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SMARCA, SWI-SNF-related Matrix-associated Actin-dependent Regulator of Chromatin A; TC-NER, Transcription-Coupled

Nucleotide Excision Repair; WSTF, Williams Syndrome Transcription Factor.

Regulation of chromatin structure is an essential
component of the DNA damage response (DDR), which
effectively preserves the integrity of DNA by a network of
multiple DNA repair and associated signaling pathways.
Within the DDR, chromatin is modified and remodeled to
facilitate efficient DNA access, to control the activity of repair
proteins and to mediate signaling. The mammalian ISWI
family has recently emerged as one of the major ATP-
dependent chromatin remodeling complex families that
function in the DDR, as it is implicated in at least 3 major DNA
repair pathways: homologous recombination, non-
homologous end-joining and nucleotide excision repair. In
this review, we discuss the various manners through which
different ISWI complexes regulate DNA repair and how they
are targeted to chromatin containing damaged DNA.

DNA damage has a major impact on health and is believed to
be the underlying cause of both cancer and aging.1 To protect
against the adverse effects of DNA damage, organisms are
equipped with diverse mechanisms of DNA repair and associated
DNA damage signaling pathways, collectively called the DNA
damage response (DDR).2 Although the repair mechanisms of
most DDR pathways are known in detail, how they function
within chromatin and how chromatin configuration and
reconfiguration facilitates the DDR has only recently obtained
wider attention. In this review, we discuss novel insights that
demonstrate an essential function for the ISWI family of ATP-
dependent chromatin remodelers in mammalian DDR regula-
tion. As changes and defects in both chromatin remodeling and

in the DDR are linked to human malignancies and aging,1,3,4 it
is crucial to understand the connection between both processes.

Chromatin remodeling
The basal packaging units of the eukaryotic genome are nucle-

osomes, which each consist of 147 bp DNA wrapped around a
histone octamer containing 2 copies of each histone (H2A, H2B,
H3 and H4).5 This way of packaging of DNA into chromatin
not only allows the large DNA molecule to fit in the nucleus but
also serves as an efficient and important mechanism to actively
regulate DNA transacting processes such as transcription, replica-
tion and DNA repair.6 Modification of chromatin regulates
access of proteins to DNA and also provides cues to attract pro-
teins or initiate signaling cascades.

Chromatin is modified by the specific activity of histone
modifiers, histone chaperones and ATP-dependent chromatin
remodelers. Histone modifying enzymes predominantly cova-
lently modify the N-terminal tails of histone proteins. This in
turn may lead to the modulation of nucleosome dynamics by
altering histone-DNA contacts or to the chromatin association of
proteins that act on DNA or mediate signaling responses.7 Many
different types of histone modifications play essential roles in
orchestrating DNA repair and DNA damage signaling, including
acetylation, methylation, phosphorylation, ubiquitylation and
ADP-ribosylation.8

ATP-dependent chromatin remodeling complexes catalyze the
disruption of DNA-histone contacts and can slide or evict nucle-
osomes by using the energy from ATP hydrolysis.9 In addition,
they control nucleosome assembly and composition, in coopera-
tion with histone chaperones, by exchanging histones and histone
variants. Four structurally related, evolutionary conserved fami-
lies have been described among various chromatin remodeling
complexes: SWI/SNF, INO80, CHD and ISWI. Central to these
complexes is a catalytic subunit harboring a SWI2/SNF2-family
ATPase domain.10 The remodeling families are functionally dif-
ferent because of the unique domains that reside within or adja-
cent to this domain. In addition, tissue context and specific
subunits that are associated with most ATPases determine the
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particular function of each complex. Some ATP-dependent chro-
matin remodeling complexes, such as SWI/SNF, form large pro-
tein assemblies composed of up to 14 subunits, while others
consist of only one or a few additional subunits, such as ISWI
and some CHD complexes. In spite of their differences, all 4
families are involved in transcription, DNA replication9 and
DDR11 by regulating access to DNA, efficient recruitment of
repair factors and DNA damage signaling. In this review, we spe-
cifically focus on recent findings that implicate ISWI chromatin
remodeling complexes in the DDR.

