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MOTIVATION This study wasmotivated by the question of how to improve the proteomic analysis of circu-
lating antibodies, a class of molecules that we investigate because of their high relevance to disease diag-
nosis and therapy. Our aim was to determine to what extent methodological developments in plasma pro-
teomics in the field of peptide fractionation are capable of improving the detection of antibody-related
peptides by bottom-up proteomics. In particular, the study focused on the detection of antibody variable
region peptides.
SUMMARY
The polyclonal repertoire of circulating antibodies potentially holds valuable information about an individual’s
humoral immune state. While bottom-up proteomics is well suited for serum proteomics, the vast number of
antibodies and dynamic range of serum challenge this analysis. To acquire the serum proteome more
comprehensively, we incorporated high-field asymmetric waveform ion-mobility spectrometry (FAIMS) or
two-dimensional chromatography into standard trypsin-based bottom-up proteomics. Thereby, the number
of variable region (VR)-related spectra increased 1.7-fold with FAIMS and 10-fold with chromatography frac-
tionation. To match antibody VRs to spectra, we combined de novo searching and BLAST alignment. Valida-
tion of this approach showed that, as peptide length increased, the de novo accuracy decreased and BLAST
performance increased. Through in silico calculations on antibody repository sequences, we determined the
uniqueness of tryptic VR peptides and their suitability as antibody surrogate. Approximately one-third of
these peptides were unique, and about one-third of all antibodies contained at least one unique peptide.
INTRODUCTION

Circulating antibodies in serum and other body fluids represent a

valuable source of information about an individual’s immune

state in response to infection, cancer, or an autoimmune dis-

ease. As a component of the adaptive immune system, B cells

possess the capacity to initiate targeted immune responses

against pathogens through the production of antibodies that

bind specifically with these antigens. Genetic recombination

and somatic hypermutation enable the immune system to pro-

vide a suitable antibody against a large number of antigens

based on a comparatively modest number of germline genes.

In theory, this mechanism allows for creating a variety of about

1015 distinct antibody clones. However, the actual number of B

cell clones within a human is estimated to be around 109.1 Anti-

bodies are secreted by activated plasma cells, and the sequence

of the antigen-binding site in the released antibodies corre-
Cell Reports Methods 4, 100795, J
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sponds to the B cell receptor (BCR) sequence of the precursor

cell.2 Nonetheless, as only a fraction of all B cells are activated

by antigens and subsequently produce antibodies, the immune

repertoire of membrane-bound BCR does not completely and

sufficiently represent that of the soluble antibodies circulating

in the bloodstream.3 As a result, BCR sequencing alone falls

short in providing quantities of circulating antibodies. Thus,

additional methods for functional antibody quantification are

required.4

Over time, the analysis of antibodies has progressed to tech-

niques allowing genetic sequencing of membrane-bound anti-

bodies and circulating antibody repertoires.3 Currently, the

sequencing of BCRs is being accomplished to an ever-

increasing extent by high-throughput nucleic acid sequencing

techniques.5 A subset of these techniques is capable of

sequencing of antibody repertoires at the single-cell level6 and

preserving the pairing information of heavy and light chains.7
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While all these techniques are powerful in mapping antibody rep-

ertoires up to a depth of millions of sequences, they merely

provide information about the antibody-secreting cells, such as

peripheral blood mononuclear cells (PBMCs), rather than infor-

mation about the antibodies that are actually secreted and circu-

lating.3 Consequently, information about antibody concentra-

tions cannot be acquired, and these techniques cannot be

directly applied to cell-free materials, such as serum. More

recently, technical improvements of mass spectrometry (MS)-

based proteomics have enabled the analysis of secreted and

circulating antibodies.8 This can be achieved on the basis of anti-

body databases derived fromRNA repertoire sequencing. If RNA

sequencing is not possible, e.g., in cell-free samples such as

serum or plasma, mass spectrometric methods can also facili-

tate the de novo sequencing of antibodies, although this

approach currently primarily assesses the most abundant anti-

bodies.8,9 When analyzing antibodies with bottom-up prote-

omics, proteins are first cleaved into peptides, usually by en-

zymes. Hence, these peptides serve as surrogates for the

associated proteins, and the presence and quantity of the actual

precursors are derived through bioinformatic data analysis. As

not all peptide sequences can be clearly linked to their corre-

sponding protein sequences, unambiguous identification and

quantification may not always be feasible. This challenge is

particularly significant in instances involving protein groups or

classes with a high degree of sequence homology, such as anti-

bodies. Nonetheless, bottom-up proteomics is widely used

because the technique is highly sensitive, provides accurate

quantification, and is easy to perform and to automate. It

is, therefore, well suited for large cohort studies or routine

measurements.

The proteomics analyses of antibodies depends also on the

availability of the antibody sequences information. If the ex-

pected antibody sequences have already been determined, a

database-driven approach can be used, where the acquired

mass spectra are matched against database-derived spectra.

This approach is primarily carried out to ascertain the presence

and quantify the abundance of antibodies. Chueng et al. demon-

strated an analysis of circulating polyclonal antibodies by

combining next-generation sequencing, to generate a sequence

database, with MS-based proteomics for data acquisition.10 Lin-

desmith and co-workers used that approach to determine the

quantitative response of antibody repertoire related to human

norovirus vaccination. This information provided the basis to

select antibody clonotypes for epitope and structural analysis,

which in turn led to the discovery of a neutralizing antibody.11

Other researchers, along with our group, have applied this

approach to quantify M-protein—a patient-specific antibody

with characteristically high abundance in multiple myeloma

(MM) patients—to monitor disease progression and treat-

ment.12–14 If the proteomics analysis is applied on antibodies

with unknown sequences and no database can be generated,

de novo sequencing becomes necessary. In this approach, the

amino acid sequence of the variable region (VR) is directly

derived from the acquired spectra. Peng and co-workers

showed sequencing of the VR of a monoclonal antibody with

99% accuracy.15 McDonald and co-workers demonstrated a

workflow for sequencing M-protein light and heavy chains
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directly from MM patient samples, without relying on BCR

sequencing.16 Bondt et al. combined (protein-centric) top-

down and (peptide-centric) bottom-up experiments to profile

the immunoglobulin (Ig) G1 repertoire in serum. This method al-

lowed for the quantification and sequencing of individual Ig

clones.9 Most recently, Peng and co-workers used a multi-

enzyme bottom-up proteomics approach to sequence the light

and heavy chain of an M-protein. They validated the accuracy

of the sequence through top-down proteomics.17

The minimally invasive nature of blood sampling and the

routine collection of serum and plasma samples in hospitals

make peripheral blood samples a common choice for clinical

studies. Nevertheless, the proteome analysis of serum samples

is challenging because of the substantial dynamic range of the

serum proteome. Igs, as a collective group, and specifically

IgG as the most abundant class, constitute a quantitatively

significant proportion of the overall plasma protein content.

