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Abstract 218 

The most important factor that complicates the work of dysmorphologists is the 219 

significant phenotypic variability of the human face. Next-Generation Phenotyping 220 

(NGP) tools that assist clinicians with recognizing characteristic syndromic patterns 221 

are particularly challenged when confronted with patients from populations different 222 

from their training data. To that end, we systematically analyzed the impact of genetic 223 

ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher 224 

Database (GMDB) as a reference dataset for medical images of patients with rare 225 

genetic disorders from around the world. We collected 10,980 frontal facial images – 226 

more than a quarter previously unpublished - from 8,346 patients, representing 581 227 

rare disorders. Although the predominant ancestry is still European (67%), data from 228 

underrepresented populations have been increased considerably via global 229 

collaborations (19% Asian and 7% African). This includes previously unpublished 230 

reports for more than 40% of the African patients. The NGP analysis on this diverse 231 

dataset revealed characteristic performance differences depending on the 232 

composition of training and test sets corresponding to genetic relatedness. For clinical 233 

use of NGP, incorporating non-European patients resulted in a profound enhancement 234 

of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. 235 

Importantly, this improvement in delineating the correct disorder from a facial portrait 236 

was achieved without decreasing the performance on European patients. By design, 237 

GMDB complies with the FAIR principles by rendering the curated medical data 238 

findable, accessible, interoperable, and reusable. This means GMDB can also serve 239 

as data for training and benchmarking. In summary, our study on facial dysmorphism 240 

on a global sample revealed a considerable cross ancestral phenotypic variability 241 

confounding NGP that should be counteracted by international efforts for increasing 242 

data diversity. GMDB will serve as a vital reference database for clinicians and a 243 

transparent training set for advancing NGP technology. 244 

Introduction 245 

Facial dysmorphism is one of the most complex and informative clinical features in 246 

syndromic disorders, and is therefore often crucial in terms of establishing a diagnosis 247 
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in rare genetic diseases1,2. However, the recognition of dysmorphic patterns, is a 248 

challenging endeavour, and relies on the skills, knowledge, and experience of the 249 

examiner. In certain syndromes, in particular those that are ultra-rare, variability in 250 

facial features can pose challenges even for highly experienced clinicians3. Facial 251 

features can also vary according to sex, age, and ancestry, which further complicates 252 

the recognition of a specific dysmorphic pattern4–6. 253 

Ancestry plays a particularly significant role since considerable inter-ancestral 254 

variability exists in facial gestalt7. Thus, facial features that are common in certain 255 

ancestral groups may be considered dysmorphic in others. For example, while 256 

upslanting palpebral fissures are common in healthy Asians, they may be perceived 257 

as dysmorphic in other populations8. Previous studies have also highlighted 258 

differences in facial gestalt between different ancestries in common dysmorphic 259 

genetic syndromes such as Down Syndrome, 22q11.2 deletion syndrome, Noonan 260 

syndrome, and Williams–Beuren syndrome4,9,10. Furthermore, Lumaka et al. have 261 

demonstrated that this variability can influence the assessor, with European clinicians 262 

failing to recognize dysmorphic features in individuals of African ancestry11. This is a 263 

growing problem as globalization and migration increasingly blur ancestral and cultural 264 

boundaries, and geography is no longer a key determining factor in mating patterns12. 265 

Hence, in diverse populations, such as those with admixed ancestries, the challenge 266 

of accurately diagnosing rare diseases becomes even more pronounced since new 267 

phenotypes can evolve via admixture13. 268 

Ancestry also has a significant impact on the detection of rare dysmorphic disorders 269 

via artificial intelligence (AI)11 because in most healthcare datasets, non-European 270 

ancestries are underrepresented14. Many next-generation phenotyping (NGP) 271 

approaches that predict disorders on the basis of facial image analysis, such as 272 

GestaltMatcher15, have demonstrated high accuracy in patients from the ancestries in 273 

which they were predominantly trained and validated, i.e., European and North 274 

American15–19. 275 

Since the significantly higher birth rates in non-European regions account for 80% of 276 

the global population and 90% of all annual births (Figure 1a)20, action is required to 277 

include non-European patients currently considered to be underrepresented. So far, 278 

few studies exist about the performance of NGP tools where the ancestry composition 279 



8 
 

of individuals in the training and test set differs. Literature suggests that AIs trained on 280 

individuals of European ancestry perform better on a test set of Asian rather than 281 

African ancestry21–24 that may be explained by their closer genetic relatedness25. This 282 

raises the question of whether AIs need to be trained for different ancestries or whether 283 

a similar performance can be achieved by sufficiently increasing the ancestral diversity 284 

in the joint training set. The latter is indicated by a study conducted on Down syndrome 285 

patients of African ancestry11. However, comparing these studies is difficult since they 286 

were not performed on data compliant with FAIR principles that are findable, 287 

accessible, interoperable, and reusable, meaning the results cannot be reproduced.  288 

The motivation of our work is therefore threefold: 1) scientific, because we wanted to 289 

study the effect of inter- and intra-ancestral phenotypic variability on NGP, such as 290 

GestaltMatcher, in a systematic manner; 2) clinical, because more diverse training 291 

data can presumably increase the performance of NGP on non-European ancestries; 292 

and 3) societal, because so far underrepresented populations would benefit from 293 

potential performance improvements. 294 

To achieve these goals, we aimed for a FAIR database with an increased number of 295 

patients of non-European ancestry with respect to comparable databases20,26,27. 296 

Therefore, we established the GestaltMatcher Database (GMDB) as a community-297 

driven online framework that facilitates acquiring patient consent and incentivizes data 298 

sharing, acknowledging contributions from clinician-scientists as citeable micro-299 

publications (Figure 2)28–31. Through this framework, we established global 300 

collaborations, enabling the collection of a wide range of data from various ancestries.  301 

GMDB is the first database for medical imaging data of patients with rare genetic 302 

disorders from diverse ancestries that is compliant with the FAIR principles32. By its 303 

machine-readable design, GMDB also enables systematic analyses of the influence 304 

of genetic background on NGP performance, which we will report in this study. 305 

