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A B S T R A C T   

Objective: Observational studies using electronic health record (EHR) databases often face challenges due to 
unspecific clinical codes that can obscure detailed medical information, hindering precise data analysis. In this 
study, we aimed to assess the feasibility of refining these unspecific condition codes into more specific codes in a 
Dutch general practitioner (GP) EHR database by leveraging the available clinical free text. 
Methods: We utilized three approaches for text classification—search queries, semi-supervised learning, and 
supervised learning—to improve the specificity of ten unspecific International Classification of Primary Care 
(ICPC-1) codes. Two text representations and three machine learning algorithms were evaluated for the (semi-) 
supervised models. Additionally, we measured the improvement achieved by the refinement process on all code 
occurrences in the database. 
Results: The classification models performed well for most codes. In general, no single classification approach 
consistently outperformed the others. However, there were variations in the relative performance of the clas
sification approaches within each code and in the use of different text representations and machine learning 
algorithms. Class imbalance and limited training data affected the performance of the (semi-)supervised models, 
yet the simple search queries remained particularly effective. Ultimately, the developed models improved the 
specificity of over half of all the unspecific code occurrences in the database. 
Conclusions: Our findings show the feasibility of using information from clinical text to improve the specificity of 
unspecific condition codes in observational healthcare databases, even with a limited range of machine-learning 
techniques and modest annotated training sets. Future work could investigate transfer learning, integration of 
structured data, alternative semi-supervised methods, and validation of models across healthcare settings. The 
improved level of detail enriches the interpretation of medical information and can benefit observational 
research and patient care.   

1. Introduction 

Observational studies leveraging electronic health record (EHR) 
databases are increasingly common. These studies primarily rely on 
clinical codes assigned to patient records to document medical condi
tions and treatments. The precision of these codes is influenced by fac
tors such as the healthcare professional’s coding skills and the 
terminology systems implemented within the EHR. A significant chal
lenge arises when codes lack specificity, such as “Fracture: hand/foot 
bone” or “Infection of circulatory system.” These broad categories 
obscure the details of individual conditions, complicating the extraction 
of specific data like hand fractures or endocarditis cases. Consequently, 

this lack of detail hampers in-depth analysis. 
Refining these unspecific clinical codes into more specific codes 

using additional clinical information can enhance observational 
research. However, the manual review of extensive clinical documen
tation to achieve this is labor-intensive and impractical for large data
sets. Hence, automated classification methods that can discern the 
correct specific codes from clinical texts would be a substantial aid. 

Automatically assigning diagnostic codes to medical texts using su
pervised learning algorithms has been a large focus of clinical machine 
learning and natural language processing (NLP) research [1,2]. Studies 
have been conducted in various languages [3–5], including Dutch [6–8], 
and have shown increasingly promising results [9–11]. These studies 
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have primarily focused on databases or datasets containing text and 
labeled data, for example, codes from the International Classification of 
Diseases (ICD). The issue we face involves observational data with un
specific codes not already labeled with a more specific code, which 
precludes using a supervised approach without prior manual 
annotation. 

When labeled data are scarce, semi-supervised or unsupervised 
learning methods become valuable [12]. Semi-supervised learning 
combines labeled and unlabeled data or employs a partial labeling 
process to minimize manual effort while providing results comparable to 
fully supervised methods [13–15]. This approach has been effectively 
used in clinical contexts, such as cancer risk identification [16] and 
biomedical text classification [17]. Unsupervised methods, including 
rule-based systems [18], methods relying on named entity recognition 
and summarization [19], and methods using word embedding similar
ities [20], have been applied to clinical code assignment, as well as in 
Dutch clinical settings [21].To our knowledge, previous research has not 
explored the reclassification of unspecific clinical codes into more spe
cific ones in unlabeled EHR datasets. 

In this study, we aimed to enhance the specificity of clinical codes 
without relying heavily on manual annotation. We evaluated and 
compared three classification approaches (search queries, semi- 
supervised learning, and supervised learning) on a selection of unspe
cific condition codes in a Dutch general practitioner (GP) EHR database, 
and determined the total number of code refinements by applying the 
classification models to the entire database. 

