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A B S T R A C T

Customer returns are a major problem for online retailers due to their economic and environmental impact.
This paper investigates a new concept for handling online returns: customer-to-customer (C2C) returns logistics.
The idea behind the C2C concept is to deliver returned items directly to the next customer, bypassing the
retailer’s warehouse. To incentivize customers to purchase C2C return items, retailers can promote return items
on their webshop with a discount. We build the mathematical models behind the C2C concept to determine
how much discount to offer to ensure enough customers are induced to purchase C2C return items and to
maximize the retailer’s expected total profit. Our first model, the base model (BM), is a customer-based
formulation of the problem and provides an easy-to-implement constant-discount-level policy. Our second
model formulates the real-world problem as a Markov decision process (MDP). Since our MDP suffers from the
curse of dimensionality, we resort to simulation optimization (SO) and reinforcement learning (RL) methods
to obtain reasonably good solutions. We apply our methods to data collected from a Dutch fashion retailer.
We also provide extensive numerical experiments to claim generality. Our results indicate that the constant-
discount-level policy obtained with the BM performs well in terms of expected profit compared to SO and RL.
With the C2C concept, significant benefits can be achieved in terms of both expected profit and return rate.
Even in cases where the cost-effectiveness of the C2C returns program is not pronounced, the proportion of
customer-to-warehouse returns to total demand becomes lower. Therefore, the system can be defined as more
environmentally friendly. The C2C concept can help retailers financially address the problem of online returns
and meet the growing need for reducing their environmental impact.
1. Introduction

Free product returns are an essential part of customer service in
retail. Under European law, consumers who buy a product online are
entitled to a full refund if they cancel their purchase within 14 days
of receipt. As a result, many purchases are returned to online retailers’
warehouses every day, with return rates ranging from 5% to 40% [1,
Dutch Broadcast Foundation]. Similar figures have been observed in
the United States [data source: 2]. The total monetary value of returns
for U.S. online retailers amounted to $212 billion in 2022 [3].

Processing a returned product is a costly and time-consuming activ-
ity. It typically consists of collection, screening, and sometimes repair
[4]. It is estimated that one returned item costs an online retailer
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between e10 and e15 [1], taking into account warehousing, labor,
packaging and transportation costs (both to and from the warehouse).
In addition to requiring additional warehouse logistics capabilities,
returns also result in reduced product availability and sub-optimal
reordering policies. Moreover, retailers must process large volumes of
returns during peak return periods, such as right after Christmas. This
strains warehouse performance and incurs additional costs to manage
the processing capacity. It is clear that the increasing number of daily
returns over the past decade is suppressing the profitability of the
online retail sector. Moreover, high return volumes have a negative
environmental impact due to the additional transportation required.
Returns cause an increase in express parcel volumes and therefore CO2
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Fig. 1. Flow of goods and money under the conventional (left) and the C2C (right) returns programs.
emissions. In addition, each return requires new packaging materials
when items are sold again.

Return rates are particularly high in fashion e-commerce. Diggins
et al. [5] mention that return rates between 20% and 40% are common,
with values as high as 74% [6]. Since customers typically return
fashion products because they are the wrong size or color, ‘‘a significant
number of the returned products are in perfect condition for resale’’ [4].
This means there is no need for an immediate return to the warehouse.

The volume of returns and the associated costs show that there is
still no proper solution to the returns problem that online retailers face
on a daily basis. With this research, we investigate a new concept as
a possible solution to the customer returns problem: the Customer-to-
Customer (C2C) Returns Logistics concept. Unlike existing approaches
that focus on preventing returns, we take a different approach and aim
to minimize the impact once a return occurs. The main idea behind the
concept is to send returned items directly to other customers requesting
the same product, rather than first sending them back to the retailer’s
warehouse. A customer is offered the option of receiving the product
directly from a customer who wishes to return it, hereafter called
the ‘returnee’, or the conventional option of receiving the product
directly from the retailer’s warehouse. To compensate for the reduced
unboxing experience and potentially longer and variable delivery time,
the option to purchase a returned item is offered in exchange for a
discount on the corresponding product. The online retailer, who may
also be an external party, has a management and operational role as
the product flows between customers and when offering discounts. All
transportation costs and cash flows are the retailer’s responsibility. This
means that customers pay and receive money from the retailer, even
though products are shipped between customers. A visualization of the
C2C concept in its basic form is shown in Fig. 1.

The returnee could be incentivized to participate in the C2C re-
turns program in an economic way, e.g. by offering loyalty points,
or in a moral way, by making it clear that this is a ‘greener’ option
compared to a direct return. The environmental benefits come from (i)
eliminating non-value-adding transportation by eliminating shipments
from customer-to-warehouse, (ii) reducing packaging waste as C2C
shipments do not require new packaging, and (iii) preventing unused
returned items from ending up in landfills [see 7,8].

The concept is similar to e-commerce sites that sell used clothing,
such as Vinted (vinted.com). It is also similar to retailers who sell open-
box items at a discount next to their new items. Unlike Vinted, in our
case (i) the retailer organizes the process and coordinates it with their
direct sales, and (ii) the clothes are not used and can still be considered
as good as new, thus serving a different market.

The contribution of our research is both practical and theoretical.
From a practical point of view, this research analyzes a new concept,
the C2C concept, which has the potential to reduce the physical and
financial burden for retailers in handling returns. In our research,
we contacted several retailers who showed interest in implementing
the concept. One of the co-authors of this article is following these
real-world implementations and conducting promising experiments.
2

Their progress can be followed on https://itgoesforward.com/. From
a theoretical point of view, we provide the mathematical models that
underpin the C2C concept. First, we propose a stylized base model
and provide some theoretical results on the structure of the profit
function, the optimal discount level, and the profitability of the C2C
returns program. We propose a constant-discount-level policy for the
problem using our base model. Then, we formulate the real-world
problem as a Markov decision process (MDP). Since our MDP suffers
from the curse of dimensionality, we resort to simulation optimiza-
tion and reinforcement learning algorithms to find reasonably good
solutions. We evaluate the financial prospects of the C2C concept for
different levels of product demand volumes, return rates, customer
participation scenarios, and other model variables. Our methods are
applied to data collected from a Dutch fashion retailer. The data consist
of online sales and return data from May 2017 to May 2019 and include
2.6 million data points. We find that the C2C concept could lead to
higher profits compared to a conventional returns program. In our case
study, we evaluate best-case and worst-case scenarios. In the best-case
scenario, the C2C returns program generates additional demand and we
observe a profit increase of 34%. We show that the value of the C2C
returns program is non-significant in the worst-case scenario where C2C
demand fully substitutes regular demand. Interestingly, in the cases
of minor savings, the share of customer-to-warehouse returns in total
demand decreases by 6%–11%, which suggests that the C2C concept is
still beneficial from an environmental perspective. In a more extensive
set of experiments, where we consider a full factorial combination of
possible parameter values, this behavior is confirmed.

The remainder of this paper is organized as follows: Section 2
reviews the research most relevant to our paper. Section 3 elaborates
on the C2C returns program. Section 4 presents mathematical models
and theoretical results. Section 5 presents solution methods to solve our
MDP. Section 6 reports our comparative results for the performance
of the algorithms, the value of the C2C program, and the impact
of problematic returns in our case study. Section 7 contains exten-
sive numerical experiments to establish generality. Finally, Section 8
concludes the paper with critical insights from the study and future
extensions of our work.

2. Literature review

Our research contributes to the literature on consumer returns man-
agement and C2C sharing economy. Abdulla et al. [9] provide a recent
overview on managerial decision-making related to return policies
and consumer behavior. In the literature, the main research questions
include: under what conditions should companies allow returns, how
much restocking fee to charge, how to collect returns, and what to do
with them. Below, we summarize the most relevant papers related to
our research.

An early seminal work by Shulman et al. [10] proposes an analyti-
cal model to examine how consumers’ purchase and return decisions
are affected by a retailer’s pricing and restocking fee decisions. The

https://itgoesforward.com/
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analysis of Nageswaran et al. [11] helps explain the reasons behind
omnichannel retailers’ decisions to offer full refunds or charge fees for
online returns. Wagner and Martínez-de Albéniz [12] demonstrate that
lenient return policies can boost sales but also increase retailers’ cost.
Yang and Ji [13] and Yang et al. [14] examine the financial impact
of buy-online-return-to-store mechanisms. We contribute to this stream
by proposing a separate logistics channel to sell returned products and
investigate how much discount we should offer to make this system
profitable.

Online returns are associated with increased opportunities for fraud-
ulent returns [15]. Fraudulent returns are actions carried out with the
purpose of defrauding a retailer by exploiting its return policy. Some
examples of fraudulent returns are empty box fraud (e.g., claiming that
an empty box was received), wardrobing (also known as free renting
or opportunistic return which occur when customers intentionally rent
a product for short-term use), damage fraud (e.g., claiming that the
product is defective but it was damaged by the customer), shipping-
related fraud (e.g., claiming that the parcel was never received). Altug
et al. [16] propose tactics that can help retailers address the negative
financial implications of opportunistic returns. In our paper, we initially
consider all customers as trustworthy. However, we also include a
break-even analysis of the rate of problematic returns in our case study.

Among e-commerce returns, fashion products have remarkably high
return rates. Factors affecting the product returns in the fashion and
apparel industry have been studied by several authors using either
different data sets [17–20] or different focus groups [21,22]. Fashion
products are often differentiated in terms of size and fit, and a single
customer may order multiple sizes. As a result, many returns are of
excellent quality, similar to garments hanging in a shop and being
tried on by different customers. In many countries, returned garments
can even be sold as new. A lot of fashion is seasonal, which means
that the selling season is short. Therefore, returns need to be processed
quickly. de Leeuw et al. [4] provide a detailed analysis of the returns
process for fashion retailers. Difrancesco et al. [23] develop a queueing
model and investigate how to set the return duration, whether to
refurbish returned products or sell them on the secondary market in
order to maximize profit. They cross-check their analytical results with
a data set coming from one of Europe’s largest online fashion retailers,
Zalando.

Our paper relates to C2C sharing economy research. Mont et al. [24]
provide an analysis of different concepts, theories, and understandings
of the term sharing economy. Hawlitschek et al. [25] investigate key
factors contributing to the success of the sharing economy. Factors
that make customers engage in C2C sharing include cost-saving, trust
in other users, environmental sustainability, and a modern lifestyle.
These factors would also pave the way for the success of the C2C
returns program. Some papers provide conditions under which the
supply chain partners are better or worse off under the presence of
a C2C marketplace. Jiang et al. [26] incorporate a C2C marketplace
as a decision maker, setting its own profit maximizing transaction
fee, and while accounting for consumers’ valuation uncertainty about
goods. Li et al. [27] examine retailer’s optimal return policy under the
presence of a C2C (second-hand goods) marketplace. None of these
papers consider selling returns at a discount and shipping them directly
from C2C.

Several studies have explored the intersection of the sharing econ-
omy and sustainability. Xue et al. [28] investigate the environmental
impact of encouraging the reuse and reselling of secondhand goods
through C2C platforms, finding that such platforms can be beneficial
for both the environment and profitability when the environmental
impact of a product primarily occurs during production or disposal.
Similarly, Vedantam et al. [29] compare the financial and environmen-
tal impacts of two business models for an apparel company: (i) trade-in
with resale and (ii) C2C resale marketplace. They conclude that the C2C
resale marketplace model could be more environmentally friendly if
3

the environmental impact from production outweighs that from usage
activities like laundry and ironing. We assess environmental implica-
tions of the C2C returns program by examining changes in the ratio
of customer-to-warehouse returns relative to total demand, which we
consider indicative of reductions in non-value-adding return shipments
and packaging waste. Pang and Li [30] show the presence of a C2C
resale marketplace might increase the demand for new items and such
a demand expansion effect can aggravate environmental impact. Even
though the C2C returns program might also generate more shipments
due to demand expansion for returned items, it might prevent returned
items from ending up in landfills [7], similarly to secondhand markets
such as Craiglist [8].

3. Customer-to-customer returns program

In this section, we describe the C2C returns program, elaborate
on the relation between program design and customer participation,
and discuss potential implementation issues. Section 3.1 offers an in-
depth explanation of how the C2C returns work and presents previous
implementations of similar concepts. Section 3.2 discusses incentives
for customer participation, elaborates on the potential environmental
benefits, and discusses how to model customer demand. Finally, Sec-
tion 3.3 describes potential implementation issues and suggests how to
resolve them.

3.1. How the C2C returns work

The C2C returns program consists of several distinct steps. First, the
returnee is asked to evaluate the condition of the item (e.g., like new,
defective, stained, etc.). If the item is deemed good as new and the
customer expresses interest in participating in the C2C returns program,
they are instructed to repackage the item and hold it for a designated
period of time, known as the time window for matching (typically a few
days). Therefore, inspection, handling, and repackaging operations are
outsourced to the returnee. During the time window for matching,
the item is listed on the retailer’s webshop as a discounted C2C item.
Simultaneously, potential customers visiting the webshop are presented
with two options: (i) purchasing an item that will be shipped from the
warehouse (W2C), or (ii) purchasing a discounted item that will be
shipped from a customer (C2C). In the case of a C2C sale, the QR code
on the item’s packaging is linked to the purchaser’s address and the
returnee is asked to hand in the item within a designated period of time,
known as the time window for handing-in (also a few days). From the
return drop-off location, the item is shipped along with other parcels,
potentially by third-party logistics providers. A software enables the
matching and tracking of items.

