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Abstract

IMPORTANCE Vascular disease is a treatable contributor to dementia risk, but the role of specific
markers remains unclear, making prevention strategies uncertain.

OBJECTIVE To investigate the causal association between white matter hyperintensity (WMH)
burden, clinical stroke, blood pressure (BP), and dementia risk, while accounting for potential
epidemiologic biases.

DESIGN, SETTING, AND PARTICIPANTS This study first examined the association of genetically
determined WMH burden, stroke, and BP levels with Alzheimer disease (AD) in a 2-sample mendelian
randomization (2SMR) framework. Second, using population-based studies (1979-2018) with
prospective dementia surveillance, the genetic association of WMH, stroke, and BP with incident
all-cause dementia was examined. Data analysis was performed from July 26, 2020, through July
24, 2022.

EXPOSURES Genetically determined WMH burden and BP levels, as well as genetic liability to stroke
derived from genome-wide association studies (GWASs) in European ancestry populations.

MAIN OUTCOMES AND MEASURES The association of genetic instruments for WMH, stroke, and
BP with dementia was studied using GWASs of AD (defined clinically and additionally meta-analyzed
including both clinically diagnosed AD and AD defined based on parental history [AD-meta]) for
2SMR and incident all-cause dementia for longitudinal analyses.

RESULTS In 2SMR (summary statistics–based) analyses using AD GWASs with up to 75 024 AD cases
(mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women), larger WMH burden showed evidence
for a causal association with increased risk of AD (odds ratio [OR], 1.43; 95% CI, 1.10-1.86; P = .007,
per unit increase in WMH risk alleles) and AD-meta (OR, 1.19; 95% CI, 1.06-1.34; P = .008), after
accounting for pulse pressure for the former. Blood pressure traits showed evidence for a protective
association with AD, with evidence for confounding by shared genetic instruments. In the
longitudinal (individual-level data) analyses involving 10 699 incident all-cause dementia cases
(mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women), no significant association was
observed between larger WMH burden and incident all-cause dementia (hazard ratio [HR], 1.02; 95%
CI, 1.00-1.04; P = .07). Although all exposures were associated with mortality, with the strongest
association observed for systolic BP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10−14), there was no
evidence for selective survival bias during follow-up using illness-death models. In secondary
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Abstract (continued)

analyses using polygenic scores, the association of genetic liability to stroke, but not genetically
determined WMH, with dementia outcomes was attenuated after adjusting for interim stroke.

CONCLUSIONS These findings suggest that WMH is a primary vascular factor associated with
dementia risk, emphasizing its significance in preventive strategies for dementia. Future studies are
warranted to examine whether this finding can be generalized to non-European populations.

JAMA Network Open. 2024;7(5):e2412824. doi:10.1001/jamanetworkopen.2024.12824

Introduction

With increasing life expectancy, the prevalence of dementia is expected to reach 75 million by
2030.1,2 Devising strategies to prevent or delay its occurrence is a major public health priority. It is
now widely recognized by the scientific community that most dementia cases in the population,
including Alzheimer disease (AD), are related to a combination of vascular and neurodegenerative
lesions.3-6 On postmortem examinations, 80% of patients with clinically diagnosed AD have
cerebrovascular lesions.7 Among patients with stroke, the risk of incident dementia is at least
doubled.8,9 At the population level, covert cerebral small vessel disease, detectable on brain imaging
in the absence of clinical stroke, is thought to be the main pathologic substrate underlying the
vascular contribution to cognitive decline and dementia,10 with nearly half of dementia cases
exhibiting both AD and cerebral small vessel disease neuropathologic characteristics.11