2. Materials and methods 

2.1. Database and population 

This study used data from the Integrated Primary Care Information 
(IPCI) database [22], a longitudinal EHR database. IPCI covers patients 
from 1993 to 2022, currently holding EHRs of 2.5 million patients with a 
median follow-up duration of 4.8 years. The data are standardized using 
the Observational Medical Outcomes Partnership Common Data Model 
(OMOP CDM), allowing standardized analytics and facilitating inter
national research collaboration [23–25]. The IPCI governance board 
approved this research under code 2022–04. All patients in the database 
were eligible for inclusion. 

2.2. Coded conditions 

Dutch GPs use the International Classification of Primary Care (ICPC- 
1), developed by the World Health Organization, to code conditions 
commonly encountered in primary care. However, the ICPC-1 system, 
not designed for detailed observational research, contains many codes 
that are unspecific or lack detail. The concept mapping from ICPC-1 to 
the Systematized Nomenclature of Medicine Clinical Terms (SNOMED 
CT), provided by the Dutch National Institute for Health Information 
and Communication Technology (Nictiz),1 was used as starting point to 
identify 178 unspecific ICPC-1 codes, defined as codes with a mapping to 
two or more SNOMED CT codes. For example, ICPC-1 code L74: “Frac
ture: hand/foot bone” maps to SNOMED CT codes 20511007: “Fracture 
of hand” and 15574005: “Fracture of foot”. We selected eight unspecific 
ICPC-1 codes from the Nictiz mapping for this feasibility study. Addi
tionally, we identified two other ICPC-1 codes with a general or broad 
description not included in the mapping, D75: “Malignant neoplasm of 
colon/rectum” and K70: “Infection of circulatory system”. Table 1 lists 
the studied ICPC-1 codes and the more specific SNOMED CT codes. 

2.3. Data extraction and annotation 

We extracted every occurrence of the ten selected ICPC-1 codes, 
along with the free-text notes within a five-day window surrounding the 
date each code was recorded. We randomly selected a test set of 200 
code occurrences for each ICPC-1 code from the complete set of code 
occurrences. The first author manually annotated the code occurrences 
with the more specific codes, in the following also called subcodes, 
based on the patient’s free-text notes in the five-day window. Each 
subcode received a binary label, positive or negative, which allowed to 
indicate the presence of multiple subcodes, e.g., a patient could have 
both a broken hand and foot. A separate set of 300 randomly selected 
code occurrences, not in the test set, was also annotated as a modest 
training set for the supervised classification models. Fig. 1 illustrates the 
experimental setup. 

2.4. Classification approaches 

We compared three classification approaches: search queries, semi- 
supervised learning, and supervised learning. In each method, we 
employed individual binary classifiers for each subcode, allowing us to 
assign all possible logical subcode combinations to each code occurrence 
using binary labels. For instance, with two subcodes, using two classi
fiers, we could assign either subcode, both subcodes, or neither to a code 
occurrence, treating each subcode separately with its binary classifier. 
For the search-query approach, we determined simple search terms for 
each subcode solely based on the description of the ICPC-1 code without 
inspection of the notes in the database. The exact substrings are in 
Supplemental Table S1. If we found a substring in the text, we consid
ered the subcode present. The search queries could directly be evaluated 
on the test set. For the semi-supervised approach, we used self-training 
[15]. The search queries were used to predict the labels of all code oc
currences except those in the test set. These pseudo-labels were used to 
train the semi-supervised classification models. For computational effi
ciency, we limited the training set to 150,000 occurrences. The super
vised models were trained using the 300 occurrences in the manually 

Table 1 
The ten unspecific ICPC-1 codes in this feasibility study with their more specific 
SNOMED CT codes.  

ICPC-1 codes SNOMED CT codes 

Code Description Code Description 

D01 Abdominal pain/cramps general 51197009 Stomach cramps   
102614006 Generalized abdominal 

pain 
D75 Malignant neoplasm of colon/ 

rectum 
363406005 Malignant tumor of 

colon   
363351006 Malignant tumor of 

rectum 
K70 Infection of circulatory system 3238004 Pericarditis   

56819008 Endocarditis   
50920009 Myocarditis 

K78 Atrial fibrillation/flutter 49436004 Atrial fibrillation   
5370000 Atrial flutter 

L72 Fracture: ulna/radius 54556006 Fracture of ulna   
12676007 Fracture of radius 

L73 Fracture: tibia/fibula 31978002 Fracture of tibia   
75591007 Fracture of fibula 

L74 Fracture: hand/foot bone 20511007 Fracture of hand   
15574005 Fracture of foot 

N18 Paralysis/weakness 44695005 Paralysis   
26544005 Muscle weakness 

R07 Sneezing/nasal congestion/ 
running nose 

76067001 Sneezing   

68235000 Nasal congestion   
64531003 Nasal discharge 

S86 Seborrheic dermatitis/Pityriasis 
capitis 

50563003 Seborrheic dermatitis   

400201008 Pityriasis capitis  

1 https://www.snomed.org/member/netherlands. 
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annotated training set. 