It is important to note that returnees are only given the option to
return items using the C2C returns program if they indicate that the
item is like new. Damaged items will always be returned using the cur-
rent conventional returns program, i.e. customer-to-warehouse (C2W).
Indeed, the item must be easily inspectable by the returnee. Apparel,
small appliances, and products aimed at environmentally-conscious
customers are suitable as C2C returns.

If a customer who has purchased a C2C item is dissatisfied with
their purchase, they can return it to the warehouse. However, we
propose not selling the same item a second time as C2C in order to
facilitate quality control and packaging refurbishment by the retailer.
In this paper, we present the mathematical models that underpin the
C2C returns program, focusing on decision models that determine the
optimal discount level to maximize the expected profit for the retailer.
We also assess the program’s overall profitability and environmental
impact.

Implementations of concepts similar to the C2C returns program
have been observed at a few companies including Veepee, a French
retailer specializing in flash sales, and Prada Vida, a sustainability-
focused e-commerce brand based in Winnipeg, Manitoba, Canada.

Prada Vida’s implementation was facilitated by a Canadian startup
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called Frate.co, which enables peer-to-peer return services for retailers. In
hese implementations, returns are shipped and sold between customers
ithout them ever going back to the warehouse. The idea is the same
s return article forwarding, which is the term used by It Goes Forward
see https://itgoesforward.com) to define the C2C returns program.
hile Veepee has discontinued its so-called Re-turn system, Frate has

reported significant benefits from its implementation. Veepee’s Re-turn
system experienced several problems that could have been mitigated
with the C2C returns program introduced in this paper. Both returnees
and purchasers experienced problems such as difficulties with refunds,
receiving incorrect or damaged items, and inadequate customer service
responses [see customer reviews section in 31]. Our C2C returns pro-
gram addresses these issues by offering free returns and free shipping,
allowing returns within the 14-day period even if the item is not
resold, and considering dispute resolution services. Frate’s success story
with Prada Vida [32] includes approximately 57% of returns being
successfully shipped and sold to another customer, with C2C returns
being repurchased within an average of 2 days. In addition, 0% of
purchased C2C returns are re-returned. Frate also claims an average
32% increase in profit, 40% decrease in returns, and 23% decrease in
emissions. We note that the findings in our paper are in line with those
reported by Frate.

3.2. Benefits and incentives

To encourage greater participation in the C2C returns program,
it is crucial to provide customers with appropriate incentives. Time
windows for matching and handing-in require additional effort on the
part of the returnee. Returnees should keep the item during the time
window for matching. They should also be able to hand-in the item at
short notice, either by going to a drop-off location or using a pick-up
service. In the event of a long time window for matching and a short
time window for handing-in, the hassle for the returnee increases, but
so does the likelihood of a C2C sale. Previous research on customer
returns developed endogenous models by introducing a hassle cost of
return [see, 10,14,33]. In practice, it is difficult to quantify the hassle
cost for returnees. In order to substantiate the C2C initiative, Wiersma
[34] and Hsieh [35] conducted a rating-based conjoint analysis to
collect and analyze customer preferences in the C2C returns program.
According to their results, there are indications that the likelihood
of returnees to participate in the C2C returns program decreases as
the time window for matching increases and increases as the time
window for handing-in increases. In our paper, we evaluate the impact
of these relations on the retailer’s expected profit through numerical
experiments.

The C2C returns program is aligned with the United Nations Sus-
tainable Development Goals (SDGs) [36]. More specifically, it seeks to
achieve (i) Responsible consumption and production (SDG 12), through
promoting the consumption of returned items to prevent them from
being dumped or destroyed and reducing packaging waste, (ii) Climate
action (SDG 13), by decreasing CO2 emissions through eliminating one
transport leg and avoiding that returned items end up in landfills. If
returned items are thrown away, all the emissions generated during
production and transport would be in vain. Moreover, the C2C returns
program complies with various European Union (EU) directives and
laws, such as the Corporate Sustainability Reporting Directive (CSRD),
Packaging and Packaging Waste Directive (PPWD), and Green Claims
Directive (GCD). Under CSRD, retailers are mandated to report their
environmental impact and strategies for reduction. The C2C returns
program enables retailers to demonstrate improvements in environmen-
tal impact related to returns. PPWD supports packaging reuse while the
C2C returns program reduces the need for new packaging. GCD pro-
hibits companies from outsourcing sustainability claims (for example,
planting trees to offset CO2 emissions), necessitating environmentally
friendly operations. In our paper, the environmental impact of the C2C
4

returns program is assessed by examining the change in the ratio of
C2W returns to total demand. The proportional reduction in packaging
waste per demand is consistent with our metric since C2C shipments do
not require new packaging. Moreover, assuming average distance per
shipment remains constant under the C2C returns program, our metric
can represent the proportional change in CO2 emissions generated by
C2W return shipments.

Returnees can be encouraged to participate by promoting the envi-
ronmental benefits of the C2C returns program. According to the recent
questionnaire conducted by Wiersma [34] and Hsieh [35], a significant
proportion of respondents are willing to participate in the C2C returns
program for little or no monetary benefit. Self-esteem, altruism, and
contributing to a better environment seem to be enough to motivate
individuals to participate in the C2C returns program. In our paper,
we ignore the effect of monetary benefits for returnees. We assume
that returnees are motivated to engage in C2C returns solely by moral
incentives.

For purchasers, the C2C service differs from the conventional service
in terms of (i) delivery time, (ii) unboxing experience, (iii) condition of
the product, (iv) additional discount offered. The C2C service offers the
purchaser a potentially inferior experience for the first three elements.
That is why the retailer offers the C2C returned items at a discounted
price. The discount level should be high enough to induce enough
customers to purchase C2C returns and as low as possible to maximize
the expected profit. Wiersma [34] and Hsieh [35] show that the
discount level (rather than delivery speed, product type, or product
value) is the most important attribute for purchasers. In our paper,
we express C2C demand as an non-decreasing function of the discount
level.

We assume that a certain proportion of existing customers will be
attracted by the discount on C2C returns. In other words, the C2C
returns program will lead to demand substitution. However, there
will also be new customers attracted only by the C2C returns. These
customers would not otherwise purchase an item because they consider
the conventional product price too high. In our paper, we model the
two extremes by formulating best-case and worst-case scenarios. In the
best-case scenario, all C2C purchasers are new customers and the C2C
returns program increases total demand. In the worst-case scenario,
C2C returns are considered substitutes and total demand remains the
same. The best-case and worst-case scenarios represent pure demand
expansion and pure cannibalization scenarios, respectively. We assess
the profitability of the C2C returns program using these two scenarios.
We note that the real situation is probably somewhere in between.

3.3. Potential issues and resolution

The operational issues that may arise in current conventional re-
turns programs could also manifest in the C2C returns program. These
include the delivery of incorrect items, as well as the loss or damage of
items during transit. Another issue that can occur is return fraud. When
an issue manifests, the current conventional returns program can result
in disputes between the returnee, the third-party logistics provider, and
the retailer. In the C2C returns program, the purchaser is an additional
actor who is also a private individual. Currently, many goods or services
are exchanged between private individuals, facilitated by a commercial
party or platform. These companies make up the platform economy,
of which Airbnb, DePop, eBay, Lyft, Uber, and Vinted are the most
well-known. These platforms effectively resolve many disputes on a
daily basis. There also exist specialized companies that can help in this
respect (for example, ReturnLogic, SEON for conventional returns and
It Goes Forward for C2C returns).

Some of the well-known tools that can be utilized to minimize,
prevent, and resolve disputes between private individuals and/or a
commercial party and a private individual are behavior monitoring
(in order to identify and exclude service abusers), peer-to-peer reviews
(in order to detect issues), microchip tags on items (in order to detect

counterfeit items), monetary compensation, and return insurance [see

https://itgoesforward.com
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e.g., 37–39]. In the C2C returns program, several actions can be taken
to mitigate associated risks and efficiently resolve disputes. Firstly,
returnees should be requested to submit a photo of the item prior
to initiating the return process. Additionally, at the drop-off location,
a detailed drop-off proof should be registered, including parcel char-
acteristics like weight. Upon receipt of the item, purchasers should
be encouraged to leave a review and rating. A dispute resolution
process can be promptly initiated, if issues are reported through the
review system within a few days of the purchaser receiving the C2C
return item. Throughout this resolution process, various factors such as
photos provided by the returnee/purchaser, drop-off proof, microchips
on items, and the previous ratings/reviews/behavior of peers within
the C2C returns program should be taken into consideration. These
measures collectively aim to enhance the integrity and effectiveness of
the C2C returns program.

According to a report by the National Retail Federation [3], for
every $100 in accepted returns, e-tailers in the United States lose
$10.70 due to return fraud. One could argue that the incidence of return
fraud is potentially higher for items delivered through C2C transactions
due to additional potential fraud types such as sending empty box
or counterfeit items to C2C purchasers, or making premeditated C2C
returns and purchases. In our mathematical models, our initial assump-
tion is that all customers are trustworthy and that costly operational
issues do not manifest. However, in our case study, we also report
the break-even points for problematic return rates at which all the
additional profit generated by the C2C returns program is offset due
to operational issues or fraud.

4. Mathematical models and theoretical results

In this section, we define our problem, present our mathematical
models, and provide our theoretical results. Our first model, the base
model (BM), is a customer-based formulation of the problem. Our
second model formulates the multi-customer problem as an MDP.

4.1. Base model

In this section, we present the base model under the conventional
and the C2C returns program. The base model employs a customer-
based approach by considering a single customer initially served from
the warehouse. The purpose of the base model under the C2C returns
program is to determine how much discount to offer to ensure that
the retailer’s expected total profit is maximized. The notations are
summarized in the appendix (see Table A.1).

4.1.1. Conventional returns program
We consider an online retailer that sells an item in a webshop

at price 𝑃 > 0. Upon purchase, the item is shipped warehouse-to-
customer (W2C), incurring shipping and handling cost 𝑆W2C. Under the
conventional returns program, the customer is allowed to return the
item within 𝑇 R periods after delivery. A C2W return incurs shipping
and handling cost 𝑆C2W. We assume that the customer receives a
ull refund. We model the customer’s return decisions as time-varying
ernoulli trials. Let 𝑢R

𝑖 be the probability of return 𝑖 periods after
delivery with 𝑖 ∈ {1, 2,… , 𝑇 R}. The probability of a C2W return is

R =
𝑇R
∑

𝑖=1
𝑢R
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢R
𝑗

)

= 1 −
𝑇R
∏

𝑖=1

(

1 − 𝑢R
𝑖
)

,

here the equality follows from ∏𝑇R
𝑖=1

(

1 − 𝑢R
𝑖
)

being the probability
f no return. Under the natural assumption that 𝑢R

𝑖 < 1 for 𝑖 ∈
1, 2,… , 𝑇 R}, we have 𝑝R < 1. Let 𝑅𝑊 2𝐶 = 𝑃 − 𝑆W2C be the revenue
enerated by a W2C delivery and 𝐶𝐶2𝑊 = 𝑃+𝑆C2W be the cost incurred
ue to a C2W return. Under the conventional returns program, the
etailer’s expected profit from a single customer is

𝑊 2𝐶 𝐶2𝑊 R
5

[𝛱] = 𝑅 − 𝐶 𝑝 . (1)
his profit function excludes the costs associated with ordering, pur-
hasing and inventory holding as they are not affected by the returns
rogram.

.1.2. C2C returns program
Under the C2C returns program, returnees can choose either a

onventional C2W return or a C2C return within 𝑇 R periods after
elivery. For a C2C return, we consider two cases: (i) the best-case
cenario in which the C2C returns program potentially results in an
dditional customer, and (ii) the worst-case scenario in which a C2C
eturn is viewed as a substitute by a webshop customer.

eturn process
Consider a customer whose item was delivered W2C 𝑖 periods ago

ith 𝑖 ∈ {1, 2,… , 𝑇 R}. If the item has not been returned yet, the
ustomer can (i) request a conventional C2W return with probability
C2W
𝑖 , (ii) request a C2C return with probability 𝑢C2C

𝑖 , (iii) keep the item
ne more period with probability 1 − 𝑢C2W

𝑖 − 𝑢C2C
𝑖 . The probability of a

C2C return is

𝑝C2C =
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

.

Similarly, the probability of a conventional C2W return is

𝑝C2W =
𝑇R
∑

𝑖=1
𝑢𝐶2𝑊
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

.

As in the conventional returns program, we make the natural assump-
tion that 𝑢C2W

𝑖 + 𝑢C2C
𝑖 < 1 for 𝑖 ∈ {1, 2,… , 𝑇 R}, implying that 𝑝C2C +

𝑝C2W < 1. Furthermore, a C2W return incurs cost 𝐶C2W.
Matching process
After a C2C return request, the item is available for sale in the

webshop. The retailer offers a discount 𝑎 ∈ [0, 1] on the selling price
𝑃 for this item. Let the probability of selling a C2C return within a
given period 𝑞(𝑎) be a function of the discount level 𝑎. The probability
that a C2C return is sold within the time window for matching 𝑇M is

𝑝M(𝑎) = 1 − (1 − 𝑞 (𝑎))𝑇
M
.

If the C2C return is sold at discount level 𝑎, the resulting revenue is
𝑅C2C(𝑎) = (1 − 𝑎)𝑃 . The corresponding shipping cost is subtracted later
during the hand-in process. If the return cannot be sold within 𝑇M

periods, a conventional C2W return is made at cost 𝐶C2W.

Hand-in process
Following the matching of a C2C return to a C2C demand, the

returnee must hand in the item within the time window for handing-
in 𝑇H. The C2C returnee hands in the item 𝑖 periods after matching
with probability 𝑢HI

𝑖 for 𝑖 ∈ {1, 2,… , 𝑇H}. Therefore, the probability of
a hand-in within 𝑇H periods after matching is

𝑝HI =
𝑇H
∑

𝑖=1
𝑢HI
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢HI
𝑗

)

.