However, the concentration of individual antibodies can vary

over several orders of magnitude (ranging from 10 g/L to

below 10 mg/L). According to calculations conducted by Lav-

inder et al., the polyclonal antibody concentration in serum

required for antigen elimination is estimated to be approximately

10 mg/L.3 This estimation further indicates that the concentration

of individual antibodies is roughly a million times lower in con-

centration than that of highly abundant plasma proteins. Tech-

niques to overcome this problem in MS-based proteomics are

depletion of high-abundant (and middle-abundant) proteins,18,19

affinity enrichment strategies in cases where the analysis is

focused on a small and specific set of proteins,20 or multi-dimen-

sional fractionation techniques.21–23 In the latter techniques,

peptides undergo separation through a sequence of at least

two orthogonal chromatographic separation techniques. As a

result of enhanced chromatographic separation, low-abundant

peptides are better separated from high-abundant peptides,

which in turn reduces suppression and improves detection of

low-abundant peptides. Improvements of sensitivity can further

be attributed to the fact that an increasing number of fraction-

ations enables a higher input amount of sample material for anal-

ysis. Furthermore, peptides can also be separated using ion

mobility in the gas phase of the mass spectrometer. In ion

mobility, the spatial shape of the peptide ion is decisive for sep-

aration, which is defined by length, side chains, and charge of the

amino acid chain. Ion-mobility fractionation is conducted in the

gas phase, hence after chromatographic separation and ioniza-

tion. Consequently, the same limitations concerning the amount

of sample that can be loaded and suppression during ionization

apply as for measurements without ion mobility. Improvements

of detection due to the inclusion of ion mobility can thus be

attributed to the reduction in the complexity of the peptide

mixture and the better separation from background ions. Several

studies have shown that employing high-field asymmetric wave-

form ion-mobility spectrometry (FAIMS) has resulted in height-

ened sensitivity, improved signal-to-noise ratios in peptide

quantification, and an increased number of peptide and protein

identifications.24–27

In this study, we aimed to improve the detection of VR pep-

tides using gas-phase ion-mobility (FAIMS) and preparative

high-pH liquid chromatography (LC) peptide fractionation (2D).



Figure 1. Experimental overview
(A) Flowchart of the sample preparation. Samples were analyzed using three different methods: 1D, FAIMS, and 2D. The number of runs and the LC-MS

acquisition time are indicated in red for each method.

(B) Flow chart of data analysis.

(C) In silico analysis was conducted of three datasets (50 3 50,000, 20 3 1 million, and 200 3 100,000) obtained from a public repository (OAS).
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The study was conducted on eight serum samples from four MM

patients, collected during their treatment or remission phases.

The M-protein amino acid sequences were used as reference

sequence, but otherwise the immune repertoire was unknown.

To effectively analyze VR peptides with a priori unknown se-

quences, we combined and evaluated two data-processing

steps: firstly, the de novo sequencing of acquired spectra, and,

secondly, the alignment of these sequences with Ig germline

sequences.

Furthermore, we conducted an analysis to determine the

presence of unique VR peptides suitable as proxies for specific

antibody proteoforms. Through in silico analysis based on data-

sets with up to �20 million Ig sequences, sourced from the

Observed Antibody Space repository,28,29 we built a reference

database of tryptic VR peptides. This reference base was then

used to compare characteristics of the peptides acquired

through experimentation and those generated in silico. This

approach provided an objective and systematic estimate of

the potentialities and constraints associated with analyzing

the circulating antibody repertoire via a trypsin-based bot-

tom-up proteomic approach.
RESULTS

Mapping of the common serum proteome
We digested 2 mL of eight serum samples taken at two time

points from four patients and measured from each a volume

corresponding to 6 nL of initial serum (estimated 420 ng of pro-

teins) by direct LC-MS (1D) and LC-FAIMS-MS (FAIMS) using a

90-min LC gradient in a method with approximately 120-min

total run time. Further, half of the digest (1 mL, corresponding

to estimated 70 mg of protein) was fractioned by high-pH

reversed-phase chromatography into 24 fractions. Subse-

quently, 20% of each fraction was measured individually using

LC-MS with a 30-min gradient (2D). This method had an overall

run time of approximately 60 min. Hence, for 2D, the total sam-

ple amount that could be analyzed was roughly 303 larger than

that for 1D, and data acquisition took around 123 longer (Fig-

ure 1). A total of 345,000, 421,000 and 2.4 million MS/MS

spectra were acquired in the 1D, FAIMS, and 2D datasets,

respectively. These acquisitions resulted in the identification

of 296, 310, and 890 proteins through an MS/MS database

search on the common human proteome, with the thresholds
Cell Reports Methods 4, 100795, June 17, 2024 3
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of a false discovery rate (FDR) of 1% maximum and at least two

peptides per protein.

All subsequent analyses were carried out on the basis of pep-

tide-spectra-match (PSM)-centric PEAKS X peptide reports.

This involved a database search with an FDR threshold of

maximum 1% and a PEAKS X de novo score threshold of 80.

To show the covered depth of the serum proteome, the corre-

sponding precursor proteins were assigned to the expected

serum concentrations according to the information of the Human

Plasma Protein Database (HPPdb).30,31 In total, 275, 303, and

729 proteins could be matched to corresponding database en-

tries for datasets 1D, FAIMS, and 2D, respectively. The median

HPPdb concentration of all proteins was similar between 1D

and FAIMS measurements (1 and 0.53 mg/L, respectively), and

approximately 25-fold lower in 2D samples (39 mg/L). Notably,

the median HPPdb concentrations of proteins present across

all samples dropped from 24 and 19 mg/L in 1D and FAIMS,

respectively, to 209 mg/L in 2D samples. This observation indi-

cated a greater than 100-fold sensitivity increase in measuring

reproducibly low-abundant serum proteins through the 2D-LC-

MS approach (Figure 2A). FAIMS resulted in a median increase

of 1.14 times (+14%) more uniquely identified peptides. Further-

more, the application of chromatographic fractionation (2D)

increased the overall number of peptide identifications by about

2.7-fold (+171%). The count of PSM increased by FAIMS

1.3-fold and by 2D 5.3-fold. We further categorized the hits

from the database search based on their precursors. These

were grouped into peptides derived from high- or medium-abun-

dance plasma proteins (H/MAPP), Igs (primarily germline se-

quences present in the Uniprot/Swissprot database), and low-

abundance plasma proteins (LAPPs). The proportions of the

peptide groups (with H/MAPP accounting for 68%–69%, Ig for

12%, and LAPP for 17%–18%) remained consistent regardless

of the fractionation technique used. Consequently, improve-

ments in the number of identifications attributable to LAPPs

stemmed from the overall increased number of acquired

spectra, rather than a selective enrichment process (Figure 2B;

Table S1). The average sequence coverage of the specific

M-proteins used as reference antibodies did not show an in-

crease with the utilization of FAIMS (gain: 1.02, p = 0.741). How-

ever, a relative increase of 40% (p = 0.0067) was observed when

employing the 2D technique (Figure S1; Table S2). The distribu-

tion of PSMs from the database search across FAIMS compen-

sation voltage (CV) fractions demonstrated that most PSMswere

identified within FAIMS fraction �50 V. For the 2D method, the

majority of peptide identifications were concentrated in the

mid-range and particularly in the second quarter of the 2D frac-
Figure 2. Results of MS/MS database search (plasma proteome mapp

(A) Waterfall plots of the human plasma proteome, with protein abundances (obtai

against protein abundance rank.

(B) Boxplots of the number of identified peptides, including all peptides (dark gray

in red), peptides originating from antibodies (IG, in yellow), and peptides from

correspond to the first and third quartiles, and the whisker extends from the hin

interquartile range.

(C) Distribution of the number of peptide-spectramatches (PSMs) identified in 1D,

categorized by peptide charge and peptide length. PSM counts represent the su
tionation. For the FAIMS approach, the numbers and proportions

of higher-charged (>2+) and shorter peptides (<12 aa) were

lowest in fraction �35 V and increased progressively with a

rise in negative CV. For the 2D approach, peptides in the earlier

fractions (first quarter) were primarily of low charge (2+) and short

length (<12 aa), while later fractions showed a more equal

distribution. Interestingly, longer peptides (>18 aa) were most

frequently found in the center of the fractionation runs, with their

frequency decreasing in later eluting fractions (Figure 2C).