2.5. Feature extraction 

We combined and processed all text within the five-day time window 
around each code occurrence to create a Bag-of-Words (BoW) feature 
vector. Processing included conversion to lowercase and tokenization to 
unigrams and bigrams. We utilized two text representations: a BoW 
representation normalized using Term Frequency-Inverse Document 
Frequency (TFIDF), and averaged word embeddings (AVGEMB), 
allowing us to capture lexical and semantic information. We created the 
word embeddings by training a 300-dimensional Word2Vec model [26] 
using gensim [27], with a token window of five, on the entire IPCI 
database, consisting of 662 million clinical notes with 8.5 billion tokens. 

2.6. Machine learning algorithms 

We used three classification algorithms for (semi-)supervised model 
training: L1-regularized logistic regression (LR) using the glmnet R- 
package, extreme gradient boosting (XGB) using the xgboost R-package, 
and a neural network (NN) using the nnet and caret R-package. Hyper
parameters were optimized with 3-fold cross-validation (See Supple
mental Table S2). Combined with the two text representations, we 
evaluated six different method combinations. 

2.7. Model evaluation 

For each subcode, we evaluated the performance of the search query, 
with binary predictions, and the (semi-)supervised models, with prob
ability scores, on the annotated test set using both the positive and 
negative labels. We used the area under the receiver operator charac
teristic curve (AUROC), the area under the precision-recall curve 
(AUPRC), and the F1-score for the search query and the maximum F1- 
score across all probability thresholds for (semi-)supervised models. 

Additionally, we assessed the global explainability in the LR and XGB 
models using TFIDF features by identifying the most important features. 
For LR, we measured feature importance based on the magnitude of 
coefficients (beta values). In XGB, we assessed feature importance using 
average gain, indicating each feature’s contribution to model perfor
mance. Lastly, we applied the trained binary models to the full set of 
occurrences (except the test set) to predict which subcodes could be 
assigned to each code occurrence. The maximum F1-score on the test set 
determined the probability threshold for the (semi-)supervised models. 
To illustrate the change in granularity, we analyzed the percentage of 
code occurrences assigned at least one subcode. 

3. Results 

3.1. Dataset characteristics and code counts 

Table 2 presents the dataset characteristics per ICPC-1 code. A 
considerable variation in characteristics can be observed across the 
ICPC-1 codes. Table 3 displays the number of subcodes per condition 
code in the training and test sets, showing class imbalances for several 
codes. For example, in S86 (Seborrheic dermatitis/Pityriasis capitis) one 
subcode occurs in 78 % of the test set code occurrences and the other 
subcode in only 9 %. For some codes, such as L74 (Fracture: hand/foot 
bone), a subcode was assigned to almost all occurrences (95 %), while for 
others, such as L73 (Fracture: tibia/fibula), a subcode could not be 
assigned in 37 % of the occurrences because the information in the notes 
was insufficient. The relative outcome counts in the test and training sets 
were comparable across all condition codes. 

3.2. Model performance 

We developed 286 classification models for the 22 subcodes. For 
each subcode, the models comprised a search query model, six semi- 
supervised models, and six supervised models. Fig. 2 illustrates the 

Fig. 1. Experimental setup for the development and evaluation of classifiers that assign more specific SNOMED CT codes to unspecific ICPC-1 codes. The diagram 
provides an overview of the entire process, starting from the set of N code occurrences in the IPCI database and the subsequent sampling and creation of (pseudo-) 
labeled occurrences. The diagram also highlights the three classification approaches (search query, semi-supervised, and supervised classification) and their eval
uation on the test sets. Additionally, the data extraction process is visualized. 
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performance of all the models on the test sets. We observed that the 
models’ overall performance, ranging from good to excellent for most 
subcodes, was comparable across different classification approaches. 
However, the performance of the (semi-)supervised models varied 
across the different text representations and machine learning algo
rithms. Specifically, the supervised models, trained on the 300 anno
tated occurrences, achieved better results with TFIDF features than with 
averaged word embeddings, especially when using XGB and LR. Semi- 
supervised models, trained on a larger dataset (N − 200), showed a 
similar trend but with smaller performance differences. 