If the C2C returnee hands in the item within 𝑇H periods, then the
item is shipped from C2C and a C2C shipping cost 𝑆C2C is incurred,
i.e., the hand-in cost is 𝐶HI = 𝑆C2C. If not, a new item is shipped from
W2C to satisfy the C2C demand, resulting in shipping and handling
cost 𝑆W2C. Therefore, the cost associated with a late hand-in is 𝐶LHI =
𝑆C2W + 𝑆W2C. When the C2C returns program is launched, ensuring
full refunds would encourage more customers to participate in the C2C
returns program. In our model, we use full refunds for both late and
on-time hand-ins.

Finalization process
The customer who purchased the C2C return is allowed to return

it within 𝑇 R periods. However, a second C2C return is not allowed
because the retailer must perform a quality check and renew the

packaging. We model this final return process in the same way as



Omega 128 (2024) 103127A.S. Eruguz et al.
a conventional returns program. Let 𝑢FR
𝑖 be the probability of return

𝑖 periods after delivery with 𝑡 ∈ {1, 2,… , 𝑇 R}. The probability the item
is returned is

𝑝FR =
𝑇R
∑

𝑖=1
𝑢FR
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢FR
𝑗

)

,

where we make the assumption that 𝑢FR
𝑖 < 1 for 𝑖 ∈ {1, 2,… , 𝑇 R},

implying that 𝑝FR < 1. The cost associated with a return made by a
C2C customer who purchased an item at discount level 𝑎 is 𝐶C2C(𝑎) =
(1 − 𝑎)𝑃 + 𝑆C2W.

Expected profit
We express the expected profit for the best-case scenario (i.e., the

number of customers potentially increases) and the worst-case scenario
(i.e., the number of customers remains the same).

Given discount level 𝑎, the retailer’s expected best-case profit
E
[

𝛱B(𝑎)
]

can be written as

E
[

𝛱B(𝑎)
]

=𝑅𝑊 2𝐶 − 𝐶𝐶2𝑊 [

𝑝C2W + 𝑝C2C (1 − 𝑝M(𝑎)
)]

+ 𝑅C2C(𝑎)𝑝C2C𝑝M(𝑎)

−
[

𝐶HI𝑝HI + 𝐶LHI (1 − 𝑝HI) + 𝑃
]

𝑝C2C𝑝M(𝑎) − 𝐶C2C(𝑎)𝑝C2C𝑝M(𝑎)𝑝FR.

(2)

The first component of (2) is the revenue generated by a W2C delivery.
The second component is the expected cost associated with a C2W
return, which is incurred when the customer (i) requests a C2W return
or (ii) announces a C2C return but the item cannot be sold within
𝑇M periods. The third component represents the expected revenue
from a C2C sale. The fourth component represents the expected costs
associated with a late or on-time hand-in of a C2C return and the refund
to the returnee. The fifth component is the expected cost associated
with the return of a C2C demand. Fig. 2 summarizes the corresponding
processes, costs, and revenues under the C2C returns program. The
retailer’s problem is to determine an optimal discount level 𝑎∗ that
maximizes the expected profit function given in (2).

Given discount level 𝑎, a webshop customer purchases a C2C return
with probability 𝑝C2C𝑝M(𝑎). In the best-case scenario, the total demand
increases by the ratio 𝑝C2C𝑝M(𝑎). In the worst-case scenario, the total
demand remains the same. Hence, the retailer’s expected worst-case
profit E

[

𝛱W(𝑎)
]

can be expressed by

E
[

𝛱W(𝑎)
]

=
E
[

𝛱B(𝑎)
]

1 + 𝑝C2C𝑝M(𝑎)
. (3)

Note that these profit functions are built based on the expected profit
generated by a webshop customer, not based on an item in stock. By
assuming ample stock in the warehouse, we make the connection to the
multi-customer case in Section 4.2.

4.1.3. Theoretical results
In this section, we present our theoretical results on the relation be-

tween conventional and C2C returns programs and the optimal discount
level under certain assumptions. Proofs of the theorems are provided in
the appendix.

Assumption 1. The probability of a return under the conventional
returns program is equal to the probability of a return under the C2C
returns program, i.e., 𝑝R = 𝑝C2C + 𝑝C2W.

This assumption seems reasonable since it is likely that a customer
first decides to return an item and then, given this decision, they decide
which returns program (conventional or C2C) to use. The following
parameters play an important role in our theorems and proofs:

𝜙𝐵 = 𝐶HI𝑝HI + 𝐶LHI (1 − 𝑝HI) − (1 − 𝑝FR)𝑆𝐶2𝑊 ,

𝜙𝑊 = 𝜙𝐵 + E(𝛱).

The term 𝜙𝐵 consists of the hand-in cost (𝐶HI𝑝HI + 𝐶LHI (1 − 𝑝HI))
and the benefit of eliminating the shipment from C2W (which is (1 −
6

𝑝FR)𝑆C2W because it only happens if the C2C purchase is not returned).
Thus, 𝜙𝐵 and 𝜙𝑊 can be interpreted as the difference in operational
cost when using the C2C returns program rather than the conventional
returns program for the best-case and worst-case scenarios, respec-
tively. If the difference is positive, there are additional costs. If not,
there are savings from using the C2C returns program instead of the
conventional returns program.

Theorem 1. Under Assumption 1 and discount level 𝑎 ∈ [0, 1], the C2C
returns program is more profitable than the conventional program for the
best-case scenario if and only if

𝑃 (1 − 𝑎)
(

1 − 𝑝FR
)

≥ 𝜙𝐵 , (4)

and for the worst-case scenario if and only if

𝑃 (1 − 𝑎)
(

1 − 𝑝FR
)

≥ 𝜙𝑊 . (5)

It is interesting to note that the profitability of the C2C returns
program in comparison to the conventional program is independent
of the probability 𝑝M(𝑎). In other words, it is independent of the
functional relation between the C2C demand and the discount level.
In the best-case scenario, one needs to check whether discount level 𝑎
is such that the revenue from selling the item to the C2C customer
(i.e., 𝑃 (1 − 𝑎)

(

1 − 𝑝FR)) exceeds the difference in operational cost.
Consequently, in case 𝜙𝐵 < 0, the C2C returns program is always
(i.e., regardless which discount level 𝑎 is chosen) more profitable, while
the opposite is true in case 𝜙𝐵 > 𝑃

(

1 − 𝑝FR) (i.e., even the highest
revenue corresponding to discount level 𝑎 = 0 cannot compensate for
the cost). A similar reasoning holds for the worst-case scenario, but
the revenue must also compensate for E(𝛱), since in this scenario a
conventional customer is substituted with a C2C customer. To summa-
rize the discussion, there exists a discount level 𝑎 ∈ [0, 1] for which
the C2C returns program is more profitable than the conventional
returns program for the best-case (or worst-case) scenario if and only
if 𝑃

(

1 − 𝑝FR) ≥ 𝜙𝐵 (resp. 𝑃
(

1 − 𝑝FR) ≥ 𝜙𝑊 ).
Finally, conditions (4) and (5) provide an upper bound on the

optimal discount level 𝑎, assuming that a firm only prefers to offer
the C2C returns program if it is more profitable than the conventional
program. To obtain tractable expressions for the optimal discount level,
we need the following assumption.

Assumption 2. The probability of selling a C2C return 𝑞 (𝑎) is a linear
function of discount level 𝑎, i.e., 𝑞 (𝑎) = 𝑞0 + 𝑎

(

1 − 𝑞0
)

where 𝑞0 is
the probability of selling the C2C return at its original price 𝑃 and
0 ≤ 𝑞0 < 1.

While it is possible to specify any functional form for 𝑞 (𝑎), we
consider a simple linear function to simplify analysis of our base
model [see, e.g., 40,41, for other studies that make a similar assump-
tion].

Theorem 2. The best-case profit function 𝐸[𝛱B(𝑎)] is unimodal on the
interval [0, 1].

Theorem 2 immediately provides a method for numerically finding
the optimal best-case discount level 𝑎∗𝐵 . It is well known that golden-
section search is a method that can efficiently find the optimum of a
unimodal function at any desired precision. Although we conjecture
that 𝐸[𝛱W(𝑎)] is also unimodal, we are unable to prove this formally.
However, the next property turns out to be useful in the sense that it
reduces the search space for finding the optimal discount level in the
worst-case model, in addition to being of interest on its own.

Theorem 3. The optimal worst-case discount level 𝑎∗𝑊 is lower than or
equal to the best-case discount level 𝑎∗𝐵 , i.e., 𝑎

∗
𝑊 ≤ 𝑎∗𝐵 .

For certain parameter ranges (see Appendix, Theorem A.1), we have

an analytical expression for the optimal discount levels, although in
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Fig. 2. Processes, costs, and revenues under the C2C returns program.
any cases one must solve a high-degree polynomial equation for
hich there is no closed-form solution. The ways to find a close-to-
ptimal discount level are to (i) use a brute force method, for example,
y simply enumerating over a finite set of discount levels, for instance,
= 0%, 1%,… , 100%, or (ii) use a golden-section search, which leads to
locally but not necessarily globally optimal solution (since 𝐸[𝛱W(𝑎)]

is conjectured to be unimodal).

4.2. Multi-customer model

In this section, we present the multi-customer model under both
conventional and C2C returns programs. The multi-customer model
extends the base model to multiple arriving and returning customers
during a selling season of 𝑇 periods. Under the C2C returns program,
he main difference from the base model is the explicit modeling of the
2C returns-demand matching process and the influence of discount

evels on both C2C and W2C demand.

.2.1. Conventional returns program
We assume that customers arrive according to a Poisson process

ith rate 𝜆𝑡 during [𝑡, 𝑡 + 1) for 𝑡 ∈ {0, 1,… , 𝑇 − 1}. The demand
ize of each customer is one unit. We assume that there is sufficient
tock in the warehouse. Demand occurring during [𝑡, 𝑡 + 1) is satisfied

at the end of period 𝑡, generating revenue 𝑅W2C per customer. Let
𝒙𝑡 =

(

𝑥𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}
)

be a 𝑇 R - dimensional vector of integers,
where 𝑥𝑡,𝑖 represents the number of customers satisfied 𝑖 periods ago
and who have not returned by period 𝑡. For items purchased in period
𝑡 − 𝑖, the number of C2W returns during [𝑡, 𝑡 + 1) follows a binomial
distribution with parameters 𝑥𝑡,𝑖 and 𝑢R

𝑖 with 𝑖 ∈ {1,… , 𝑇 R}. Each C2W
return incurs cost 𝐶C2W. Due to the relation between Bernoulli trials
and the binomial distribution, this model scales up the base model
7

given in Section 4.1.1 in a stationary demand, infinite horizon setting
(see Theorem 4).

4.2.2. C2C returns program
We formulate the multi-customer problem under the C2C returns

program as a finite-horizon discrete-time Markov Decision Process
(MDP). We present our MDP using "The Five Elements of a Sequential
Decision Problem" defined by [42], namely state information, actions,
exogenous information, transition function, and objective function.

The sequence of events is as follows. At the beginning of period 𝑡,
state 𝒔𝑡 is observed and decision 𝑎𝑡 is made. During [𝑡, 𝑡+1), exogenous
information 𝒘𝑡 is faced. At the end of period 𝑡, costs and revenues are
evaluated.

State information.
At period 𝑡, state information 𝒔𝑡 =

(

𝒙𝑡, 𝒚𝑡
)

is composed of

(i) 𝒙𝑡 =
(

𝑥𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}
)

where 𝑥𝑡,𝑖 represents the number of
W2C demands that are satisfied 𝑖 periods ago and not returned
by period 𝑡,

(ii) 𝒚𝑡 =
(

𝑦𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇M}
)

where 𝑦𝑡,𝑖 represents the number of
C2C returns that are announced 𝑖 periods ago and not matched
to a C2C demand by period 𝑡.

Actions.
Action 𝑎𝑡 ∈ [0, 1] is the discount level applied to C2C demands

during [𝑡, 𝑡 + 1).

Exogenous information.
Exogenous information 𝒘𝑡 =

(

𝑑W2C
𝑡 , 𝑑C2C

𝑡 , 𝒓C2W
𝑡 , 𝒓C2C

𝑡
)

known at the
end of period 𝑡 is composed of
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t-
(i) 𝑑W2C
𝑡 , the number of newly arrived W2C demands,

(ii) 𝑑C2C
𝑡 , the number of newly arrived C2C demands,

(iii) 𝒓C2W
𝑡 =

(

𝑟C2W
𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}

)

where 𝑟C2W
𝑡,𝑖 is the number of

newly announced C2W returns of items purchased at period 𝑡− 𝑖,
(iv) 𝒓C2C

𝑡 =
(

𝑟C2C
𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}

)

where 𝑟C2C
𝑡,𝑖 is the number of newly

announced C2C returns of items purchased at period 𝑡 − 𝑖.

Note that 𝑑W2C
𝑡 and 𝑑C2C

𝑡 would depend on discount level 𝑎𝑡 and
current period 𝑡. Typically, 𝑑W2C

𝑡 would decrease and 𝑑C2C
𝑡 would

increase with discount level 𝑎𝑡 in period 𝑡. We model the two extremes
using the following best-case and worst-case demand scenarios.