Assignment of spectra to variable antibody regions
In addition to theMS/MSdatabase searches, we conducted a de

novo search using the spectra of the three datasets. All further

analyses included de novo hits with a PEAKS X de novo score

>80 (most stringent export setting in de novo software PEAKS

X). As the de novo search method does not directly provide an

FDR estimate comparable to the database search, we indirectly

assessed the de novo search by comparing PSMs of both

methods on a confident set of reference spectra. We defined

confident spectra as those that, on the basis of the database

search, met the two criteria of having an FDR < 1%and being as-

signed to a high- or middle-abundant plasma protein. The PSMs

identified in the two searches were compared on three different

levels: (1) exact sequence correspondence, (2)R90% sequence

similarity (by Levenshtein distance relative to sequence length),

or (3) recovery of the initial gene identifier by a subsequent

BLAST search of the de novo hit. Sequencing of peptides was

consistent to a degree of >90% for short peptides (7–10 aa)

above de novo score 80 in every of the three aspects (exact, sim-

ilarity, alignment). With increasing peptide length, the frequency

of deviating results increased, most distinctly in the context of

exact sequence comparison. For instance, regarding peptides

10–12 aa long acquired by the FAIMSmethod, the average exact

correspondence was �82% at de novo score level 80 and the

threshold of 90% exact correspondence was first exceeded

above de novo score level 95. In contrast, the assessment based

on similarity relative to sequence length was more robust and

demonstrated an average true-positive rate of over 90%, even

for long peptides (16–39 aa) (Figure S2). For further downstream

analysis, we applied a peptide-length-dependent de novo score

threshold, resulting in an estimated 90% average sequence

conformity.(Table S3).

BLAST alignment was evaluated using tryptic peptide se-

quences computed on the basis of 2.5 million antibody se-

quences downloaded from the Observed Antibody Space

(OAS) antibody sequence repository (50 3 50,000 OAS set).

BLAST alignment was further carried out with four different
ing)

ned from the human plasma proteome database) plotted on a logarithmic scale

), peptides derived from high- andmiddle-abundant plasma proteins (H/MAPP,

low-abundant plasma proteins (LAPPs, in blue). The lower and upper hinges

ge to the lowest and largest value, respectively, no further than 1.5 times the

across four fractions of FAIMS, and within 24 fractions from 2Dmeasurements,

m across all eight samples.
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composition-based matrices available in NCBI BLAST.32–35 The

evaluation of the BLAST search was carried out by means of the

recovery of the initial VR (complementarity-determining regions

[CDRs], or framework regions [FWR]) through BLAST search of

tryptic peptides. Performing the BLAST search on VR tryptic

peptide sequences without using a composition-based matrix

(BLAST search parameter) yielded the highest recovery rates.

Consequently, this setting was adopted for BLAST searches

on the acquired data. Peptides with lengths of 6 aa or less

were not efficiently aligned by BLAST. Low recovery rates

were also observed for peptides shorter than 10 aa with already

a few mutations (Figure S3A). This indicates further that long

peptides are required for solid mapping of the hyper-mutated

CDR regions, first and foremost CDR3. Less than 40% of all

CDR3 peptides with a length%10 aawere successfully assigned

by a BLAST search. In contrast, CDR3 peptides with lengths in-

tervals of 10 < L% 20 and 20 < L% 35 could be aligned success-

fully in 91.9% and >99.8%, respectively. Alignment was more

efficient for peptides originating from other, less frequently

mutated regions, having recovery rates of 85.7% for peptides

with lengths %10 aa and 99.0% for peptides longer than 10

aa. Peptides longer than 10 aa also constituted the majority

(10 < L % 20, 42.3%; and 20 < L % 35, 25.4%) of all peptides.

(Table S4; Figure S3B).

In summary, when utilizing de novo search, a high level of pre-

cision in relation to the database search was evident for shorter

peptides. However, as peptide length increased, the effect of

missing and unrecognized fragment ions most likely contrib-

uted to increasingly inaccurate sequencing outcomes. In

contrast, a subsequent BLAST search resulted in generally

low recovery rates for shorter peptides and high recovery rates

(97.7%) for peptides longer than 10 aa. Fortunately, the majority

of tryptic antibody VR peptides are expected to exceed 10 aa in

length.

Effect of VR peptide mapping by peptide fractionation
The number of de novo search identifications ranged in the three

datasets from 80,000 to 502,000 PSMs (1D, 80,000; FAIMS,

122,000; and 2D, 502,000 PSM). Compared to data of the 1D

(15,000) datasets, the number of PSMs aligned to antibody

genes was 1.6-fold higher in FAIMS (24,000) and 8-fold higher

in 2D (117,000). The number of PSMs linked to a VR was

1.7-fold higher in FAIMS (11,500) and 10-fold higher in 2D

(69,000) compared to PSMs acquired with the 1D (6,900)

method. Hence, the proportion of antibody-related PSMs was

similar in the 1D (18.9%) and FAIMS (19.3%) datasets, and about

1.2-fold higher in the 2D (23.3%) dataset. Similar to this, the pro-

portion of VR-related PSMs was also comparable in the 1D

(8.6%) and FAIMS (9.4%) datasets and 1.6-fold higher (13.7%)

in data of the 2D approach (Table S5). Consequently, the propor-

tion of VR PSMs relative to all antibody PSMs increased through

the use of fractionation and was 46% in 1D, 49% in FAIMS, and

59% in 2D data (Figure 3 and Table S5). Using FAIMS, a signifi-

cant portion of antibody and VR peptides were identified in both

relative and absolute quantities within the fraction with the

lowest negative CV (�35 V). This voltage setting generally corre-

sponds to longer peptides with low charge states. Regarding the

2D approach, while the majority of the de novo PSMs were
6 Cell Reports Methods 4, 100795, June 17, 2024
retrieved from the midsection of the preparative LC run (around

fraction 8–16), the fractions collected at the end of this section

(fractions 14–16) contained the highest proportions and absolute

counts of PSMs associated with antibodies and VRs (Figure 3).

This observation indicates that these peptides possess a slightly

above-average hydrophobicity compared to peptides origi-

nating from the common proteome.

The de novo PSMs were annotated more specifically accord-

ing to their CDR or FWR, and the improvements by applying

FAIMS or 2D fractionation were determined relative to the 1D

method. Using FAIMS, the increase ranged between approxi-

mately 2-fold for FWR1 (gain = 1.91, p = 0.005), FWR2 (gain =

1.97, p = 0.023), and CDR2 (gain = 1.93, p = 0.015) to

1.36-fold for CDR1 (gain = 1.36, p = 0.05). The counts of FWR3

and CDR3 peptides had not increased significantly, and notably

the CDR3 PSMs count remained relatively low. Overall, the im-

provements achieved through FAIMS when compared to the

1D approach (1.65-fold, p = 0.019) fell within the range of the en-

hancements observed from the database search (FAIMS: 1.323

). In contrast, when employing 2D LC-MS, the number of PSMs

related to VRs had increased more than 10-fold (11.433).

Notably for the CDR, there was an even more substantial in-

crease, with over 1,000 PSM/sample associated with CDR3

(13.13) being identified. (Figure 4A; Table 1)

Next, we analyzed the distribution of the VR peptide in the

different fractions. With the exception of CDR1—and in contrast

to the PSM of the common proteome—PSMs related with VR

showed the strongest enrichment in the �35-V FAIMS fraction.

This was particularly evident with respect to FWR1. CDR1 pep-

tides were predominantly identified in the FAIMS CV fraction of

�50 V. In contrast to the 2D LC-MS analysis of the common pro-

teome (Figure 2C), VR peptides displayed amarginal shift to later

2D fractions and were highest around fractions 14–16. This trend

was not observed for peptides linked to FWR1 and FWR3 (Fig-

ure S4). The variations in the count of de novo PSMs derived

from VRs were considerably more pronounced than those for

the common proteome identified through the database search.

