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Abstract

Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. 
While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the pre-
vention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be 
modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, 
as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, 
(i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evi-
dence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and 
cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations 
will be provided.
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The risk factors and pathophysiological pathways of both heart failure and cancer are common. The discipline of cardio-oncology investigates how 
heart failure and cancer progression are connected: on one hand, the cardiac effects of anti-cancer medications or cancer-derived metabolic bypro-
ducts are investigated, whereas on the other hand, the possible effects of heart failure on cancer progression are examined, such as those mediated 
by maladaptive neuroendocrine activation and factors secreted from the failing heart. Nevertheless, there is a lack of systematic knowledge on how 
heart failure pharmacotherapies affect new-onset cancer incidence or prevalent cancer outcomes, and whether these effects are mediated through 
the improvement in cardiac functions. ACEI, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; BB, beta-blocker; MRA, 
mineralocorticoid receptor antagonist; SGLT2I, sodium-glucose cotransporter 2 inhibitor.

Keywords Cardio-oncology • Heart failure • Cancer • Beta-blocker • Mineralocorticoid Receptor antagonist • Sodium-glucose 
cotransporter 2 inhibitor • Angiotensin receptor blocker • Angiotensin-converting enzyme inhibitor • Angiotensin 
receptor-neprilysin inhibitor

Introduction
Heart failure (HF) and cancer are leading causes of mortality world-
wide.1–6 Although HF and cancer are conventionally viewed as two sep-
arate disease entities, an implicit bidirectional relationship between them 
has been identified by recent studies,7 as (i) major risk factors and mech-
anistic pathways overlap in HF and cancer,8–11 (ii) in patients with preva-
lent cancer, cardiovascular diseases are the leading causes of non-cancer 
mortality,12–14 (iii) several cancer pharmacotherapies exert cardiotoxic 
effects,15–18 and (iv) in patients with prevalent HF, the majority of obser-
vational evidence reported increased cancer incidence and worse cancer 
outcomes compared with subjects free of HF, irrespective of patients’ 
age, HF etiology, and cancer type.19–25 However, an epidemiological 
study on men with self-reported HF reported no such associations,26

moreover, a Danish nationwide study reported a significant decrease 

in cancer incidence in patients with prevalent HF after adjusting for mul-
tiple variables including co-morbidities and medications.27 Interestingly, 
despite major improvements in HF therapies, cancer incidence in HF pa-
tients has remained unchanged for the past 20 years, underscoring the 
importance of cancer in the setting of HF.28,29

Guideline recommendations exist regarding prevention, screening, 
monitoring, and treatment of new-onset HF in patients receiving cancer 
therapies.3 However, no recommendations are available that define if 
and how HF treatment should be modified (i) to prevent cancer inci-
dence in HF patients, or (ii) when cancer is diagnosed during the course 
of HF, and no ongoing clinical studies are available addressing these 
questions. Indeed, based on a systematic search on ClinicalTrials.gov, 
we found that all of the ongoing clinical studies of cardio-oncology 
are related to prevention or treatment of cancer therapy-related car-
diotoxicity (see Supplementary data online, Table S1).
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The purpose of this review is to provide (i) an overview of the effects 
and proposed mechanisms of action of GDMT of HF on cancer based 
on pre-clinical data, and (ii) a balanced interpretation of findings re-
ported in clinical meta-analyses investigating the effects of HF GDMT 
on cancer incidence and outcomes. Moreover, gaps in knowledge and 
areas of future pre-clinical and clinical research will also be highlighted.

In this narrative review, we collected evidence from in vivo (see 
Supplementary data online, Table S2) and in vitro (see Supplementary 
data online, Table S3) pre-clinical studies, with a special emphasis on 
drug-type, dosing, cancer type, and endpoints. We also collected infor-
mation from meta-analyses of clinical studies investigating the effect of 
HF GDMT on cancer incidence in cancer-free patients, or other cancer- 
related outcomes (e.g. cancer-specific or recurrence-free survival) in 
patients with pre-existing cancer at baseline (see Supplementary data 
online, Table S4).

Effects of beta-blockers on cancer
Beta-adrenoceptor signalling has been suggested to play a contributory 
role in cancer biology, as it modulates cancer progression mainly via the 
activation of protein kinase A and the exchange protein activated by 

adenylyl cyclase (Figure 1).30 Catecholamines regulate beta-adrenoceptors 
on cancer cells, stromal cells, and tumour-associated macrophages,31 re-
sulting in a procarcinogenic microenvironment. Accordingly, beta-blockers 
(BBs) may have a potential to decrease cancer incidence or improve cancer 
outcomes.