Results: 306 

Overview of FAIR data in GMDB 307 

Retrospective data from curated publications, along with data provided by clinicians or 308 

patients, were made available as FAIR cases in the GMDB (Figure 3, Supplementary 309 

Figures 1 and 2)33. At the time of the data freeze for this paper on April 6th 2024, we 310 
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curated the GMDB-FAIR dataset consisting of 10,980 portrait images (Supplementary 311 

Figure 3) of 8,346 patients with 581 genetic disorders, including patients curated from 312 

2,224 scientific publications. 2,312 unpublished images were contributed by 138 313 

clinicians from 106 institutions (indicated by location markers in Figure 1a), including 314 

novel cases from GMDB micro-publications (micro-publication section in 315 

Supplementary Note). For the portrait data, which is the scope of this study, in terms 316 

of sex, the data distribution is relatively balanced (Figure 4a). However, age is biased 317 

toward patients aged below 10 years (Figure 4b). Figure 4c shows a two-dimensional 318 

representation of Human Phenotype Ontology34 (HPO)-defined symptom groups in 319 

GMDB via Uniform Manifold Approximation and Projection (UMAP). While GMDB 320 

incorporates cases from all HPO-defined symptom groups across the disease 321 

landscape, the HPO-defined symptom group ‘facial dysmorphism’ is enriched in 322 

GMDB. Since each individual can be attributed to several HPO-defined symptom 323 

groups according to their features, facial dysmorphism was also present in the other 324 

HPO-defined symptom groups, as shown in the heatmap. 325 

Underrepresented populations benefited from micro-publication case reports in 326 

GMDB 327 

Through our international collaborations (Figure 1a), the representation of non-328 

European ancestral groups is 19% for Asian, 7% for African, and 7% for Others. 67% 329 

comprises individuals of European descent (Figure 1b). Moreover, the ancestry 330 

distribution varies among different disorders. Some disorders, such as Williams-331 

Beuren syndrome, Hyperphosphatasia with impaired intellectual development 332 

syndrome, and Cohen syndrome, have relatively diverse and balanced ancestral 333 

distributions (Supplementary Figure 4).  334 

Notably, the proportion of African ancestry was strongly increased by means of GMDB 335 

micro-publications which account for 40% of the individuals with African ancestry 336 

(Figure 4d). In terms of specific sub-ancestries (Figure 4e), more than 80% of cases 337 

with sub-Saharan ancestry and over 20% of cases with North African, Native American, 338 

and Latin American ancestries were obtained through GMDB micro-publications. 339 
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Performance disparities in underrepresented populations 340 

We analyzed the performance of GestaltMatcher on the test set of 882 images of 275 341 

disorders with different ancestries that have not been used for the training of 342 

GestaltMatcher. Performance is measured as a top-k accuracy (as described in 343 

Methods). We report the top-1 to top-30 accuracies in Table 1. When considering top-344 

1 accuracy, the 'Others' group demonstrated the highest performance at 73.91%, 345 

followed by the African group at 62.07%, the Asian group at 53.54%, and the European 346 

group at 55.45%. The African group achieved the highest top-5 accuracy (82.76%), 347 

the Asian group attained the highest top-10 accuracy (85.04%), while the European 348 

group only achieved 75.14% and 82.60% for top-5 and top-10 accuracies, respectively. 349 

However, the European group contains more than 50% of the testing images (523 out 350 

of 882), covering many more disorders than the other ancestry groups. That includes 351 

ultra-rare disorders known to achieve lower performances19. 352 

To fairly compare the European group to another non-European ancestry, we only 353 

looked at the disorders that were present in both ancestry groups. In Table 2, when 354 

comparing the African and European groups on the six overlapping disorders, the 355 

European group outperformed the African group by achieving +16.96% top-1 accuracy 356 

and +11.17% top-10 accuracy. The European group also exhibited higher accuracies 357 

compared to the Asian group, with a top-1 accuracy of +6.92% and a top-10 accuracy 358 

of +4.15%. However, the European and ‘Others’ groups achieved relatively 359 

comparable results. The ‘Others’ group had a higher top-1 accuracy, while the 360 

European group performed better on the top-10 accuracy. 361 

We further reported the performance of sex and age groups in Table 1. The distribution 362 

of testing images was relatively balanced across different groups, and no significant 363 

performance gap was observed between males and females. However, the under-364 

one-year-old group exhibited the lowest performance, while the five- to ten-year-old 365 

group demonstrated notably higher top-5 and top-10 accuracies. 366 

Diverse ancestry data enhance prediction accuracy for underrepresented 367 

populations 368 

To investigate the impact of incorporating ancestry-diverse data on the overall 369 

performance of GestaltMatcher across ancestries, we designed two sets of ancestry 370 

analysis experiments. First, we investigated the expansion of the training set of 371 
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GestaltMatcher (as described in Methods), including either European only (EU + EU*) 372 

or European and non-European (EU + non-EU) patients. We measured a top-1 373 

accuracy averaged over all ancestral groups of 49.65% for the European only training 374 

set (EU + EU*) and 66.90% for the diverse training set (EU + non-EU) (Figure 5a). 375 

Similarly, top-5 accuracy of the European training set was 69.95%, and when we 376 

trained on the diverse set, the top-5 accuracy increased to 81.24%. Notably, the 377 

evaluation performance on images of patients with European ancestry showed only a 378 

marginal performance dropdown. Specifically, the top-1 accuracy decreased by 3.82% 379 

and the top-5 accuracy by 3.61% when the dataset was augmented with 50% more 380 

non-European images. Meanwhile, the top-1 and top-5 performance increased notably 381 

for almost every other ancestral group. Figure 5a and Table 3 show further per-382 

ancestry performances. 383 

The training of GestaltMatcher results in a clinical face phenotype space that can be 384 

populated by additional cases, which we refer to as the gallery set (as described in 385 

Methods). We next investigated the influence of expanding the gallery with ancestry-386 

diverse data by gradually raising the proportion of included non-European data from 387 

10% to 100%. Figure 5b shows that the top-1 accuracy of the non-European groups 388 

was clearly increased when we added more non-European data in the gallery. 389 

However, the top-1 accuracy of the European group did not change even when we 390 

added 100% of the non-European data into the gallery.  391 

GMDB-FAIR dataset drives the advancement of NGP technology 392 

GMDB-FAIR dataset is the first dataset that can be shared with the research 393 

community to train and benchmark their NGP approaches. After the first publication of 394 

the GestaltMatcher approach in 2022, for which we initially started the collection of our 395 