Comparison of de novo spectra counts and the measured con-

centration of residual M-protein revealed that the diversity of

different antibody sequences correlated inversely with the resid-

ual M-protein concentration. Consequently, the residual con-

centration of M-protein accounts for a significant part of the vari-

ance observed in the sequenced variable peptides (Figure 4B).

The alignment was further extended to heavy chain constant

regions in order to assess the distribution of Ig classes (IgG, IgA,

IgM, and IgE found) and to light-chain constant regions, in order

to determine the counts of kappa and lambda chains. On the

basis of the heavy-chain constant-region peptides, IgG—ex-

pected to be the most abundant class—was by far the most

frequently found Ig class, followed by IgA and IgM (both about

10-times fewer PSMs than IgG). IgE was found only sporadi-

cally, and IgD not at all. Kappa-chain PSMs were identified at

roughly twice the frequency of lambda chains, and a similar

count of VR PSMs for both light and heavy chains was

observed. Although the overall PSM counts varied between

the three methods applied, the relative distribution of the

various region and class assignments remained unaltered (Fig-

ure 4C). Similar to the findings regarding the variability in the



Figure 3. Results of the de novo search differentiated to fractions

Distribution of absolute counts (top) and relative proportions (bottom) of PSMs assigned to antibody VRs, antibody constant regions or non-antibody proteins,

grouped by LC-MSmethod (1D, FAIMS, and 2D) and, if applicable, the corresponding fractions (FAIMS: four CVs of�80,�65,�50, and�35 V). In the total of all

fractions, therewere 6,928 spectra assigned to the VR by 1D, 11,473 by FAIMS, and 68,792 spectra by 2D. The total numbers per dataset and their corresponding

proportions are also detailed in Table S5.
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count of variable PSM described above, the number of PSMs

related to the constant antibody region was also correlated

with the residual M-protein concentration (Figure S5). Interest-

ingly, the correlations in IgG and IgA concentrations were

clearly stronger than that observed for IgM. Furthermore, these

correlations were more accurately captured through the 2D

approach compared to the other two methods. In contrast to

these correlations, the number of PSMs associated to serum

albumin—employed as a reference protein—remained unaf-

fected by the concentrations of M-protein (Figure S5).

Uniqueness of tryptic antibody peptides and their
viability as antibody protein surrogates
Interpreting the results acquired with bottom-up proteomics

analysis of antibodies differs from interpreting those of the

common proteome. Due to the sheer and almost unlimited

number of varying but yet highly homologous sequences, a

complete and comprehensive protein database does not exist

a priori. In bottom-up analysis, theoretically, a single peptide,
and, in practice, a small set of peptides, is sufficient to confi-

dently identify a protein. This is under the simplifying condition

that no differentiation between variants, such as SNP forms or

splicing variants, is required. The likelihood that a peptide

serves as a unique surrogate for a protein increases with pep-

tide length, and peptides longer than 6 aa already have a

greater than 95% chance of being unique (Figure S6A). Further-

more, the tryptic peptide length is roughly exponentially distrib-

uted, which indicates an overall random distribution of the

amino acids Lys and Arg, which are of relevance for tryptic

cleavage. Inherent to the exponential distribution, just less

than 5% of the peptides are longer than 30 aa (or less than

1% longer than 50 aa). Compared to this theoretical distribu-

tion, the actual length distribution of acquired peptides shows

that short peptides are identified less frequently, and there is

a higher degree of similarity between the theoretical and

measured distributions for longer peptides. This is why a

discriminatory bias or apparent cutoff for longer peptides

(>20 aa) was not observed (Figure S6B).
Cell Reports Methods 4, 100795, June 17, 2024 7
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The uniqueness of tryptic peptides within the context of the

circulating antibody repertoire is a crucial measure to charac-

terize their potential as specific proxies for individual antibodies.

In order to estimate this uniqueness measure, we downloaded a

large number of publicly available sequences from the Observed

Antibody Repository (OAS).28,29 We then compiled three distinct

datasets with varying numbers of individuals and sequences.

One dataset comprised sequences from 50 individuals, each

contributing up to 50,000 sequences (50 3 50,000). A second

dataset included sequences from 20 individuals, each contrib-

uting up to 1 million sequences (203 1 million). The third dataset

encompassed sequences from 200 individuals, with each

individual contributing up to 100,000 sequences each (200 3

100,000). Each individual corresponded to one OAS data unit

of unpaired sequences, either heavy or light chains, and each da-

taset contained equal numbers of data units of heavy and light

chains (Table S6). Antibody VR sequences were used to

generate a database of tryptic peptides, annotated with peptide

length, the associated CDR or FWR, and number of mutations.

The length distribution of tryptic peptides of antibodies (Figure 5)

differed clearly from that of the general proteome (Figure S6B),

and differences between the various CDRs and FWRs were

observed as well. As an example, the first tryptic cleavage sites

of the germline sequence occur at the N-terminal positions

19 (21% of all V-regions), 13 (19%), 12 (17%), 18 (13%), and

5 (5%). Peptides with lengths around 5, 12, and 18 aa were

particularly prevalent in the in silico digest. Furthermore, the dis-

tribution of tryptic peptides of CDR3 exhibited a shift toward

longer peptides, with the maximum occurring around 25 aa.

For peptides longer than 10 aa, the distribution of peptide

lengths of acquired data corresponded to the in silico-generated

data. However, acquired CDR3 peptide sequences longer than

20 aa are underrepresented in comparison to tryptic in silico

peptides (Figure 5A). Because this bias was not observed for

peptides originating from the common plasma proteome, which

were identified through database search (Figure S6), it is more

probable that the absence of long CDR3 peptides is a result of

data analysis rather than being related to data acquisition.

As a next step, we assessed the uniqueness of peptide se-

quences. With the exception of CDR3, the largest group con-

sisted of non-unique peptide sequences shared among half or

more of the individuals. For peptides originating from these re-

gions, the likelihood of uniqueness varies based on the number

of individuals within the dataset, ranging from 15% (CDR1 in

50 individuals with sequence depth of 50,000) to 3% (FWR1 in

200 individuals with a sequence depth of 100,000). CDR1-

covering peptides were more (11%–15%) often unique

compared to peptides covering the shorter CDR2 (8%–10%)

aswell as peptides covering the FWR regions. In contrast, tryptic

peptides encompassing CDR3 exhibited a considerably higher
Figure 4. De novo search results of antibody PSMs

(A) The number of de novo PSMs corresponding to VRs (CDR1-3 and FWR1-3

correspond to the first and third quartiles, and the whisker extends from the hin

interquartile range.

(B) Correlation between the number of de novo PSMs and the residual M-protein

(C) The number of de novo PSMs grouped by Ig class and chain.(Hinges and wh
degree of uniqueness, with the number of unique peptides di-

minishing as the dataset increased (2.5 Mio sequence in 50 3

50,000, 45% unique; 20 Mio sequences in 20 3 1 million, 38%;

and 20 Mio sequences in 2003 100,000, 29%). Based on these

results, we estimate that any given tryptic peptide covering a

CDR3 region has at best a one-third chance of being unique

and, in a strict sense, being suitable as an antibody surrogate

peptide. For other CDRs, the estimated chance is roughly

10%; for FWR it is below 5% (Figure 5B). Moreover, it must be

noted that the assignment to the region is an essential factor

for the description of the uniqueness of tryptic peptides differen-

tiated by regions. For the purpose of this analysis, we have cho-

sen that a sequence overlap of at least 3 aa defines a CDR

sequence. This enabled us to include all regions, including the

light-chain CDR2, which is predominantly 3 aa long, and further

allows that all peptides with a minimum length of 6 aa can be

aligned to at least one CDR or FWR. An increase in the minimum

overlap can therefore be expected to result in a reduction in the

number of sequences and, at the same time, in a higher degree

of uniqueness. In a further step, we examined the relationship

between the uniqueness of peptides and the degree of muta-

tions, defined as the number of amino acids deviating from the

expressed germline sequence. Overall, around two-thirds of all

peptide sequences of the VR corresponded exactly to the germ-

line sequence and, as expected, these sequences were not

unique. The number of mutations per tryptic peptides sequence

ranged in 95% of cases from zero to five mutations, and just 1%

of all sequences hadmore than eight mutations. Within the range

of zero to five mutations, there was a steep increase in the pro-

portion of unique sequences. Less than 10% of unique peptides

had just onemutation, and around 50%had fivemutations. Inter-

estingly, as the number of mutations further increased (between

5 and 15 mutations per peptide sequences), the increase in the

proportion of unique sequences was much lower than that in

sequences with low mutation counts, and did not reach 100%

uniqueness. These peptides, with high calculated mutation

counts, typically have longer insertions in CDR3 compared to

the germline sequence. Because each amino acid of this inser-

tion was counted as one mutation, these peptides are repre-

sented as highly mutated non-unique peptide sequences

(Figure S7).