The average performance of the best models per classification 
approach was comparable, but showed notable variation across sub
codes. Fig. 3 presents the predictive performance of the three ap
proaches measured by AUROC for all subcodes, with the (semi-) 
supervised models using LR and TFIDF features. For example, the search 
query model outperformed the (semi-)supervised models in classifying 
atrial flutter and myocarditis, while the supervised models were better in 
classifying subcodes such as fracture of hand and paralysis. Supplemen
tary Figures S1 and S2 show these same patterns between the ap
proaches for the AUPRC and F1 evaluation metrics. The complete 
evaluation results are available in the supplementary material. 

3.3. Effect of class imbalance 

To investigate the factors contributing to the suboptimal 

performance of several models, we examined the impact of class 
imbalance of subcodes on model performance. Fig. 4 illustrates the 
relationship between the number of positive examples in the training set 
for the supervised models across all subcodes. As expected, subcode 
models with significant class imbalance, for instance, myocarditis and 
atrial flutter, which had fewer positive examples, tended to demonstrate 
poorer performance. Supplementary Figure S3 extends this analysis to 
the test set for all classification approaches, confirming the negative 
effect of class imbalance on the performance of semi-supervised models 
as well. 

3.4. Feature importance 

We investigated the most important features contributing to the 
model predictions to understand the performance differences between 
classification approaches. Table 4 lists the top-5 important features for 
the (semi-)supervised models (TFIDF LR) and the search query terms of 
three subcodes: stomach cramps (D01), atrial fibrillation (K78), and 
fracture of foot (L74). These subcodes were chosen because of their 
varying performances across the three classification approaches. The 
most important features of the other models are available in the sup
plementary material. 

For the semi-supervised models of stomach cramps and fracture of 
foot, terms with high beta values were similar to the search terms. 
However, for atrial flutter, no similar term was found. Instead, terms 

Table 2 
The dataset characteristics and the descriptive statistics of notes for the ten ICPC-1 codes in the IPCI database. D01: Abdominal pain/cramps general, D75: Malignant 
neoplasm of colon/rectum, K70: Infection of circulatory system, K78: Atrial fibrillation/flutter, L72: Fracture: ulna/radius, L73: Fracture: tibia/fibula, L74: Fracture: 
hand/foot bone, N18: Paralysis/weakness, R07: Sneezing/nasal congestion/running nose, S86: Seborrheic dermatitis/Pityriasis capitis.  

ICPC-1 code D01 D75 K70 K78 L72 L73 L74 N18 R07 S86 

No. of codes 418,143 145,405 9,735 352,190 61,992 46,835 42,894 22,804 63,558 125,060 
No. of patients 179,263 14,213 2,663 48,138 34,148 18,039 26,583 9,388 34,839 68,850 
Mean no. of codes per patient 2.3 10.2 3.7 7.3 1.8 2.6 1.6 2.4 1.8 1.8 
Median no. of codes per patient 1 4 1 3 1 1 1 1 1 1 
Mean age 39.6 70.1 59.3 73.4 42.6 48.2 40.1 59.5 42.3 45.6 
SD age 24.5 11.8 18.1 11.3 28.3 23.1 22.5 20.8 24.2 24.0 
Percentage female 67 % 47 % 34 % 48 % 64 % 59 % 50 % 50 % 49 % 55 % 
Median no. of notes per code 6 3 3 4 5 4 5 5 4 3 
Median no. of characters per code 471 363 307 320 514 299 508 416 361 245  

Table 3 
Subcode counts and percentages in the annotated test sets (200 code occurrences) and the training sets (300 code occurrences) for each of the ten ICPC-1 codes. Also 
shown are the number and percentage of code occurrences with no, two, and three subcodes assigned.  