FAIR data, many researchers have utilized GMDB-FAIR to develop different NGP 396 

approaches. Hustinx et al.19, Sumer et al.35, and Campbell et al.36 improved the 397 

prediction accuracy of their models significantly by utilizing different loss functions, 398 

network architectures, and data augmentation. Recently, Wu et al. proposed 399 

combining a large language model with facial image analysis to streamline the rare 400 

disorder diagnosis37. Furthermore, running facial analysis with an on-premise solution 401 

is possible using the FAIR data set to further prioritize genomic variants38. 402 
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Moreover, the GMDB-FAIR dataset can be taken as a validatable control cohort to 403 

facilitate the delineation of the facial phenotype of disorders. GestaltMatcher can 404 

detect clusters and assess whether, for example, cases with an identical variant or 405 

pathogenic variants in the same gene share a similar facial phenotype. For example, 406 

Ebstein et al. showed that facial dysmorphism was heterogeneous among the entire 407 

PSMC3 patient cohort, but facial similarities were found in patients sharing the same 408 

pathogenic variants39. To date, 15 publications have analyzed the facial phenotype of 409 

the cohort with the GMDB-FAIR dataset and GestaltMatcher39–53. All results can be 410 

reproduced in the research platform of GMDB, which we introduce in the Methods 411 

section (Figure 2c, Figure 3c and Supplementary Note). 412 

Discussion 413 

GMDB is a modern, searchable reference and publication medium encompassing 414 

diverse populations that is designed for both clinicians and computer scientists 415 

engaged in NGP development. The ultimate goal of this study is to drive research in 416 

rare genetic disorders to understand the phenotypic variability among ancestries 417 

systematically and improve support for underrepresented populations.  418 

GMDB stands out as the sole database compliant with FAIR principles, distinguished 419 

by its extensive collection of facial images covering diverse populations. This was 420 

mainly possible through the contributions and crowd-sourced annotations by our 421 

global collaborators. To increase motivation for data submission in the future, every 422 

case in the database has the potential to become a citable micro-publication with a 423 

Digital Object Identifier (DOI)54. Furthermore, future micro-publications could be 424 

indexed in reputable scientific indexing services, such as PubMed, as is the case for 425 

some existing micro-publication communication platforms55. Active patient 426 

involvement and the ability to access, upload and delete their data enhance patient 427 

autonomy and facilitate the acquisition of longitudinal patient data, further enriching 428 

GMDB's repository of facial images. Similar to other natural history study data, the 429 

longitudinal image and associated phenotypic meta data add significant value to the 430 

understanding of disease progression in patients with facial dysmorphism56. Moreover, 431 

micro-publication encourages the recruitment of patients from underrepresented 432 

populations. For example, more than 40% of all images obtained for Africans had been 433 

previously unpublished. These micro-publications from unpublished images of 434 
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patients with underrepresented ancestries underscored the importance of GMDB 435 

since they cannot be found in any medical journals. 436 

The diverse ancestry data in GMDB further enabled us to investigate the 437 

GestaltMatcher performance differences among ancestral groups systematically. In 438 

Table 2, the performance disparities in the Asian and African groups were observed 439 

when compared to the European group. The “Others” group showed a comparable or 440 

even higher performance than the European group. The reason could be that Latin 441 

Americans in the ‘Others’ group show relatively similar facial phenotypes to the 442 

Europeans.  443 

Our findings indicate that increasing the ancestral diversity in FAIR databases will 444 

particularly benefit populations currently regarded as underprivileged. We investigated 445 

how the top-1 and top-5 accuracies for the different ancestries changed when equally 446 

sized groups of European or non-European patients were added to the training set. 447 

Overall, the top-5 accuracy for non-European ancestral groups increased significantly 448 

when the training set was expanded with non-Europeans (+11.29%). When the 449 

training data were extended from only Europeans to Europeans and non-Europeans, 450 

only a marginal change in the performance of the European group was observed. 451 

Including more non-European patients in the gallery can also improve non-European 452 

groups' performances dramatically while European performance remains roughly the 453 

same (Figure 5b). The results indicate that recruiting non-European patients to support 454 

the underrepresented populations is more effective than recruiting more European 455 

patients, which often leads to models’ extreme bias toward European ancestry.  456 

The GMDB-FAIR dataset offers a transparent AI training set, which is crucial for the 457 

NGP development because all FAIR data are available to the clinical and scientific 458 

community. This transparency, combined with the increased representativeness of the 459 

training set, helps minimise the risk of algorithmic bias, which is key for ensuring 460 

respect for the fundamental right to non-discrimination57. The high quality of the GMDB 461 

data allows researchers to train, validate, and test AI in a manner that aligns with the 462 

expectation in the EU AI Act and the EU Medical Device Regulation58. Finally, the 463 

controlled access and consent options as described in the Methods section not only 464 

ensures respect for the fundamental right to protection of personal data57 and EU 465 

General Data Protection Regulation (GDPR)59 compliance, but it also enabled the 466 
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creation of a more diverse, representative, and larger data set as people are more 467 

comfortable with sharing health and genetic data, including images, under controlled 468 

conditions and responsible data governance than in open access publications and 469 

repositories. By this, the GMDB-FAIR dataset falls in line with other large public 470 

datasets, such as ImageNet60 for object classification or Labeled Faces in the Wild 471 

(LFW)61 for face verification, which have been fundamental for deep-learning 472 

technology driving computer vision over the last decade. GMDB-FAIR has been used 473 

to develop many NGP approaches19,35–37 for predicting rare disorders after the first 474 

usage in GestaltMatcher in 2022. Moreover, GMDB-FAIR data can be used in the 475 

research platform (Supplementary Note) to validate the results shown in the published 476 

works39–53 that provides transparency to the researcher using GestaltMatcher and the 477 

probability to extend the existing research with the user’s additional data. 478 

Due to variability in facial phenotypes secondary to ancestry, diverse reference image 479 

databases are crucial in order to enable clinicians to learn about the phenotypic 480 

variability in facial dysmorphism within a given disorder. While efforts have been made 481 

to create an atlas of human malformations that addresses the issue of ancestral 482 

diversity, this remains limited to only a few disorders20. With GMDB-FAIR, we created 483 

a large-scale dataset that can be searched for disorders or genes of interest in the 484 