White matter hyperintensity (WMH) burden is the most common cerebral small vessel disease
feature on brain magnetic resonance imaging. Evidence from observational studies has established
strong associations of WMH with increased risk of stroke and dementia, including AD,12 yet evidence
for causality is limited. A putative causal association has been suggested in a preliminary mendelian
randomization (MR) analysis that used genetic instruments as proxies for WMH volume, thus
leveraging the natural randomization of genetic variation at conception to mitigate risks of
confounding and reverse causation inherent to observational studies.13,14 However, while high blood
pressure (BP) is by far the strongest risk factor for WMH, with extensive shared genetic variation,13

several MR studies have reported inverse associations of genetically determined BP levels15 with AD.
These associations were observed both in datasets using standard AD diagnostic criteria16-18 and in
studies additionally using self-reported parental history as a proxy for AD diagnosis.19 Complex
age-dependent effects, possibly associated with the disease process, may lead to methodological
issues, such as selective survival,20 and intrinsic structural changes, such as arterial stiffness21 and
neurodegenerative lesions in BP-regulated regions, resulting in reverse causation.22,23 However,
these inconsistencies remain poorly understood. A better understanding of the causal associations
of vascular traits with AD risk is crucial to prioritize interventions and optimally target populations to
prevent cognitive decline and dementia. Here, taking a multipronged genetic epidemiologic
approach, we aim to systematically examine putative causal associations of genetically defined
vascular traits with all-cause dementia and AD, while ruling out potential biases.

Methods

We used 2 complementary approaches to examine the association of vascular traits (WMH, stroke,
and BP) with dementia risk (Figure 1). First, we used summary-level data from published genome-
wide association study (GWAS) meta-analyses to examine putative causal associations in a 2-sample
MR (2SMR) framework. These GWASs were based on cross-sectional studies with mostly clinic-
based (stroke, dementia) or population-based (WMH, BP) recruitment.13,15,24-26 Second, we
leveraged individual-level data from 13 longitudinal cohorts and biobanks with prospective dementia
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surveillance to examine the association of weighted genetic risk scores (wGRSs) for WMH, stroke,
and BP with incident dementia using Cox proportional hazards regression models. Secondary
analyses were conducted in 2 cohorts with participants aged 65 years or older (the Ages Gene/
Environment Susceptibility [AGES] study27 and the Three-City [3C] study28) using multistate models
accounting for selective survival bias and polygenic scores. The MR study adhered to the
Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) reporting
guideline,29 and the genetic association analyses followed the Strengthening the Reporting of
Genetic Association Studies (STREGA) reporting guideline.30 Cohorts included in individual-level
analyses were approved by the relevant ethics committees and institutional review boards (eTable 3
in Supplement 1).

Analyses on Summary-Level Data
Two-sample MR uses single-nucleotide polymorphisms as genetic instruments for a given exposure
(WMH, stroke, BP traits) to assess their putative causal association with the outcome (dementia). The
validity of causal estimates relies on the assumption that these instruments are (1) strongly
associated with the exposure (relevance) and (2) independent of the outcome given the exposure
and confounders (independence) and (3) that the causal association is exclusively mediated by the
exposure (exclusion restriction).

Figure 1. Study Design
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Analyses on summary-level data: In step 1, we used the standard inverse variance weighting method to estimate causal effects between each exposure and Alzheimer disease (AD) or
AD-meta with parental history of dementia. Steps 2 and 3 addressed potential pleiotropic effects confounding the initial causal estimates using MR-RAPS, weighted-median and
mode-based methods. ACD indicates all-cause dementia; BP, blood pressure; CHARGE, Cohorts for Heart and Aging Research in Genomic Epidemiology; DBP, diastolic blood pressure;
EBB, Estonian Biobank; EUR, European population; GWAS, genome-wide association study; HUNT, Trøndelag Health Study; LD, linkage disequilibrium; PGS, polygenic profile score;
PP, pulse pressure; SBP, systolic blood pressure; SNP, single-nucleotide polymorphism; UKBB, UK Biobank; and WMH, white matter hyperintensity.
a In step 4, we compared the causal model with the sharing model using MR-CAUSE. The risk factor–outcome associations favoring the causal model (change in expected log

