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Abstract: Atherosclerosis is the predominant underlying etiopathology of coronary artery disease.
Changes in plaque phenotype from stable to high risk may spur future major adverse cardiac events
(MACE). Different pharmacological therapies have been implemented to mitigate this risk. Over
the last two decades, intravascular imaging modalities have emerged in clinical studies to clarify
how these therapies may affect the composition and burden of coronary plaques. Lipid-lowering
agents, such as statins, ezetimibe, and proprotein convertase subtilisin/kexin type 9 inhibitors,
were shown not only to reduce low-density lipoprotein levels and MACE but also to directly affect
features of coronary plaque vulnerability. Studies have demonstrated that lipid-lowering therapy
reduces the percentage of atheroma volume and number of macrophages and increases fibrous cap
thickness. Future studies should answer the question of whether pharmacological plaque stabilization
may be sufficient to mitigate the risk of MACE for selected groups of patients with atherosclerotic
coronary disease.
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1. Introduction

Ischemic heart disease (IHD) is the leading cause of death and disability worldwide [1].
Atherosclerosis is the principle underlying the etiopathology of coronary artery disease
(CAD) and IHD. The introduction of intravascular imaging into clinical practice allowed
for the in vivo assessment of CAD, including the mechanism responsible for coronary
atherosclerotic plaque progression and destabilization. By using intravascular modalities,
we are able to detect atherosclerotic plaques, which are at high risk of rapid progression,
leading to subsequent coronary events. However, despite the development of modalities
used to visualize in vivo coronary plaques during angiography, as well as major advances
in both interventional and pharmacological treatment of CAD, treating non-obstructive,
non-culprit vulnerable plaques remains a challenge. Currently, two different treatment
pathways have been proposed: (1) pharmacological therapy and (2) mechanical stabi-
lization of the plaques. Whereas medical therapy is well established and supported by
clinical guidelines, mechanical stabilization of non-culprit, hemodynamically not signif-
icant plaques is still being evaluated in clinical trials. In this review, we will discuss
pharmacological treatment options for atherosclerotic plaques, describe how this treatment
may affect plaque morphology, and summarize clinical trials assessing plaque regression.
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2. Treatment of Atherosclerotic Plaques
2.1. Diagnostic Modalities for Vulnerable Plaque Detection

Hypertension, diabetes, smoking, stress, and pollution may promote plaque forma-
tion [2,3]. The initial steps of atherogenesis include endothelial dysfunction and abnormal
lipid metabolism, which are caused by inflammation. Pathological intimal thickening
(PIT) may transform into an atheroma with the appearance of a lipid pool. Inflammatory
processes catalyze the transformation into a thin cap fibroatheroma (TCFA). TCFA consists
of a necrotic core and a thin fibrous cap infiltrated by macrophages and lymphocytes
and features type I collagen with few or no smooth muscle cells; this is the hallmark of a
vulnerable plaque [4]. Macrophages derived from migrated monocytes or smooth muscle
cells phagocytose oxidized low-density lipoprotein (LDL) to become foamy cells and to
form fatty streaks and lipid cores [5]. TCFA has been initially found most frequently in
pathology specimens obtained from victims of fatal ACS. The introduction of intravascu-
lar imaging allowed for the determination of an in vivo link between features of plaque
vulnerability and adverse cardiac events (Table 1). Intravascular ultrasound (IVUS) was
the first modality to be frequently used in daily clinical practice. IVUS studies linked
positive remodeling and greater plaque burden to unstable CAD [6]. However, because of
its low resolution, IVUS cannot detect a fibrous cap. Thus, the positive predictive value
of IVUS for detecting TCFA is very low [7]. To facilitate the interpretation of the images
of different tissue components, autoregressive spectral analysis was added to IVUS [8].
Virtual histology intravascular ultrasound (VH-IVUS) was pivotal for understanding the
features of plaque vulnerability. Prospective studies such as the PROSPECT, VIVA, and
ATHEROREMO-IVUS revealed that several properties of coronary plaque, including a large
plaque burden, a TCFA, or a defined minimal lumen area (≤4.0 mm2 in the PROSPECT
study), were independent predictors of future major adverse cardiac events (MACE) during
long-term follow-up [9–11].

Table 1. Definitions of most common features of plaque vulnerability.

GS-IVUS VH-IVUS NIRS OCT

Fibroatheroma/Lipid
plaque

Can identify lipid
plaque—so called “soft”
plaque which is described
as an area with low
echogenicity in contrast to
the reference adventitia.

VH-IVUS cannot directly
identify fibroatheroma.
Fibroatheroma is
described as the presence
of 10% confluent necrotic
core with an overlying
layer of fibrous tissue on
3 consecutive frames (1).