ICPC-1 code SNOMED CT 
subcode 

training set 
(300) 

test set 
(200) 

ICPC-1 code SNOMED CT 
subcode 

training set 
(300) 

test set 
(200) 

D01 Generalized abdominal pain 261 87 % 165 83 % L73 Fracture of tibia 81 27 % 48 24 %  

Stomach cramps 50 17 % 43 22 %  Fracture of fibula 150 50 % 85 43 %  
no subcode 30 10 % 22 11 %  no subcode 90 30 % 73 37 %  
two subcodes 41 14 % 30 15 %  two subcodes 21 7 % 6 3 % 

D75 Malignant tumor of colon 155 52 % 120 60 % L74 Fracture of hand 158 53 % 86 43 %  
Malignant tumor of rectum 49 16 % 30 15 %  Fracture of foot 133 44 % 105 53 %  
no subcode 105 35 % 55 28 %  no subcode 9 3 % 9 5 %  
two subcodes 9 3 % 5 3 %  two subcodes 0 0 % 0 0 % 

K70 Myocarditis 27 9 % 13 7 % N18 Paralysis 84 28 % 49 25 %  
Pericarditis 145 48 % 100 50 %  Muscle weakness 204 68 % 147 74 %  
Endocarditis 50 17 % 39 20 %  no subcode 53 18 % 25 13 %  
no subcode 94 31 % 60 30 %  two subcodes 41 14 % 21 11 %  
two subcodes 16 5 % 12 6 % R07 Sneezing 36 12 % 36 18 %  
three subcodes 0 0 % 0 0 %  Nasal congestion 179 60 % 127 64 % 

K78 Atrial fibrillation 221 74 % 142 71 %  Nasal discharge 71 24 % 32 16 %  
Atrial flutter 28 9 % 16 8 %  no subcode 44 15 % 32 16 %  
no subcode 61 20 % 48 24 %  two subcodes 29 10 % 25 13 %  
two subcodes 10 3 % 6 3 %  three subcodes 1 0 % 2 0 % 

L72 Fracture of ulna 46 15 % 44 22 % S86 Seborrheic dermatitis 228 76 % 156 78 %  
Fracture of radius 184 61 % 128 64 %  Pityriasis capitis 36 12 % 17 9 %  
no subcode 95 32 % 56 28 %  no subcode 52 17 % 37 19 %  
two subcodes 25 8 % 165 14 %  two subcodes 16 5 % 10 5 %  
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related to the other subcode, atrial fibrillation, appeared with both 
negative and positive beta values. This likely reflects the class imbalance 
and the frequent co-occurrence of atrial fibrillation and flutter within the 
texts. The supervised model for atrial flutter also identified a similar atrial 
fibrillation term, but only with a negative association, yet this model was 
not discriminative at all. For the stomach cramps subcode, the supervised 
model, which had only two non-zero beta value terms related to the 
search term, surprisingly outperformed the semi-supervised model that 
had a greater number of related terms. For the fracture of foot subcode, 
the supervised model’s feature associations were more diverse and less 
focused on the term ’foot’ than the semi-supervised model, but their 
performances were similar. These results and some non-intuitive find
ings highlight the complexity of feature importance in classification and 
the challenges in explaining model performance. 

3.5. Subcode assignment 

To illustrate the impact of the code refinement, we applied the 
classification models to the set of code occurrences (N-200) for each of 
the ten ICPC-1 condition codes. Our study included 1,288,616 condition 
occurrences from 436,124 patients across all ten ICPC-1 codes. We found 
that 62.3 % (802,931) of these occurrences could be refined to more 
specific codes using supervised learning (TFIDF LR). The semi- 
supervised method (TFIDF LR) showed a similar refinement rate of 
62.2 % (801,519), and the search query method reached 57.5 % 
(740,954). Supplemental Figure S4 illustrates for each ICPC-1 code the 
proportion of occurrences that could be refined. Although the number of 
refined codes varied per ICPC-1 code, there was a high level of agree
ment between the different classification approaches. It should be noted 
that the refinement rate does not indicate the accuracy of the classifi
cations. Instead, it highlights the potential of these models to enhance 

Fig. 2. Performance on the test set across all subcode models, per classification approach (search query, semi-supervised learning, and supervised learning), method 
(search terms, text representation, and machine learning algorithm), and evaluation metric (AUROC, AUPRC, and F1-score). The points indicate the performance of 
the individual subcode models. 

Fig. 3. Predictive performance, measured by the AUROC, for each subcode model, developed using the search query, and semi-supervised and supervised learning 
using TFIDF features and regularized logistic regression, LR. The dashed line indicates an AUROC value of 0.5. 
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the granularity of data in the database. 