pointwise posterior density [ΔELPD] >0; see Methods) were validated in step 5 using multivariable mendelian randomization (MVMR).
b Association analyses in a subset of CHARGE cohorts (Three-City study, Ages Gene/Environment Susceptibility study).
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Exposures
Genetic instruments for exposures were derived from European ancestry GWASs based on 48 454
population-based participants for WMH, 67 162 cases and 454 450 controls for stroke, and 757 601
population-based participants for systolic BP (SBP), diastolic BP (DBP), and pulse pressure (PP), of
which the study design was described previously.13,15,24 Cases in stroke GWASs were derived from
both clinic-based and population-based studies and comprised patients with any stroke (ischemic
stroke, intracerebral hemorrhage, or stroke of unknown or undetermined type), while controls were
free of any stroke. In the BP GWASs, 15 mm Hg was added to SBP and 10 mm Hg was added to DBP
for individuals taking BP-lowering medication. For each exposure, only independent genome-wide
significant single-nucleotide polymorphisms (P < 5 × 10−8; r2 < 0.1) were considered. Instrument
strength was assessed using the Cragg-Donald F statistic to meet the relevance MR assumption
(eMethods in Supplement 2).31,32

Outcomes
For dementia outcomes, we used European association statistics from GWASs of clinically diagnosed
late-onset AD (21 982 cases and 41 944 controls)25 and additionally meta-analyzed including both
clinically diagnosed AD and broadly defined AD using self-reported parental history as a proxy for AD
diagnosis (hereafter, AD-meta) that included both clinical AD cases (n = 21 982) and AD-meta cases
based on parental history of dementia (n = 53 042) from the UK Biobank.26 The AD-meta phenotype
is a pseudolinear measure of AD risk incorporating the participant’s dementia diagnosis weighted on
parental dementia diagnoses and age, which was shown to have a near-unit correlation with clinical
diagnosis.33,34

Causal Effect Estimation
In step 1, the inverse variance weighting method was used to estimate the putative causal association
of WMH, stroke, SBP, DBP, and PP with AD (Figure 1). Step 2 aimed at testing the exclusion restriction
MR assumption, using a suite of pleiotropy-robust methods (MR-RAPS, weighted median and mode)
to account for potential effects of genetic instruments directly on the outcome that are uncorrelated
with the exposure (uncorrelated pleiotropy).35 Step 3 aimed at testing the independence MR
assumption, using a bayesian approach that addresses correlated pleiotropy (MR-CAUSE), ensuring
the independence of instruments from both exposure and outcome through confounders (Figure 1;
eMethods in Supplement 2).36 Two-sample MR analyses rely on published GWASs that are mostly
adjusted for age and sex but not for other potential confounders. MR-CAUSE enables estimation of
causal effects accounting for “unmeasured” confounding. When all instruments exhibit correlation
for their effects on exposure and outcome, MR-CAUSE favors a causal model (γ) over the sharing
model (q) in which pleiotropy due to confounders results in correlation only for a subset of
instruments.36 A positive difference in expected log pointwise posterior density
(ΔELPD = ELPDγ − ELPDq) indicates the causal model’s superiority (eMethods in Supplement 2). In
step 4, for exposure-outcome pairs in which MR-CAUSE indicated a better fit for the causal model
(ΔELPD > 0) but evidence for a significant sharing model (P < .05), we conducted multivariable MR
(MVMR) to validate the putative causal association (Figure 1).37 Multivariable MR simultaneously
includes genetic instruments of all exposures in the same model, thus accounting for potential
confounding of one exposure by the other (eg, potential confounding of the association between
WMH and AD by SBP). Finally, for exposures with significant MVMR association, the following
sensitivity analyses were conducted: (1) Qhet-MVMR to account for confounding due to weak
instruments38 and (2) bidirectional MR to confirm the causal direction (eMethods in Supplement 2).
Causal estimates are scaled to represent a 1-SD change for continuous exposures and per 1-unit
higher log odds for binary exposures. Analyses were performed using R, version 3.3.2 (R Project for
Statistical Computing) and the TwoSampleMR, CAUSE-MR, and MVMR R packages. We used
matSPDlite39 to correct for multiple testing40; based on the correlation matrix between exposures,
we identified 3 independent phenotypes leading to a P value threshold of P < .02 (.05/3).