Shows probability of lipid as
yellow pixels on chemogram
and lipid core burden index
(LCBI). LCBI can be
calculated in any chosen
segment as the proportion of
yellow pixels to all pixels in
the chosen area multiplied
by 1000. LCBI4mm refers to
the value of LCBI in chosen
4 mm segment of the artery.

Can identify lipid plaque
described as signal-poor
regions with diffuse
borders (lipid pool) and
overlying signal-rich
bands (fibrous caps),
accompanied by high
signal attenuation. Due to
this limitation, it is
frequently not possible to
assess the diameter of the
artery with lipid plaque.

TCFA
GS-IVUS does not have
resolution high enough to
visualize TCFA.

VH-IVUS cannot identify
TCFA directly. TCFA is
described as the presence
of 10% confluent necrotic
core in direct contact with
the lumen on
3 consecutive frames (1).

NA

Lipid plaque with the
minimum thickness of the
fibrous cap less than
65 µm or 80 µm and with
lipid occupying >90◦ in
circumference.

Plaque burden
Percentage of the plaque
area within the entire
vessel wall

Percentage of the plaque
area within the entire
vessel wall

NA NA

Macrophages NA NA NA

Increased signal intensity
within the plaque,
accompanied by
heterogeneous back
shadows

GS-IVUS, greyscale intravascular ultrasound; NIRS, near-infrared spectroscopy; OCT, optical coherence tomogra-
phy; TCFA, thin-cap fibroatheroma; VH-IVUS, virtual histology intravascular ultrasound. Adapted from Legutko
et al. [4]. (1) Necrotic core on VH-IVUS is visible as red pixels, calcium is visible as white pixels.
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The need for even more detailed evaluations of coronary lesions prompted the intro-
duction of a new modality, near-infrared spectroscopy (NIRS). NIRS provides information
on lipid content in the arterial wall and thus shows the presence of lipid-rich plaques by
providing the lipid core burden index (LCBI) [12]. Numerous studies have demonstrated
that a larger LCBI4mm is an independent predictor of future MACE [13,14].

Currently, high-resolution optical coherence tomography (OCT) seems to be the gold
standard for identifying the traits of vulnerable plaques in vivo [15]. Lipid-rich plaques
and TCFA, as defined by a cap thickness < 65 µm, are key features of plaque vulnerability
detected using OCT [16,17]. What is more, in the CLIMA study, macrophages, which are a
marker of inflammation, were associated with a greater incidence of MACE [18].

Coronary CT angiography (CCTA) is widely used in patients with suspected CAD.
This modality may also be useful in the detection of vulnerable plaques [19]. Observational
studies have shown that plaque features detected by CCTA, such as spotty calcification,
positive remodeling, low plaque attenuation, and the napkin sign, may be associated with
an increased risk of adverse cardiac events [20,21]. Similarly, the PROMISE trial showed
that low attenuation, positive remodeling, and the napkin-ring sign were linked with an
increased risk of cardiovascular disease during follow-up [22]. There appears to be a good
correlation between CCTA and OCT in terms of plaque characterization [23,24].

2.2. Approach to Plaque Stabilization

Patients with plaque progression have a noticeably greater risk of future cardiac
coronary events than those with stable plaques [2,25]. The prevention of plaque progression
in the early stages is a feasible method of reducing cardiovascular risk in the future.
Currently, two different treatment pathways have been proposed: (1) pharmacological
therapy and (2) mechanical stabilization of the plaques.

Pharmacological therapy is used for the stabilization of both significant and non-
significant lesions in daily clinical practice worldwide. Currently, pharmacological therapy
is based on medications that reduce cholesterol deposition and inflammation. Reduced
cholesterol deposition is achieved with lipid-lowering agents, such as statins (HMG-CoA
reductase inhibitors), ezetimibe (which inhibit intestinal and biliary cholesterol absorption),
and proprotein convertase subtilisin/kexin type 9 inhibitors (which increase hepatocyte
uptake of LDL-C). Use of those medications is supported by European Society of Cardi-
ology (ESC) guidelines [19,26]. Reduction of inflammation in the cardiovascular bed is
mainly achieved with colchicine (microtubule formation inhibitor) and eicosapentaenoic
acid (modulator dampening inflammatory response). Numerous studies presented in this
review demonstrated the effect of pharmacological therapy on plaque stabilization. Of note,
it should be emphasized that other medications that are beyond the scope of this review
are also used in patients with CAD in order to reduce the risk of MACE. Those medications
include inter alia beta-blockers, angiotensin-converting enzyme inhibitors, antiplatelet
agents, and oral anticoagulation [26,27]. Importantly, several studies demonstrated that an
initial conservative strategy in terms of MACE may be comparable to an initial invasive
strategy. In the COURAGE trial, 2287 patients with stable angina were randomized into
PCI with an optimal medical therapy group or to optimal medical therapy alone [28]. After
4.6 years of follow-up, there were no differences in the composite of death, myocardial
infarction, and stroke between the two groups. However, there was a significant difference
in rates of revascularization between PCI and optimal medical therapy alone arms. Compa-
rable results were presented in the ISCHEMIA trial where 5179 patients were included and
followed up for 3.2 years [29]