Pre-clinical studies assessing the effects of 
beta-blockers on cancer
Effects of BBs on cancer have been extensively investigated in pre- 
clinical studies, almost unanimously demonstrating potent anti-cancer 
effects both in vivo (see Supplementary data online, Table S2) and in vitro 
(see Supplementary data online, Table S3). Most in vivo studies tested 
the non-selective BB propranolol. Propranolol exerted significant 
anti-cancer effects in vivo by inhibiting tumour growth,32–35 reducing 
metastases,36,37 influencing tumour immuno-microenvironment,38

and by repressing angiogenesis.39 In contrast, some studies showed 
that propranolol did not have anti-cancer effects per se,40 as it could 
only enhance the effects of other anti-cancer therapies.38,41–44

Among in vivo studies investigating the anti-cancer effects of non- 
selective BBs other than propranolol, carvedilol was the most 

Figure 1 Suggested mechanism of action of the different heart failure pharmacotherapies on cancer cells. A: Adrenaline, NA: noradrenaline, Ang: 
angiotensinogen, Ang1: angiotensin-I, Ang2: angiotensin-II, ACE: angiotensin-converting enzyme, Aldo: aldosterone, ARB: angiotensin receptor blocker, 
ACEI: angiotensin-converting enzyme inhibitor, BB: β-blocker, SGLT2I: sodium-glucose cotransporter 2 inhibitor, ß-AR: ß-adrenergic receptor, AT1-R: 
angiotensin II receptor type 1, SGLT2: sodium-glucose cotransporter 2, MC-R: mineralocorticoid receptor, MRA: mineralocorticoid receptor antag-
onist, cAMP: cyclic adenosine-monophosphate, EPAC: exchange protein directly activated by cAMP, PKA: protein-kinase A, IP3: inositol-triphosphate, 
Akt: protein-kinase B, mTOR: mammalian target of rapamycin, Gluc: glucose, TF: transcription factors. Figure created with BioRender.com.
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commonly used agent. Most of these studies demonstrated significant 
anti-cancer effects of carvedilol when used alone in a variety of cancer 
types.45–52 Other BBs, such as the beta1-selective metoprolol41 and ne-
bivolol,53,54 as well as the non-selective labetalol33 were also shown to 
have either anti-cancer effects per se, or enhance the anti-cancer effects 
of other drugs.

Anti-cancer effects of various BBs on several cancer types have been 
assessed by in vitro studies, resulting in variable results. For instance, 
anti-cancer efficacy of propranolol or beta2-adrenoceptor blockade 
was reported to be higher compared to beta1-selective BBs by the major-
ity of studies.34,55–58 Conversely, a study on non-small cell lung cancer cell 
lines demonstrated no correlation between beta-adrenoceptor selectivity 
and anti-cancer efficacy of BBs, as both propranolol and the beta1- 
selective betaxolol significantly decreased colony formation.59 Of note, 
metoprolol, the only beta1-selective BB approved for HF that was inves-
tigated in this study, was ineffective in such settings. Moreover, the super-
iority of beta1-selective BBs over propranolol has also been demonstrated 
in vitro,60–62 further complicating the picture.

Of note, BB use emerged not only in prevention of cancer develop-
ment per se, but also in prevention of cancer therapy-related cardio-
toxicity, as beta-adrenoceptor signalling was shown to share an 
intricate conundrum with human epidermal growth factor receptor 
type 2 (ERBB2) in the cardiovascular system, and also in breast can-
cer.63,64 As a result, the BB carvedilol was shown to prevent 
ERBB2-blockade-induced cardiotoxicity.65

Clinical studies assessing the effects of 
beta-blockers on cancer
Intriguingly, contrary to pre-clinical studies, meta-analyses on clinical obser-
vational studies or randomized controlled trials (RCTs) show disparate re-
sults regarding effects of BBs on cancer, both in cancer-free patients, and in 
cancer patients (Figure 2, see Supplementary data online, Table S4).

Effects of beta-blockers on risk of cancer in 
cancer-free patients
In a meta-analysis on nine RCTs, BB use was associated with a non- 
significant trend towards lower overall risk of any cancer type.66

Likewise, a network meta-analysis on 70 RCTs showed that the use 
of BBs was not associated with any change in risk of any cancer type, 
or cancer mortality.67 In other meta-analyses, BB use was associated 
with mixed effects on cancer incidence, varied by cancer types. For in-
stance, two meta-analyses showed no association between BB use and 
risk of new-onset breast, lung, colon, or prostate cancer.68,69 Other 
meta-analyses showed that BB use was associated with a significantly 
increased risk of melanoma,70,71 but of note, these meta-analyses in-
cluded the same primary studies. In addition, a meta-analysis resulted 
in a significantly increased risk of kidney or bladder cancer in BB users,72

while another meta-analysis demonstrated a significantly reduced risk 
for hepatocellular carcinoma in patients with liver cirrhosis using non- 
selective BBs.73 Of interest, none of these meta-analyses used HF pa-
tients, or HF as an indication for BB use exclusively, according to their 
study eligibility criteria.