GMDB gallery view (Figure 2c, Figure 3b), which provides clinicians with a 485 

comprehensive selection of patient images from different ancestries at a glance, 486 

thereby eliminating the need for extensive literature searches. In addition, it facilitates 487 

facial phenotype comparisons within a given disorder among different ancestries 488 

(Supplementary Note). GMDB also represents a valuable teaching tool for training 489 

students and residents to recognize disorders based on facial features. 490 

To conclude, GMDB is a medical imaging database for rare disorders that 491 

encompasses diverse populations. The FAIR data will serve as reference material for 492 

clinicians that facilitates learning about facial dysmorphism across ancestries, and as 493 

a transparent training and benchmarking dataset for advancing the NGP approach. 494 

While we show improved performance for the underrepresented populations, it is 495 

important to point out that the performance is far from the optimum that can be 496 

achieved by collecting more diverse data. We envision that the gap between the 497 

European ancestral group and the underrepresented ancestries can be mitigated by 498 
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micro-publications in the future, and this will result in substantially improved support 499 

for underrepresented populations. 500 

Methods 501 

Implementation of the online GMDB platform 502 

The online platform was built using Ruby on Rails in order to allow users to input 503 

images and other patient data. A database was set up using MySQL to store the 504 

patient data. GMDB is hosted physically in the University Hospital of Bonn and is 505 

maintained by Arbeitsgemeinschaft für Gen-Diagnostik e.V. (AGD), which is a non-506 

profit organization for genomic research. The service is funded by membership fees 507 

of the AGD and donations from the Eva-Luise und Horst Köhler Foundation and the 508 

Wirtgen Foundation. 509 

Image data and meta data stored in GMDB 510 

An entry in GMDB consists of a medical image such as a portrait, X-ray, or fundoscopy 511 

and machine-readable meta information containing: 1) demographic data (including 512 

sex, age, and ancestry); 2) the molecularly confirmed diagnosis (OMIM index62); 3) the 513 

disease-causing mutation reported in Human Genome Variation Society format63 514 

(HGVS) or International System for Human Cytogenomic Nomenclature64 (ISCN) with 515 

test method and zygosity; and 4) the clinical feature encoded in HPO terminology34 516 

(Figure 2b). When submitting data, clinicians are also asked to state their expert 517 

opinion concerning the distinctiveness of a phenotype: They are asked to score 518 

whether the medical imaging data was supportive (1), important (2), or key (3) in 519 

establishing the clinical diagnosis. Computer scientists can use this information to 520 

interpret the performance of their AI15. 521 

Digital consent form and patient-centered data upload 522 

To facilitate faster retrospective patient recruitment, a digital consent form has been 523 

implemented, which allows patients to select conditions for storing their data within the 524 

database and enables the provision of their signature online. To address the specific 525 

requests of patients, this feature was further developed in close collaboration with 526 

patient support groups, e.g., the German Smith-Magenis Syndrome patient 527 

organization Sirius e.V. Patients can access their own cases and provide or withdraw 528 

their consent online. They can also upload images themselves, which greatly simplifies 529 
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the curation process for longitudinal image data and other prospective data. The fact 530 

that documents such as letters from clinicians or laboratory results can also be 531 

uploaded, while only being visible to the responsible clinician, makes it possible to 532 

obtain molecular and phenotype information on patients recruited retrospectively from 533 

patient support groups. This digital consent is developed in such a way that it could 534 

also, in principle, be used as a dynamic consent model in the future65. The consent 535 

form is available in German and English, and other languages will be incorporated in 536 

the near future. Please find them in Supplementary Note (Digital consent, and 537 

Supplementary Figures 5 and 6) for more details. 538 

Data curation 539 

The curated data can be broadly categorized as retrospective and prospective. 540 

Retrospective refers primarily to data collected from the literature or from similar 541 

projects with global consent for data sharing (e.g., Minerva&Me66). For cases curated 542 

from the literature, the DOI and PubMed ID as well as the contact details of the 543 

corresponding author were collected in order to clarify whether reuse is possible while 544 

respecting intellectual property rights. Following the provision of written informed 545 

consent, our collaboration partners, clinicians from around the world (Figure 1a and 546 

the co-authors), also recruited patients with an established diagnosis from within their 547 

clinical practice or from patient support groups. Prospective curation refers to the 548 

collection of further images or metadata over time. This can be done by the attending 549 

clinician after subsequent consultations, or by the patients themselves. 550 

The curation process can be broadly subdivided into three phases. First, medical 551 

students in their final year annotated cases from the literature, mainly searched 552 

PubMed and Google Scholar for publications with images of patients with facial 553 

dysmorphism and monogenic molecular diagnosis. 554 

Second, solved patients were recruited from patient support groups. Included patients 555 

were allowed to upload and delete images and findings autonomously and access 556 

their data at any time. To develop a patient-centered, user-friendly platform and 557 

strengthen patient autonomy, feedback was obtained from the recruited patients 558 

during this phase in order to determine whether any adjustments to the process were 559 

required.  560 
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In the third phase, the database was expanded via international collaborations with 561 

clinicians from different continents. Initially, this focused on patients who had already 562 

been solved but had not yet been published in order to improve the AI’s performance. 563 

However, as we progressed, more clinicians shared their unsolved cases with the 564 

scientific community. GMDB then started focusing on facial portraits of patients with 565 

rare monogenic diseases, and is now dominated by, but not limited to, such cases. 566 

Later in the curation process, we also annotated cytogenetic disorders with facial 567 

dysmorphism. In addition to these clinicians, the medical students continued to 568 

annotate data from the literature. 569 

Digital Object Identifier assignment 570 

After data submission, the respective case is immediately published on the website. 571 