Mechanical stabilization is used predominantly for culprit lesions in patients with ACS
as well as for obstructive non-culprit lesions in patients with ACS and chronic coronary
syndrome (CCS). Further research continues to evaluate the mechanical stabilization of
non-culprit, hemodynamically non-significant plaques [30,31].
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3. Statins

Statins reduce the synthesis of cholesterol in the liver and promote LDL receptor
(LDLR) expression at the surface of hepatocytes, which subsequently results in increased
uptake of LDL from the blood and decreased plasma concentrations of LDL- and other
ApoB-containing lipoproteins, including triglyceride-rich particles [32]. High-intensity
statin treatment may reduce LDL levels by up to 50%. Statins have pleiotropic effects
that include the inhibition of oxidation-sensitive inflammatory pathways, the modula-
tion of leukocyte–endothelial cell interactions, and the reduction of inflammatory cy-
tokine levels [33–35]. Statin therapy clearly reduces the risk of MACEs in patients with
CVD [27,36,37].

In 1997, the first randomized trial comparing the progression of atherosclerotic plaques
between patients with and without statin treatment was reported (Table 2) [38]. Only
36 patients were enrolled in the study, but there was a significant reduction in atheroma
volume on IVUS after 36 months of initial therapy (−7% vs. +41%; p < 00.1). In the
ASTEROID trial, an open-label blinded endpoint multicenter trial, 507 statin-naive patients
were recruited [39]. Serial IVUS examinations were performed for 349 patients during the
2-year follow-up. All patients received high-intensity statin therapy (40 mg rosuvastatin)
during the trial period. The authors found a significant change in percent atheroma
volume (PAV) compared to the index procedure (0.79%; 95.5% CI, −1.21% to −0.53%;
p < 0.001) and a significant change in total atheroma volume (TAV) (−12.5 mm3; 95% CI,
−15.1 to −10.5 mm3, p < 0.001) (Figure 1). Similar results were achieved in the IVUS
IBIS-4 trial [40]. This study analyzed the response of non-culprit lesions to treatment with
40 mg rosuvastatin in patients after ST-elevation myocardial infarction (STEMI). The PAV
reduction was −0.9% (95% CI; −1.56 to −0.025, p = 0.007); however, both the percentage of
necrotic core and the number of TCFAs remained the same. Furthermore, in a Japanese
cohort, Takayama et al. reported a 5.1% change in plaque volume in patients receiving
2.5 mg of rosuvastatin daily (the dose of rosuvastatin could increase after 4 weeks to a
maximum daily dose of 20 mg) [41].

Table 2. Studies assessing lipid-lowering therapy on changes in coronary plaque morphology.

Study/Publication Year Study Size Treatment Follow-Up Time Changes in Plaque Composition

IVUS, VH-IVUS

Takagi et al. [38]
1997 36 patients 10 mg pravastatin + diet

vs. diet alone 3 years

Mean change of lumen area: +10 vs.
−9% (p < 0.001)
Mean change of plaque area: −7 vs.
+41% (p < 0.001)

Nissen et al. [39]
ASTEROID Trial
2006

507 patients (349 included
in follow-up) with stable
and unstable ischemic
chest pain

Rosuvastatin 40 mg 2 years

Values compared to baseline
Median PAV decrease: −0.79%
(p < 0.001)
Median change of atheroma volume
in 10 mm prespecified segment with
greatest disease: −5.6 mm3 (p < 0.001)
Median TAV change: −12.5 mm3

(p < 0.001)
63.6% of patients showed regression
of the disease and 36.4% progression
of the disease

Takayama et al. [41]
COSMOS
2009

214 patients (126 included
in follow-up)

Rosuvastatin 2.5 mg
(could be increased after
4 weeks)

76 weeks

Values compared to baseline
Mean PAV change: −5.1% (p < 0.001)
Mean plaque area change:
−21.9 mm3 (p < 0.001)

Nicholls et al. [42]
SATURN
2011

1039 patients with both SA
and ACS

Rosuvastatin 40 mg vs.
atorvastatin 80 mg 24 months

Median PAV change: −1.22 vs.
−0.99% (p = 0.17)
Median TAV change: −6.39 vs.
−4.42% (p = 0.01)
Disease regression (based on TAV):
71.3 vs. 64.7% (p = 0.02)



J. Clin. Med. 2024, 13, 3096 5 of 16

Table 2. Cont.