Effects of beta-blockers on cancer outcomes in 
patients with prevalent cancer
Meta-analyses on breast cancer showed that BB use was associated 
with either no effect,74–76 or with improved cancer outcomes77–79

compared to non-users, even when BBs were started after diagnosis 
of malignancy.79 Most meta-analyses on lung cancer show no 

associations of BB use with cancer outcomes.74–76,79 Still, one 
meta-analysis reported that (i) non-selective BB use was associated 
with significantly worse overall survival of lung cancer patients, and 
that (ii) BB use (not stratified by selectivity) was associated with im-
proved overall survival in stage III patients and in those without surgical 
cancer treatment.80 With respect to colorectal cancer, no association 
has been found between BB use and cancer outcomes.74–76,79

Regarding malignant melanoma, repeated analyses on the same cohorts 
hinted towards improved overall survival in patients using BB.74–76

Conversely, another meta-analysis that included additional cohort stud-
ies showed no association of BB use with beneficial cancer outcomes in 
patients with malignant melanoma.79

In conclusion, although BBs have been shown to exert significant 
anti-cancer effects in pre-clinical studies, meta-analyses of clinical stud-
ies show inconsistent and sometimes conflicting results regarding the 
associations of BB use with cancer incidence and outcomes, independ-
ently from cancer site and outcome measures. Moreover, there is no 
consensus on how beta-adrenoceptor selectivity influences the effect 
of BBs on cancer neither in pre-clinical nor in clinical studies. It should 
also be stressed that BBs have no proven effects in HF with preserved 
ejection fraction, and only minor cardioprotective effects in cancer pa-
tients receiving chemotherapy.81 Nevertheless, as the activation of 
sympathetic nervous system on cancer outcomes has been well- 
established in both pre-clinical studies and the clinical settings,82 there 
is a strong rationale to further investigate the sympathetic nervous sys-
tem–cancer relationships.

Effects of 
renin-angiotensin-aldosterone 
system inhibitors on cancer
Many studies have shown that dysregulation of the renin-angiotensin-al-
dosterone system (RAAS) may promote cancer, mainly driven by the 
AT1R-Akt axis (Figure 1).83 The idea for investigating the effects of 
RAAS blockade on cancer has first emerged by the retrospective analysis 
of Lever et al., showing that patients using angiotensin-converting enzyme 
inhibitors (ACEIs) had a reduced risk for developing cancer, and also sug-
gested the need to assess the effects of angiotensin receptor blockers 
(ARBs) on cancer as well.84 This seminal study gave rise to pre-clinical 
and clinical studies testing the hypothesis that RAAS blockade entails 
anti-cancer effects, as well as to investigations demonstrating that compo-
nents of RAAS are expressed in various human cancers and in their micro-
environment,83 which are associated with worse outcomes.85,86

Pre-clinical studies assessing the effects of 
renin-angiotensin-aldosterone system 
inhibitors on cancer
The anti-cancer effects of blocking the RAAS with ACEIs were tested in 
numerous pre-clinical in vivo studies, mostly demonstrating benefits, 
that could be exerted either alone or in combination with other 
anti-cancer therapies (see Supplementary data online, Table S2).87–91

Nevertheless, contradictory findings were reported in an early study 
by Wysocki and colleagues, where captopril did not exert significant 
anti-cancer effects, but was associated with increased mortality in im-
munocompetent mouse models of renal cancer.92 However, in a 
more recent study using a similar immunocompetent cancer model 
and the same cancer cell line, captopril significantly reduced primary tu-
mour weight and lung metastases. Of note, captopril treatment was 
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started 2 days prior to tumour inoculation, and in a lower dose.93 The 
anti-cancer effects of RAAS blockade by ACEIs are further supported 
by in vitro studies, showing a reduction in cell proliferation, migration, 
and invasion.94–99 Nevertheless, in contrast to these in vivo studies, 
several in vitro studies reported no direct anti-cancer effects of 

ACEIs,91,100–102 or no synergism with other anti-cancer agents (see 
Supplementary data online, Table S3).103 Whether findings of these pre- 
clinical studies are a class effect not known, as captopril was assessed 
almost exclusively. Thus, a comprehensive, systematic research strategy 
to assess the effects of different types of ACEIs is lacking.