In the best-case demand scenario, W2C demand remains the same
and total customer demand increases by C2C demand. We model this
scenario as follows. We assume that W2C demand is Poisson with rate
𝜆𝑡 during [𝑡, 𝑡 + 1) where 𝜆𝑡. C2C demand 𝑑C2C

𝑡 follows a binomial
distribution with parameters ∑𝑇M

𝑖=1 𝑦𝑡,𝑖 and 𝑞(𝑎𝑡) during [𝑡, 𝑡 + 1).
In the worst-case demand scenario, total customer demand remains

the same, i.e., W2C demand decreases by C2C demand. Both W2C
and C2C demand depend on the current discount level. We model this
scenario as follows. Customers arrive according to a Poisson process
with rate 𝜆𝑡 during [𝑡, 𝑡+1) where 𝜆𝑡. A webshop customer is willing to
purchase a C2C return with probability 𝑞(𝑎𝑡). The number of customers
who are willing to purchase a C2C return 𝑑C2C

𝑡 follows a binomial
distribution with parameters 𝑑𝑡 and 𝑞(𝑎𝑡) where 𝑑𝑡 is the number of
newly arrived customers during [𝑡, 𝑡 + 1). If a new customer arrives
and there are no C2C returns available for purchase, then purchasing
a C2C return is not an option for them. Therefore, we have 𝑑C2C

𝑡 =
min{𝑑C2C

𝑡 ,
∑𝑇M

𝑖=1 𝑦𝑡,𝑖} and 𝑑W2C
𝑡 = 𝑑𝑡 − 𝑑C2C

𝑡 .
The probability of a customer return depends on the time elapsed

since delivery. We assume that newly announced C2W and C2C returns
(𝑟C2W
𝑡,𝑖 , 𝑟C2C

𝑡,𝑖 ) follow a multinomial distribution with parameters 𝑥𝑡,𝑖 and
(𝑢C2W

𝑖 , 𝑢C2C
𝑖 ) during [𝑡, 𝑡 + 1).

Transition function.
The transition function 𝑆(.) defines the transition from state 𝒔𝑡

to 𝒔𝑡+1 = 𝑆(𝒔𝑡, 𝑎𝑡,𝒘𝑡) after taking action 𝑎𝑡 and facing exogenous
information 𝒘𝑡. We split the transition function into 𝑆1(.) and 𝑆2(.)
where 𝒙𝑡+1 = 𝑆1(𝒙𝑡, 𝑎𝑡, 𝑑W2C

𝑡 , 𝒓C2W
𝑡 , 𝒓C2C

𝑡 ) and 𝒚𝑡+1 = 𝑆2(𝒚𝑡, 𝑎𝑡, 𝑑C2C
𝑡 , 𝒓C2C

𝑡 ).
Functions 𝑆1(.) and 𝑆2(.) generate 𝑇 R and 𝑇M - dimensional vectors,
respectively.

At the transition from period 𝑡 to 𝑡+1, state information is advanced
by 1 period. During [𝑡, 𝑡+ 1), the number of W2C demands is 𝑑W2C

𝑡 and
the number of returns is 𝒓C2W

𝑡 + 𝒓C2C
𝑡 . Transition function 𝑆1(.) can be

defined as

(

𝑆1(𝒙𝑡, 𝑎𝑡, 𝑑𝑡, 𝑑C2C
𝑡 , 𝒓𝑡)

)

𝑖 =

{

𝑑W2C
𝑡 for 𝑖 = 1,

𝑥𝑡,𝑖−1 − 𝑟C2W
𝑡,𝑖−1 − 𝑟C2C

𝑡,𝑖−1 for 𝑖 = 2, 3,… , 𝑇 R,

where (.)𝑖 is the 𝑖th element of the vector inside the brackets.
During [𝑡, 𝑡 + 1), the number of C2C returns is ∑𝑇R

𝑗=1 𝑟
C2C
𝑡,𝑗 and the

number of C2C demands is 𝑑C2C
𝑡 . At the end of period 𝑡, C2C returns

are matched to C2C demands according to the first-in first-out (FIFO)
rule. In other words, the matching starts from the oldest C2C returns.
Returns announced 𝑇M periods ago are matched first, those announced
𝑇M − 1 periods ago are matched second, etc., until the C2C demand is
fully satisfied. Let (𝑥)+ = max(0, 𝑥). Define 𝑑C2C

𝑡,𝑖 =
(

𝑑C2C
𝑡 −

∑𝑇M
𝑗=𝑖 𝑦𝑡,𝑗

)+
as

the remaining number of C2C demands after matching customers who
announced a C2C return 𝑖 periods ago and onward. Transition function
𝑆2(.) can be defined as

(

𝑆2(𝒚𝑡, 𝑎𝑡, 𝑑C2C
𝑡 , 𝒓C2C

𝑡 )
)

𝑖 =

⎧

⎪

⎨

⎪

⎩

∑𝑇R
𝑗=1 𝑟

C2C
𝑡,𝑗 for 𝑖 = 1,

(

𝑦𝑡,𝑖−1 − 𝑑C2C
𝑡,𝑖

)+
for 𝑖 = 2, 3,… , 𝑇M.

Objective function.
As in the base model, we consider costs, revenues, hand-in and
8

return probabilities. The expected immediate profit at the end of period
𝑡, given state 𝒔𝑡, action 𝑎𝑡, and exogenous information 𝒘𝑡 is

E
[

𝑅(𝒔𝑡, 𝑎𝑡,𝒘𝑡)
]

=𝑅W2C𝑑W2C
𝑡 − 𝐶C2W

⎡

⎢

⎢

⎣

𝑇R
∑

𝑖=1
𝑟C2W
𝑡,𝑖 +

(

𝑦𝑡,𝑇M − 𝑑C2C
𝑡

)+⎤
⎥

⎥

⎦

+ 𝑅C2C(𝑎𝑡)𝑑C2C
𝑡

−
(

𝐶HI𝑝HI + 𝐶LHI(1 − 𝑝HI) + 𝑃
)

𝑑C2C
𝑡 − 𝐶C2C(𝑎𝑡)𝑝FR𝑑C2C

𝑡 . (6)

Eq. (6) follows the same reasoning as (2).
Let 𝑉𝑡(𝒔𝑡) be the maximum expected total profit in state 𝒔𝑡 following

the optimal policy from period 𝑡 onward. The optimal discount levels
at period 𝑡 = 0, 1,… , 𝑇 − 1 can be obtained by

𝑎∗𝑡 = argmax
𝑎𝑡∈[0,1]

{E𝒘𝑡

[

E
[

𝑅(𝒔𝑡, 𝑎𝑡,𝒘𝑡)
]

+ 𝑉𝑡+1(𝒔𝑡+1)
]

},

where 𝑉𝑇 (𝒔) = 0 for all states 𝒔.

4.2.3. Theoretical results
In this section, we provide our theoretical results on the relation be-

tween the base and multi-customer models under certain assumptions.

Assumption 3. W2C demand follows a Poisson distribution with
constant rate 𝜆.

Theorem 4. Let E[�̂�] be the long-run average profit of the conventional
multi-customer system defined in Section 4.2.1. Under Assumption 3, we
have

E[�̂�] = 𝜆E[𝛱].

Theorem 4 implies that the base model and the multi-customer
model are equivalent to each other in a stationary demand, infinite
horizon setting. More specifically, when the expected profit of the base
model is scaled up by demand rate 𝜆, we obtain the long-run average
profit of the multi-customer model.

Let a constant-discount-level policy with parameter 𝑎 ∈ [0, 1] be a
policy with 𝑎𝑡 = 𝑎 for all 𝑡 = {1, 2,… , 𝑇 }.

Theorem 5. Let E[�̂�(𝑎)] be the long-run average profit of the C2C multi-
customer system as defined in Section 4.2.2 under a constant-discount-level
policy with parameter 𝑎. Assume 𝑇M = 1. Under Assumption 3 and the
best-case scenario, we have

E[�̂�(𝑎)] = 𝜆E[𝛱B(𝑎)].

Theorem 5 implies that if 𝑇M = 1, then the base model and
the multi-customer model are equivalent to each other in an infinite
horizon setting and the best-case scenario. We note that this result
does not hold for 𝑇M > 1 due to the existence of the FIFO rule
in the matching process. Furthermore, this result does not hold for
the worst-case scenario, since W2C demand would not follow Poisson
distribution.

5. Solution methods

The base model (BM) introduced in Section 4.1.2 simplifies the real-
world problem under the C2C returns program. The multi-customer
model presented in Section 4.2.2 is more comprehensive, being an
MDP with unbounded state space and continuous action space. For
the multi-customer model, finding an optimal policy using exact algo-
rithms is computationally intractable. Therefore, we propose heuristic
approaches to find reasonably good solutions.

First, we consider a state-independent and time-independent constan
discount-level policy with parameter 𝑎BM, where 𝑎BM is the optimal
discount level for the base model in the best-case and worst-case
demand scenarios, found using Theorems 2 and 3, respectively. Note
that using Theorem 2, we can obtain the optimal constant-discount-

M
level policy for 𝑇 = 1 in a stationary demand, infinite horizon,
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Fig. 3. Demand rate 𝜆𝑡 for 𝑡 = 0, 1,… , 𝑇 − 1.
best-case demand setting (Theorem 5). For all other cases, Theorems 2
and 3 would not lead to the optimal constant-discount-level.

Second, we determine a constant-discount-level policy using a sim-
ple simulation optimization (SO) procedure. Given resolution 𝑁 , we
evaluate the performance of a finite set of constant-discount-level
policies with parameter 𝑎 ∈ {0, 1∕𝑁, 2∕𝑁,… , 𝑁 − 1∕𝑁} by simulation,
using common random variables. We determine the discount level 𝑎SO

that provides the greatest expected total profit, where we also make
statistical comparisons.

Third, we implement the reinforcement learning (RL) method in-
troduced by Kearns et al. [43]. The algorithm we implemented can
be found in Figure 1, page 198 of [43]. This algorithm is designed
for finding near-optimal solutions to MDPs with infinitely large state
spaces. It is based on the idea of sparse sampling, leading to a non-
stationary stochastic policy. Given any state 𝒔𝑡 at period 𝑡, the algorithm
uses a simulator of the MDP to draw samples for many state–action
pairs, and uses these samples to compute a good action from 𝒔𝑡, which
is then executed. More precisely, for state 𝒔𝑡 at period 𝑡, a finite subset
of actions 𝐴 are considered and a randomly sampled look-ahead tree
of depth 𝐻 and sample size 𝐶 is constructed. Using this look-ahead
tree, we formulate a sub-MDP. The optimal action for this sub-MDP is
obtained by dynamic programming. The complexity of the per-state com-
putations (i.e., the number of simulated transitions for the development
of the look-ahead tree) is 𝑂

(

(|𝐴|𝐶)𝐻
)

. We note that for our problem,
there is no guarantee that the sub-MDP contains enough information
to compute a near-optimal action from state 𝒔𝑡. The number of calls
to the simulator required to obtain a near-optimal solution is often
extremely large [44]. In exchange for this limitation, the running time
of the algorithm has no dependence on the number of states. We use the
solution obtained by this algorithm as a benchmark solution to assess
the performance of the constant-discount-level policies obtained by the
base model and simulation optimization for real-world cases introduced
in Section 6. We refer to Kearns et al. [43] for more details about this
algorithm.

6. Case study

In this section, we assess the value of the C2C returns program at
a fashion retailer in the Netherlands. For the C2C returns program, we
illustrate the performance of the BM solution compared to those of SO
and RL and we report the break-even points for the rate of problematic
returns.
9

Table 1
Parameters of optimistic and pessimistic scenarios.

Inputs Scenarios

Optimistic (O) Pessimistic (P)

Demand Best-case Worst-case
Returnees’ participation ratio 𝛾 0.75 0.25
Time window for handing-in (days) 𝑇 H 7 14
Time window for matching (days) 𝑇M 3 5
Return rate for C2C purchases (e) 𝑢FR

𝑖 𝜇R
𝑖 1.5 × 𝜇R

𝑖
C2C shipping cost (e) 𝑆C2C 4 6

6.1. Data

We analyze data from our partner retailer from May 2017 to May
2019, consisting of 2.6 million data points. We consider 3 items (items
A, B and C) sold on the retailer’s webshop during a selling season of 𝑇 =
60 days. Customers are allowed to return items to the retailer within
𝑇 R = 30 days after delivery. Historical data shows that demand is non-
stationary and return probabilities depend on the time elapsed since
delivery. Demand rate 𝜆𝑡 in day 𝑡 = 1, 2,… , 𝑇 and return probability
𝑢R
𝑖 for an item purchased 𝑖 = 1, 2,… , 18 days ago are as reported in

Figs. 3 and 4, respectively. Item A has low demand (expected demand
𝜆 = 1.03 units per day) and high returns (𝑝R = 0.42), item B has high
demand (𝜆 = 3.77) and high returns (𝑝R = 0.44), and item C has high
demand (𝜆 = 3.68) and low returns (𝑝R = 0.28). For items A, B, and
C, return probabilities 𝑢R

𝑖 are negligible for 𝑖 = 18,… , 𝑇 R. Based on
commercial prices, we set shipping and handling costs as 𝑆W2C = e6
and 𝑆C2W = e8. Items A, B, and C are sold for e34.99, e29.99, and
e19.99, respectively.

We consider C2C returns to be fully refunded to encourage cus-
tomers to participate in the C2C returns program. Based on expert
knowledge, we define optimistic and pessimistic scenarios for the C2C
returns program as shown in Table 1. Solution methods SO and RL can
incorporate any functional form for the relation between C2C demand
and discount level 𝑎. For the sake of simplicity, we use Assumption 2
with 𝑞0 = 0.05.