Study/Publication Year Study Size Treatment Follow-Up Time Changes in Plaque Composition

Kovarnik et al. [43]
HEAVEN
2012

89 patients with SA

Atorvastatin 80 mg +
ezetimibe 10 mg vs.
routine statin therapy
(10 mg atorvastatin in
statin naïve patients)

12 months

Mean PAV change: −0.4 vs. 1.4%
(p = 0.014)
Mean necrotic core change: 1.5 vs.
3.4% (p = 0.18)
Mean calcification change: 1.0 vs.
2.6% (p = 0.18)

Nakajima et al. [44]
ZEUS
2014

95 patients with ACS
Atorvastatin 20mg +
ezetimibe 10 mg vs.
atorvastatin 20 mg

24 weeks

Mean plaque volume change: −12.5
vs. −7.5% (p = 0.06)
Mean vessel volume change: −7.4 vs.
−2.0% (p = 0.04)

Raber et al. [40]
IBIS-4
2015

103 patients with STEMI Rosuvastatin 40 mg 13 months

Values compared to baseline
Mean PAV change: −0.9% (p = 0.007)
Mean TAV change: −13.4 mm3

(p = 0.006)
Mean NC volume change: −0.05%
(p = 0.926)
Mean dense calcium change: 1.28%
(p < 0.001)
Number of TCFA: 124 vs. 116
(p = 0.15)

Tsujita et al. [45]
PRECISE-IVUS
2015

202 patients with SA and
ACS

Atorvastatin + 10 mg
ezetimibe vs. atorvastatin 9–12 months

Median plaque volume change: −5.2
vs. −1.3% (p < 0.001)
Median TAV change: −6.6 vs. −1.4%
(p < 0.001)

• −10.2 vs. −1.3% (p < 0.001) in
ACS group

• −5.0 vs. −1.5% (p = 0.008) in SA
group

Watanabe et al. [46]
CHERRY
2017

193 patients with SA and
ACS

Pitavastatin 4 mg + EPA
1800 mg vs. pitavastatin 4
mg

6–8 months

Median PAV change: −3.7 vs. −1.5%
(p = 0.006)
Median TAV change: −9.3 vs. −1.7
mm3 (p < 0.001)
Median lipid volume change: −3.4 vs.
−1.3 mm3 (p = 0.284)
Median calcification volume: −0.0 vs.
0 mm3 (p = 0.895)

Nicholls et al. [47]
GLAGOV
2018

968 patients with SA Evelocumab 420 mg
(monthly) vs. placebo 76 weeks

Median PAV change: −1.2 vs. 0.6%
(p < 0.001)
Median TAV change: −3.6 vs. −0.8
mm3 (p = 0.04)
Median necrotic core change: 0.13 vs.
0.46% (p = 0.67)
Median dense calcium change: 2.2 vs.
1.4% (p = 0.10)

OCT

Kataoka et al. [48]
2014 275 patients with SA

No statin vs. low statin vs.
high statin (high statin
therapy defined as
atorvastatin >40 mg or
rosuvastatin >20 mg)

Only baseline

Lipid arc: 238 vs. 219 vs. 161 (p = 0.03)
Lipid length: 8.8 vs. 7.5 vs. 5.0 mm
(p = 0.006)
FCT: 74 vs. 91 vs. 116 µm (p < 0.01)
TCFA: 52 vs. 20 vs. 8% (p < 0.001)

Komukai et al. [49]
EASY-FIT
2014

70 patients with UA 20 mg vs. 5 mg
atorvastatin 12 months

Median change in FCT: 69 vs. 17%
(p < 0.001)
Median change in lipid arc: −27% vs.
−8% (p < 0.001)
Decrease in macrophage grade: −38
vs. −24% (p < 0.001)
Median lipid length change: −0.6 vs.
−0.4 mm (p = NS)



J. Clin. Med. 2024, 13, 3096 6 of 16

Table 2. Cont.

Study/Publication Year Study Size Treatment Follow-Up Time Changes in Plaque Composition

Nishiguchi et al. [50]
ESCORT
2017

70 ACS patients (53
included in final analysis)

4 mg pitavastatin from
baseline vs. 4 mg
pitavastatin 3 weeks after
baseline

3 weeks and 36
weeks

Values given for OCT done after
3 weeks
Median change in minimum FCT: 20
vs. −6 um (p < 0.05)
Median change in maximum lipid arc:
5 vs. −5 (p = NS)
Median change in lipid length: 0 vs.
0.6 mm (p = NS)

Raber et al. [51]
IBIS-4
2019

103 patients with STEMI Rosuvastatin 40 mg 13 months

Values compared to baseline
Mean minimum cap thickness change:
21.41 um (p = 0.008)
Mean cap thickness change: 69.26 um
(p < 0.001)
Mean macrophage lines arc change:
−3.22 (p < 0.001)
Mean lipid arc change: −12.49
(p = 0.013)