4. Discussion 

4.1. Condition code refinement 

This study explored the feasibility of refining unspecific ICPC-1 
condition codes in a Dutch GP database into more specific SNOMED 
subcodes using clinical free-text data. Using three different classification 
approaches, we developed and evaluated 286 classification models for 
22 subcodes within ten different unspecific ICPC-1 codes. We found that 
it was possible to accurately classify each code into its subcodes using 
one of the different classification approaches and the information from 
the clinical text, proving its feasibility. In general, no single classifica
tion approach consistently outperformed the others across all subcodes. 
However, the relative performance of the classification approaches 
varied within the different subcodes. 

Despite its simplicity, the search query approach using terms from 
the ICPC-1 code descriptions yielded good results for most subcodes. The 
best semi-supervised models, using TFIDF features, performed similarly. 

Consistent with findings from other studies, the semi-supervised models 
achieved results comparable to those of supervised models [13–15]. 
Nonetheless, inaccuracies in pseudo-labels, stemming from the choice of 
search terms and class imbalance within the dataset, may have nega
tively impacted the semi-supervised performance. The best supervised 
models, using TFIDF features and trained with a modest set of manually 
annotated code occurrences, often matched the performance of the semi- 
supervised and search query approaches. However, their performance 
was not consistent across subcodes, impacted by the class imbalance and 
the limited number of positive examples for certain subcodes. Models 
trained on observations with fewer than 25 % positive labels often 
underperformed. However, estimating the required number of positive 
examples for good performance is difficult, as not all models were 
affected. Regarding different text representations and machine learning 
algorithms, models using dense averaged word embedding features 
along with LR or XGB performed less well than those using TFIDF fea
tures, especially in the supervised models. This could be due to the 
inherent differences in text representation methods. Embeddings pro
vide a general text representation, while TFIDF is more specific to the 
occurrences in each ICPC-1 code. Additionally, the supervised models’ 

Fig. 4. Scatterplots demonstrating the relationship between the number of positive examples in the training set in each subcode and the corresponding model 
performance for the supervised models using LR with TFIDF features across all subcodes. The color and shape of the points indicate the different subcodes, the grey 
line illustrates a regression line, and its respective adjusted R2 is presented in each graph. 

Table 4 
The five features with the largest absolute non-zero beta values in the (semi-)supervised models using regularised logistic regression (LR) and TFIDF bag-of-words 
features for three example subcode models. The terms were translated where necessary. The search queries and the AUROC, AUPRC, and F1 score values are listed 
per model for ease of comparison. A term between hashtags (#) indicates an anonymization tag.  

Code: subcode Search query Semi-supervised Supervised  

Term Term Beta Term Beta 

D01: Stomach cramps kramp (cramp) buikkrampen (stomach cramps)  7.93 krampen (cramps)  2.06  
def (defication)  0.31 buikkrampen (stomach cramps)  1.02  
diarree (diarrhea)  0.27    
soepel (supple)  0.24    
buikpijn (stomach pain)  − 0.28   

AUROC; AUPRC; F1 0.97; 0.84; 0.91 0.75; 0.56; 0.58  0.82; 0.74; 0.72  
K78: Atrial flutter Flutter boezemfibrilleren (atrial fibrillation)  0.75 cardiologie_#hospital# (cardiology_#hospital#)  0.62 

fladder (flutter) car (cardiology/cardiologist)  0.32 onder (under)  0.44  
conclusie (conclusion)  0.30 mogelijk (possible)  0.38  
af (atrial fibrillation)  − 0.25 huis (home)  0.25  
atriumfibrilleren (atrial fibrillation)  − 0.40 atriumfibrilleren (atrial fibrillation)  − 0.58 

AUROC; AUPRC; F1 0.98; 0.67; 0.80 0.69; 0.20; 0.28  0.49; 0.09; 0.20  
L74: Fracture of foot voet (foot) voet (foot)  17.27 voet (foot)  3.70  

tijdens (during)  0.87 teen (toe)  1.86  
lopen (walking)  0.53 kon (could)  1.49  
mt (metatarsal)  0.40 vinger (finger)  − 1.93  
teen (toe)  0.34 hand  − 2.62 

AUROC; AUPRC; F1 0.90; 0.89; 0.90 0.96; 0.97; 0.94  0.99; 0.99; 0.94   
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inferior performance compared to semi-supervised models indicates that 
the training set’s number of subcodes is insufficient for training a robust 
model with embeddings. 

Ultimately, applying the different approaches to all code occur
rences, we could enhance over half of the unspecific ICPC-1 codes to a 
more specific SNOMED code. This significant improvement in detail 
underscores the clinical utility of our feasibility study and the potential 
of simple classification models to increase the granularity of condition 
coding within large-scale observational healthcare datasets. 