In an optimistic (O) scenario, W2C demand remains the same and
total customer demand increases by C2C demand. This corresponds to
the best-case demand described in Section 4.2.2 (exogenous informa-
tion), where 𝜆𝑡 is as shown in Fig. 3 for 𝑡 = 0, 1,… , 𝑇 − 1. The time
window for handing-in is set at a reasonable level, i.e., 𝑇H = 7 days.
Consequently, the delivery lead time for C2C purchases is reasonable
(7 days maximum), paving the way for best-case demand. In order
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Fig. 4. Return probability 𝑢R
𝑖 for 𝑖 = 1, 2,… , 𝑇 R.
to encourage returnees to participate in the C2C returns program, we
consider a short time window for matching by setting 𝑇M = 3 days.
Under a short time window for matching and a reasonable time window
for handing-in, the majority of returnees (75%) are assumed to make a
C2C return. We set 𝑢C2C

𝑖 = 𝛾 × 𝑢R
𝑖 and 𝑢C2W

𝑖 = (1 − 𝛾) × 𝑢R
𝑖 with 𝛾 = 0.75

and 𝑢R
𝑖 as shown in Fig. 4 for 𝑖 = 1, 2,… , 𝑇 R. In an optimistic scenario,

a delivery from C2C incurs 𝑆C2C = e4, which is lower than a standard
W2C shipping cost. Return probabilities for W2C and C2C demands are
considered the same, i.e., 𝑢R

𝑖 = 𝑢FR
𝑖 for 𝑖 = 1, 2,… , 𝑇 R.

In a pessimistic (P) scenario, total customer demand remains the
same, i.e., W2C demand decreases by C2C demand. We model this
situation like the worst-case demand described in Section 4.2.2 (exoge-
nous information). In this scenario, the time window for handing-in
is set to 𝑇H = 14 days, which could cause a long delivery lead time
for customers. We impose a long time window for matching by setting
𝑇M = 5 days. Due to the hassle a long matching period creates for
returnees, we consider that the majority of returnees (75%) choose to
make C2W returns, i.e. we set 𝛾 = 0.25. In a pessimistic scenario, a
delivery from C2C incurs 𝑆C2C = e6. In addition, return probabilities
for C2C demand are set to be much higher than those of W2C demand,
where 𝑢FR

𝑖 = 1.5 × 𝑢R
𝑖 for 𝑖 = 1, 2,… , 𝑇 R.

6.2. Algorithm settings

Solution methods BM, SO, and RL presented in Section 5 were coded
in C++ and experiments were carried out on the Lisa cluster computer,
which is installed and maintained by SURFsara, the Netherlands [45].
First, we determine discount level 𝑎BM using the BM for the best-
case and worst-case scenarios (i.e. Theorems 2 and 3) and evaluate
the performance of the corresponding constant-discount-level policy by
simulation. Second, we obtain discount level 𝑎SO using SO with 𝑁 = 20.
Third, we evaluate non-stationary stochastic policies with RL. For RL,
we define the set of possible discount levels as 𝐴 = {0.0, 0.15, 0.25, 0.50}.
We restrict the per-state computational complexity (|𝐴|𝐶)𝐻 between
160,000 and 250,000 by taking 𝐻 = 2, 𝐶 = 120; 𝐻 = 3, 𝐶 = 15; and
𝐻 = 4, 𝐶 = 5. We name the corresponding algorithms H2C120, H3C15,
and H4C5, respectively. We note that algorithms H2C120, H3C15, and
H4C5 are in increasing order of depth and decreasing order of per-
state computational complexity. In addition, we assess the performance
of the system in a conventional returns program by simulation. Each
evaluation uses 1000 replications and common random variables. We
introduce a cool-down period of 𝑇 R = 30 days, during which customer
10

returns are allowed, but W2C and C2C demands do not occur.
6.3. Results

6.3.1. Performance of the base model
We define the relative difference in the expected total profit of

different solutions compared to the BM as

𝛥𝛱SM = 𝛱SM −𝛱BM

𝛱BM , (7)

where 𝛱SM and 𝛱BM are the expected total profits obtained by solution
methods SM ∈ {SO, H2C120, H3C15, H4C5} and BM, respectively. For
our numerical experiments, 𝛱BM > 0 and 𝛱SM > 0 for all SM ∈
{SO, H2C120, H3C15, H4C5}. With one-tailed paired 𝑡-tests, we check
whether we can reject the null hypothesis 𝛱BM = 𝛱SM in favor of
𝛱BM < 𝛱SM (resp. 𝛱BM > 𝛱SM) at the significance level of 5% for
cases where 𝛥𝛱SM > 0 (resp. 𝛥𝛱SM < 0).

Table 2 shows that BM and SO provide very similar solutions. The
relative difference in expected total profit 𝛥𝛱SO is negligible (0.16%
at most) even when there is a reasonable difference between constant-
discount-levels 𝑎BM and 𝑎SO (𝑎BM − 𝑎SO = 3.3% at most for Item A -
pessimistic scenario). We observe that the expected total profit is not
very sensitive to the discount level.

We observe that SO outperforms the RL algorithms. The trade-off
between depth 𝐻 and sample size 𝐶 is case-specific. The RL algorithms
lead to non-stationary stochastic policies, which are more general than
the constant-discount-level policies considered in BM and SO. However,
the proposed approach is computationally expensive and does not guar-
antee near-optimality. The computational time required to evaluate
the RL algorithms averages 34 h per instance. SO evaluates the finite
set of discount levels within 40 s for each instance. SO works offline
and provides a policy that is easy to implement and understand. The
RL method is an online approach, and needs to be computed at the
beginning of each day. The resulting policy could result in a different
discount level for each day, which may be perceived negatively by
customers.

6.3.2. Value of the C2C returns program
We measure the value of the C2C returns program in terms of

expected total profit by

𝛥𝛱C2C = 𝛱C2C −𝛱CON

𝛱CON , (8)

where 𝛱CON is the expected total profit under the conventional returns
program and 𝛱C2C = max{𝛱BM,𝛱SO,𝛱H2C120,𝛱H3C15,𝛱H4C5}. In our
numerical experiments, 𝛱CON, we always have 𝛱C2C > 0. We define
the return rate as the ratio of the number of C2W returns to the total
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Performance of solution methods.
Item Setting 𝑎BM (%) 𝑎SO (%) 𝛥𝛱SO (%) 𝛥𝛱H2C120 (%) 𝛥𝛱H3C15 (%) 𝛥𝛱H4C5 (%)

A O 31.9 30 0.03 −2.55 −1.23 −2.13
P 1.7 5 0.16 0.06a 0.01a −0.05a

B O 31.2 30 0.01 −2.27 −1.18 −1.91
P 4.6 5 −0.08 −0.26 −0.26 −0.37

C O 33.1 35 −0.04 −1.64 −1.03 −1.51
P 11.6 10 0.07 −0.41 −0.42 −0.40

a H0 is not rejected.
Table 3

Value of the C2C returns program.

Item Setting 𝛱CON (e/day) 𝛱C2C (e/day) 𝛥𝛱C2C (%) 𝜌CON (%) 𝜌C2C (%) 𝛥𝜌C2C (%)

A O 7.59 9.48 24.97 41.81 24.13 42.30
P 7.59 7.61 0.35a 41.81 39.48 5.59

B O 17.94 23.97 33.61 44.29 25.00 43.56
P 17.94 18.13 1.08 44.29 39.54 10.72

C O 15.23 17.89 17.43 27.77 17.12 38.34
P 15.23 15.55 2.06 27.77 24.74 10.91

a H0 is not rejected.
emand. The total demand consists of W2C demand (conventional pur-
hase) and C2C demand (C2C purchase). The number of C2W returns
onsists of items delivered from W2C or from C2C. The value of the C2C
eturns program in terms of the expected return rate 𝛥𝜌C2C is measured

by

𝛥𝜌C2C =
𝜌CON − 𝜌C2C

𝜌CON , (9)

where 𝜌CON and 𝜌C2C are the expected return rates under the conven-
tional and the C2C returns programs, respectively. For the C2C returns
program, we consider the solution with the greatest expected total
profit.

As shown in Table 3, in optimistic scenarios, the value of the C2C
returns program is significant in terms of expected profit and expected
return rate. We observe an increase in expected profit of up to 34%
(from a daily profit of e18 to e24) and a reduction in the expected
eturn rate of up to 44% (the ratio of C2W deliveries to total demand
rops from 44% to 25%). We note that the expected profits reported in
able 3 do not include the costs of ordering, purchasing, and holding

nventory since we assume they are the same for both returns programs.
In optimistic scenarios, the total demand increases by 12%–24%

ecause C2C always generates additional demand. However, the system
an be interpreted as more environmentally friendly considering the
atio of C2W deliveries to total demand. In pessimistic scenarios, the
otal demand remains the same. In the most pessimistic scenario (Item
), expected total profits 𝛱C2C and 𝛱CON are not significantly different.

(One-tailed paired 𝑡-tests show that we cannot reject the null hypothesis
𝛱C2C = 𝛱CON in favor of 𝛱CON < 𝛱C2C at the significance level of 5%.)
However, the relative reduction in the expected return rate is 6%. This
shows that the C2C returns program can help to reduce return rates
and thus provide a more environmentally friendly system, even if the
increase in profit is not statistically significant.

6.3.3. Impact of problematic returns
One could argue that the incidence of return fraud or the likelihood

of operational issues are potentially higher for items delivered through
C2C transactions. In this section, we present the break-even point for
problematic returns. To ensure a fair comparison between conventional
and C2C returns programs, we assume that the costs associated with
problematic returns for conventional C2W returns remains constant
across both programs. Therefore, our analysis only focuses on issues
associated with items sold through C2C.

The daily average monetary value of returns from C2C purchasers
𝑀𝑉𝑅 can be calculated by

𝑀𝑉𝑅 =
𝑃𝑝FR ∑𝑇

𝑡=1 𝑑
C2C
𝑡 .
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𝑇

Table 4
Break-even points of problematic returns rate.

Item Setting 𝛱C2C −𝛱CON(e/day) 𝑀𝑉𝑅 (e/day) 𝐵𝐸𝑃 (%)

A O 1.89 1.71 110.6
P 0.03 0.35 7.6

B O 6.03 6.28 96.1
P 0.19 2.36 8.2

C O 2.65 1.28 207.5
P 0.31 0.61 51.9

The break-even point, denoted as 𝐵𝐸𝑃 , indicates the threshold at
which the profit generated by the C2C returns program equals the
financial loss caused by problematic C2C returns. That is,

𝐵𝐸𝑃 = 𝛱C2C −𝛱CON

𝑀𝑉𝑅
.

Table 4 shows the break-even points for various scenarios examined
in our case study. We note that in pessimistic scenarios, characterized
by factors like demand cannibalization and higher return rates from
C2C purchasers, the additional profit generated by the C2C returns
program can be easily nullified by the loss incurred due to problematic
returns for items A and B. In these instances, the break-even points fall
below the benchmark return fraud rate of 10.7% [3]. It is important to
highlight that items A and B are relatively high-priced products, priced
at e34.99 and e29.99, respectively.

However, in optimistic scenarios such as those concerning items A
and C, the C2C returns program remains profitable even if all returns
from C2C purchasers are problematic. A break-even point exceeding
100% can be interpreted as not only losing all the value in returned
items due to fraud and costs associated with operational issues, but also
suffering reputational damage. For item C, priced at e19.99, even in the
most pessimistic scenario, the C2C returns program remains profitable
as long as the rate of problematic returns is less than 51.9% in value.

Based on our findings, it can be inferred that the C2C returns
program is likely to maintain profitability for lower-priced items, even
in pessimistic scenarios.

7. Numerical experiments

In this section, we extend our numerical experiments on the perfor-
mance of the BM and the value of the C2C returns program to a wide
range of instances to claim generality. We focus on the performance
of SO compared to BM due to its good performance, as reported in
Section 6.

The setup of the experiments corresponds to the optimistic and
pessimistic scenarios presented in Section 6. The algorithm settings
are as shown in Section 6.2. We consider the same assumptions and
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Table 5
Performance of SO and the value of the C2C returns program.

Inputs 𝑎BM

(avr. %)
𝑎SO

(avr. %)
𝛥𝛱SO

(avr. %)a
𝐻0 not rejected
/total instances

𝛥𝛱C2C

(avr. %)
𝛥𝜌C2C

(avr. %)

Demand
assumption

Best-case 23.61 23.46 0.07 106/192 58.93 24.92
Worst-case 18.26 18.15 0.66 187/192 36.65 21.51

𝛾
0.75 20.60 21.69 0.37 140/192 70.16 33.43
0.25 21.27 19.92 0.52 153/192 25.42 13.00

𝑇
60 20.94 21.12 0.53 153/192 43.61 21.23
180 20.94 20.49 0.35 140/192 51.97 25.20

𝑇 H 14 23.11 22.89 0.54 141/192 55.42 24.28
7 18.77 18.72 0.36 152/192 40.16 22.15

𝑇M 5 18.78 18.83 0.53 154/192 52.88 24.53
3 23.09 22.79 0.35 139/192 42.70 21.90

𝑢FR
𝑖

𝑢R
𝑖 23.98 23.39 0.51 164/192 65.38 26.52
1.5 × 𝑢R

𝑖 17.90 18.23 0.36 129/192 30.20 19.91

𝑆C2C 4 23.48 23.18 0.52 152/192 56.72 24.41
6 18.40 18.44 0.37 141/192 38.86 22.02

𝜆
5 20.94 19.10 0.65 99/128 51.37 25.13
3 20.94 20.23 0.28 97/128 48.89 23.92
1 20.94 23.09 0.41 97/128 43.11 20.60
a For the instances where H0 is not rejected.
erformance measures (see (7), (8), (9)). We set the selling price 𝑃 =
20, consider period-independent return probabilities 𝑢R

𝑖 = 0.02 for
= 1, 2,… , 𝑇 R with 𝑇 R = 30 days (𝑝R = 0.45) and constant demand rates

𝜆. Input parameters that are varied are as shown in Table 5. Performing
a full factorial analysis with these input parameters, we obtain 384
instances.