Kuroda et al. [52]
2019

48 patients with SA and
ACS

Rosuvastatin 10 mg + 1800
mg EPA vs. rosuvastatin
2.5 mg

1 year

Median change in lipid length: −0.2
vs. 0.8 mm (p < 0.05)
Median change in lipid arc: −2 vs. 19
(p < 0.05)
Median change in lipid index: −45 vs.
217 (p < 0.05)
Median change in macrophage grade:
−16 vs. 18 (p < 0.05)

NIRS

Kini et al. [53]
YELLOW
2013

87 patients with SA
Intensive statin therapy
(40 mg rosuvastatin) vs.
standard of care

7 weeks Median change in LCBI4 mm: −24.4 vs.
5.4% (p = 0.02)

Combined modalities

Raber et al. [54]
PACMAN-AMI
2022

300 patients with ACS 150 mg alirocumab
(bi-weekly) vs. placebo 52 weeks

Median PAV change: −2.13 vs.
−0.92% (p < 0.001)
Median TAV change: −26.12 vs.
−14.97 mm3 (p < 0.001)
Median LCBI change: −29.3 vs.
−12.38 (p = 0.004)
Mean FCT change: 90.95 vs. 62.36 um
(p = 0.03)
Mean angular extension of
macrophages change: −25.98 vs.
–15.95 (p < 0.001)

Nicholls et al. [55]
2022

161 patients with NSTEMI
(79 patients with IVUS
analysis)

Evelocumab 420 mg
(monthly) vs. placebo 52 weeks

Median minimum FCT change: 42.7
vs. 21.5 um (p = 0.015)
Median maximum lipid arc change:
−57.5 vs. −31.4 (p = 0.04)
Median lipid length change: −5.8 vs.
−3.3 mm (p = 0.02)
Mean PAV change: −2.29 vs. −0.61
(p = 0.009)
Mean TAV change: −19.0 vs. −8.9
mm3 (p = 0.04)

If not stated otherwise, values comparing treatment groups at follow-up. ACS, acute coronary syndrome; EPA,
eicosapentaenoic acid; FCT, fibrous cap thickness; IVUS, intravascular ultrasound; LCBI, lipid core burden index;
NC, necrotic core; NIRS, near-infrared spectroscopy; NSTEMI, non-ST segment elevation myocardial infarction;
OCT, optical coherence tomography; PAV, percentage atheroma volume; SA, stable angina; STEMI, ST-segment
elevation myocardial infarction; TAV, total atheroma volume; TCFA, thin cap fibroatheroma; UA, unstable angina;
VH, virtual histology.
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Figure 1. Major effects of lipid-lowering therapy on coronary plaque morphology. FCT, fibrous
cap thickness.

Not only is starting therapy with statins crucial for CAD patients, but the dose and
type of statins are also important. A trial including more than 1000 patients who had
serial IVUS measurements performed at baseline and after 104 weeks demonstrated that
the TAV was lower with rosuvastatin therapy (40 mg) than with atorvastatin therapy
(80 mg) (−6.39 mm3; 95% CI, −7.52 to −5.12 vs. −4.42 mm2; 95% CI, −5.98 to −3.26;
p = 0.01) [42,56]. PAV was not different between the two groups (0.99% vs. 1.22%; p = 0.17),
and both agents induced plaque regression in most patients (63.2% vs. 68.5%, p = 0.02).
However, these results demonstrated that plaque progression occurred in approximately
one-third of the patients, regardless of the type or dose of statin. Further analysis of
these results demonstrated that high blood pressure, diabetes, increased levels of apoB,
and decreased levels of HDL-C were associated with ongoing plaque progression despite
adequate statin therapy [57]. In another study comparing pravastatin (40 mg) with ator-
vastatin (80 mg), the latter significantly reduced the PAV and TAV [58]. Notably, coronary
atherosclerosis progressed in the pravastatin group but not in the atorvastatin group.

Pooled analysis of angiographic lipid-lowering trials before the era of intravascular
imaging showed that patients had a 22% to 34% reduction in cardiac events [59]. In
contrast, small angiographic regression of atherosclerotic lesions in these trials was not
paired with event reduction; therefore, it was unlikely that angiographic regression itself
caused such a large clinical benefit. Indeed, as demonstrated by a large number of studies,
statins not only cause plaque regression but also modify features of plaque vulnerability.
Authors in the previously described SATURN trial using VH-IVUS analysis observed
that high-intensity statin therapy was associated with small reductions in fibrous and
fibrofatty tissue, with an increase in dense calcium and without influence on necrotic core
volume [56,60]. These results are consistent with a meta-analysis of nine statin treatment
studies that demonstrated a reduction in fibrous plaque volume as well as an increase in
dense calcium volume [61]. Notably, in this meta-analysis, the authors failed to observe
changes in fibro-fatty and necrotic core volumes.