In a further analysis, we calculated the frequency for antibody

sequences to have at least one unique tryptic peptide that could

serve as a suitable antibody surrogate. On average, each anti-

body VR was cleaved by trypsin into five peptides (with lengths

between 5 and 34 aa). Thereby, a wide variation was deter-

mined, ranging from one to 14 peptides per antibody. The

occurrence of tryptic peptides that are unique within the anti-

body repertoire of an individual depended on the sampling

depth (or number of antibody sequences per individual). The
) determined through 1D, FAIMS, or 2D LC-MS. The lower and upper hinges

ge to the lowest and largest value, respectively, no further than 1.5 times the

concentration, grouped by dataset and VR.

iskers of the box plot have been defined in A)
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Table 1. Improvements in the detection of VR peptides using FAIMS and 2D LC-MS

Region M(1D) M(FAIMS) gain(FAIMS) p(FAIMS) M(2D) Gain(2D) p(2D)

FWR1 258.0 493.5 1.91 0.005 2,350.0 9.11 <0.001

CDR1 82.0 111.5 1.36 0.05 1,095.0 13.35 <0.001

FWR2 162.5 320.0 1.97 0.023 2,702.0 16.63 <0.001

CDR2 154.0 297.0 1.93 0.015 2,483.5 16.13 <0.001

FWR3 429.5 652.5 1.52 0.052 4,031.0 9.39 <0.001

CDR3 84.0 106.0 1.26 0.123 1,096.5 13.05 <0.001

Of which CDR3j 27.5 54.5 1.98 0.002 644.5 23.44 <0.001

Alignments 1,176.5 1,937.5 1.65 0.019 13,449.5 11.43 <0.001

V region 828 1,380 1.67 0.026 8,303 10.0 <0.001

The gains are calculated as themedian (M) ratios of the number of PSMs in FAIMS or 2D relative to 1D. The corresponding p values (t test) are provided

in columns p(FAIMS) and p(2D). CDR3j counts the CDR3 alignments specifically to the J segment; Alignments counts the sum of all alignments (including

multiple alignments to one PSM), and V region counts PSMs aligned to the VR.
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occurrence decreased from 66% for datasets of 50,000 se-

quences to 56% for datasets of 100,000 sequences and 44%

for datasets of 1 million sequences. When further assessing

the more restrictive dataset-wide uniqueness, the frequency

of finding unique peptides dropped to 49% for datasets of 50

individuals with 50,000 sequences and to respectively 34%

and 35% for datasets of 200 individuals with 100,000 and 20 in-

dividuals with 1 million sequences each. The analysis also

showed that a considerable proportion (6%–14%) of antibodies

have more than one unique peptide and that, in rare cases (one

in 20 million), antibodies with up to 10 unique peptides exist

(Table 2).

DISCUSSION

The starting point of this work was the question of to what extent

methodological developments in plasma proteomics in the field

of peptide fractionation can have an impact on the detection of

antibody-related peptides by bottom-up proteomics. Conse-

quently, a workflow was established and validated that enabled

us to link the acquired spectra to antibody VRs. Through an

in silico analysis, we also addressed the potential and possible

limitations of trypsin-based bottom-up proteomes to analyze

the repertoire of circulating antibodies. On the basis of these

three aspects—data acquisition, data analysis, and in silico anal-

ysis—andwith regard to future analyses ofmonoclonal, oligoclo-

nal, and eventually polyclonal antibodies in clinical samples, we

have drawn the following conclusions.

First, through applying FAIMS gas-phase fractionation or

2D-LC high-pH peptide fractionation, we observed significant

improvements in two aspects: database-search-based identifi-

cations of common plasma proteins and de novo search-based

identifications of antibody VR peptides. The improvements

achieved with 2D-LC were particularly prominent when

compared to FAIMS. We attribute the lower improvements

seen with FAIMS to the fact that it is concurrently applied on

the fly with the regular LC-MS acquisition. While this approach

does not extend the measurement time, it also restricts the

amount of sample that can be loaded. Hence, the advantages

of FAIMS gas-phase fractionation primarily stem from its ability

to reduce complexity, and it offers a moderate improvement in
10 Cell Reports Methods 4, 100795, June 17, 2024
extending the sensitivity range. Due to the large dynamic range

of the serum proteome, the benefits of FAIMS are more limited

in serum compared to the gains typically observed in the analysis

of other sample types, such as cell cultures.26 In contrast, with

2D-LC-MS, the initial sample is split into multiple fractions,

each of which must be measured in an individual run. Conse-

quently, this approach necessitates a longer overall instrument

acquisition time (in this study, 12 times longer). However, it

also enables an increase in the total sample volume introduced

to the LC-MS measurement (approximately 30 times larger in

this study) and reduces the sample complexity. Altogether, these

advancements yielded substantial improvements in the number

of identifications, particularly notable for proteins characterized

by significantly lower concentrations. The 2D methodology is

widely used in biomedicine and plasma proteomics, with the

aim to augment both the number of protein identifications and

the sensitivity. Our findings regarding the results achieved

through 2D techniques closely align with those reported in previ-

ously published studies.36–38 In addition, we have demonstrated

that, analogous to the improved detection of plasma proteins,

the application of 2D techniques similarly yields a considerable

improvement in the number of VR peptides identified. We have

also demonstrated that fluctuations in the counts of VR peptides

were inversely correlated with the serum concentrations of the

remaining M-protein. The association between a lower number

of different VR peptides and higher M-protein concentrations

and vice versa probably indicated that the remaining M-protein

concentration suppresses the serum levels of other Igs, resulting

in immunoparesis.39 Overall, we have demonstrated that peptide

fractionation, especially 2D-LC, improves the mapping of anti-

body VR. From a qualitative point of view, significantly more

spectra can be acquired that lead to an alignment of a VR. Based

on the serum concentration ranges of the proteins identified by

2D (median 40 mg/L) and calculations about the lowest (poly-

clonal) antibody concentration required for antigen elimination

(�10 mg/L) suggested by Lavinder et al.,3 we further conclude

that targeted 2D LC-MS assays on antibodies are generally

capable of covering a significant proportion of the concentration

range of circulating antibodies. Due to the higher sensitivity in

detecting VR peptides, the proteogenetic sequencing of circu-

lating antibodies can potentially be enhanced and extended to



(legend on next page)

Cell Reports Methods 4, 100795, June 17, 2024 11

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
less abundant clones of polyclonal antibodies in neuromyelitis

optica40 and infection.11

Second, lacking a tool that combines the processes of

sequencing tryptic peptides from MS/MS spectra and then cate-

gorizes these according to the VR, we developed a processing

method for this purpose on the basis of PEAKS de novo search

and BLAST alignment.41–43 Both processing steps were evalu-

ated individually, whereby the de novo search was assessed on

the basis of a set of confident MS/MS spectra and BLAST align-

ment on the basis of a set of in silico-generated peptides derived

from public antibody sequence repository data. In summary, the

de novo search showed good accuracy in recovering database

sequences for shorter peptides. However, for longer peptides,

the increasing probability of missing or unrecognized fragments

also increased the number of sequencing errors, resulting in a

reduction in the number of peptide sequences with an exact

(100%) sequence match. The approach of relying on exact

sequence matches and the resulting dependency of the correct-

ness to the peptide length closely align with the work of Muth and

Renard,40 where the resulting consequences were discussed in

detail. By adopting a less stringent criterion of 90% sequence

similarity, we could increase the number of longer de novo se-

quences. We considered a relative tolerant error margin of 10%

to be appropriate as the aim of the analysis was to count the num-

ber of PSMs that could ultimately be classified according to their

antibody VR. As a result, our findings also indicate that 100%

sequence accuracy was observed in only a minority of cases.