Table 5 reports average (avr.) values across all instances setting
input parameters given in the corresponding rows. Using one-tailed
paired 𝑡-tests, we check whether the null hypothesis H0: 𝛱BM = 𝛱SO

can be rejected in favor of 𝛱BM > 𝛱SO at the significance level of 5%.
The 5th column in Table 5 reports 𝛥𝛱SO for the instances where H0
cannot be rejected. The 6th column in Table 5 reports the number of
instances where the null hypothesis cannot be rejected. We note that for
the instances where H0 can be rejected, the average 𝛥𝛱SO is −0.12%.

In our numerical experiments, SO and BM provide similar discount
levels and expected total profits. For the instances where SO outper-
forms BM, the relative difference in expected total profit is on average
0.45% with a maximum of 3.11%. Discount level 𝑎SO is very similar
to 𝑎BM on average (20.81% vs. 20.94%) but the difference between
the minimum and the maximum values of 𝑎SO is higher than that of
𝑎BM (5.00%–40.00% vs. 7.92%–33.51%). Both solutions often behave
similarly. The proposed discount level increases with the hand-in time
window 𝑇H and decreases with the C2C shipping cost 𝑆C2C and final re-
turn probabilities 𝑢FR

𝑖 . If operational costs for the C2C returns program
become lower (higher), higher (lower) discounts can be offered. The
proposed discount levels decrease with the time window for matching
𝑇M. This is because the likelihood of observing C2C sales becomes
higher for the longer time window for matching. We note that 𝑎BM is
not affected by the changes in horizon length 𝑇 or demand rate 𝜆, by
definition.

We observe that expected total profits 𝛱C2C and 𝛱CON are signifi-
cantly different for all instances. As shown in columns 7–8 of Table 5,
the C2C returns program can be highly valuable both in terms of
expected profit and expected return rate. The C2C returns program
is more valuable when the selling season is long, C2C customers can
tolerate long waiting times, the final return probability is not higher
than the initial return probability, or the demand rates are high. In the
most pessimistic scenario, where the increase in profit is 3.81%, the
decrease in the expected return rate is 6.1%.

8. Conclusion

Online returns are a major problem for retailers around the world.
Handling these returns is costly, puts profit under pressure, and
12
contributes to CO2 emissions. In this paper, we investigate the C2C
returns program, where returns bypass the retailer’s warehouse and are
delivered straight to the next customer. In the C2C returns program,
when customers return an item, they are asked to keep it for a few
days. During those days, the item is promoted on the retailer’s website
at a discount and the CO2 emissions saved are highlighted. When the
item is sold, the returnee receives a notification to ship the package.
Payments and refunds are handled by the online retailer or an external
operator. A quick response (QR) label links the returnee to the new
customer. The new customer inspects the item upon receipt, scans the
product’s QR label on the package, and writes a review of the item.
The review is added to the returnee’s profile, where it contributes to
their reputation. One of the co-authors of this article is following real-
world implementations of this concept. For further information, see
https://itgoesforward.com/.

Our paper presents the mathematical models behind the C2C con-
cept. The goal is to determine optimal discount levels to offer so
that the retailer’s expected profit is maximized. First, we propose a
customer-based model and show how to determine a constant-discount-
level policy. Second, we formulate the real-world problem as an MDP.
Due to the curse of dimensionality, determining the optimal policy is
computationally intractable. We use simulation optimization and rein-
forcement learning algorithms to find reasonably good solutions. We
analyze historical real-world demand and returns data from a fashion
retailer and assess the performance of different solution methods and
the value of the C2C returns program in different scenarios.

Our numerical experiments show that the base model performs well
compared to simulation optimization and reinforcement learning algo-
rithms. In general, the base model outperforms reinforcement learning.
The base model and simulation optimization provide similar solutions.
We observe that the retailer’s expected profit is not very sensitive to
the discount level. Our extensive numerical experiments show that
the relative difference in expected profit between the base model and
simulation optimization is on average 0.45%, with a maximum of
3.11%.

Both our case study and numerical experiments report significant
benefits from the C2C returns program. In the most optimistic scenario
in our case study, we observe a 34% increase in expected profit and a
44% reduction in expected return rate. In pessimistic scenarios, where
the increase in expected profit is not significant, the relative reduction
in the expected return rate can be as high as 6%. Thus, the C2C
returns program can make the system more environmentally friendly
even when it is not highly cost-effective. Our analysis of the impact

of problematic returns shows that the C2C returns program is likely

https://itgoesforward.com/
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to maintain profitability for lower-priced items even in pessimistic
scenarios.

This research has shown promising initial results for the C2C con-
cept. Future research can extend our work to consolidate the de-
mand/return of multiple items, examine customer response to discount
levels, and incorporate inventory control and item availability in stock.
Another research opportunity could be to revisit the C2C concept. For
example, C2C sales requests can be collected in advance and fulfilled
when the corresponding item is available for a C2C delivery. This would
eliminate the matching period and could prevent the inconvenience of
returnees holding the item until it is sold to the next customer. Finally,
future research can investigate the overall environmental impact of
the C2C returns program under demand expansion. In this regard, a
product life-cycle approach that considers the environmental impact in
all phases including production, consumer use, collection, resale, and
disposal would be suitable [see approaches proposed in, e.g., 46,47].
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Appendix. Notations and proofs

A.1. Notations

See Table A.1 for notations.

A.2. Proofs

Proof of Theorem 1.
Under Assumption 1, substituting 𝑝C2W = 𝑝R − 𝑝C2C into (1) and

writing the difference between (1) and (2), we obtain:

𝐸
[

𝛱B(𝑎)
]

− 𝐸 [𝛱] = 𝑝C2C𝑝M(𝑎)
(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝐵

)

. (A.1)

Note that 𝑝C2C𝑝M(𝑎) is non-negative for all 𝑎 ∈ [0, 1]. Hence it follows
that 𝐸

[

𝛱B(𝑎)
]

≥ 𝐸 [𝛱] if and only if
( FR)
13

𝑃 (1 − 𝑎) 1 − 𝑝 ≥ 𝜙𝐵 .
Similarly, by taking the difference of 𝐸
[

𝛱W(𝑎)
]

and 𝐸 [𝛱], we obtain:

𝐸
[

𝛱W(𝑎)
]

− 𝐸 [𝛱] = 𝑝C2C𝑝M(𝑎)
(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝐵 − 𝐸 [𝛱]
)

= 𝑝C2C𝑝M(𝑎)
(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝑊

)

. (A.2)

Again, note that 𝑝C2C𝑝M(𝑎) is non-negative for all 𝑎 ∈ [0, 1], and hence
we find that 𝐸

[

𝛱W(𝑎)
]

≥ 𝐸 [𝛱] if and only if

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) ≥ 𝜙𝑊 . □

The parameter

𝛽 =

(

𝑇M − 1
)

𝜙𝐵
(

𝑇M + 1
) (

1 − 𝑝FR)𝑃
. (A.3)

plays an important role in characterizing the shape (convex or concave)
of the profit functions and hence in optimizing the discount level. The
next lemma will be used in the proofs of Theorem A.1 and Theorem 2.

Lemma A.1. Under Assumption 2 and the best-case scenario, the expected
profit function of the C2C returns program E

[

𝛱B(𝑎)
]

can be characterized
as follows:

i. If 𝛽 ≤ 0, E
[

𝛱B(𝑎)
]

is concave on 𝑎 ∈ [0, 1],
ii. If 0 < 𝛽 < 1, E

[

𝛱B(𝑎)
]

is concave on 𝑎 ∈ [0, 1 − 𝛽] and convex on
𝑎 ∈ [1 − 𝛽, 1],

iii. If 𝛽 ≥ 1, E
[

𝛱B(𝑎)
]

is convex on 𝑎 ∈ [0, 1].

Let 𝑇M ∈ Z+ ⧵ {1}. Under Assumption 2 and the worst-case scenario,
the expected profit function of the C2C returns program E

[

𝛱W(𝑎)
]

can be
haracterized as follows:

i. If 𝜙𝑊 ≤ 0, E
[

𝛱W(𝑎)
]

is concave on 𝑎 ∈ [0, 1],
ii. if 𝜙𝑊 ≥ 3𝑃

(

1 − 𝑝FR
)

, E
[

𝛱W(𝑎)
]

is convex on 𝑎 ∈ [0, 1],
iii. if 0 < 𝜙𝑊 < 3𝑃

(

1 − 𝑝FR
)

, the second-order condition is inconclusive
to identify whether E

[

𝛱W(𝑎)
]

is convex or concave on 𝑎 ∈ [0, 1].

roof of Lemma A.1.
Under Assumption 2 the second order derivative of 𝐸

[

𝛱B(𝑎)
]

equals

𝑑2𝐸
[

𝛱B(𝑎)
]

𝑑𝑎2
= 𝑝C2C (1 − 𝑎)𝑇

M−2 (1 − 𝑞0
)𝑇M

𝑇M

×
(

(

𝑇M − 1
)

𝜙𝐵 − (1 − 𝑎)
(

𝑇M + 1
) (

1 − 𝑝FR)𝑃
)

,

here 𝜙𝐵 = 𝐶HI𝑝HI + 𝐶LHI (1 − 𝑝HI) − (1 − 𝑝FR)𝑆𝐶2𝑊 .
Since 𝑝C2C (

1 − 𝑞0
)𝑇M

𝑇M is a positive constant, 𝐸
[

𝛱B(𝑎)
]

is concave
resp. convex) on an interval of 𝑎 ∈ [0, 1] if and only if

(1 − 𝑎)𝑇
M−2

(

(

𝑇M − 1
)

𝜙𝐵 − (1 − 𝑎)
(

𝑇M + 1
) (

1 − 𝑝FR)𝑃
)

(A.4)

s non-positive (resp. non-negative) on this interval. Since 0 ≤ 𝑝FR < 1,
he sign of (A.4) is the same as the sign of

(1 − 𝑎)𝑇
M−2 [𝛽 − (1 − 𝑎)] , (A.5)

where

𝛽 =

(

𝑇M − 1
)

𝜙𝐵
(

𝑇M + 1
) (

1 − 𝑝FR)𝑃
.

As (1 − 𝑎)𝑇
M−2 ≥ 0 for 𝑎 ∈ [0, 1], the sign of (A.5) is defined by the sign

of [𝛽 − (1 − 𝑎)]. So, we consider the following cases to characterize the
ign of the corresponding expression:

i. If 𝛽 ≤ 0, then (A.5) is non-positive. Thus, 𝐸
[

𝛱B(𝑎)
]

is concave
on 𝑎 ∈ [0, 1],

ii. If 0 < 𝛽 < 1, then (A.5) non-positive for 𝑎 ∈ [0, 1 − 𝛽] and (A.5)
is non-negative for 𝑎 ∈ [1 − 𝛽, 1]. Thus, 𝐸

[

𝛱B(𝑎)
]

is concave on
𝑎 ∈ [0, 1 − 𝛽] and convex on 𝑎 ∈ [1 − 𝛽, 1],
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Table A.1
Notations.

Time-related parameters
𝑇 Length of selling season
𝑇 H Time window for handing-in
𝑇M Time window for matching
𝑇 R Time window for returns
Indices
𝑖 Number of periods elapsed after delivery with 𝑖 ∈ {1, 2,… , 𝑇 R}
𝑡 Time period with 𝑡 ∈ {0, 1,… , 𝑇 − 1}
Monetary parameters
𝛱 Retailer profit from a single customer under conventional returns program
�̂� Retailer profit in a multi-customer system under conventional returns program
𝐶HI Cost of on-time hand-in
𝐶LHI Cost of late hand-in
𝐶𝐶2𝑊 Cost of a C2W return
𝑃 Price of an item
𝑅𝑊 2𝐶 Revenue generated by a W2C delivery
𝑆C2C C2C shipping cost
𝑆C2W C2W shipping and handling cost
𝑆W2C W2C shipping and handling cost
Probability-related parameters
𝑝C2C Probability of a C2C return within time window for return 𝑇 R

𝑝C2W Probability of a C2W return within time window for return 𝑇 R

𝑝FR Probability of return of an item sold via C2C within time window for return 𝑇 R

𝑝HI Probability of handing-in within 𝑇 H periods after matching
𝑝R Probability of a return within time window for return 𝑇 R

𝑞0 Probability of selling the C2C return item at its original price 𝑃
𝑢HI
𝑖 Probability of handing-in 𝑖 periods after matching with 𝑖 ∈ {1, 2,… , 𝑇 H}
𝑢R
𝑖 Probability of return 𝑖 periods after delivery with 𝑖 ∈ {1, 2,… , 𝑇 R}
𝑢C2C
𝑖 Probability of C2C return 𝑖 periods after delivery with 𝑖 ∈ {1, 2,… , 𝑇 R}
𝑢C2W
𝑖 Probability of C2W return 𝑖 periods after delivery with 𝑖 ∈ {1, 2,… , 𝑇 R}
𝑢FR
𝑖 Probability of return of an item sold via C2C 𝑖 periods after delivery

with 𝑡 ∈ {1, 2,… , 𝑇 R}
𝜆𝑡 Demand rate during [𝑡, 𝑡 + 1) for 𝑡 ∈ {0, 1,… , 𝑇 − 1}
Decision variables
𝑎 Constant discount level on the selling price where 𝑎 ∈ [0, 1]
𝑎𝑡 Discount level applied to C2C demands during [𝑡, 𝑡 + 1)
Dependent variables
�̂�(𝑎) Retailer’s profit in a C2C multi-customer system at discount level 𝑎
𝛱B(𝑎) Retailer’s best-case profit at discount level 𝑎
𝛱W(𝑎) Retailer’s worst-case profit at discount level 𝑎
𝐶C2C(𝑎) Cost of a C2C customer return purchased at discount level 𝑎
𝑝M(𝑎) Probability that a C2C return item is sold within the time window

for matching 𝑇M at discount level 𝑎
𝑞(𝑎) Probability of selling a C2C return item in a given period

at discount level 𝑎
𝑅(𝒔𝑡 , 𝑎𝑡 ,𝒘𝑡) Immediate profit at the end of time 𝑡, given state 𝒔𝑡, action 𝑎𝑡, and

exogenous information 𝒘𝑡

𝑅C2C(𝑎) Revenue generated when a C2C return item is sold at discount level 𝑎
Operators
E [.] Expectation
𝑆(.), 𝑆1(.), 𝑆2(.) Transition functions
𝑉𝑡(.) Value function
State information
𝒔𝑡 =

(

𝒙𝑡 , 𝒚𝑡
)

State information
𝒙𝑡 =

(

𝑥𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}
)

𝑇 R - dimensional vector of integers, where 𝑥𝑡,𝑖 represents the number
of customers satisfied 𝑖 periods ago and not returned by time 𝑡

𝒚𝑡 =
(

𝑦𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇M}
)

𝑇M - dimensional vector of integers, where 𝑦𝑡,𝑖 represents the number
of C2C returns that are announced 𝑖 periods ago and not matched
to a C2C demand by time 𝑡.