ISWI family of ATP-dependent chromatin remodelers
ISWI (Imitation SWItch) family remodeling complexes were

first discovered in Drosophila melanogaster12-15 and later shown
to be conserved in many other organisms. So far, 7 different
mammalian ISWI complexes have been described: WICH,
NoRC, RSF, ACF, CHRAC, NURF and CERF (Fig. 1A).16,17

Each of the complexes contain one of 2 conserved ATPase subu-
nits: SMARCA5 (SWI-SNF-related Matrix-associated Actin-
dependent Regulator of Chromatin A5, also known as SNF2H)
or SMARCA1 (also known as SNF2L) besides one or more acces-
sory subunits. SMARCA5 is found in all ISWI complexes except
CERF18 and NURF,19 which contain SMARCA1 (Fig. 1A),
although this ATPase selectivity may in part be cell type spe-
cific20. The ATPase domain of both ATPases, which is comprised
of a DExx and HELICc region, belongs to the superfamily of
DEAD⁄H-helicases10,21 and is located in the N-terminal half of
the proteins (Fig. 1B). In addition, both proteins contain a
HAND, SANT and SLIDE domain in the C terminus,22 which
regulate the activity and specificity of the ATPase domain
(Fig. 1B).23 In line with this, the remodeling activity of Drosoph-
ila and yeast ISWI complexes is reduced when either the SANT
domain or the SLIDE domain is deleted.22,24 Especially the
SLIDE domain, which interacts with extranucleosomal DNA,
stimulates ATPase activity and is required to move DNA along
the nucleosome.24,25

ISWI complexes exhibit various activities, e.g. ACF and
CHRAC and yeast Isw regularly space nucleosomes, whereas
others, such as NURF, show the opposite activity.13,14,26,27 By
controlling nucleosome spacing, these complexes regulate tran-
scription, either by repression or activation, stimulate replication
through heterochromatin and generate and maintain higher
order chromatin and chromosome organization.28-30 The acces-
sory subunits in each complex most probably modulate the
ATPase’s function and activity and are important for target rec-
ognition and specificity.18,31,32

ISWI function in base excision repair
The continuous induction of a wide diversity of DNA lesions

necessitates the action of distinct DNA repair mechanisms, which
remove DNA damage depending on the type of lesion, location
in the genome and cell cycle phase in which lesions are encoun-
tered.33 The major DNA repair mechanisms that have thus far
been associated with ISWI chromatin remodeling are Base Exci-
sion Repair (BER) and Nucleotide Excision Repair (NER),

which both repair lesions that only affect one DNA strand, and
Double Strand Break (DSB) repair (Fig. 2).

BER mainly deals with non-bulky small nucleobase lesions,
such as oxidative and alkylated bases, by excising and replacing
incorrect or damaged bases.34,35 Lesion-specific DNA-glycosylase
enzymes recognize specific types of DNA damage, flip the dam-
aged base out of the double helix and cleave the N-glycosidic
bond between the substrate base and the 20-deoxyribose. Next,
AP-endonuclease cleaves the abasic site in the sugar-phosphate
backbone. The resulting single strand break is then filled in by
BER-specific DNA polymerase b and ligated by the XRCC1/
ligase III complex (short patch BER). Alternatively, PCNA-
dependent DNA polymerase d polymerizes several nucleotides
while displacing the nicked DNA strand, which is removed by
the flap-structure endonuclease FEN1, after which DNA ligase I
seals the ends (long-patch BER).

Figure 1. Mammalian ISWI family chromatin remodeling complexes.
(A) Depicted are the 7 currently known mammalian ISWI family ATP-
dependent chromatin remodeling complexes. WICH, NoRC, RSF, ACF1
and CHRAC all share the SMARCA5 ATPase subunit. NURF and CERF share
the SMARCA1 ATPase subunit. (B) Schematic representation of the
domains within SMARCA1/SMARCA5. The catalytic activity of both
SMARCA1 and SMARCA5 is defined by its ATPase domain that is split in
2 parts: DExx and HELICc. This domain, which is located in the N-terminal
half, is part of the superfamily of DEAD⁄H-helicases and is shared by
SWI2/SNF2-like ATP dependent chromatin remodelers. In addition, both
proteins contain HAND, SANT and SLIDE domains that are characteristic
for the ISWI family in their C-terminus. These domains regulate the activ-
ity of the ATPase domain and are involved in DNA binding.
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How BER functions within chromatin and the role of chro-
matin remodeling in BER is only poorly understood. In vitro,
BER efficiency is inhibited by the presence of nucleosomes and
compact chromatin, which can be overcome by ATP-dependent
chromatin remodeling.36-39 Evidence for a potential involvement
of ISWI in BER comes from an in vitro study showing that gap-
filling by DNA Polymerase b in oligonucleosome arrays is stimu-
lated by yeast ISWI complexes ISW1 and ISW2.40 This may
indicate that ATP-dependent nucleosome displacement facilitates