JAMA Network Open | Genetics and Genomics Cerebral Small Vessel Disease, Blood Pressure, and Dementia

JAMA Network Open. 2024;7(5):e2412824. doi:10.1001/jamanetworkopen.2024.12824 (Reprinted) May 22, 2024 4/17

Downloaded from jamanetwork.com by Erasmus University Rotterdam user on 06/06/2024

https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12824&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12824
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12824&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12824
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12824&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12824
https://jama.jamanetwork.com/article.aspx?doi=10.1001/jamanetworkopen.2024.12824&utm_campaign=articlePDF%26utm_medium=articlePDFlink%26utm_source=articlePDF%26utm_content=jamanetworkopen.2024.12824


Statistical Analysis
Analyses on Individual-Level Data
Statistical analysis was performed from July 26, 2020, through July 24, 2022. We conducted
individual-level data analyses in longitudinal prospective cohort studies to examine the association
of genetically determined WMH burden, stroke, and BP traits with incident dementia, while
addressing potential selective survival bias.41

Primary Analyses | Analyses were conducted in 13 longitudinal cohorts participating in the
CHARGE (Cohorts for Heart and Aging Research in Genomic Epidemiology) consortium with
cognitive assessment periods ranging from 1981 to 201642 and large biobanks (Trøndelag Health
Study, Estonian Biobank, and UK Biobank) assessed between 1987 and 2018. Nearly all cohorts were
population based, except MEMENTO (memory clinic patients without dementia and with cognitive
symptoms), with an assessment period from 1979 to 2014. Dementia diagnosis was based on
standard criteria (eMethods in Supplement 2).

We used Cox proportional hazards regression models to examine the association of genetic risk
scores for WMH, stroke, and BP traits with incident all-cause dementia. For each exposure, we
constructed wGRS based on the weighted sum of alleles of independent genome-wide significant
risk variants for the corresponding exposure (the same variants as for genetic instruments in 2SMR
analyses), using effect estimates from the GWAS that they were derived from as weights.43 The
wGRS were standardized (mean of 0, variance of 1), so that each unit change in the wGRS
corresponds to 1-SD increase. Analyses were restricted to participants with no dementia at baseline
and at least 1 follow-up visit. The Cox proportional hazards regression model used age as the time
scale and was adjusted for sex, principal components of population stratification, and educational
level (a strong determinant of cognitive function, associated with socioeconomic status and vascular
risk factors; eTable 3 in Supplement 1). Data were censored at the age at dementia diagnosis or last
follow-up. Cohort-specific estimates were combined using a fixed-effects inverse variance–weighted
meta-analysis. Sensitivity analyses were conducted to rule out confounding by stroke, given the
established association of WMH burden with stroke risk and of stroke with risk of dementia13: we
excluded individuals with a stroke history at inclusion and adjusted for interim stroke (ie, occurring
between blood draw and dementia diagnosis or end of follow-up), except in the Charles F. and
Joanne Knight Alzheimer Disease Research Center biobank. As in the 2SMR, P < .02 was considered
significant, accounting for 3 independent exposures.40

Secondary Analyses | Additional analyses were conducted in 3C and AGES, 2 large longitudinal
population-based cohort studies with participants aged 65 years or older (eMethods in
Supplement 2). We first examined whether survival bias during follow-up might affect our results
using illness-death models,44 accounting for interval censoring of time to onset of dementia and
competing risk of death. Second, we examined associations of genetically determined vascular
exposures (WMH, stroke, BP) with incident dementia subtypes (all-cause dementia, AD, vascular
and/or mixed dementia; eMethods in Supplement 2) at more liberal instrument selection thresholds
(P value between .50 and 5 × 10−8) using polygenic scores (PGSs). A value of P < .02 correcting for
3 independent traits was considered statistically significant.