Subsequently, the author has the option of generating a DOI in order to create a citable 572 

micro-publication54. To do this, clinicians must, after uploading the required data and 573 

metadata, enter their own personal identifier (e.g.,ORCID), specify all other scientists 574 

or clinicians involved in this case, and provide a title and an abstract. To ensure the 575 

credibility and reliability of the published data, this process will adhere to a rigorous 576 

review similar to that described by Raciti et al.55. The DOIs are created and managed 577 

by the University and State Library of Bonn using the DataCite Application 578 

Programming Interface (API) (https://datacite.org).  579 

Additionally, a dedicated landing page will be created for each case, according to the 580 

specifications of the DataCite metadata schema (Supplementary Figure 2). The 581 

landing page is accessible via the generated DOI, even for individuals without access 582 

to GMDB or those who are not logged in. The landing page contains the full citation 583 

with the DOI as a link, the abstract, and a description of the case data. No phenotypic 584 

information, HPO terms, or images are available. However, the landing page indicates 585 

how many images the micropublication contains.  586 

Main components of the GMDB online platform 587 

The GMDB consists of three main components that can in principle be utilized by 588 

registered users (Figure 2c). 1) Search: Clinicians can use the Gallery view to search 589 

the GMDB for disorders or genes of interest and get all patients matching this search 590 

criterion displayed in the database at a glance. 2) Analyze: Clinicians and scientists 591 

can use the GMDB-FAIR data to perform similarity comparisons of cohorts with 592 

https://datacite.org/
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GestaltMatcher within the research platform of GMDB. 3) Train: The GMDB-FAIR 593 

dataset that can be used by external researchers to train NGP tools. More detailed 594 

information on these features can be found in the Supplement Note. 595 

GMDB datasets 596 

All analyses performed in this paper are based on GMDB-FAIR data (v1.1.0). But 597 

actually, the GMDB consists of the GMDB-FAIR dataset and the GMDB-private set 598 

(Supplementary Note and Supplementary Figures 7 and 8). We introduced this 599 

distinction because it is known that patient consent to data sharing is higher when not 600 

shared with a broad mass, but only for a specific study67. However, many patients 601 

agree to controlled access for the general scientific community to advance research67. 602 

For this reason, patients can decide whether they want to be part of only the GMDB-603 

private set for AI training or agree to be part of the FAIR data set. 604 

The website displays the statistics to the public, showing how many patients are in the 605 

database and how many disorders and disease genes have been curated. When the 606 

user has the link to a specific case in the GMDB (e.g., from a publication in which the 607 

original image may not be branched, but a link to the case is given in the GMDB), if 608 

the user is not logged in, the landing page for the case will show how many images 609 

and metadata are available for the case. Only sex and ancestry, as well as the disease 610 

gene, are given. If it is a case report published with a DOI in the GMDB, the 611 

corresponding title and abstract of the case can also be viewed. The remaining data 612 

can only be viewed after logging in. To visualize the images, the user has to log in to 613 

the platform. 614 

GMDB-FAIR data set 615 

The FAIR data set (Supplementary Figure 7b) is accessible to the scientific community. 616 

Data comes from publications and from clinicians or patients themselves. However, 617 

the case is accessible in the Gallery view for all registered users of the GMDB, and 618 

the data sheet with all relevant data and metadata can be viewed. It is also available 619 

to all users of the GMDB to perform similarity comparisons of cohorts in the research 620 

platform (Supplementary Note). The data is used for the GestaltMatcher training and 621 

test set but can also be made available to other scientists to train and test their AI after 622 

they have applied to us with an Institutional Review Board (IRB)-approved study and 623 

proposal.  624 
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Data Governance and Ethical, Legal and Social Implications of GMDB 625 

Ethical approval for the GMDB was granted by the IRB of the University of Bonn, and 626 

all patients have given informed written consent to participate. During the 627 

GestaltMatcher consent procedure, patients can also indicate whether they agree to 628 

the use of the images in presentations, teaching activities, or in publications in other 629 

journals. This differentiation from other journals is important since patients/parents 630 

show less willingness to consent to publication in open-access journals than to 631 

publication in access-controlled databases that are not publicly accessible67. The 632 

patient shown in Figure 3 fully consented to publication of his image data. 633 

The GMDB has four different levels of data access (Supplementary Figure 8): 1) The 634 

public data, which includes a summary of the GMDB statistics on the website and a 635 

landing page for case reports with DOI (Supplementary Figure 2), requires no login 636 

and is openly accessible. 2) The FAIR data, which can be viewed with a GMDB user 637 

account, and in principle, downloaded by external AI researchers. 3) The restricted 638 

data, which is not accessible to GMDB users and external AI researchers and can only 639 

be used to train the GestaltMatcher AI. 4) Patient-shared data: Patients can only view 640 

their own case and upload data if they are invited to do so by the attending clinician.  641 

External scientist in the field of AI can apply to download of GMDB-FAIR data for the 642 

development of NGP approaches. Prerequisites for this are IRB approval and 643 

submission of a proposal to info@gestaltmatcher.org. In addition, external scientists 644 

must sign and adhere to the GDPR. The Advisory Board will conduct a thorough review 645 

of all applications. If the majority of the members of the Board approve the application, 646 

access (under the extent permissable by law) will be granted to applicants within two 647 

to three weeks.  648 

Advisory Board 649 

Advisory Board comprises the following co-authors: Benjamin D. Solomon, Koen 650 

Devriendt, Shahida Moosa, Christian Netzer, Martin Mücke, Christian Schaaf, Alain 651 

Verloes, Christoffer Nellåker, Markus M. Nöthen, Gholson J. Lyon, Aleksandra Jezela-652 

Stanek, and Karen W. Gripp.  653 
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HPO-defined symptom groups 654 