Both OCT and NIRS provided further insight into changes in vulnerable plaque
composition in patients treated with statins. Katoka et al. showed that the coronary
plaques of patients receiving statin therapy have a smaller lipid arc and greater fibrous
cap thickness [48]. Several OCT clinical trials and meta-analyses confirmed that high-
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intensity statin treatment is associated with greater fibrous cap thickness and a reduced lipid
arc [4,49,62]. Furthermore, Chia et al. reported that patients on established statin therapy
had fewer plaque ruptures than did statin-naive patients (8 vs. 33%; p = 0.03) [63]. In the
IBIS-4 trial, 103 patients with STEMI underwent imaging with IVUS and OCT of two non-
infarct coronary arteries [51]. All of the patients were treated with high-dose rosuvastatin.
At the 13-month median follow-up, the authors found that fibrous cap thickness increased,
whereas both the macrophage line arc and lipid arc decreased. Moreover, 9 out of 13 TCFAs
from baseline regressed to non-TCFAs, and only 2 out of 178 non-TCFAs progressed to a
TCFA. Finally, Nishiguchi et al. analyzed 53 patients who were randomized to either the
early or late pitavastatin group (4 mg of pitavastatin in both groups; one group started
receiving statins at baseline, and the second group started receiving statins 3 weeks after
the baseline procedure). OCT was performed at baseline and 3 and 36 weeks after the
baseline procedure. Between baseline and the 3-week follow-up, fibrous cap thickness
increased in the early statin group and decreased in the late statin group (8.3% vs. −5.8%
increase; p < 0.001).

Notably, a recent OCT study demonstrated that predictors of favorable vascular
response to statin therapy included a large thin-cap area, a high macrophage index, and
a layered plaque phenotype [64]. In conclusion, OCT studies demonstrated that statin
therapy may not only increase fibrous cap thickness and decrease the lipid arc but also
cause a reduction of macrophages.

The YELLOW trial assessed the impact of short-term intensive statin therapy (40 mg
rosuvastatin) on intracoronary plaque lipid content detected using NIRS [53]. Patients
were randomized to either high-dose statin treatment or standard-of-care statin treatment.
After 7 weeks, patients in the intensive statin group had a greater reduction in the LCBI4mm
than did those in the standard therapy group (median reduction −149.1 vs. 2.4; p = 0.01).
Notably, after this short follow-up, only changes in the LCBI4mm were observed without
any changes in plaque burden. Nevertheless, this study showed that even short-term statin
therapy may decrease plaque vulnerability.

3.1. Ezetimibe

Ezetimibe inhibits intestinal uptake of dietary and biliary cholesterol at the level of the
brush border of the intestine without affecting the absorption of fat-soluble nutrients [32].
Ezetimibe has a different metabolic pathway than statins—it reduces cholesterol uptake
and delivery to the liver, which subsequently upregulates LDLR expression and hence
increases the clearance of LDL from the blood. Ezetimibe decreases LDL levels by an
additional 21–27% when added to statin therapy [65]. Importantly, combining ezetimibe
with statins reduces MACE rates [19,27,66].

Similarly to statin trials, intravascular ultrasound studies assessed plaque modification
by adding ezetimibe to statin therapy. In the PRECISE-IVUS trial, 202 patients were
randomized to receive either atorvastatin therapy or atorvastatin with 10 mg ezetimibe
therapy. Dual therapy significantly decreases the PAV (−1.4% vs. −0.3%; p = 0.001) at the
1-year follow-up [45]. Moreover, a significantly greater number of patients on dual therapy
experienced coronary plaque regression (78% vs. 58%; p = 0.004). Additionally, in the
HEAVEN VH-IVUS trial, statin and ezetimibe as opposed to statin monotherapy decreased
the PAV (−0.4% vs. +1.4%; p = 0.014) compared with statin monotherapy; however, there
were no significant changes in plaque composition [43].

Conversely, the ZEUS trial did not observe significant changes in the PAV between
patients receiving statin and ezetimibe therapy and those receiving statin therapy alone
(−12.5% vs. −7.6%; p = 0.06) [44]. However, only 95 patients were recruited for the study,
and follow-up IVUS was performed after 6 months, which could have affected the results.
A small OCT study revealed increased fibrous cap thickness and a decreased lipid angle
with fluvastatin and ezetimibe compared with fluvastatin alone [67].
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3.2. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors

PCKS9 inhibitors reduce plasma levels of PCKS9, which substantially lowers LDL
levels [32]. These drugs reduce LDL levels by 60% alone or up to 85% when combined with
statins and ezetimibe and reduce the MACE rate by up to 15% [32,68].