Consequently, the exact determination of antibody sequence re-

gions based solely on tryptic peptides is generally not feasible.

So far, this goal has already been achieved in the de novo

sequencing of monoclonal antibodies. This was accomplished

by using multiple enzyme digests to reconstruct longer, error-

free sequence regions through the assembly of overlapping pep-

tide sequence.15,44,45 Subsequent BLAST searches against IMGT

(international immunogenetics information system) germline se-

quences revealed that the recovery of shorter peptides was

generally low. However, recovery rates in BLAST searches

increased with longer peptide lengths and exceeded 97.5% for

peptides longer than 10 aa. Fortunately, it is expected that the

majority (three-quarters) of tryptic antibody VR peptides will be

longer than 10 aa. Moreover, the distributions of Ig classes and

chains, derived from hits on constant regions, conform to the ex-

pected pattern.46 This further supports the validity of the data pro-

cessing method used.

Third, driven by the question about the applicability and limita-

tion of solely trypsin-based bottom-up proteomics on anti-

bodies, we conducted an in silico analysis on datasets of about

20 million sequences from public repository.28,29 Because of the

high sequence homology among antibodies on one hand and
Figure 5. Results of in silico analysis on repository antibody sequence

(A) Distribution of peptide length in OAS repository datasets and acquired prote

derived fromOAS repository data is represented by blue bars (upper half of plot), w

depicted by red bars (lower half of plot). Stacked bar plots showOAS subsets and

peptide counts are displayed upside down and scaled to account for overall differe

OAS repository and 216,000 experimentally determined peptide sequences.) The l

depletion (below zero) of tryptic peptides depending on their length, relative to th

(B) Frequency distribution of peptides based on sequence uniqueness. Peptides
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the enormous sequence diversity of the CDRs on the other, the

enzymatic generation of surrogate peptides in bottom-up exper-

iments poses a challenge when it comes to unambiguously as-

signing them to the original antibody sequence. In the analysis

of the common proteome, this is formally solved by reporting

protein groups,47,48 but this approach is not possible for the

vast diversity in antibodies. The suitability of a tryptic peptide

to serve as surrogate for an antibody primarily depends on the

uniqueness of the peptide, meaning that its sequence is not

shared with another antibody (or other protein). Whether a pep-

tide is unique to an antibody or shared by multiple antibodies

does not affect sensitivity per se, but it does determine the spec-

ificity of detection. The uniqueness of a peptide is particularly

important in quantitative assays of antibodies, and different ap-

proaches have been described in literature. McDonald et al.

defined uniqueness by the number of mutations and classified

each peptide with at least one non-isobaric mutation as

unique.16 Noori and co-workers defined peptides as unique if

targeted LC-MSmeasurements on a VR peptide in control serum

samples of other individuals are negative.14 This experimental

approach is closely linked to the detection limit and sensitivity

of the method and showed good results in monitoring mono-

clonal M-proteins in minimal residual disease.14 In the present

study, we developed another way of estimating the uniqueness

of tryptic peptides, based on publicly available data from

comprehensive antibody sequence repositories (OAS). This

calculation provides an estimate of the expected presence of

specific amino acid sequences but does not provide an assess-

ment of the quantitative impact of ambiguities, if detected. Cal-

culations based on 20 million sequences showed that about

one-third of all antibody sequences have at least one unique

tryptic peptide and that highly mutated antibody peptides can

be shared between several individuals. However, we also found

peptides carrying just one mutation that are already unique for

one individual among a total of 100 individuals. These findings

also make it clear that the question of uniqueness cannot be

definitively answered in absolute terms. Instead, it must be

considered in relation to the tested population and the aim of

the analysis. Furthermore, we demonstrated that an estimated

one-third of all antibody proteins contain at least one unique

tryptic peptide and that a considerable proportion of antibodies

that are unique within an individual’s antibody repertoire are

shared among individuals and, therefore, they are not unique in

datasets representing populations. Next, we determined that

the likelihood of a CDR3 peptide being unique (within a dataset

of 2–20 million sequences) is three times higher compared to

CDR1 or CDR2 peptides. However, it remains limited to approx-

imately 30%. These calculations also confirm the initial assump-

tion that the probability of serving as a suitable antibody
s

omics LC-MS datasets. The distribution of peptide length for tryptic peptides

hile the distribution of peptide lengths from acquired LC-MS proteomics data is

LC-MS sets obtained using three different methods. The experimental acquired

nces (scaling factor: 808, derived from 175million peptide sequences from the

ine chart at the top of the figure indicates the relative enrichment (above zero) or

e theoretical distribution computed based on OAS repository data.

are grouped by corresponding VR and originating dataset (OPIG/OAS).



Table 2. Results of the VR peptide uniqueness analysis (OAS in silico analysis)

Counts and proportions 50 3 50,000 20 3 1 M 200 3 100,000

Number of antibody sequences 2.5 M 19.9 M 19.5 M

Mean number antibody sequences per

individual

49,954 994,433 97,550

Number of individuals 50 20 200

Number of tryptic peptides (6–35 aa) 13.1 M 93.9 M 104.9 M

Mean number (range) of tryptic peptides/VR 5.2 (1–13) 4.7 (1–14) 5.4 (1–13)

Mean number of unique tryptic peptides/VR 1.11 0.58 0.89

Uniqueness within individual

Number of unique tryptic peptides 2.8 M 11.4 M 17.3 M

% antibodies with at least one unique

tryptic peptide

66% 44% 56%

Uniqueness within dataset

% antibodies with at least one unique

tryptic peptide

49% 35% 34%

Counts of VR with 0 unique tryptic

peptide

1,264,672 12,865,647 12,825,274

Counts of VR with one unique tryptic

peptide

892,802 5,735,811 5,222,153

Counts of VR with two unique tryptic

peptide

232,919 966,647 1,067,864

Counts of VR with three unique tryptic

peptide

75226 236632 293326

Counts of VR with four unique tryptic

peptide

24,642 64,519 79,759

Counts of VR with five unique tryptic

peptide

6,048 15,821 17,934

Counts of VR with six unique tryptic

peptide

1,221 3,052 3,354

Counts of VR with seven unique tryptic

peptide

156 481 450

Counts of VR with eight unique tryptic

peptide

31 58 51

Counts of VR with nine unique tryptic

peptide

8 2 –

Counts of VR with 10 unique tryptic

peptide

– 1 1

Three sets of antibody VR sequences (503 50,000, 203 1million, and 2003 100,000) were subjected to in silico digested. The resulting peptideswere

analyzed in terms of their uniqueness and suitability as surrogates for intact antibodies in trypsin-based bottom-up proteomics. M, million.
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surrogate is highest for CDR3 peptides, lower for CDR1 and

CDR2 peptides, and lowest for peptides covering only the

FWR. Based on these results, the question of whether the poten-

tial and probable lack of uniqueness of a tryptic peptide justifies

the analytical use of such a peptide cannot be answered in an

absolute or general way. Instead, such use ultimately requires

experimental validation depending on the analytical question.