Figure 2 Meta-analyses of clinical studies on the effect of beta-blockers on cancer incidence or outcomes. The number of studies used for overall 
effect size estimation is marked (n). OS: overall survival, CSS: cancer specific survival, CR: cancer recurrence, DFS: disease-free survival, Obs: observa-
tional studies, RCTs: randomized controlled trials. The meta-analyses are referenced in the text. Figure created with BioRender.com.
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ARBs inhibit the AT1R, the key target of angiotensin II, which is the 
major effector peptide of the RAAS. In tumour-bearing mice, ARBs ex-
ert significant anti-cancer effects by reducing tumour growth and/or fi-
brosis,104–107 metastases,108,109 tumour neo-angiogenesis,110–112 and 
influencing tumour immuno-microenvironment (see Supplementary 

data online, Table S2).108,113 In a seminal study by Rhodes et al., 
AT1R is overexpressed in 10%–20% of breast cancer cases across mul-
tiple independent patient cohorts. The study indicated that marked 
AT1R-overexpression defines a subpopulation of estrogen receptor- 
positive, ERBB2-negative breast cancer that may benefit from targeted 

Figure 3 Meta-analyses of clinical studies on the effect of RAAS inhibitors (angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, 
or mineralocorticoid receptor antagonists) on cancer incidence or outcomes. The number of studies used for overall effect size estimation is marked 
(n). OS: overall survival, CSS: cancer specific survival, CR: cancer recurrence, DFS: disease-free survival, Obs: observational studies, RCTs: randomized 
controlled trials. The meta-analyses are referenced in the text. Figure created with BioRender.com.
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therapy with ARBs, most particularly losartan. These findings were ob-
tained in both in vitro and in vivo models AT1R-overexpressing breast 
cancer, but not in AT1Rlow cell line.114 Nevertheless, contradictory re-
sults were obtained by a number of in vitro and in vivo studies demon-
strating no or less anti-cancer effects of ARBs, mostly using losartan or 
irbesartan99,115–127 (see Supplementary data online, Table S3).

Mineralocorticoid receptor antagonists (MRAs) represent a third pil-
lar part of HF GDMT. Only a handful of pre-clinical studies investigated 
effects of MRAs on cancer currently. Leung and colleagues demon-
strated that spironolactone decreased the number of intestinal polyps 
in APJmin mice (a mouse model of spontaneous intestinal adenoma for-
mation), and inhibited metastases in colorectal carcinoma-implantation 
studies by pathways that are independent of the mineralocorticoid re-
ceptor.128 Other in vivo studies also demonstrated a significant 
anti-cancer effect of MRAs by reducing tumour volume,129–131 and/or 
by inhibiting metastatic spread132 (see Supplementary data online, 
Table S2). Accordingly, the majority of in vitro studies also show an over-
all anti-cancer effect of MRAs either given alone or in combination with 
other therapeutics (see Supplementary data online, Table S3).129,133–137

Of note, Gold and colleagues reported differences in anti-cancer effi-
cacy of different MRAs, showing superiority of spironolactone over 
eplerenone,130 a differential effect that needs further elucidation re-
garding mechanism. Conversely, lack of anti-cancer effects for spirono-
lactone was also found on liver,131 and pituitary cancer cell lines.138

Moreover, Aldaz and colleagues demonstrated that spironolactone (ei-
ther alone, or in combination with dexamethasone) protected the glio-
blastoma cells against radiation-induced damage.139

Clinical studies assessing the effects of 
renin-angiotensin-aldosterone system 
inhibitors on cancer
The putative effects of RAAS blockade on malignancy in HF patients 
were investigated in a seminal meta-analysis by Sipahi and colleagues, 
in which only RCTs of ARBs were analyzed (Figure 3, see 
Supplementary data online, Table S4). Here, a significant association be-
tween the use of ARBs and overall cancer risk was reported, mostly at-
tributed to new-onset lung cancer.140 These results raised doubts 
about the reliability of this meta-analysis, as adjudication of cancer diag-
noses was not uniform among the included studies.141

Effects of renin-angiotensin-aldosterone system 
inhibitors on risk of cancer in cancer-free patients
Other meta-analyses of RCTs reported that ARB or ACEI usage was 
not associated with cancer risk compared to placebo.67,68,142–145 This 
lack of association between RAAS inhibitor (RAASI) use and incident 
cancer has also been suggested by meta-analyses of cohort studies 
across multiple cancer types.69–71,146,147 However, meta-analyses of 
non-randomized investigations demonstrated a significantly decreased 
incidence of esophagus,148 colorectal,149 prostate,150 and lung can-
cer,143 but an increased risk for renal cancer72,148 and melanoma148

amongst users of ACEI/ARB compared to non-users. Although a large 
number of meta-analyses have been conducted to investigate the asso-
ciation between ACEI/ARB use and cancer incidence, only a single re-
cent meta-analysis by Bommareddy and colleagues assessed the 
effect of spironolactone on cancer occurrence.151 This meta-analysis 
synthesized data from observational studies, showing a significantly de-
creased risk for prostate cancer, but no effect on other cancer types. 
Similar to BBs, effects of RAASIs on cancer incidence were mostly as-
sessed in hypertensive, but not in HF populations by the meta-analyses.

