain simulations on AI hardware is the
support of chemical synapses. Chemical synapses are absent in the IO
model and therefore, they were not prioritized in this work. However,
we will discuss them here shortly. Chemical synapses are traditionally
encoded as discrete time-delayed spike events. None of the existing
ML-library-based simulators, Norse [14] and snnTorch [15] implements
spikes with delays, but instead deliver spikes instantaneously. At the
same time, GPU-based simulators like CoreNEURON [23] or Arbor [25]
readily implement spikes using event delivery. This indicates that
chemical synapses with delays will require a non-trivial amount of
work to implement efficiently, if even possible, using ML libraries. On
the other hand, Norse and snnTorch focus on the ability to calculate
gradients through spikes, which is not required for conventional brain
simulations. Regardless, the highly dynamic and event-based nature
of spikes makes them very hard to implement using vector-based in-
structions. As such, we suggest implementing the spike delivery system
outside the ML-library-based kernels. As a small, novel contribution,
we suggest the use of TensorArrays as a reasonable performing way
to distribute and receive spikes using exclusively TensorFlow. This is
implemented in a model consisting of simple LIF neurons, see Listing
3. For the TPU, targeting Sparse Cores for such sparse workloads
might lead to high speedups on the TPU in comparison to CPU-based
communication [49]. However, at the moment not enough information
is known about the Sparse Cores to make it possible to write an efficient
event-scheduling system. It is left for future work to evaluate chemical
synapses and improve implementation. Furthermore, we would like to
note that the development of an algorithm for chemical synapses is a
one-time process, after which it can be reused.

8. Conclusions

This study presents a new workflow for conducting compute-
intensive simulations of biophysically realistic brain models. The work-
flow involves the conversion of the model into TensorFlow code,
enabling its execution on a range of high-performance AI-accelerated
platforms, including Nvidia GPUs equipped with Tensor Cores, the
Graphcore IPU, the GroqChip, and the Google TPU. Following model
translation, the modeler needs only concern herself with optimizing
device-host communication, which involves minimizing data transfers
(AI-chip inbound and outbound data) and kernel-call overhead (via
on-device looping). This approach notably streamlines the process of
conducting high-performance brain simulations, with the simplification
attributed to TensorFlow’s abstraction of hardware intricacies. The
performance evaluation of this workflow on a detailed Inferior-Olivary
(IO) model simulation shows that the GroqChip is the fastest to com-
pute the neural dynamics. However, it runs into problems when sparse
communication is introduced, making it impossible to fit networks
larger than 729 gap-junction connected cells on-chip. At the level of
the mammalian IO (125,000 neurons connected via gap junctions), the
IPU, GPU and TPU demonstrate a significant boost in performance,
ranging from 29 to an impressive 1,208 times, when compared to
CPU execution. Notably, the Google TPU is able to accommodate the
largest network of IO cells in real time and Sparse Cores seem to be
able to lead to the best sparse communication performance as well.
However, despite the performance advantages of utilizing AI chips
for simulations, a challenge for some of them remains maintaining
numerical accuracy with respect to the reference CPU runs since
they do not fully support single-floating-point precision. This accuracy
reduction may lead to inaccurate brain simulations, although it may
not be a limiting factor for other high-performance computing (HPC)
workloads. One limitation of our presented work is the absence of an
evaluation of chemical synapses, as they pose challenges in integration
with our tensor-based workflow. This aspect remains a subject for
future investigation. Finally, the use of multiple chips to allow for the
simulation of even larger and faster brain networks warrants further
12

exploration also be explored.
Listing 3: Spike-event delivery in TensorFlow

import numpy as np , tensorflow as t f

# model parameters
dt = 1; nsteps = 1000; nneurons = 100; max_delay = 20

# connection matrix containing non−zero delays
# for connecting neurons
delay_matrix = t f . constant (

np . random. randint (10 , 20 , ( nneurons , nneurons ) ) ∗
(np . random. random( ( nneurons , nneurons ) ) > 0 .8 ) )

# the spikes for each neuron at each timestep
spikes = t f . TensorArray (

t f . int64 , s i ze =0 , dynamic_size=True ,
c lear_af ter_read=True , infer_shape=False )

# set up i n i t i a l array
for i in range ( nsteps+max_delay ) :

spikes = spikes . write ( i , t f . constant ( [ ] , dtype= t f .
int64 ) )

# in te rna l s tate of the neurons
v = t f . constant (20 ∗ np . random. random(nneurons ) )

def l i f ( step , v , spikes , delay_matrix , dt , tau=20 , vth
=10) :
i = spikes . read ( step )
i = t f . tensor_scatter_nd_add (

t f . zeros_ l i ke ( v ) ,
t f . reshape ( i , (−1, 1) ) , t f . ones_l ike ( i , dtype=v .

dtype ) )
v = v − v / tau∗dt + i
s = v >= vth

delays = delay_matrix [ s ]
targets = t f .where ( delays != 0) [ : , 1 ]
delays = delays [ delays != 0]

def c ( i , _ ) : return t f . less ( i , len ( targets ) )
def b( i , spikes ) :

spikes = spikes . write ( step + delays [ i ] , t f .
concat ( [
spikes . read ( step + delays [ i ] ) , [ targets [ i ] ]

] , axis =0) )
return t f . add ( i , 1) , spikes

spikes = t f . while_loop ( c , b , [ t f . constant ( 0 ) , spikes
] ) [ 1 ]

v = t f .where ( s , t f . zeros_ l i ke ( v ) , v )
return v , spikes

# simulation loop
for step in range ( nsteps ) :

v , spikes = l i f ( step , v , spikes , delay_matrix , dt )
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