In summary, while the number detected of antibody VR

peptides may appear dwarfed (at best 1,000 CDR peptides

measured out of at least 1 million expected) by the expected

number of antibodies present, we conclude that the use of 2D

LC-MS is a powerful technique for increasing the quantity and

sensitivity of detected circulating antibody. When combined

with further enrichment and separation procedures (e.g., the pu-
rification of specific antibody subgroups), the inclusion of addi-

tional proteases, and the application of complementary mass

spectrometric methods (e.g., top down or middle down), it has

the potential to make a significant contribution to clinical

research on antibody-mediated autoimmune disorders, infec-

tion, cancer, or vaccine development.

Limitations of the study
We investigated the capability of peptide fractionation to

improve the detection of antibody VR peptides using bottom-

up proteomics and, to this aim, we measured a set of eight sam-

ples with three methods. Each of the three methods utilized a

different peptide fractionation technique, and one specific set

of parameters was chosen for each method to ensure adequate
Cell Reports Methods 4, 100795, June 17, 2024 13
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comparability and applicability of the experiments. This has

certainly led to the limitation that the full scope of the many pos-

sibilities to define such an experiment—e.g., LC phases, column

dimensions, variety of MS analyzer settings, and data-depen-

dent acquisition settings—could not be fully reflected in this

study. As a consequence of the method-oriented objective and

execution of this work, there are, as already described above,

limitations with regard to the conclusions about the repertoire

analyzed. The absence of comprehensive antibody sequence in-

formation of the samples (e.g., from sequencing data) did not

allow a general assessment of the capabilities of mapping the

circulating antibody repertoire and the use of only one specific

protease in principle did not allow the reconstruction of longer

or entire antibody sequence segments, as no overlapping frag-

ments are generated. These major limitations define the main

objectives for follow-up research.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Serum sample from MM patients (N = 8) Attal et al.49 IFM/DFCI2009, https://clin.larvol.com/

trial-detail/NCT01191060

Chemicals, peptides, and recombinant proteins

1,4-dithiothreitol Merck/Sigma Aldrich PN D9779-1G

Acetonitrile (ACN) Biosolve BV PN 1204102

Ammonia solution Merck/Sigma Aldrich PN 5.33003.0050

Ammonium formate Merck/Sigma Aldrich PN 78314-100mL-F

Formic acid Biosolve BV PN 06914143

S-methyl methanethiosulfonate Merck/Sigma Aldrich PN 64306-1ML

Sodium deoxycholate Merck/Sigma Aldrich PN 30970-25G

Triethylammonium bicarbonate (TEAB) Merck/Sigma Aldrich PN T7408-100ML

Trifluoroacetic acid, TFA Biosolve BV PN 20234131

Trypsin Promega PN V5280

Water, ULC/MS grade Biosolve BV PN 23214102

Deposited data

Mass spectrometry data ProteomeXchange/PRIDE50 10.6019/PXD046072

Software and algorithms

PEAKS X Bioinformatics Solutions Inc.,

Waterloo, Canada

NCBI BLAST McGinnis et al.43 https://ftp.ncbi.nlm.nih.gov/blast/

executables/LATEST/

NCBI IgBlast Ye et al., 201351 https://ftp.ncbi.nih.gov/blast/

executables/igblast/release/LATEST

Perl, version v5.32.1 Perl.org https://www.perl.org/

R, version 4.2.1 R Software Foundation https://www.r-project.org

R package tidyverse Wickham et al.52 https://www.tidyverse.org/

Antibody sequence repository Observed Antibody Space28,29 https://opig.stats.ox.ac.uk/webapps/oas/

vreg-anno (mass spectrometry analysis) this paper https://github.com/cstingl/vrpep-anno

https://doi.org/10.5281/zenodo.11203821

vreg-uniq (in silico analysis) this paper https://github.com/cstingl/vrpep-uniq

https://doi.org/10.5281/zenodo.11203918

Other

96-wellplates Axygen, Corning, NY Axygen X50 500mL V96 PP, PN 12507927

Kinetex EVO C18 column Phenomenex PN 00F-4725-AN

PepMap nano LC column Thermo Fisher Scientific PN 164941

PepMap trap column Thermo Fisher Scientific PN 160454
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Christoph

Stingl (c.stingl@erasmusmc.nl).

Materials availability
This study did not generate new unique reagents.
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Data and code availability
d The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE50 partner

repository with the dataset identifier PXD046072 and 10.6019/PXD046072.

d The code generated during this study to process themass spectrometry can be accessed on https://github.com/cstingl/vrpep-

anno. The code used to conduct the in silico data analysis of antibody sequences is available on https://github.com/cstingl/

vrpep-anno. Archival DOIs are listed in the key resources table.

d Any additional information necessary to re-analyze the data reported in this paper is available via the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Sample collection
Serum samples were collected in the IFM 2009 study (clinical trial ID NCT01191060) under written informed consent.49 Information

about gender and age was not disclosed for this study. We used eight serum samples from four multiple myeloma (MM) patients at

two different time points during treatment and remission. These blood samples were selected as they contained, characteristically for

MM, a patient-specific antibody (the M-protein) with a known sequence and concentrations in an otherwise polyclonal antibody

background. The M-protein sequences used as reference antibodies were constructed from mRNA sequencing data in a previous

study, as described by Langerhorst and co-workers.53 Information about the samples, including antibody germline genes, sampling

days, and serum concentrations, is provided in Table S7.

METHOD DETAILS

Sample preparation
Sample preparation was carried out in 96-wellplates (Axygen, Corning, NY) using a 12-channel multichannel pipet (Mettler-Toledo

Rainin, Oakland, CA). During all reaction and incubation steps at an elevated temperature, the wellplate was closed with heat-seals

(3 s at 160�C). Two mL of each serum sample were dissolved in 80 mL digest buffer, which consisted of 0.5% sodium deoxycholate,

50 mM triethylammonium bicarbonate, and 5% acetonitrile (ACN). Stable isotope-labelled peptides specific to the patient’s

M-protein were spiked at concentrations corresponding to 5 pmol/mL serum. The samples were reduced in the presence of 5 mM

1,4-dithiothreitol (20 mL of 25 mM solution) for 30 min at 56�C, alkylated with 10 mM S-methyl methanethiosulfonate (20 mL of

60 mM solution) for 15 min at room temperature, and subsequently digested by adding 4 mg trypsin (20 mL of 200 ng/mL solution)

and incubating at 37�C over-night. The next day, the digests were stopped, and detergent was precipitated by adding 0.5% trifluoro-

acetic acid (TFA, 20 mL of 4% solution). The precipitate was then spun down (10 min, 4,400 rpm), and the supernatant was filtered

through a 0.25 mm membrane to remove any remaining SDC precipitate. Unless specified otherwise, all reagents were purchased

from Sigma-Aldrich/Merck. Next, the samples were twice diluted with an oxidative solution containing 0.5% TFA and 0.5% hydrogen

peroxide to completely oxidize methionine, which is typically only partially oxidized. Half of the volume (�120 mL) was directly em-

ployed for subsequent high pH reversed-phase fractionation, while the second half was further diluted 10-fold in 0.1%TFA for 1D and

FAIMS LC-runs. Figure 1A shows an overview of the prepared samples, their quantities, and their utilization in the various measure-

ments and methods.