Results

Characteristics of Study Populations
For 2SMR analyses, the GWASs used to derive genetic instruments comprised up to 757 601
individuals of European ancestry: WMH GWASs included 48 454 individuals (mean [SD] age, 66.0
[7.5] years; 57.6% women); stroke GWASs included 67 162 cases and 454 450 controls (mean [SD]
age, 63.7 [8.4] years; 44.8% women); and BP GWASs included 757 601 individuals (mean [SD] age,
56.8 [8.0] years; 54.2% women). The GWASs used for the dementia outcome comprised 75 024
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cases and 397 844 controls for AD-meta and 21 982 cases and 41 944 controls for clinically
diagnosed AD (mean [SD] age at AD onset, 75.5 [4.4] years; 56.9% women).13,15,24-26

For individual-level analyses, the 13 longitudinal cohorts included 157 698 participants of
European ancestry, of whom 10 699 developed incident all-cause dementia (mean [SD] age at
baseline, 64.2 [11.3] years; mean [SD] age at dementia diagnosis, 74.4 [9.1] years; 55.4% women;
follow-up ranged from 3 to 25 years). The AGES and 3C studies used for secondary analyses
comprised 978 and 621 incident dementia cases, respectively; a mean (SD) age at baseline of 75.9
(5.3) years and 74.1 (5.4) years, respectively; a mean (SD) age at dementia diagnosis of 85.1 (4.7) years
and 81.8 (5.4) years, respectively; and a follow-up of 10.2 and 7.7 years, respectively.

Associations of WMH, Stroke, and BP With AD Risk Using Summary-Level Data
The genetic instruments for WMH, stroke, and BP were strongly associated with the exposures
(F = 22-65; eTables 1 and 2 in Supplement 1). Using the inverse variance weighting method, we found
significant associations of genetically determined larger WMH burden (odds ratio [OR], 1.19 [95% CI,
1.06-1.34]; P = .008) and lower DBP (OR, 0.70 [95% CI, 0.62-0.79]; P < .001), SBP (OR, 0.77 [95%
CI, 0.68-0.87]; P < .001), and PP (OR, 0.82 [95% CI, 0.71-0.93]; P = .003) with AD-meta risk and of
lower DBP with clinically diagnosed AD risk (OR, 0.81 [95% CI, 0.68-0.98]; P = .03) (Figure 2; Table).
The complementary MR tools MR-RAPS, weighted median and mode, robustly ruled out
uncorrelated pleiotropy (eTables 4B and 5B in Supplement 1). The bayesian MR-CAUSE method that
additionally accounts for correlated pleiotropy further supported a causal association of WMH with
both AD and AD-meta, with a posterior distribution of the causal model distinctively different from
the sharing model (ΔELPD = 0.91 for AD and 0.50 for AD-meta) (Table; eTable 6 in Supplement 1). On
the contrary, stroke and BP traits suggested a better fit of the sharing model with potential
unmeasured confounders for AD-meta (stroke, ΔELPD = –2.60; SPB, ΔELPD = –3.00; DBP,
ΔELPD = –2.20) and AD (stroke, ΔELPD = 0.41; SPB, ΔELPD = 0.44; DBP, ΔELPD = –1.20) (Table). For
associations of WMH with AD, although there was a better fit of the causal model (ΔELPD = 0.91), a
significant proportion of genetic instruments appeared to be shared with unmeasured confounders
(P < .001 for the sharing model) (Table; eFigure 1 in Supplement 2). We therefore performed a
multivariable analysis, adjusting for the associations of closely related traits using MVMR. Greater
genetically determined WMH burden was associated with a 43.4% increase in the probability of AD
risk (OR, 1.43; 95% CI, 1.10-1.86; P = .007, per unit increase in WMH risk alleles) after accounting for
PP associations (Figure 3; eTable 7 in Supplement 1), a 28.6% increase in disease risk compared with
univariable estimates (OR, 1.15; 95% CI, 0.92-1.43; P = .24), with consistent direction of association. A
bidirectional MR analysis between the WMH and PP suggested a causal path of higher PP with larger
WMH burden (eTable 8 in Supplement 1).