4.2. Strengths and limitations 

Our study has several limitations. Firstly, we examined a limited 
number of unspecific ICPC-1 codes due to practical constraints. While 
we ensured a diverse range of conditions for a comprehensive overview 
and enhancing the generalizability of our findings, codes not included in 
our study may obtain different results. Secondly, we only use three 
classification algorithms with one lexical and semantic text represen
tation. These text representations, while common, may have overlooked 
complex semantic patterns that advanced or larger language models 
could capture. Moreover, while more sophisticated classification tech
niques, such as deep learning models, could improve performance, they 
also introduce risks of overfitting [28] and complicate interpretability 
[29]. Our primary aim was to assess the feasibility of automatic code 
refinement with a manageable number of low-resource models and even 
with these limited methods, we were able to show a good performance 
for most subcodes. Thirdly, we intentionally kept our training sets small 
to reflect the practicality of supervised code refinement with minimal 
annotation efforts. However, the small size in combination with large 
class imbalance may have compromised the accuracy of some super
vised models. Additional annotations or exploring different data pro
cessing or sampling techniques could improve the model performance in 
these cases. Lastly, our work stands out by exploring text classification 
within a Dutch GP database context using three classification ap
proaches, expanding the scope beyond the predominantly English lan
guage and hospital-based databases that have been the focus of much of 
the existing literature in this field [30]. 

4.3. Future work 

Future research in automatic code refinement could explore transfer 
learning with pre-trained deep learning models, such as discriminative 
or generative large language models, which have shown promise in 
various NLP tasks and could enhance code refinement performance 
[9–11]. Specifically, pre-training or fine-tuning these language models 
on the texts in the database could further increase their ability to 
comprehend more complex semantic relations. Additionally, integrating 
structured clinical event data and exploring other semi-supervised or 
ensemble methods might prove beneficial. These methods could include 
combining large unlabeled datasets with small, labeled training sets 
within a single model or utilizing predictions from supervised models to 
inform semi-supervised learning. Expanding the focus beyond ICPC-1 to 
other vocabularies and validating models across different healthcare 
databases would be essential to assess generalizability. Automatic 
refinement could also facilitate the mapping of concepts between clin
ical terminologies, thereby enhancing the interoperability of clinical 
data, such as in the transition to different data models like the OMOP 
CDM. The code refinement methodology might be applied in routinely- 
used EHR systems of GP practices or as clinical decision support, though 
its implementation and practical utility in this setting would require 
thorough validation. Lastly, conducting studies using the refined codes 
could illustrate their practical value in observational research, high
lighting the benefits of improved data granularity in healthcare 
databases. 

5. Conclusion 

In conclusion, this work successfully demonstrates that refining un
specific ICPC-1 condition codes into more specific SNOMED codes 
within a Dutch GP database using clinical text data and low-resource 
methods is feasible. We found that simple search queries were particu
larly effective, outperforming (semi-)supervised models when faced 
with issues such as class imbalance or limited training data. The 
enhanced granularity of coded conditions in large-scale healthcare da
tabases could reduce manual coding costs and increase the depth and 
detail of data available to researchers. This improved level of detail 
enriches the interpretation of medical information and can benefit 
observational research and patient care. 
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7. Summary Table 

What was already known on the topic:  

• EHR databases are popular in observational research for providing 
large-scale data.  

• The accuracy of clinical codes in these databases depends on coding 
proficiency and the available clinical terminologies in the EHR 
system. 

• Unspecific concepts recorded in the EHR complicate identifying pa
tients with specific conditions in observational research.  

• Previous code classification studies focused primarily on supervised 
frameworks using labeled observations. 

What this study added to our knowledge:  

• This study successfully proved the feasibility of code refinement by 
classifying unspecific ICPC-1 codes to more specific SNOMED sub
codes in a Dutch GP database, using code descriptions and resource- 
efficient classification methods supplemented by limited manual 
annotations.  

• Three classification approaches, including search queries and semi- 
supervised and supervised models, generally achieved comparable 
results across all subcodes. However, simple search queries were 
especially effective in scenarios with limited training data and class 
imbalance.  

• When applied to the entire database, the classification models could 
improve the specificity of more than half of the condition occur
rences, indicating the potential benefit to observational research. 
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