Exogenous information
𝑑C2C
𝑡 Number of newly arrived C2C demands

𝑑W2C
𝑡 Number of newly arrived W2C demands

𝒓C2C
𝑡 =

(

𝑟C2C
𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}

)

𝑇 R - dimensional vector of integers, where 𝑟C2C
𝑡,𝑖 is the number of

newly announced C2C returns of items purchased at time 𝑡 − 𝑖
𝒓C2W
𝑡 =

(

𝑟C2W
𝑡,𝑖 ∣ 𝑖 ∈ {1,… , 𝑇 R}

)

𝑇 R - dimensional vector of integers, where 𝑟C2W
𝑡,𝑖 is the number of

newly announced C2W returns of items purchased at time 𝑡 − 𝑖
𝒘𝑡 =

(

𝑑W2C
𝑡 , 𝑑C2C

𝑡 , 𝒓C2W
𝑡 , 𝒓C2C

𝑡

)

Exogenous information
14
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iii. If 𝛽 ≥ 1, then (A.5) is non-negative. Thus, 𝐸
[

𝛱B(𝑎)
]

is convex
on 𝑎 ∈ [0, 1].

Under Assumption 2, the second order derivative of 𝐸
[

𝛱W(𝑎)
]

is

𝑑2𝐸
[

𝛱W(𝑎)
]

𝑑𝑎2
=

𝑝C2C(1 − 𝑞0)𝑇
M (1 − 𝑎)𝑇M−2

(

1 + 𝑝C2C𝑝M(𝑎)
)3

((

1 + 𝑝C2C𝑝M(𝑎)
)

−
(

1 + 𝑝C2C (2 − 𝑝M(𝑎)
))

𝑇M) (

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝑊
)

− 2
(

1 + 𝑝C2C𝑝M(𝑎)
)

𝑃 (1 − 𝑎)
(

1 − 𝑝FR)
]

.

The fraction given in the above expression is non-negative on 𝑎 ∈ [0, 1].
Accordingly, 𝐸

[

𝛱W(𝑎)
]

is concave (resp. convex) on [0, 1] if and only
if
((

1 + 𝑝C2C𝑝M(𝑎)
)

−
(

1 + 𝑝C2C (

2 − 𝑝M(𝑎)
))

𝑇M)

×
(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝑊
)

− 2
(

1 + 𝑝C2C𝑝M(𝑎)
)

𝑃 (1 − 𝑎)
(

1 − 𝑝FR)

(A.6)

is non-positive (resp. non-negative) for any given 𝑎 ∈ [0, 1]. For any
given 𝑎 where 𝑎 ∈ [0, 1), the sign of (A.6) is the same as the sign of

(

1 −

(

1 + 𝑝C2C (

2 − 𝑝M(𝑎)
))

𝑇M
(

1 + 𝑝C2C) 𝑝M(𝑎)

)(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝑊

2𝑃 (1 − 𝑎)
(

1 − 𝑝FR)

)

− 1.

(A.7)

Under the assumption that 𝑇M ∈ Z+ ⧵ {1}, the first part of (A.7) is at
most −1. Correspondingly, if
(

𝑃 (1 − 𝑎)
(

1 − 𝑝FR) − 𝜙𝑊

2𝑃 (1 − 𝑎)
(

1 − 𝑝FR)

)

(A.8)

is greater (smaller) than 0 (−1), the corresponding profit function is
oncave (convex).

Considering the condition given in (A.8) for 𝑎 ∈ [0, 1), we can
characterize the corresponding profit function as follows:

i. If 𝜙𝑊 ≤ 0, then the expression given in (A.8) has a positive
sign and so (A.7) is non-positive. Thus, we can conclude that
𝐸
[

𝛱B(𝑎)
]

is concave on 𝑎 ∈ [0, 1].
ii. If 𝜙𝑊 ≥ 3𝑃 (1 − 𝑝𝐹𝑅), then the expression given in (A.8) is at

most −1. Thus, we can conclude that (A.7) is non-negative and
hence 𝐸

[

𝛱B(𝑎)
]

is convex on 𝑎 ∈ [0, 1].
iii. If 0 < 𝜙𝑊 < 3𝑃 (1 − 𝑝𝐹𝑅), then the expression given in (A.8) is

not sufficient to analytically determine the sign of the second
derivative, and hence to identify whether the corresponding
function is concave or convex. □

heorem A.1. Under Assumption 2 and the best-case scenario, the optimal
iscount level 𝑎∗B that maximizes the expected profit function of the C2C
eturns program E

[

𝛱B(𝑎)
]

is obtained as follows:

i. If 𝛽 < 1 and there exists an �̂� ∈ [0, 1] satisfying

𝑇M𝜙𝐵 (1 − �̂�)𝑇
M−1−

(

𝑇M + 1
) (

1 − 𝑝FR
)

𝑃 (1 − �̂�)𝑇
M
+

(

1 − 𝑝FR
)

𝑃
(

1 − 𝑞0
)𝑇M

= 0,

(A.9)

then the optimal discount level is 𝑎∗B = �̂�,
ii. Otherwise, the optimal discount level is 𝑎∗B = 0.

et 𝑇M ∈ Z+ ⧵ {1}. Under Assumption 2 and the worst-case scenario, the
ptimal discount level 𝑎∗W that maximizes the expected profit function of the
2C returns program E

[

𝛱W(𝑎)
]

is obtained as follows:
15
i. If 𝜙𝑊 ≤ 0 and there exists an �̃� ∈ [0, 1] satisfying
(

1 − 𝑝M(�̃�)
)

𝑇M
(

𝜙𝑊 + 𝑃 (1 − �̃�)
(

1 − 𝑝FR
))

(

1 + 𝑝C2C𝑝M(�̃�)
)2

−
𝑃
(

1 − 𝑝FR
)

𝑝M(�̃�) (1 − �̃�)
1 + 𝑝C2C𝑝M(�̃�)

= 0,

(A.10)

then the optimal discount level is 𝑎∗W = �̃�.
ii. If 𝜙𝑊 ≤ 0 and �̃� ∈ [0, 1] satisfying (A.10) does not exist, or if

𝜙𝑊 ≥ 3𝑃
(

1 − 𝑝FR
)

, then the optimal discount level is 𝑎∗W = 0.
iii. If 0 < 𝜙𝑊 < 3𝑃

(

1 − 𝑝FR
)

, then the first-order and second-order
conditions are not sufficient for characterizing the optimal discount
level 𝑎∗W analytically.

Proof of Theorem A.1. Under Assumption 2, we can derive the
optimal discount level 𝑎∗B using the cases introduced for 𝐸

[

𝛱B(𝑎)
]

in
Lemma A.1.

i. Let 𝛽 ≤ 0. In this case, 𝐸
[

𝛱B(𝑎)
]

is concave on 𝑎 ∈ [0, 1] from
Lemma A.1. The first derivative of the expected profit function
𝐸
[

𝛱B(𝑎)
]

is:

𝑑𝐸
[

𝛱B(𝑎)
]

𝑑𝑎
= −𝑝C2C

(

(1 − 𝑎)𝑇
M−1 (1 − 𝑞0

)𝑇M

×
[

𝑇M𝜙𝐵 −
(

𝑇M + 1
) (

1 − 𝑝FR)𝑃 (1 − 𝑎)
]

+
(

1 − 𝑝FR)𝑃
)

.

(A.11)

Note that 𝑝C2C is a non-negative constant and 0 ≤ 𝑞0 < 1. From
the first-order condition, if there exists �̂� ∈ [0, 1] satisfying,

𝑇M𝜙𝐵 (1 − �̂�)𝑇
M−1−

(

𝑇M + 1
) (

1 − 𝑝FR)𝑃 (1 − �̂�)𝑇
M
+

(

1 − 𝑝FR)𝑃
(

1 − 𝑞0
)𝑇M = 0,

(A.12)

then 𝑎∗B = �̂�. Note that (A.11) is non-positive for 𝑎 = 1. Therefore,
if �̂� ∈ [0, 1] satisfying (A.12) does not exist, 𝐸 [𝛱(𝑎)] is a
decreasing concave function on 𝑎 ∈ [0, 1]. Thus, 𝑎∗B = 0.

ii. Let 0 < 𝛽 < 1. In this case, E
[

𝛱B(𝑎)
]

is concave on 𝑎 ∈ [0, 1 − 𝛽]
and convex on 𝑎 ∈ [1−𝛽, 1]. To determine 𝑎∗B, we should consider
the first-order condition on the concave part 𝑎 ∈ [0, 1 − 𝛽] and
the boundaries of 1 − 𝛽 and 1 on the convex part 𝑎 ∈ [1 − 𝛽, 1].
If there exist �̂� ∈ [0, 1 − 𝛽] satisfying (A.12), then

𝑎∗B = argmax
{

𝐸
[

𝛱B(�̂�)
]

, 𝐸
[

𝛱B(1)
]}

.

For 𝑎 ∈ [0, 1], 𝛽 > 0 implies 𝜙𝐵 > 0. So, we obtain

𝐸
[

𝛱B(𝑎)
]

−𝐸 [𝛱(1)] = 𝑝M(𝑎)
(

1 − 𝑝FR)𝑃 (1 − 𝑎)+𝜙𝐵
(

1 − 𝑝M(𝑎)
)

≥ 0,

(A.13)

which implies that at 𝑎 = 1 the minimal profit is obtained. Thus,
we can conclude that 𝑎∗B = �̂�.
One can verify that (A.11) is non-positive for 𝑎 = 1−𝛽. Therefore,
if �̂� ∈ [0, 1 − 𝛽] satisfying (A.12) does not exist, 𝐸

[

𝛱B(𝑎)
]

is a
decreasing concave function on 𝑎 ∈ [0, 1− 𝛽]. From (A.13), 𝑎 = 1
cannot be optimal. Thus, we can conclude that 𝑎∗B = 0.

iii. Let 𝛽 ≥ 1. In this case, 𝐸
[

𝛱B(𝑎)
]

is convex on 𝑎 ∈ [0, 1] and we
should consider the boundaries 0 and 1. From (A.13), 𝑎∗B = 0.
Finally, by merging cases (i)–(iii) of this proof, Theorem A.1(i)–
(ii) follows.

Similarly, using the cases introduced for 𝐸
[

𝛱W(𝑎)
]

in Lemma A.1,
we can characterize the optimal discount level 𝑎∗W as follows:

i. Let 𝜙𝑊 ≤ 0. In this case, 𝐸
[

𝛱W(𝑎)
]

is concave on 𝑎 ∈ [0, 1]
from Lemma A.1. The first derivative of the corresponding profit
function is:
𝑑𝐸

[

𝛱W(𝑎)
]

𝑑𝑎
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= 𝑝C2C

(
(

1 − 𝑝M(𝑎)
)

𝑇M (

𝑃 (1 − 𝑎)(1 − 𝑝FR) − 𝜙𝑊
)

(1 − 𝑎)
(

1 + 𝑝C2C𝑝M(𝑎)
)2

−
𝑃
(

1 − 𝑝FR) 𝑝M(𝑎)
(

1 + 𝑝C2C𝑝M(𝑎)
)

)

.

(A.14)

Note that 𝑝C2C is a positive constant. From the first-order condi-
tion, if there exists �̃� ∈ [0, 1] satisfying,
(

1 − 𝑝M(�̃�)
)

𝑇M (

𝑃 (1 − �̃�)(1 − 𝑝FR) − 𝜙𝑊
)

(1 − �̃�)
(

1 + 𝑝C2C𝑝M(�̃�)
)2

=
𝑃
(

1 − 𝑝FR) 𝑝M(�̃�)
(

1 + 𝑝C2C𝑝M(�̃�)
) .