Figure 2. Mendelian Randomization Results of Vascular Risk Factors With Alzheimer Disease (AD)
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Association of WMH, Stroke, and BP wGRS With Incident Dementia
Using Individual-Level Data
In a meta-analysis of 13 longitudinal cohort studies, we observed a nonsignificant association of larger
genetically determined WMH burden with increased risk of incident all-cause dementia (hazard ratio
[HR], 1.02; 95% CI, 1.00-1.04; P = .07, per SD increase in WMH wGRS) (Figure 4; eTable 9 in
Supplement 1). After adjustment for educational level and interim stroke, this association remained
substantially unchanged (Figure 4). There was no significant heterogeneity across cohorts (I2 = 7%;
P = .38) (eFigure 2 in Supplement 2). Genetic liability to stroke and genetically determined BP traits
failed to show significant associations with incident all-cause dementia, with negative point
estimates for stroke and SBP. All exposures showed at least nominally significant associations with
increased mortality, most significantly for SBP (HR, 1.04; 95% CI, 1.03-1.06; P = 1.9 × 10−14); the
association of WMH with mortality was no longer significant after adjusting for educational level or
interim stroke status (eTables 9 and 10 in Supplement 1).

In secondary analyses, using illness-death models for 2 older population-based cohorts (3C and
AGES), genetically determined higher WMH burden, BP levels, and genetic liability to stroke were

Table. Suite of 2-Sample MR Analyses With AD Outcomes

Exposure

MR-IVW method MR-CAUSE MVMR

Odds ratio P value ΔELPDa P value for causal effect P value for shared model OR P value
Vascular risk factors associated with AD-meta

WMH 1.19 (1.06 to 1.34) .008 0.50 .39 .62 NA NA

Stroke 0.97 (0.76 to 1.23) .78 −2.60 .005 .27 NA NA

SBP 0.77 (0.68 to 0.87) <.001 −3.00 <.001 <.001 NA NA

PP 0.82 (0.71 to 0.93) .003 −1.60 <.001 .001 NA NA

DBP 0.70 (0.62 to 0.79) <.001 −2.20 <.001 <.001 NA NA

Vascular risk factors associated with clinically defined AD

WMH 1.15 (0.92 to 1.43) .24 0.91 .77 <.001 1.43 (1.10 to 1.86) .007

Stroke 0.97 (0.72 to 1.31) .85 0.41 .42 .52 NA NA

SBP 1.03 (0.87 to 1.21) .76 0.44 NA .16 NA NA

PP 0.91 (0.75 to 1.11) .35 −0.97 NA .42 NA NA

DBP 0.81 (0.68 to 0.98) .03 −1.20 .05 .09 NA NA

Abbreviations: AD, Alzheimer disease; DBP, diastolic blood pressure; IVW, inverse variance weighting; MR, mendelian randomization; MVMR, multivariable MR; NA, not applicable; PP,
pulse pressure; SBP, systolic blood pressure; WMH, white matter hyperintensity; ΔELPD, change in expected log pointwise posterior density, testing causal vs sharing model.
a ΔELPD > 0 indicates a better fit for the causal model.