access of DNA polymerase b to DNA. Although it is not under-
stood whether ISWI complexes are similarly required in vivo,
SMARCA5, SMARCA1 and ACF1 are shown to be recruited to
405 nm laser induced DNA damage in human cells.41 This type
of irradiation mainly induces oxidative damage and single strand
breaks,42,43 which are lesions that are commonly repaired by
BER and a variant of BER called single-strand break repair.
These findings suggest that human ISWI complexes may assist
in vivo BER.

Double strand break repair
DSBs can be induced by specific chemicals or reactive oxygen

compounds produced by e.g. ionizing radiation or the cell’s
metabolism. In addition, processing of stalled replication on dif-
ferent types of lesions may eventually lead to the formation of
DSBs. As both DNA strands are damaged, DBSs are very hazard-
ous to the cell and can cause chromosome instability and genome
rearrangements if not repaired properly. Two main mechanisms
are employed to repair DSBs: Homologous Recombination
(HR)44 and Non-Homologous End Joining (NHEJ).45

HR only takes place in S and G2 phase of the cell cycle when
the sister chromatid is present, which is used as template to repair
DSBs (Fig. 2A), thereby providing a principally error-free repair
of these hazardous lesions. HR is initiated when the MRE11/
Rad50/NBS1 (MRN) complex binds to a DSB and together
with CtIP and EXO1 resects the broken DNA ends. The created
30overhangs are bound by the single strand binding protein RPA,
which is subsequently exchanged for RAD51 by BRCA2. The
resulting RAD51 nucleoprotein filament mediates strand

Figure 2. Mechanisms of double strand break and nucleotide excision
repair. (A) Most double strand breaks (DSBs) are repaired either via Non-
Homologous End-Joining (NHEJ) or Homologous Recombination (HR)
and their detection initiates a DNA damage signaling cascade mediated
by the PI3 kinase ATM. In NHEJ, detection of the break by Ku70/80 leads
to recruitment of downstream factors including MRN, Artemis, and DNA-
PK that process the DNA ends that are finally joined by XLF/XRCC4/LigIV.
In HR, detection of the break by MRN leads to 5’-3’ end resection,
assisted by CtIP and EXO1, which creates ssDNA coated by RPA. RPA is
replaced by RAD51, which mediates strand invasion and pairing of a
homologous DNA strand that serves as template for error-free repair.
The invading DNA end is extended by novel DNA synthesis and either
dissociates and re-anneals with its original template, or a second DNA
end invades the homologous template after which the resultant joint
structures are resolved by specific endonucleases. Finally ligation takes
place to complete repair. (B) UV-induced photolesions, monoadducts
and other bulky lesions that distort the double helix are repaired by
Nucleotide Excision Repair (NER). Lesions are either detected by the
global genome NER machinery, via the concerted action of the UV-DDB
and XPC/RAD23B complexes, or by the transcription-coupled NER
machinery, involving CSA, CSB and UVSSA/USP7 that are recruited to
DNA-damage-stalled RNA Polymerase II (RNApolII). Lesion detection
leads to recruitment of the transcription factor H (TFIIH) complex, which
unwinds DNA and verifies the presence of DNA damage. XPA binds to
the lesion in the unwound DNA and RPA covers the non-damaged
strand. The endonucleases ERCC1/XPF and XPG bind at both sites of the
lesion and excise the damaged strand. The resulting gap is filled in by
DNA synthesis and sealed by ligases.
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invasion into the homologous sister leading to strand exchange
such that the homologous sister chromatid serves as template for
novel DNA synthesis. Hereafter, the invading DNA strand disso-
ciates or the other DNA end migrates as well and the resultant
joined structures are resolved. Finally, ligation takes place to
complete repair.44 In the NHEJ pathway, which can take place
in any cell cycle, broken DNA ends are detected by the Ku70/80
heterodimer, which recruits subsequent repair factors
(Fig. 2A).45 Following detection, the free DNA ends are proc-
essed by Artemis, DNA-PK and the MRN complex and finally
joined together by the XLF/XRCC4/LigaseIV complex. NHEJ
can be more error-prone than HR, because during end-process-
ing nucleotide loss may occur prior to ligation.