In one of our previous works68, twelve distinct and non-overlapping categories of HPO 655 

terms were defined by clinical experts (“HPO defined symptom groups”). All GMDB 656 

cases for which HPO terms were annotated were then assigned to each of those 657 

groups, if at least one of the HPO terms in this group was annotated; i.e., each GMDB 658 

case can be assigned to several HPO-defined symptom groups. For each case, the 659 

most pronounced HPO-defined symptom group was defined as the single group 660 

comprising the largest number of the case’s annotated HPO terms. The HPO-defined 661 

symptom group “Others” was only assigned as the leading HPO-defined symptom 662 

group if no other HPO-defined symptom group was present for the case. 663 

Phenotypic similarity between cases was calculated using the R-package 664 

ontologySimilarity (version 2.5). Pairwise similarities were calculated for the combined 665 

data set of GMDB cases with HPO terms (n=4,474), the TRANSLATE-NAMSE exome 666 

sequencing data set (n=1,577), and data on known diseases and their clinical features 667 

downloaded from the HPO website (n=7,765, 668 

https://hpo.jax.org/app/download/annotation, file: genes_to_phenotype.txt, 669 

downloaded on 10 April 2021). The resulting distance matrix was projected in a four-670 

dimensional space via Uniform Manifold Approximation and Projection (UMAP). The 671 

first two dimensions were plotted using ggplot2 (version 3.4.4). To analyze which 672 

HPO-defined symptom groups occur jointly, the proportion of patients assigned to the 673 

first group that were also assigned to the second group was assessed. All analyses 674 

were conducted in R (version 4.3.2).  675 

GestaltMatcher Algorithm 676 

GestaltMatcher15 is the extension of the DeepGestalt approach17. DeepGestalt is a 677 

deep learning-based NGP tool using frontal face photos to classify up to 216 678 

syndromes it has seen during training. However, it needed a lot of training data to 679 

achieve a reasonable performance on these syndromes. That also meant it could not 680 

classify unseen syndromes during training (ultra-rare syndromes). This led to the 681 

development of GestaltMatcher, which uses a clustering approach. As such, if at least 682 

one image of the sought-after syndrome is in the gallery set, a test image can be 683 

matched to/clustered with that image using some similarity metric. Later, this approach 684 

was further enhanced by Hustinx et al.19, using a more recent architecture (iResNet) 685 
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and training loss (ArcFace Loss), as well as test-time augmentation and a model 686 

ensemble to improve robustness. That is also the approach we used for our 687 

experiments. Thus, for fine-tuning, we utilized the Adam optimizer, cross-entropy loss, 688 

and class weighting to deal with the imbalance in data availability between disorders. 689 

In this study, we used 7,787 images representing 275 disorders as the training set and 690 

a validation set of 1,007 images during the model training. We then tested the model 691 

on a test set consisting of 882 images. 692 

The overall idea behind the methodology is to train a classifier on a more frequent 693 

subset of the syndromes, achieving a model that generalizes well on those seen 694 

syndromes. In practice, the authors of both papers decided to use syndromes with at 695 

least seven patients as the training set for this classifier. Thereafter, everything up to 696 

the penultimate layer of the classifier is used as an encoder, obtaining feature 697 

embeddings of images of interest. These could be images for the gallery set or images 698 

for the test set.  699 

The aforementioned gallery set is the set of images (and their feature embeddings) 700 

with known syndromes. This can include the syndromes used for training (seen) and 701 

syndromes with too few images to train on (unseen). The theory is that similar facial 702 

phenotypes form clusters in the feature space, which is spanned by the feature 703 

embeddings in 512 dimensions and which we refer to as clinical face phenotype space. 704 

The similarity between images and clusters is computed using the cosine distance, 705 

where a lower distance implies a higher similarity. Contrary to the approach by 706 

Gurovich et al.17, this approach can easily increase support for ultra-rare syndromes. 707 

The quality and diversity of the gallery set is crucial for this approach to match test 708 

images to clusters in the gallery set. 709 

Performance metric (top-k accuracy) 710 

The applied performance metric was top-k accuracy. Top-1 indicates that the disorder 711 

was correctly classified as the first guess, while top-5 indicates the correct class was 712 

in the first five guesses. We reported top-k accuracies (k=1, 5, 10, and 30) as the 713 

performance readout. 714 
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Ancestry analysis 715 

The genetic ancestry of each individual was documented as precisely as possible 716 

using self-reported data. For instance, if an individual was born in Germany and all of 717 

the respective grandparents also originated from there, this individual was assigned 718 

to Germany (country) and Europe (continent). The same approach was used for all 719 

individuals with no self-reported migration history in previous generations. For 720 

individuals with mixed ancestry, the respective ancestries were combined. For 721 

example, an individual with a father from Gambia and a mother from Eastern Europe 722 

was assigned European-African mixed ancestry. 723 

The performance of GestaltMatcher is highly dependent on the training set and the 724 

gallery set. To investigate the impact of incorporating diverse ancestry on the 725 

performance, we have therefore conducted two sets of experiments for those two 726 

components, respectively. First, we analyzed the influence on the models’ 727 

performance when including only European versus both European and non-European 728 

data into the training set. And second, we analyzed the same performance when 729 

iteratively increasing the amount of non-European data into the gallery set.  730 

In the first experiment, a subset of images of European patients (EU) was extended 731 

by either the inclusion of a different subset of images of European patients (EU*), or a 732 

subset of patients with non-European ancestries (non-EU) (Supplementary Figure 9). 733 

Random sampling of these subsets was performed five times. EU consisted of on 734 

average 3,139.2 images, and EU* comprised on average 1,567.6 images. First, the 735 

model was trained on the EU + EU* set containing on average 4,706.8 images of 736 

patients of solely European ancestry. For EU + non-EU, a subset containing on 737 

average 1,567.6 images of patients with any non-European ancestry was used, 738 

totaling to 4,706.8 images. The experiment design ensured the maintenance of the 739 

same distribution of disorders as that found in the training data.  740 

The model was fine-tuned for 50 epochs on subsets EU + EU* and EU + non-EU of 741 

GMDB (v1.1.0). All other hyperparameters were left unchanged. It is important to note 742 

that the model was not tasked with learning to classify the ancestry, only with learning 743 

to classify the disorder. 744 
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Post-training, the models' performances were measured on the same evaluation set, 745 

containing images of patients with diverse ancestral backgrounds. This evaluation set 746 

consisted of 649 images and was sampled in such a manner that there was no overlap 747 

between patients or images in any subset. Top-k accuracy was averaged over each 748 

ancestry rather than each image in order to address the imbalance in ancestry 749 

frequency. As such, the performance of any infrequent group weighed equally with 750 

those of the more frequent groups. 751 

In the second set of experiments, we trained the models of Hustinx et al.19 using the 752 