The largest trial assessing coronary plaque modification when using PCSK9 inhibitors
was the GLAGOV trial [47]. Altogether, 968 patients were randomly allocated to evolocumab
and statins or placebo and statins. Angiographic follow-up with IVUS was performed at
76 weeks (331 patients were eligible for IVUS measurements). PAV increased by 0.05% in
the placebo group and decreased by 0.95% in the evolocumab group (p < 0.01). Evolocumab
induced plaque regression in 64.3% of patients compared to 47.3% of patients in the placebo
group (p < 0.01). Notably, the authors observed a direct relationship between lowered
LDL levels and plaque regression even at LDL levels as low as 20 mg/dL. This indicates
that they did not find a threshold for lipid-lowering therapy, at which point, further LDL
lowering was not beneficial. Of the 968 patients in the GLAGOV trial, 331 had VH-IVUS
measurements [69]. Although the authors did not observe differences in plaque compo-
sition between the two treatment groups, they observed an inverse correlation between
changes in LDL cholesterol levels and plaque calcification (r = 0–15; p < 0.001). The same
observation was made in statin studies where statin treatment was associated with an
increase in plaque calcification [34,70,71]. Thus, it is suggested that plaque calcification
may be due to lipid-lowering effects and not due to the pleiotropic properties of statins.

Whereas patients included in the GLAGOV trial had stable angina, the PACMAN-
AMI trial included patients with myocardial infarction (MI) [54]. Among the 300 patients
included in the study, those who were randomized to the alirocumab with optimal medical
therapy (OMT) group had greater PAV reduction than patients in the placebo with OMT
group (−2.13% vs. −0.92%; p < 0.001) at 52 weeks of follow-up. Plaque regression is
typically greater in ACS patients than in stable patients, which is also consistent with greater
plaque burden at baseline in patients who present with MI. The PACMAN-AMI study
used three modalities to evaluate coronary plaques. The change in fibrous cap thickness
was greater in the alirocumab group (62.67 µm vs. 33.19 µm; p = 0.001), and there was a
greater reduction in the mean angular extension of macrophages in alirocumab-treated
patients (−25.98 vs. −15.95; p < 0.001). However, the study failed to show differences in
the LCBI4mm (−79.42 vs. 37.60; p = 0.006). OCT was also used in a study by Nicholls et al.,
in which patients who underwent NSTEMI were randomized to either the evolocumab
group or the placebo group [55]. Those who were treated with evolocumab had a greater
increase in the minimum fibrous cap thickness, a greater decrease in the maximum lipid
arc, and a greater decrease in the macrophage index.

Recently, inclisiran was introduced for lipid-lowering therapy and was shown to
reduce LDL levels by 50% [72]. The effect of long-term follow-up on MACE reduction in
a large population is being assessed. Inclisiran is a small interfering RNA that prevents
PCSK9 production [34].

3.3. Omega-3 Fatty Acids

The mechanism of action of eicosapentaenoic acid (EPA) is poorly understood; how-
ever, it may be partially related to its ability to interact with peroxisome proliferator-
activated receptors and decrease the secretion of ApoB [32]. In the CHERRY trial, Watanabe
et al. recruited 193 patients and divided them into pitavastatin or pitavastatin with EPA
(1800 mg daily) groups [46]. After 6–8 months of follow-up, EPA had a greater positive
effect on the TAV reduction, as assessed by IVUS. Similar results were demonstrated in the
study by Niki et al., with statistically significant reductions in lipid volume as well as an
increase in fibrous plaque volume during follow-up in patients with EPA treatment [73]. In
an OCT study, patients administered rosuvastatin with EPA had a greater reduction in the
lipid index and macrophages than patients administered rosuvastatin alone [52]. However,
in this study, patients received different doses of statins. Those who were administered
EPA also received 10 mg of rosuvastatin, whereas those in the control group received only
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2.5 mg of rosuvastatin. Another OCT study showed that EPA or EPA with docosahexaenoic
acid (DHA) therapy in addition to strong statin therapy did not significantly increase FCT
in non-culprit plaques compared with strong statin therapy alone [74]. In this study, a
relatively small number of the 130 patients were divided into three groups: statin; statin
with high-dose EPA; and statin with EPA and DHA. In a recent study, icosapent ethyl
reduced MACE risk regardless of lipoprotein levels [75]. Finally, in the CCTA trial group,
patients receiving 4 g of icosapent ethyl daily in addition to OMT had greater plaque
regression than patients receiving OMT only [76].