DSBs further lead to an extensive signaling cascade in which
chromatin serves as an important signal amplifier. This cascade is
initiated by the binding of the MRN complex to DSBs which
recruits and activates the PI3-kinase ATM. Activated ATM phos-
phorylates a range of downstream target proteins, including his-
tone variant H2AX at residue S139 and the E3 ubiquitin ligase
BRCA1.46 H2AX phosphorylation is a key signaling event that
spreads into adjacent chromatin, thereby amplifying the signal,
and is readily visible under the microscope when stained with
specific antibodies - as discernable sub-nuclear foci referred to as
ionizing radiation induced foci.47 The signaling protein MDC1
binds to phosphorylated H2AX and recruits the E3 ubiquitin
ligases RNF8 and RNF168 that ubiquitylate H2A/H2AX, after
which a range of signaling proteins are recruited, among which
are 53BP1 and BRCA1. BRCA1 interacts with several DNA
repair proteins including CtIP and, together with 53BP1, regu-
lates whether DSBs are repaired by either NHEJ or HR.48,49

BRCA1 furthermore regulates cell cycle arrest in concert with
cell cycle checkpoint proteins that are also phosphorylated by
ATM in response to DNA damage.50 DSB repair and signaling
also involve poly(ADP-ribose) (PAR) polymerases PARP1,
PARP2 and PARP3, which are thought to PARylate both histone
and non-histone proteins to regulate the recruitment of specific
PAR-binding repair and chromatin remodeling proteins to stim-
ulate HR or NHEJ.51

ISWI chromatin remodelers in double strand break repair
Most evidence for a role of ATP-dependent chromatin

remodeling complexes in DDR comes from studies of DSB
repair.8,11 Research on DSB repair is attractive because of its sig-
nificance for cancer biology. Moreover, cellular DSB repair stud-
ies are particularly boosted by the developed technology to
induce a single break in a cell which allows the analysis of DSB
repair factor binding in intact cells.52,53 Several studies have
shown that different chromatin remodelers, including
SMARCA5 and its binding partners, function in DSB repair.
Intriguingly, however, many different activities have been
ascribed to these complexes, pointing to multiple parallel func-
tions (Fig. 3).54-57 Their interplay and the exact molecular mech-
anism, in which they actually remodel chromatin, is currently
not well understood.

Both human ISWI ATPases SMARCA5 and SMARCA1 are
rapidly recruited to DSBs and their knockdown renders cells

hypersensitive to DNA damage.54-59 SMARCA5 is recruited to
DSBs together with RNF168, in a PARP1-dependent manner,
to regulate HR and NHEJ.56 SMARCA5 binds to PARylated
RNF168 and stimulates RNF168-mediated histone ubiquityla-
tion that leads to the recruitment of BRCA1. Another study
showed that SMARCA5 recruitment is regulated by PARP3 and
the structural nuclear protein NuMA, which interacts with
SMARCA5 and is needed for efficient HR.59 Single and dual
silencing of NuMA and SMARCA5 led to similar defects in the
DSB-induced appearance of ubiquitin foci and CtIP, BRCA1
and RAD51 recruitment, suggesting that both proteins act in a
common pathway. Furthermore, SMARCA5 was found to be
recruited to DSBs depending on the E3 ubiquitin ligase
RNF20.54 RNF20 is recruited to DNA damage and ubiquitylates
residue K120 of H2B at DSBs to promote the methylation of
H3K4. As yeast Isw1 is recruited to chromatin by methylated
H3K4,60 this suggests that methylated H3K4 also facilitates the
binding of mammalian SMARCA5 at sites of DNA damage.
Depletion of RNF20 and SMARCA5 or expression of a ubiqui-
tylation-defective H2B mutant leads to impaired DNA end resec-
tion and RAD51 and BRCA1 foci formation and thus defective
HR repair. This RNF20-associated defective HR repair may
relate to the frequently observed mutations in RNF20 which are
seen in colorectal cancers.61 Finally, SMARCA5 recruitment to
DSBs was shown to depend on an interaction with the deacety-
lase SIRT6, which localizes early to DSBs to deacetylate H3K56
and is together with SMARCA5 required for efficient DSB sig-
naling and repair.58 As RNF20 recruitment and H2B K120
ubiquitylation were impaired in SIRT6 knockout cells, it was
suggested that SIRT6 acts upstream of RNF20 in DSB repair.
Intriguingly, SIRT6-deficient mice showed reduced chromatin
enrichment of SMARCA5, though only in brain and pancreas
but not in liver and heart tissue. These data point to tissue-spe-
cific differences in genomic organization involving SMARCA5,
which may not only influence tissue-specific transcription, but
also DDR.