Effects of renin-angiotensin-aldosterone system 
inhibitors on cancer outcomes in patients with 
prevalent cancer
In contrast to the disparate effects of RAASIs on cancer incidence, 
meta-analyses of observational studies demonstrated significantly im-
proved cancer outcomes in patients with digestive system malignan-
cies,152–154 renal cancer,153,155 or all-cause cancer156 in users of 
ACEIs or ARBs. Nevertheless, a meta-analysis on RCTs showed the 
neutral effect of RAASIs in cancer patients irrespective of the cancer 
type.157

In conclusion, the effect of RAASIs on new-onset cancer risk is con-
flicting in the current clinical data, varying mostly by cancer types, and 
also, by primary study design (i.e. RCT or observational). However, in 
patients with prevalent cancer, the majority of meta-analyses either 
show safety, or even improved cancer-related outcomes when 
RAASIs are used, compared to non-users. Nevertheless, a major factor 
that complicates the interpretation of these results is the confounding 
by indication, i.e. most of the clinical data are derived from patients with 
hypertension, and not with HF, urging for further evidence in the HF 
populations as well.

Effects of angiotensin 
receptor-neprilysin inhibitor on 
cancer
There is a general lack of pre-clinical and clinical evidence regarding the 
effect of angiotensin receptor-neprilysin inhibitor (ARNI, i.e. sacubitril/ 
valsartan) on cancer, which is another part for HF GDMT,1 a drug that 
enhances the beneficial cardiovascular effects of endogenous natriuret-
ic peptides (NP)158,159 Of note, in the landmark RCT leading to approv-
al of ARNI for treatment of HF with reduced ejection fraction, 
proportion of cancer deaths was comparable in the ARNI and ACEI 
arms.160 Moreover, in a recent cohort study on patients with HF 
with mildly reduced ejection fraction, ARNI/ACEI/ARB use significantly 
increased cancer incidence in the primary outcomes within 3 years, al-
though this association was not significant by falsification analysis.161

NPs have been shown to inhibit tumour growth in several in vitro and 
in vivo studies,162–165 nevertheless, these associations should be inter-
preted with caution, as some malignant cells are also able to produce 
NPs, questioning generalizability of tumour-inhibitory effects of 
NPs.166,167 In addition, it is noteworthy that in principle neprilysin inhib-
ition also increases the availability of factors other than NPs that might 
influence cancer cell biology.168 The effects of these substrates should 
also be considered in future investigations addressing the effects of 
ARNI on cancer.

Effects of sodium-glucose 
cotransporter 2 inhibitors on 
cancer
As glucose is a major substrate required for cancer cell survival and 
growth, Scafoglio and colleagues hypothesized that the metabolism- 
shifting effect of sodium-glucose cotransporter 2 inhibitors (SGLT2Is) 
might be protective against malignancy as well.169 In this seminal inves-
tigation, functional expression of SGLT2 on human pancreatic and 
prostate cancers was demonstrated. In addition, this was the first study 
providing evidence on SGLT2Is blocking glucose uptake and reducing 
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tumour growth in a xenograft model of pancreatic cancer, which led to 
the conduction of subsequent pre-clinical studies investigating the 
anti-cancer effects of SGLT2Is.170

Pre-clinical studies assessing the effects of 
sodium-glucose cotransporter 2 inhibitors 
on cancer
Glucose uptake/metabolism-dependent anti-cancer mechanisms of 
SGLT2Is have been further demonstrated in cancer-bearing mice, which 
was attributed to activation of adenosine monophosphate-activated 
protein kinase (AMPK), and thus, to the inhibition of mTOR171–173

(Figure 1, Supplementary data online, Table S2). Nevertheless, Kaji 
et al. reported the anti-cancer effect of SGLT2 inhibition to be exerted 
independently of the systemic glycemic status, although cellular 
glucose-uptake was not assessed here.174 Other mechanistic pathways 
on the anti-cancer effects of SGLT2 blockade were suggested by other 
studies, showing that SGLT2 inhibition (i) decreases pro-carcinogenic 
inflammation,175 (ii) activates AMPK, which leads to inactivation of the 
protooncogene sonic hedgehog,176 (iii) suppresses cancer progression 
by inhibiting the Hippo signalling pathway through downregulating 
YAP1 expression.177 In contrast, however, Korfhage and colleagues re-
ported an increased intestinal adenoma burden in female, but not in 
male APCmin mice, when treated with canagliflozin,178 a result that 
needs further mechanistic elucidation.