High pH reversed phase fractionation
Preparative chromatography was conducted on an Ultimate 3000 LC system (Thermo Fisher Scientific) equipped with C18 reversed

phase column (Kinetex EVO, 2.1mm3 150mm, PN 00F-4725-AN, Phenomenex) operated at an oven temperature of 40�C. Peptides
were separated using a binary gradient, increasing from 4% to 50% solvent B over 8 min at a flow rate of 450 mL/min. Solvent A

consisted of a 10 mM ammonium formate buffer at pH 10, while solvent B was composed of 80% ACN and 10 mM ammonium

formate buffer at pH 10. Twenty-four fractions, each comprising 200 mL and collected over a period of 26 s, were collected in a

96 wellplate (PN P-96-450V-C, Axygen/Thermo Fisher Scientific). These fractions were then dried using a speedvac concentrator

(Thermo Savant), resuspended in a solution of 2% ACN/0.1% TFA, split into two aliquots, and transferred to a heat-sealed

384-wellplatefor storage at 4�C until subsequent LC-MS analysis.

LC-MS measurements
LC-MS measurements were conducted on a nano-LC system (Ultimate 3000 RSLC, Thermo Fisher Scientific, Germering, Germany)

coupled to an Orbitrap Lumos Tribrid mass spectrometer. For FAIMSmeasurements, the instrument was equipped with a High Field

Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) interface (Thermo Fisher Scientific, San Jose, CA). Ten mL of the sample

(for 1D and FAIMS) or fraction (for 2D) were injected and transferred on a trap column (C18 PepMap, 300 mm ID x 5mm; Thermo Fisher

Scientific) using 0.1% TFA at a flow rate of 20 mL/min and further eluted and separated an 25 cm analytical nano-LC column (PepMap

C18, 75 mm ID x 250 mm, 2 mm, 100 Å; Thermo Fisher Scientific) using a binary gradient. For 1D and FAIMS measurements, the

gradient ranged over 90 min from 4% to 34% solvent B, and for 2D runs over 30 min (for 2D) from 3% to 30% solvent B. Solvent

A consisted of 0.1% formic acid, and solvent B contained ACN with 0.08% formic acid. The flow rate was set at 300 nL/min, and

the column was operated at a temperature of 40�C. For electrospray ionization we used coated silica nano electro-spray emitters
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(New Objective, Woburn, MA) at a spray voltage of 1.8 kV (without FAIMS) or 2.2 kV (FAIMS). For FAIMSmeasurements, ion mobility

fractions were collected at compensation voltages (CV) of�35,�50,�65 and�80 V. A data dependent acquisition MSmethod was

used, with anOrbitrap survey scan (range 375–1550m/z, resolution of 60,000, AGC target 400,000). The peptide precursors detected

in the survey scan were then subsequently steps isolated (using a window of 1.6 amu), fragmented (HCD with 30% normalized colli-

sion energy), and detected (Orbitrap, with a resolution of 30,000, maximal injection time of 54 ms and an AGC target of 100,000). This

process continued until a cycle time of 3 s (for experiments without FAIMS) or 3.2 s (with FAIMS) was reached. Precursors with single

charge and precursors masses that had been selected once for MS/MS were excluded from subsequent fragmentation for 60 s. For

1D and FAIMS experiments, a total of 8 runs each (90-min gradient and about 120 min runtime) were conducted. In the case of 2D

experiments, a total of 196 runs (30-min gradients and 60 min runtime) were carried out.

Mass spectrometry data analysis
The acquired RAWdatawere processed using the software package PEAKSX (Bioinformatics Solutions Inc.,Waterloo, Canada). The

following parameters were employed for the extraction of MS/MS spectra, de novo search, and database searching. For the de novo

search: fixed modifications included beta-methylthiolation (+45.99 u) of cysteine and oxidation (+15.99 u) of methionine. Variable

modifications encompassed deamidation (+0.984 u) of asparagine and glutamine. A parentmass tolerance of 10 ppm and a fragment

mass tolerance of 0.02 amuwere applied. Semi-tryptic cleavage was utilized. For subsequent PEAKS database searches: the human

subset of the Uniprot/Swissprot database (downloaded October 5th, 2021) was applied, optionally extended by the M-protein se-

quences for a second search. Results from the de novo searches were exported as ‘peptide.csv’ files with a peptide-spectra-match

false discovery rate of 1%. The peptide sequences were then subjected to a BLAST search against the IMGT germline database

(downloaded June 14th, 2021). No distinction was made between the isobaric amino acid leucine and isoleucine, with the germline

databank and de novo sequences adjusted accordingly. Furthermore, for all de novo sequences containing deamidated asparagine

and glutamine, an additional sequence with the corresponding isobaric amino acids aspartic acid and glutamic acid, respectively,

was included in the query sequences (input) of the BLAST search. Each de novo sequence that aligned with an IMGT germline

VR gene was annotated using the corresponding germline amino acid positions in the CDRs and FWRs frameworks, provided there

was an overlap of at least 3 amino acids. Data processing steps were conducted using an in-housewritten Perl script (version 5.32.1),

and the generated data files have been included in the supplementary data. For further statistical analysis and plotting we used the

statistical programming language R (version 4.2.1) and Tidyverse libraries.52,54

In silico analysis on repository antibody sequences
Antibody sequences for in silico computations were retrieved from the public Observed Antibody Space (OAS).28,29 The selected

OAS data units for download were defined as unsorted PMBC (B cell source and type) from non-diseased human individuals (spe-

cies) derived from bulk sequencing (isotype). Each OAS data unit corresponded to an individual and contained un-paired sequences

from either exclusively light or heavy chains. Based on the download of 200 OAS data units, we created three datasets with varying

sequencing depths (numbers of sequences per individual) and varying numbers of individuals. In each dataset, half of the individuals

(data units) exclusively contributed heavy chains, while the other half solely contributed light chains. These three datasets, labelled as

50 3 50k, 20 3 1M, and 200 3 100k, were compiled using 50, 20, and 200 OAS data units (individuals), respectively. Each dataset

was sampled to include up to 50,000 (50k), 1 million (1M), and 100,000 (100k) sequences, respectively. Details about the datasets,

including the OAS dataset identifier, the total number of sequences, and the actual number of sequences used, can be found in

Table S6. The entire VR, FWRs and CDRs were extracted (excluding entries with incomplete CDR1-3 and FWR1-3 amino acid se-

quences). The VR sequences were computationally cleaved into peptides using the specificity of trypsin (cleaving C-terminal to

Arg and Lys, except at the N-terminal position of Pro), without allowing for miscleavages. Next, for each peptide, annotations

were made regarding its overlap with CDRs and FWRs, and the number of mutations was calculated by comparing the amino acids

in the peptide sequence to the corresponding germline sequences. For each peptide sequence longer than 6 and shorter than 35 aa,

the number of assigned individuals and the occurrences within the dataset were computed and used to query and calculate the

length distributions (Figure 5A) and uniqueness (Figure 5B) of peptides based on their originating CDRs and FWRs. Additionally,

the data was used to establish the correlation between the number of mutations and the uniqueness of peptide sequences with

the dataset. (Figure S7) For data processing, analysis and plotting we used the programming language Perl (version 5.32.1), relational

database server PostgreSQL (version 14), and the statistical programming language R54 (version 4.2.1), which included the Tidyverse

libraries.52

QUANTIFICATION AND STATISTICAL ANALYSIS

For statistical analyses, calculations and plotting of data we used the statistical programming language R54 (version 4.2.1) with the

Tidyverse libraries.52 All analysis were carried out on basis of a sample set of eight samples (one measurement each) for each of the

three methods. A two-sided t-test (R core function Welch Two Sample t-test) was used to calculate the significance of quantitative

differences in terms of PSM between various fractionation methods (Table 1; Figures 2 and 4). A one-sample t-test was applied to

determine fractionation method-dependent gains in PSMs in Table 1 and sequence coverage in Table 2. For all tests, a pp-value

equal to or below 0.05 indicated a significant difference.
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