Figure 3. Multivariable Mendelian Randomization (MVMR) Along With the Univariable Mendelian
Randomization (MR) for Alzheimer Disease (AD) as the Outcome
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not associated with incident all-cause dementia, with effect estimates similar to those observed in
Cox proportional hazards regression models (eTable 11 in Supplement 1), thus ruling out potential
biases related to competing risk of death during follow-up in the context of interval censoring.

In further secondary analyses using PGSs, we found that PGSs for WMH and stroke with less
stringent instrument-significance thresholds (eTable 12 in Supplement 1) were significantly
associated with increased risk of all-cause dementia in both cohorts (eFigures 3 and 4 in
Supplement 2 and eTables 13 and 14 in Supplement 1). In sensitivity analyses excluding prevalent
stroke and adjusting for interim stroke, WMH PGS associations with dementia remained unchanged,
while stroke PGS associations were markedly attenuated in both cohorts. Meta-analyses of effect
estimates from 3C and AGES (for PGS bins at P < .50) showed significant associations of WMH and
stroke PGS with increased risk of all-cause dementia, AD, and vascular or mixed dementia (eTable 15
in Supplement 1). Blood pressure PGSs were mostly not associated with dementia, except for
protective associations of SBP and DBP PGSs with AD in AGES only, attenuated after excluding
prevalent stroke and adjusting for interim stroke (eTable 16 in Supplement 1).

Discussion

Using comprehensive 2SMR workflow–leveraging summary statistics of large GWASs for vascular
traits (WMH, stroke, and BP) and AD, we report a putative causal association of genetically
determined larger WMH burden with increased risk of AD, both clinically diagnosed25 and using
parental history of dementia as a proxy.26 The former association was strengthened after accounting
for PP using multivariable MR. Blood pressure traits showed evidence for a protective association
with AD, with evidence for confounding by shared genetic instruments. In longitudinal individual-
level analyses across 13 cohorts and biobanks with 157 698 participants, we observed a
nonsignificant trend toward an association of larger WMH burden with incident all-cause dementia.
Although all vascular exposures were associated with mortality, there was no evidence for selective
survival bias during follow-up in secondary analyses using illness-death models in AGES and 3C. In
these cohorts, PGSs for WMH and stroke were associated with all-cause dementia, AD, and vascular
or mixed dementia, and for WMH, these associations were independent of interim stroke.

Figure 4. Meta-Analysis Results of Risk Factor–Weighted Genetic Risk Scores (per SD Increase)
With Incident All-Cause Dementia
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Overall, of all vascular phenotypes considered, WMH appeared to show the most robust
associations with dementia risk, including AD, AD-meta, and all-cause dementia, adding evidence of
causal associations to findings from observational studies12,45-48 and highlighting WMH as a key
pathway to target for dementia prevention (eFigure 5 in Supplement 2). This finding reinforces
earlier observations of a putative causal association of WMH with AD-meta,13 expanding it to a larger
AD-meta GWAS26 and to clinically diagnosed AD.25 The stronger association of WMH with the latter
after accounting for PP, with a marked (28.6%) increase in AD risk, is intriguing. Pulse pressure is a
marker of arterial stiffness,49,50 which was shown to be associated with WMH burden and amyloid-β
deposition and its progression in the brain.51,52 Elevated PP may dysregulate brain endothelial cells
and increase cellular production of oxidative and inflammatory molecules, possibly leading to
amyloid-β secretion and blood-brain barrier breakdown.53-55