Several in vitro studies also indicated that anti-cancer mechanisms of 
SGLT2Is are mainly attributed to the induction of AMPK,179 which sub-
sequently leads to the inhibition of the Akt/mTOR pathway (see 
Supplementary data online, Table S3).180 In addition, analyses of meta-
bolomics in SGLT2I-treated cancer cell lines showed that besides the 
glucose-dependent mechanisms, alteration of other metabolic path-
ways (e.g. fatty acid metabolism) also contributes to the decrease in 
cancer cell proliferation.181,182 Other in vitro studies reported that anti- 
proliferative effects of SGLT2Is are exerted by a significant repression 
of DNA synthesis,183 subsequent cell cycle arrest,184 and by blocking 
aberrant activation of ß-catenin.185 In the latter study, dapagliflozin 
and empagliflozin (the two SGLT2Is that are currently recommended 
in HF) exerted non-significant effects, questioning the presence of a 
class effect.

Of note, in addition to tumour growth studies, SGLT2Is were also 
investigated in cancer therapy-related toxicity studies. For instance, da-
pagliflozin and empagliflozin were shown to revert ponatinib-induced 
endothelial cell senescence and dysfunction.186

Clinical studies assessing the effects of 
sodium-glucose cotransporter 2 inhibitors 
on cancer
During the safety trials of SGLT2Is in diabetic patients, no significant in-
crease in overall cancer events was observed. Nevertheless, a nominal 
increase in bladder cancer incidence in men, and breast cancer inci-
dence in women were noted in the SGLT2I-treated arm.187 These ob-
servations have led to systematic investigations of the association 
between SGLT2I use and cancer, showing inconsistent results (see 
Supplementary data online, Table S4 and Figure 4).

For instance, a recent meta-analysis of hyperglycaemic patients re-
ported an overall reduced risk of cancer associated with SGLT2I use, 
and most particularly with dapagliflozin and ertugliflozin vs. placebo.188

Of note, in this meta-analysis, two trials with large sample sizes may 
have shifted the overall effect size towards benefit by SGLT2Is, whereas 

the majority of the included studies had large confidence intervals (i.e. 
small sample sizes) with non-significant effects. Surprisingly, an earlier 
meta-analysis showed no association of SGLT2I with malignancy, how-
ever (i) dapagliflozin significantly increased risk of overall cancer com-
pared to other antidiabetic drugs, and (ii) empagliflozin nominally 
increased the risk of overall cancer compared to placebo in patients 
with type 2 diabetes mellitus (T2DM).189 Another meta-analysis on 
T2DM patients showed that risk of overall cancer in obese patients 
was significantly increased in association with SGLT2I use. This 
meta-analysis also showed a tendency towards increased risk of cancer 
in studies with a follow-up period of >52 months. Moreover, risk of 
bladder cancer also significantly increased, mainly associated with the 
use of empagliflozin.190 In contrast, Dicembrini and colleagues reported 
a significant risk reduction in bladder cancer associated with dapagliflo-
zin use, although this result was derived from four RCTs, one of which 
might have been overweighed, thus, dominating the overall effect 
size.191

Meta-analyses investigating effects of SGLT2Is on outcomes by can-
cer types show no significant change in the risk of breast cancer,189–191

lung cancer,189–191 prostate cancer,190–192 or melanoma,193 with the 
latter cancer showing a tendency to increase by SGLT2Is. In addition, 
similar neutral results were reported regarding renal, pancreatic and 
hepatocellular cancers as well.191

As the use of SGLT2I with the indication for HF has only recently 
been introduced, most meta-analyses synthesize data from studies of 
patients with diabetes. Nevertheless, the putative association between 
SGLT2I use and cancer outcomes of HF patients—with or without dia-
betes—requires investigation in future meta-analyses. Moreover, as the 
above meta-analyses assessed only the risk of cancer, future studies 
should also assess the outcomes of patients with prevalent cancer.

Effects of digoxin on cancer
Although not considered as a pillar part for HF pharmacotherapy, di-
goxin is still used in selected HF patients.1 Effects of digoxin on cancer 
have been investigated in a variety of in vitro studies, mostly showing 
anti-cancer properties by causing cell-cycle arrest.194–200 These findings 
were supported by in vivo studies, showing inhibition of tumour 
growth,200–202 or reducing distant tumour formation.203 Despite the 
appealing pre-clinical data, meta-analyses on clinical studies show rather 
contradictory results. For instance, Ahern and colleagues performed an 
observational study and a meta-analysis showing a significantly in-
creased risk of breast cancer in digoxin users vs. non-users.204 This find-
ing was further supported by a meta-analysis also reporting significantly 
increased risk of breast cancer, lung cancer, and colorectal cancer, but 
not prostate cancer in association with digoxin use.205 In addition, sig-
nificantly increased all-cause mortality of cancer patients using digoxin 
was also reported, but no increase in cancer-specific mortality could be 
detected. It should be emphasized here that these results should be in-
terpreted with caution, as clinical studies may be biased by (i) a higher 
likelihood of medical contact, and (ii) an intrinsic tendency towards 
worse outcomes (not only restricted to cancer or cardiovascular out-
comes), as patients taking digoxin are on average sicker than those not 
on this medication.