(A.15)

then 𝑎∗W = �̃�.
By using the fact that 𝑝M(𝑎) = 1 − (1 − 𝑞 (𝑎))𝑇

M and 𝑞 (𝑎) =
𝑞0 + 𝑎

(

1 − 𝑞0
)

(according to Assumption 2), it can be verified
that (A.14) is non-positive for 𝑎 = 1. Therefore, if �̃� ∈ [0, 1] sat-
isfying (A.15) does not exist, 𝐸

[

𝛱W(𝑎)
]

is a decreasing concave
function on 𝑎 ∈ [0, 1]. Thus, 𝑎∗W = 0.

ii. Let 𝜙𝑊 ≥ 3𝑃 (1 − 𝑝𝐹𝑅). In this case, 𝐸
[

𝛱W(𝑎)
]

is convex on
𝑎 ∈ [0, 1] from Lemma A.1. We should consider the boundaries
of 0 and 1 to find the optimal discount level. Correspondingly,
we have:

𝑎∗W = argmax
{

𝐸
[

𝛱W(0)
]

, 𝐸
[

𝛱W(1)
]}

. (A.16)

By taking the difference between 𝐸
[

𝛱W(0)
]

and 𝐸
[

𝛱W(1)
]

, it is
possible to determine the conditions that identify which of these
two discount levels would be the solution to the optimization
problem given in (A.16). It follows that:

𝐸
[

𝛱W(0)
]

− 𝐸
[

𝛱W(1)
]

=
−𝑝C2C𝑃 (1 + 𝑝C2C)(1 − 𝑝FR) + 𝑝C2C(1 − 𝑞0)𝑇

M (𝑃 (1 − 𝑝FR)(1 + 𝑝C2C) − 𝜙𝑊 )
−(1 + 𝑝C2C)(1 + 𝑝C2C(1 − (1 − 𝑞0)𝑇

M ))
.

(A.17)

As 𝜙𝑊 ≥ 3𝑃 (1 − 𝑝𝐹𝑅), the expression given in (A.17) has a
positive sign. This implies that 𝑎 = 0 is more profitable than
𝑎 = 1, and we can conclude that 𝑎∗W = 0.

iii. Finally, let 0 < 𝜙𝑊 < 3𝑃 (1 − 𝑝𝐹𝑅). In this case, we are unable
to determine the shape of the function analytically, and hence
the first-order and second-order conditions are not sufficient for
analytically characterizing the optimal discount level 𝑎∗W. □

It follows that in the best-case scenario, one must solve the poly-
nomial (A.9). If the degree of the polynomial is at most 4, i.e., if the
matching time window 𝑇M ≤ 4, a closed-form solution exists for finding
�̂� (see e.g. [48–50], and the references in there). For higher degrees, the
optimal discount level can still be found numerically, since the function
turns out to be unimodal (see Lemma A.1).

To interpret case ii. in the best-case scenario, note that 𝛽 > 1
implies 𝜙𝐵 > 𝑃 (1− 𝑝FR) (by using (A.3)), meaning that the C2C returns
program is always worse then the conventional returns program (see
Theorem 1). Hence, we want to have as few C2C customers as possible,
which is achieved by setting 𝑎 = 0. Unfortunately, for the worst-case
scenario, the interpretation of the ranges is less clear and there is a
range of 𝜙𝑊 for which we cannot determine an analytical expression
for the optimal discount level.

Proof of Theorem 2. As follows from the proof of Theorem A.1, the
function 𝐸

[

𝛱B(𝑎)
]

is decreasing at 𝑎 = 1. Furthermore, we know from
Lemma A.1 that (in the most general case) the first part of the function
𝐸[𝛱B(𝑎)] is concave and the second part is convex. Combining these
observations gives the result. □

Conjecture A.1. The function 𝐸[𝛱W(𝑎)] is unimodal on the interval [0, 1].

There are several reasons for this conjecture. First, note that 𝜙𝑊 ≤
FR
16

𝑃 (1 − 𝑎)(1 − 𝑝 ) implies that the term in (A.8) is non-negative, which
in turn implies that (A.7) is non-positive. Secondly, for 𝜙𝑊 ≥ 3𝑃 (1 −
𝑎)(1 − 𝑝FR) the term in (A.8) is at most −1, which in turn implies
that (A.7) is non-negative. This implies that for any value of 𝜙𝑊 the
function 𝐸[𝛱W(𝑎)] starts as concave or ends as convex (or both) on the
interval [0, 1]. Moreover, from the proof of Theorem A.1, the function
𝐸
[

𝛱W(𝑎)
]

is decreasing at 𝑎 = 1. Hence, if the function only switches
once from concave to convex, then 𝐸[𝛱W(𝑎)] is unimodal. Finally, in
all the parameter settings of our experiments, the best solution was
always obtained by the golden section search, which also suggests the
unimodality of the function.

Proof of Theorem 3. Recall that E
[

𝛱W(𝑎)
]

= E[𝛱B(𝑎)]
1+𝑝C2C𝑝M(𝑎)

, for which
we know from the first part that 𝐸[𝛱B(𝑎)] is unimodal on [0, 1]. That
s, 𝐸[𝛱B(𝑎)] is increasing on [0, 𝑎∗𝐵] and decreasing on [𝑎∗𝐵 , 1]. Now let
s focus on 𝑝M(𝑎) which can be written as

M(𝑎) = 1 − (1 − 𝑞0)𝑇
𝑀
(1 − 𝑎)𝑇

𝑀
.

y analyzing the first derivative, it turns out that 𝑝M(𝑎) is a positive and
ncreasing function on [0, 1], as well as 1 + 𝑝C2C𝑝M(𝑎). Since we divide

B(𝑎) by a positive and increasing function, 𝛱W(𝑎) will be decreasing
n [𝑎∗𝐵 , 1], which implies that the maximizer 𝑎∗𝐵 of 𝛱W(𝑎) should be

found in the interval [0, 𝑎∗𝐵], proving the result. □

Proof of Theorem 4. In this proof, we skip time index 𝑡 due to
stationarity under Assumption 3. The long-run average profit of the
conventional multi-customer system can be written as

E
[

�̂�
]

= 𝑅𝑊 2𝐶E
[

𝑑W2C] − 𝐶𝐶2𝑊
𝑇 R
∑

𝑖=1
E
[

𝑟C2W
𝑖

]

= 𝑅𝑊 2𝐶𝜆 − 𝐶𝐶2𝑊
𝑇 R
∑

𝑖=1
E
[

𝑟C2W
𝑖

]

.

(A.18)

y definition, 𝑥1 is the number of customers who recently entered the
ystem, i.e., 𝑑W2C. This implies that 𝑥1 follows the same distribution as
W2C, i.e., 𝑥1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆).

The number of returns 𝑟C2W
𝑖 follows a binomial distribution with

arameters 𝑥𝑖 and 𝑢R
𝑖 for 𝑖 ∈

{

1, 2,… , 𝑇 R}. This allows us to use
the splitting property of the Poisson process to characterize the dis-
tribution of the returns stemming from 𝑥1, i.e., 𝑟C2W

1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(

𝜆𝑢R
1
)

.
Non-returned items will spend one more day in the system, thereby
constituting 𝑥2. Similarly, the number of non-returned items follows
a Poisson distribution, i.e, 𝑥2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆
(

1 − 𝑢R
1
))

. Advancing this
argumentation for more periods, we can characterize the distribution
and expectation of 𝑟C2W

𝑖 as follows

𝑟C2W
𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆𝑢R
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢R
𝑗

)

)

and E
[

𝑟C2W
𝑖

]

= 𝜆𝑢R
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢R
𝑗

)

.

Incorporating this into (A.18), we have

E
[

�̂�
]

= 𝑅𝑊 2𝐶𝜆 − 𝐶𝐶2𝑊
𝑇 R
∑

𝑖=1
E
[

𝑟C2W
𝑖

]

= 𝑅𝑊 2𝐶𝜆 − 𝐶𝐶2𝑊 𝜆
𝑇 R
∑

𝑖=1
𝑢R
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢R
𝑗

)

.

This implies

E
[

�̂�
]

= 𝜆
(

𝑅𝑊 2𝐶 − 𝐶𝐶2𝑊 𝑝R) = 𝜆E [𝛱] . □

Proof of Theorem 5.
In this proof, we skip time index 𝑡 due to stationarity under Assump-

tion 3. Considering 𝑇M = 1, the long-run average profit of the C2C
multi-customer system can be written as

E
[

�̂� (𝑎)
]

=𝑅W2CE
[

𝑑W2C] − 𝐶C2W
𝑇 R
∑

𝑖=1
E
[

𝑟C2W
𝑖

]

− 𝐶C2WE
[

(

𝑦1 − 𝑑C2C)+
]

+
(

𝑅C2C(𝑎) −
(

𝐶HI𝑝HI + 𝐶LHI(1 − 𝑝HI)
)

− 𝐶C2C(𝑎)𝑝FR)E
[

𝑑C2C] .

(A.19)
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Under Assumption 3, we have

E
[

𝑑W2C] = 𝜆. (A.20)

Following the same reasoning as in the proof of Theorem 4, 𝑥1 ∼
𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝜆). The number of returns (𝑟C2W

𝑖 , 𝑟C2C
𝑖 ) follows a multinomial

distribution with parameters (𝑥𝑖, 𝑢C2W
𝑖 , 𝑢C2C

𝑖 ) for 𝑖 ∈
{

1, 2,… , 𝑇 R}. Thus,
e can use the splitting property of the Poisson process to characterize

he distributions of the number of C2W and C2C returns stemming from
1, i.e., 𝑟C2W

1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
(

𝜆𝑢C2W
1

)

and 𝑟C2C
1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆𝑢C2C
1

)

. The non-
eturned items will spend one more day in the system and constitute
2. Similarly, the number of non-returned items follows a Poisson
istribution, i.e, 𝑥2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆
(

1 − 𝑢C2C
1 − 𝑢C2W

1
))

. Advancing this
rgumentation for more periods, we can characterize the distributions
nd expectations of 𝑟C2W

𝑖 and 𝑟C2C
𝑖 as follows

C2W
𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆𝑢𝐶2𝑊
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

)

and E
[

𝑟C2W
𝑖

]

= 𝜆𝑢𝐶2𝑊
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

, (A.21)

C2C
𝑖 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛

(

𝜆𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

)

and E
[

𝑟C2C
𝑖

]

= 𝜆𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

. (A.22)

Recall that the sum of 𝑟C2C
𝑖 will constitute 𝑦1. For each 𝑖 ∈ {1, 2,… ,

𝑇 R}, 𝑟C2C
𝑖 follows a Poisson distribution. Moreover, the number of

eturns in different periods are independent from each other. Thus, we
an use the merging property of the Poisson process to characterize the
istribution and expectation of 𝑦1. This leads to

1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
⎛

⎜

⎜

⎝

𝜆
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)
⎞

⎟

⎟

⎠

and E
[

𝑦1
]

= 𝜆
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

. (A.23)

According to (A.23), the number of C2C demands 𝑑C2C is a Poisson
istributed random variable. We can use the splitting property and
erive the distribution and expectation of 𝑑C2C. This leads to

C2C ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
⎛

⎜

⎜

⎝

𝜆𝑞(𝑎)
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)
⎞

⎟

⎟

⎠

, (A.24)

[

𝑑C2C] = 𝜆𝑞(𝑎)
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

. (A.25)

Note that
(

𝑦1 − 𝑑C2C)+ denotes the number of items that are not sold
within the matching period. By definition, 𝑑C2C cannot exceed 𝑦1. Thus,
(

𝑦1 − 𝑑C2C)+ = 𝑦1 − 𝑑C2C. Again, we can use the splitting property and
establish the distribution and expectation of

(

𝑦1 − 𝑑C2C)+ as follows

(

𝑦1 − 𝑑C2C)+ ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛
⎛

⎜

⎜

⎝

𝜆
(

1 − 𝑞(𝑎)
)

𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)
⎞

⎟

⎟

⎠

,

(A.26)

E
[

(

𝑦1 − 𝑑C2C)+
]

= 𝜆
(

1 − 𝑞(𝑎)
)

𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

. (A.27)

Using the results presented in (A.20)–(A.27), we can rewrite (A.19)
as

E
[

�̂� (𝑎)
]

=𝑅W2C𝜆 − 𝐶C2W𝜆
𝑇R
∑

𝑢𝐶2𝑊
𝑖

𝑖−1
∏

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

17

𝑖=1 𝑗=1
− 𝐶C2W𝜆
(

1 − 𝑞(𝑎)
)

𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

+ 𝑅C2C(𝑎)𝜆𝑞(𝑎)
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

−
(

𝐶HI𝑝HI + 𝐶LHI(1 − 𝑝HI) + 𝐶C2C(𝑎)𝑝FR)

× 𝜆𝑞(𝑎)
𝑇R
∑

𝑖=1
𝑢𝐶2𝐶
𝑖

𝑖−1
∏

𝑗=1

(

1 − 𝑢𝐶2𝐶
𝑗 − 𝑢𝐶2𝑊

𝑗

)

.

Recall that when 𝑇M=1, the probability that a C2C return is sold
within the assignment period is 𝑝M(𝑎) = 𝑞(𝑎), implying that

E
[

�̂� (𝑎)
]

=𝜆
(

𝑅W2C − 𝐶C2W𝑝C2W − 𝐶C2W𝑝C2C (1 − 𝑝M(𝑎)
)

+ 𝑅C2C(𝑎)𝑝M(𝑎)𝑝C2C

−
(

(

𝐶HI𝑝HI + 𝐶LHI(1 − 𝑝HI)
)

+ 𝐶C2C(𝑎)𝑝FR
)

𝑝M(𝑎)𝑝C2C
)

=𝜆E
[

𝛱B (𝑎)
]

.

□
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