GMDB-FAIR training set, including different proportions of non-EU data for the gallery 753 

set. We compared the performance of the syndromes our models have seen during 754 

training. For completeness, Table 1 shows the top-k accuracy (over all images) for 755 

different categories (sex, ancestry, and age range) using the entire gallery set 756 

consisting of 8,794 images (100% EU [4911] + 100% non-EU [3883]). For the 757 

experiments, we computed the performance when including different proportions of 758 

non-EU data, extending the gallery set by +10% per iteration. This experiment was 759 

repeated tenfold, randomly sampling patients with different ancestries and all their 760 

photos for the gallery set. As such, at 0%, we include only data from EU patients in 761 

the gallery set, and at 100%, we include all patient data for the relevant syndromes.  762 

We further computed the performance on syndromes that occur in both the European-763 

group and each non-European group to more accurately reflect the performance 764 

differences, avoiding the imbalance between offered support for each ancestral group. 765 

Data and code availability 766 

GMDB-FAIR can be downloaded in GMDB after the application is approved by the 767 

advisory board. Please find more details in the Data Governance and ELSI section. 768 

Code is available in the GitHub repository (github.com/igsb/GestaltMatcher-769 

Arc/tree/gmdb). 770 
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Figures 791 

 792 
Figure 1: a) Birth rate distribution worldwide. The size of country is scaled in 793 

accordance with the respective birth rate. The map indicates countries from which 794 

unpublished images were obtained (source: https://worldmapper.org/faq/, modified). 795 

b) Distribution of ancestry groups in GestaltMatcher Database. 16% of the patients 796 

without ancestral information were categorized as Unknown. The breakdown of 797 

ancestries in the dataset with known ancestry is as follows: European 67%, Asian 19%, 798 

African 7%, and Others 7%. 799 
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 800 
Figure 2: GestaltMatcher Database (GMDB) Architecture and Dataflow. a) 801 

Retrospective data are collected from the literature and annotated by data curators or 802 

are uploaded by collaborating attending clinician. Patients can also upload images of 803 

their own cases, incorporate prospective data, and view their own data at any time. b) 804 

The data (multimodal image data, including portrait images as well as magnetic 805 

resonance imaging, X-ray, fundscopy and extremity images) are stored in the GMDB 806 

(MySQL database) together with the relevant meta information (such as sex, age, 807 

ancestry, molecular, and phenotypic information). c) Registered users can view and 808 

search the FAIR data in the GMDB Gallery. The patient image can also be analyzed 809 

using the Next-Generation Phenotyping tool GestaltMatcher within the Research 810 

Platform. In addition, once their application has been approved by the Advisory Board, 811 

external computer scientists can use the GMDB-FAIR data set for training purposes 812 

for their projects. 813 
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 814 
Figure 3: An example case presentation of a FAIR case with a Digital Object 815 

Identifier (DOI). a) FAIR cases in the GestaltMatcher Database (GMDB) are displayed 816 

to GMDB users via the data sheet. Each FAIR case can also be assigned a DOI in 817 

order to render it a citable micro-publication. This micro-publication contains the image 818 

data and metadata, including demographic, molecular, and phenotype information. 819 

The dynamic nature of the GMDB case report enables longitudinal image data storage 820 

even after initial publication, which is not possible in conventional journals. b) After 821 

uploading, case reports can be viewed and searched by other users in the Gallery 822 

view. c) The image data can also be used for inter-cohort comparisons of the gestalt 823 

scores within the research platform. 824 
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 826 
Figure 4: Overview of the GestaltMatcher Database (GMDB)-FAIR dataset. a) Sex 827 

distribution. Number of images shown in brackets. b) Distribution of patient age in 828 

years. c) Left: Two-dimensional representation of phenotypic similarities between 829 

patients, as calculated on the basis of Human Phenotype Ontology (HPO) terms via 830 

Uniform Manifold Approximation and Projection (UMAP). HPO terms were annotated 831 

for 4,474 individuals in the GMDB, and expert clinicians defined twelve distinct HPO-832 

defined symptom groups. Based on the annotated HPO terms, each case was 833 

assigned to one or more HPO-defined symptom groups. All OMIM diseases were 834 

included, using their HPO annotations (gray background dots) as a reference. GMDB 835 

cases are color-coded according to their most pronounced HPO-defined symptom 836 
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group, i.e., the group that includes the majority of their HPO terms. The dataset is 837 

dominated by two major clusters (facial dysmorphism in yellow and 838 

neurodevelopmental in blue) but shows cases from across the complete disease 839 

landscape. Right: Heatmap of the proportion of GMDB individuals within the HPO-840 

defined symptom group on the X-axis who are also assigned to the HPO-defined 841 

symptom group on the Y-axis. Notably, facial dysmorphism is present in at least 70% 842 

of the cases of each HPO-defined symptom group. d) Proportion of the unpublished 843 

and published images in each ancestry group. e) Proportion of the unpublished and 844 

published images in each sub-ancestry group. 845 
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 846 
Figure 5: Performance of ancestry analysis. a) Top-1 and top-5 accuracy of 847 

GestaltMatchers’ disorder classification accuracy per ancestral group. Top-1 and top-848 

5 accuracy of the models' disorder classification accuracy per ancestral group, where 849 

a

b



31 
 

(blue) belongs to the EU only subset, and (yellow) belongs to the diverse subset. Each 850 

wide, darker bar and each light, thinner bar indicate the top-1 and top-5 accuracy per 851 

ancestral group, respectively. The horizontal dashed lines and dotted lines indicate 852 

the top-1 and top-5 overall accuracy averaged over all ancestral groups, respectively. 853 