Overall, there is an apparent discrepancy between the pre-clinical 
studies (almost unanimously demonstrating anti-cancer effects) and 
the clinical investigations (showing a tendency towards worse cancer 
outcomes) regarding effects of digoxin on cancer. This discrepancy 
highlights the need for increasing the translational value of pre-clinical 
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research, and the reliability of clinical data that are synthesized by 
meta-analyses.

Effects of diuretics on cancer
Loop diuretics (e.g. furosemide) are used in HF patients to reduce 
symptoms and signs of congestion.1 The target molecule of furosemide, 
Na-K-2Cl-transporter has been shown to be expressed on cancer cells, 
playing a key role in cancer cell growth. Pre-clinical studies have demon-
strated anti-cancer effects of furosemide, which was attributed to 
Na-K-2Cl-transporter inhibition,206–208 however, no such effects 
were seen in clinical studies.209 Although thiazides are not the preferred 
diuretic agents for decongestion purposes in HF, it should be noted that 
use of hydrochlorothiazide has been brought in association with in-
creased risk of skin cancer,210 however, a recent meta-analysis has 
found no such associations.211 In summary, the interaction between 
diuretics and malignancy remains inconclusive, especially in HF popula-
tions, and further investigations are required to validate the interaction 
between diuretics and cancer.

Future directions for decreasing 
cancer burden of heart failure
Overall, extensive pre-clinical evidence shows significant anti-cancer ef-
fects of all HF GDMT drug classes, nevertheless, no such anti-cancer 

effects of HF drugs could be confirmed in the clinical reality (Figure 5) 
—a discrepancy that is not at all restricted to the field of 
cardio-oncology.212,213 These findings emphasize the need to conduct 
pre-clinical studies of higher translational value, and more robust and 
reliable clinical studies of higher quality, in order to facilitate the forma-
tion of recommendations aiming to decrease cancer burden of HF pa-
tients (Figure 6).

Considerations for future pre-clinical 
studies investigating the effect of heart 
failure drugs on cancer
Pre-clinical in vivo and in vitro studies complement each other, as in vitro 
studies might fail in taking into account the complexity of the systematic 
effects of a drug, while better exploring the direct effects on cancer.

Another limitation for translation stems from the lack of standar-
dized practice for drug dosing and administration, as there is a high var-
iety of doses of the same drug between cancer studies. Also, HF drug 
doses in cancer studies do not necessarily correspond to doses used 
in HF studies.

In addition, there is a difference in the interpretation of studies 
where (i) administration starts prior to tumour inoculation (i.e. tumour 
growth inhibition study), or where (ii) administration starts after an es-
tablished tumour nodule has already formed (i.e. tumour growth delay 
study).

Figure 4 Meta-analyses of clinical studies on the effect of sodium-glucose cotransporter 2 inhibitors on cancer incidence or outcomes. The number of 
studies used for overall effect size estimation is marked (n). OS: overall survival, CSS: cancer-specific survival, CR: cancer recurrence, DFS: disease-free 
survival, Obs: observational studies, RCTs: randomized controlled trials. The meta-analyses are referenced in the text. Figure created with 
BioRender.com.
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Another important aspect for increasing translational value could be 
the use of in vivo tumour-models where cardio-metabolic diseases are 
also induced to better mimic the frequent clinical situation of HF with 
co-morbidities. Although pioneer in vivo studies assessing tumour 
growth in animals with prevalent HF induced by either myocardial in-
farction or transverse aortic constriction (TAC) have already been pub-
lished, studies assessing the effect of HF medications either alone or 
combined in such settings should follow.214–217 Of note, a TAC model, 

depending on the severity and length of constriction, could mimic car-
diac diseases ranging from non-ischemic HF with reduced or preserved 
ejection fraction, to aortic stenosis,218 which mimic important sub- 
populations of HF patients.

Finally, to further enhance translational value, (i) differential effects of 
HF medications either combined or alone, (ii) different etiologies and 
stages of prevalent HF, (iii) different cancer types, (iv) effects of age, 
co-morbidities—e.g. hypertension, atrial fibrillation, obesity, and 

Figure 5 A graphical summary for both the pre-clinical and clinical evidence on the effect of different heart failure pharmacotherapies on cancer. The 
terms were defined as follows: beneficial: decreases cancer incidence, or improves any patient outcome; neutral: no effect on cancer incidence, or no 
effect on any patient outcome; harmful: increased incidence or worsening of any patient outcome; conflicting: there are studies showing either benefit 
or harm on cancer incidence or outcomes. Figure created with BioRender.com.