4. Colchicine

Colchicine is an old medication, and its anti-inflammatory properties were recognized
even in the New Kingdom Era in Egypt (circa 1500 years BC) [77]. It inhibits microtubule
formation and the polymerization of tubulin and hence suppresses the inflammatory re-
sponse [2]. In the vascular bed, colchicine reduces the migration, adhesion, and activation
of neutrophils in inflamed endothelium, suppresses the assembly and activation of NLRP3,
and reduces inflammatory cytokines that are connected with the development of vulnerable
plaques [78,79]. Colchicine reduces MACE rates in patients with CAD [80]. In the COLCOT
trial, 4745 ACS patients were randomized to receive low-dose colchicine (0.5 mg daily;
2366 patients) or placebo (2379 patients). After a median follow-up of 22.6 months, the
primary endpoint (death from cardiovascular causes, resuscitated cardiac arrest, MI, stroke,
and urgent revascularization for angina leading to PCI) occurred in 5.5% of patients in
the colchicine group vs. 7.1% of patients in the placebo group (p = 0.02). Notably, gas-
trointestinal events were less common than expected. The ESC guidelines recommend
colchicine for secondary prevention of cardiovascular disease (class IIb) [27]. In the CCTA
study, colchicine resulted in a significant decrease in low attenuation plaque volume as well
as in high-sensitivity CRP levels [81]. No difference in total atheroma volume reduction
was observed (42.3 mm3 vs. 26.4 mm3; p = 0.28). In the ongoing COCOMO-ACS study,
64 patients with or without colchicine therapy after MI will be evaluated with OCT at
baseline and after 18 months [82]. Nevertheless, further studies are warranted to assess the
influence of colchicine on coronary plaque progression.

4.1. Other Medications

Inhibition of IL-1 may be achieved by using anakinra receptor antagonists [83].
Anakinra was shown to decrease the area under the curve (AUC) of CRP levels and
decrease the death rate and new onset or worsening of heart failure in patients after
STEMI [84]. Tocilizumab, an anti-IL-6R antibody, attenuated the inflammatory response
and PCI-related troponin release in NSTEMI patients [85]. However, tocilizumab causes
an increase in triglycerides. Currently, ziltivekimab is assessed in the ZEUS trial [86]. The
human monoclonal antibody canakinumab, which targets interleukin-1β, was evaluated in
the CANTOS trial. The study involved 10,000 patients who were followed for 3 years [87].
The use of canakinumab at a dose of 150 mg every 3 months led to a 15% reduction in
the rate of MACEs compared to that in the placebo group. Importantly, this effect was
independent of decreasing lipid levels. The CANTOS trial demonstrated that inflammation
inhibition may prevent atherosclerosis-related events in humans. Patients treated with
canakinumab had a lower incidence of cancer, particularly a decrease in mortality from
lung cancer. However, an increase in the infection rate was observed in patients who
received canakinumab. Methotrexate is another drug that has been tested for its ability
to reduce the incidence of CVD. However, a study involving low-dose methotrexate did
not show a reduction in CRP levels or coronary events [88]. To our knowledge, up to date,
there are no in vivo studies assessing changes in plaque morphology when using those
agents. Interleukin 6 is secreted by macrophages, monocytes, fibroblasts, and endothelial
cells. It has both pro-inflammatory and pro-thrombotic properties [3]. It may promote both
atherosclerosis and plaque vulnerability. Similarly, interleukin-1β may play a role as one of
the key steps in the inflammatory signaling process. In vitro evidence suggests that this
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cytokine may act as a regulatory protein in the atherosclerotic process [89]. The role of
inflammatory pathways in atherosclerosis was described in detail by Soehnlein et al. and
Dimitroglou et al. [3,90].

4.2. Mechanical Stabilization

ACS most commonly arises from vulnerable plaques [4]. Thus, the concept of preven-
tive PCI of non-flow-limiting highly vulnerable plaques has emerged in recent years. Stone
et al. in their study randomized 182 patients with angiographically non-obstructive lesions
with plaque burden greater than 65% to either PCI (with bioresorbable vascular scaffold)
with optimal medical therapy or optimal medical therapy alone [30]. After 25 months of
follow-up, patients in the PCI group had a greater minimal lumen area. However, this
study was not powered for clinical outcomes. Moreover, no other features of plaque vulner-
ability such as TCFA were assessed in this study. In the recently published PREVENT trial,
1606 patients with non-flow-limiting lesions (assessed with fractional flow reserve) and
features of plaque vulnerability were randomly assigned to PCI or OMT alone [31]. In this
trial, the assessment of features of plaque vulnerability included the use of IVUS, NIRS, and
OCT. At 2 years follow-up, patients in the PCI group had a lower risk of MACE. Howbeit,
in most of the patients IVUS was used, and thus vulnerable plaque was mostly recognized
by high plaque burden and not other features such as TCFA or lipid plaque. Further studies
evaluating mechanical stabilization in non-flow-limiting lesions are underway.

5. Conclusions

Various studies have established the role of lipid-lowering therapies and anti-inflammatory
therapies in mitigating plaque progression or even inducing plaque regression. Further-
more, increasing the intensity of statin therapy or combining different agents can achieve
better results in terms of changes in plaque composition. New imaging modalities have
allowed us to better understand in vivo changes in plaque morphology and how these
changes may influence the MACE rate. In the near future, we will determine whether
these modalities are more frequently used to assess patients’ coronary plaque vulnerabil-
ity risk and hence tailor targeted therapy. Future studies should answer the question of
whether plaque stabilization by medical treatment alone without invasive procedures may
be feasible for selected groups of patients.
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