The order of the ancestry group in the x-axis is ranked according to standard deviation 854 

between top-1 accuracies of the 5-fold experiment. b) Top-1 accuracy of 855 

GestaltMatcher when including different proportion of non-European patients in the 856 

gallery. The x-axis is the proportion of non-European data included in the gallery. The 857 

y-axis is the top-1 accuracy. The colored region along the line indicates the standard 858 

deviation.  859 
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Tables 860 

Table 1: Performance of GestaltMatcher on different categories of sex, ancestry, 861 

and age. The top-1, top-5, top-10, and top-30 accuracy are reported. For the top-1 to 862 

top-30 columns, the best performance in each category is boldfaced. In the ancestry 863 

category, the sampling influences European and other ancestry groups' performance 864 

due to the significant difference in the test image size. They may evaluate the different 865 

sets of disorders. We, therefore, presented the performance of the overlapped 866 

disorders in Table 2. In the age category, the notation [x, y) represents a half-open 867 

interval, which includes the starting point x but excludes the endpoint y. For example, 868 

[0, 1) years range from birth but do not include one year old. 869 

Category  Test images Top-1 Top-5 Top-10 Top-30 

Overall  882 56.58% 76.08% 82.61% 90.36% 

Ancestry 

African 29 62.07% 82.76% 82.76% 86.21% 

Asian 127 53.54% 78.74% 85.04% 89.76% 

European 523 55.45% 75.14% 82.60% 90.25% 

Others 69 73.91% 81.16% 81.16% 92.75% 

Unknown 134 53.73% 73.13% 81.34% 91.04% 

Sex 

Male 419 55.37% 74.22% 80.67% 88.78% 

Female 393 55.98% 75.83% 83.21% 91.09% 

Unknown 70 67.14% 88.57% 91.43% 95.71% 

Age 

[0, 1) years 53 52.83% 71.70% 79.25% 90.57% 

[1, 5) years 137 56.20% 75.91% 81.02% 90.51% 

[5, 10) years 115 57.39% 83.48% 86.09% 90.43% 

[10, ∞) years 165 58.18% 71.51% 77.58% 85.45% 

Unknown 412 56.31% 76.46% 84.71% 92.23% 

 870 
 871 
 872 

Table 2: Performance comparison between European and other ancestry groups 873 

on the overlapping disorders. This table is an extension of the ancestry section in 874 

Table 1, taking the overlapped disorders between European and other ancestry 875 
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groups. Each category compares European and non-European ancestry groups' 876 

performance on the same set of disorders. The number of overlapped disorders is 877 

reported in the ‘Disorders’ column. In comparing African and European groups, six 878 

disorders exist in the test sets of both ancestry groups. The top-1, top-5, top-10, and 879 

top-30 accuracy are reported. For the top-1 to top-30 columns, the best performance 880 

in each category is boldfaced. 881 

Category Disorders  Test images Top-1 Top-5 Top-10 Top-30 

[African, 

European]  
6 

African 14 64.29% 85.71% 85.71% 92.86% 

European 32 81.25% 96.88% 96.88% 100.00% 

[Asian, 

European]  
36 

Asian 83 57.83% 79.52% 84.34% 87.95% 

European 139 64.75% 82.73% 88.49% 91.37% 

[Others, 

European]  
20 

Others 53 81.13% 90.57% 90.57% 100.00% 

European 115 69.56% 84.35% 93.91% 96.52% 

[Unknown, 

European]  
32 

Unknown 77 59.74% 81.81% 88.31% 96.10% 

European 170 62.35% 81.18% 89.41% 94.12% 

 882 
 883 
 884 

Table 3: Training accuracy with EU + non-EU and EU + EU* datasets. Within the 885 

European training row, numbers annotated with * in brackets indicate the training 886 

images from EU + EU. Higher top-1 and top-5 accuracies between EU + EU* and EU 887 

+ non-EU training are denoted in bold. 888 

 

Number of images Performance EU + non-EU Performance EU + EU* 

Training Testing Top-1  Top-5  Top-1  Top-5  

European 
(4706.2 ± 24.4)* 

3139.2 ± 15.1 
444.6 ± 22.2 52.35 ± 2.30% 72.05 ± 2.66% 56.17 ± 2.27% 75.66 ± 2.70% 

East Asian 283.2 ± 5.0 31 ± 6.2 55.78 ± 10.25% 74.56 ± 5.90% 37.77 ± 5.45% 60.13 ± 5.77% 

Latin/Hispanic 257.8 ± 7.0 28.4 ± 4.7 68.86 ± 8.92% 82.56 ± 7.77% 66.16 ± 7.89% 80.51 ± 6.58% 

Middle-East/ 

West Asian 
211.2 ± 6.8 30 ± 5.8 46.76 ± 7.01% 67.59 ± 7.52% 36.10 ± 6.81% 59.67 ± 3.68% 

South Asian 200.2 ± 5.4 18.8 ± 2.7 72.15 ± 12.24% 87.32 ± 10.04% 53.70 ± 14.86% 66.13 ± 13.40% 

Asian Others 170.6 ± 2.4 16.4 ± 4.1 64.66 ± 10.93% 80.06 ± 13.87% 41.64 ± 18.51% 66.84 ± 11.87% 

Sub-Saharan 119 ± 2.7 18.2 ± 3.4 54.23 ± 7.32% 75.49 ± 15.27% 28.91 ± 11.18% 46.55 ± 11.71% 
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North African 64.8 ± 3.2 7.4 ± 1.6 79.64 ± 20.19% 86.64 ± 14.62% 42.71 ± 19.34% 71.64 ± 18.38% 

Native American 63.2 ± 6.8 14.8 ± 1.6 84.55 ± 12.77% 99.09 ± 1.82% 83.94 ± 11.18% 94.65 ± 8.62% 

African Others 53.2 ± 2.0 6.2 ± 2.2 72.78 ± 18.29% 85.00 ± 13.33% 55.56 ± 17.57% 73.33 ± 22.61% 

South-East Asian 51.4 ± 2.0 5.4 ± 1.3 72.12 ± 13.36% 78.81 ± 24.61% 24.40 ± 6.76% 46.83 ± 17.97% 

Others 54.6 ± 2.3 6 ± 2.9 68.71 ± 23.67% 79.43 ± 22.38% 59.00 ± 22.35% 71.57 ± 21.09% 

African American 38.4 ± 4.3 3.8 ± 2.6 77.08 ± 18.04% 87.50 ± 21.65% 59.38 ± 24.00% 69.79 ± 18.49% 

Overall 4706.8 ± 26.7 631 ± 23.8 66.90% 81.24% 49.65% 67.95% 

 889 
 890 
 891 
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