Figure 6 A graphical summary of future directions for decreasing cancer burden of heart failure from pre-clinical studies to clinical investigations and 
their meta-analyses. Figure created with BioRender.com.
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co-medications that are present amongst the majority of HF patients, 
and (v) sex-based differences should be considered when planning fu-
ture pre-clinical studies to this field.

Considerations for future clinical 
investigations on the effect of heart failure 
drugs on cancer
Several issues are intrinsic to the study of cardiovascular disease and 
cancer. First, a major obstacle in the synchronous study of cardiovascu-
lar disease and cancer is that, inevitably, successful treatment of the one 
condition will provide an opportunity for the other condition to pro-
gress and become a more important cause of death. For instance, a 
very powerful HF drug might reduce HF-related outcomes and cardio-
vascular death, e.g. an MRA. But at the same time, this will provide more 
opportunity for (latent) cancers to progress and become manifest. This 
competing risk by no means is synonymous to a pro-oncogenic effect of 
MRA. Vice versa, breast cancer survivors have after 10 years a larger 
cardiovascular risk than cancer risk.12 Since these women have survived 
one potentially lethal condition, they have beaten the cancer risk (at 
least for some time), while their cardiovascular risk continues and likely 
has risen due to aggressive cancer treatments. This complex interplay 
complicates the simultaneous study of cardiovascular disease and can-
cer and is very difficult to adjust.

Second, observational studies are prone to biases, a problem that 
was touched upon by the meta-analysis of Weberpals and colleagues, 
where BB use significantly increased overall survival and cancer specific 
survival of cancer patients. However, when observational studies prone 
to immortal time bias were excluded from the analysis, no significant 
effects were found for any investigated outcome.74

Third, indication for the use of HF drugs was not always attributed to 
HF exclusively in current observational studies, but rather to hyperten-
sion (for ACEIs/ARBs) or diabetes (for SGLT2Is), causing confounding 
by indication. Therefore, to generate evidence whether and how HF 
treatment should be modified to improve (or at least not to worsen) 
cancer-related outcomes in cohorts of HF patients with prevalent can-
cer is of paramount importance.

Fourth, crucially, cancer outcomes generally are poorly adjudicated 
in most cardiovascular RCTs, which intrinsically flaws the outputs of 
any meta-analysis. Systematic assessment of new-onset cancer risk in 
future HF RCTs is essential to collect valuable information with poten-
tial clinical implications, that may require longer follow-up after termin-
ation for cardiovascular end-points.219,220 On the other hand, 
systematic assessment of cardiovascular outcomes in future cancer 
trials is equally important. For instance, the latest RCT with immune 
checkpoint inhibitors (ICI) did not systematically collect troponin va-
lues, while we know that ICI-mediated myocarditis is a potentially lethal 
side-effect of immunotherapy, which occurs in 2%–5% of all patients.221

In general, stratifying patients in clinical investigations based on 
(i) type and length of use of HF pharmacotherapy of different combina-
tions, (ii) etiology and clinical stage of HF, (iii) cancer type, (iv) age, co- 
morbidities, and co-medications, is essential because individual patients 
with co-morbidities may require other types of drugs than HF medica-
tions, and importantly (v) based on sex, may more clearly show how HF 
medications affect cancer incidence, progression, and outcomes, being 
of paramount importance for clinical decision-making. For instance, the 
differential sex-related effects of HF medications were addressed by 
Stolfo and colleagues who showed that female HF patients were 
more likely to receive BBs, diuretics, and digoxin. Of note, digoxin 
use was associated with an increased risk of death in females,222 but 

females were less likely to receive RAASIs compared to male HF 
patients.223

Overall, definitive answers would be obtained from proof-of- 
concept phase II RCTs that directly assess the effects of HF drugs on 
cancer in HF patients; therefore, such investigations are eagerly waiting 
to be conducted in the future. Of note, although direct effects of HF 
drugs on cancer, or the effects of successfully reversed HF on cancer 
may be hard to dissect in future studies, if the outcome is definitive, 
this question should be addressed by further mechanistic investigations 
(Graphical Abstract).

Besides guideline-directed pharmacotherapies of HF, investigating 
other therapeutic options would also facilitate solving this issue. For in-
stance, the interleukin-1beta inhibitor canakinumab has been shown to 
reduce HF-related hospitalization and mortality,224,225 and cumulative 
incidence of lung cancer in atherosclerotic patients,226 raising the ques-
tion whether targeting inflammation, a shared pathomechanistic path-
way of both HF and cancer, could mean a solution for decreasing 
cancer burden of HF patients.

In conclusion, translatability of pre-clinical studies, and reliability of 
clinical investigations should be improved to facilitate decision-making 
on whether and how HF treatment should be modified to decrease 
cancer incidence and improve cancer outcomes of HF patients.
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