High BP is the strongest known risk factor for WMH, with MR studies suggesting a causal
association, even among persons without clinically defined hypertension.13 Moreover, BP-lowering
treatments were shown to slow WMH progression in randomized trials,56-60 especially with intensive
BP lowering.60 Given the aforementioned associations of WMH with AD, the association of high BP
with lower risk of AD and AD-meta in the 2SMR analysis appears counterintuitive. However, it aligns
with earlier MR studies using instruments from smaller BP GWASs or genetic proxies for BP-lowering
effect.16-19,61 Our sensitivity analyses using MR-CAUSE suggest that pleiotropic effects from
unmeasured confounders might explain this unexpected directionality of association, highlighting
the importance of such examinations rather than merely removing or downweighing pleiotropic
variants (MR-RAPS, weighted median and mode). Moreover, while we did not observe selective
survival bias during follow-up, given the late age of dementia onset (mean age, 85 years),62 the
strong association of genetically determined high BP with premature death, in line with observational
studies,63-66 raises the possibility of selective survival bias before study entry. The apparently
protective effect of high BP on dementia risk might thus reflect underlying collider bias67 rather than
causality.68-70 Although nonsignificant, the association of PP and DBP with incident all-cause
dementia had point estimates above 1 in the longitudinal cohort studies, which are probably less
exposed to selective survival than the AD case-control GWAS used for the 2SMR analyses.25,26

Beyond these possible biases, our results highlight the complexity of the epidemiologic association
between BP and dementia risk, with strong age effects. High BP in midlife but not late life was shown
to be associated with dementia risk,71-73 and in a meta-analysis of longitudinal cohorts, the reduction
in AD risk associated with antihypertensive medication use was greater among younger compared
with older participants with hypertension.74 Meta-analyses of clinical trials have shown the
effectiveness of antihypertensive medication in reducing the combined outcome of dementia and
cognitive impairment, while evidence for dementia alone remains inconclusive.74,75

In contrast to BP measurements, which show high intraindividual variability,76 WMH volume is
a more stable marker, reflecting white matter damage secondary to changes in the structure and/or
function of cerebral small vessels. Assuming that WMH at least partly mediates the association of BP
with dementia in the population, WMH may better capture the brain damage caused by BP than BP
itself. White matter hyperintensity likely also reflects the association of other parameters with white
matter integrity, such as cerebral amyloid angiopathy or factors associated with the resilience of the
brain white matter to vascular insults. Given the high prevalence of WMH in the general population
among stroke-free individuals,48 our results highlight WMH as a major causal pathway to consider for
the prevention of dementia.

Limitations
This study has some limitations. First, despite the large samples used for 2SMR, we observed
imprecise estimates for certain associations (stroke and BP traits). This finding could be attributed to
comparatively weaker instruments (the stroke F statistic was lower than for other exposures)77 or to
limitations of certain MR methods for exposures comprising very large numbers of genetic
instruments (eg, BP traits).78,79 Second, the AD-meta phenotype that uses family history of dementia
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as a proxy for AD enables the increase in sample size and also possibly includes more patients with
mixed dementia, who are likely underrepresented in GWASs using clinically defined AD only,
although they represent most dementia cases in the population. However, the imprecision of the
AD-meta phenotype is a limitation; therefore, we have provided additional analyses focusing
exclusively on clinically defined AD. Third, single-exposure MR analyses might oversimplify
underlying causal associations, and therefore complementary approaches investigating more
broadly the dementia exposome are warranted.80 Fourth, in our longitudinal analyses, the number
of incident dementia cases remained modest, with some differences in ascertainment methods,
which may have limited power to detect associations. Although secondary exploratory analyses
showed an association of PGS for genetically determined WMH with incident dementia subtypes,
these require validation in independent datasets, especially as our multiple testing correction did not
account for the dementia subtypes analyzed. Fifth, validation of our findings in populations of
non-European ancestry, as larger datasets become available, will be crucial.

Conclusions

Our findings provide converging evidence that WMH is a major vascular factor associated with
dementia risk, emphasizing that it should be prioritized in preventive efforts. They also support WMH
as a surrogate marker for clinical trials to prevent dementia by controlling vascular risk.60,81 Our
results prompt caution when interpreting MR studies with late-onset diseases, particularly when
survival is strongly associated with the exposure instruments, and highlight the importance of
combining complementary analytical approaches and applying them to several independent studies
to mitigate study-specific limitations and biases.
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