The importance of ISWI remodeling complexes in genome
maintenance is further confirmed by the implication of addi-
tional ISWI subunits in chromatin reorganization during DSB
repair. ACF1 (ATP-utilizing Chromatin assembly and remodel-
ing Factor 1, also known as BAZ1A) is a noncatalytic subunit of
the human ISWI complexes ACF and CHRAC (Fig. 1A). It is
thought to enhance the efficiency of nucleosome sliding and to
regulate the template specificity of SMARCA5, depending on the
DNA flanking the nucleosomes.62-64 The ACF complex assists
DNA replication through heterochromatin28 and regulates tran-
scription in concert with other histone modifying enzymes and
transcriptional regulators.65 The CHRAC complex additionally
contains the histone-fold proteins CHRAC15 and CHRAC17
(Fig. 1A), which facilitate ATP-dependent nucleosome sliding by
SMARCA5 and ACF1.66 ACF1 is implicated in G2/M check-
point control in response to DSBs and replication stress57 and
functions together with CHRAC15, CHRAC17 and SMARCA5
in both HR and NHEJ.55 ACF1 is also rapidly recruited to
DSBs, where it interacts with and stimulates the binding of
NHEJ-joining KU70/80 proteins to DSBs. However, the
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interaction of ACF1 with SMARCA5 is only partially required
for ACF1 recruitment57 and SMARCA5 is dispensable for
KU70/80 recruitment.55 This may indicate that SMARCA5
recruitment follows that of ACF1. Since SMARCA5 recruitment
is regulated by SIRT6, RNF20, PARP and NuMA, it would be
interesting to test whether ACF1 binding to DSBs also depends
on these proteins and to determine whether the involvement of
ACF1 and SMARCA5 in DSB repair is part of the same process
or whether both proteins can act (partially) independent.

Another ISWI complex, WICH, consists of SMARCA5 and
the noncatalytic subunit WSTF (Williams syndrome transcrip-
tion factor, also known as BAZ1B), which is a paralog of ACF1
(Fig. 1A).67 WSTF interacts with the sliding clamp PCNA dur-
ing replication to promote an open chromatin structure together
with SMARCA5.29 WSTF is also recruited to DSBs57 and

implicated in DDR signaling by regulating phosphorylation of
H2AX.68 In unchallenged conditions, WSTF interacts with
H2AX and harbors an unexpected intrinsic kinase activity that
constitutively phosphorylates Tyr142 of H2AX, which upon
DNA damage induction is needed for the maintenance and
amplification of the canonical Ser139 phosphorylation and the
sustained recruitment of ATM and MDC1 at damaged sites.68

Remarkably, however, in response to DNA damage, Tyr142 of
H2AX is dephosphorylated by the tyrosine phosphatases EYA1
and EYA3 which is a prerequisite for the initial efficient MDC1
binding to phosphorylated Ser139 of H2AX.69,70 Because the
pro-apoptotic kinase JNK1 associates with H2AX when it is
phosphorylated on both Ser139 and Tyr142, it was therefore sug-
gested that Tyr142 phosphorylation acts as a molecular switch for
a cell to decide between repair and apoptosis.71 Thus, besides

Figure 3. ISWI chromatin remodeling
complexes in double strand break
repair. Depicted is a model that
includes the various functions of
different ISWI complexes at sites of
double strand break (DSB) repair.
DSBs activate the PI3 kinase ATM,
which phosphorylates histone variant
H2AX at S139 (indicated with S-P),
leading to the recruitment of MDC1,
RNF8 and RNF168, which mediate a
ubiquitylation signaling cascade.
RNF168 is PARylated by PARP1 and
interacts with SMARCA5. SMARCA5,
whose recruitment is also regulated
by NuMA and PARP3, stimulates
RNF168-mediated histone ubiquityla-
tion (indicated with Ub). At DSBs,
SIRT6 deacetylates H3 at K56 (indi-
cated with Ac), after which RNF20 is
recruited to ubiquitylate H2B at K120
(indicated with Ub), coinciding with
themethylation of H3 at K4 (indicated
with M) and recruitment of SMARCA5,
which interacts with SIRT6. SMARCA5
is furthermore recruited together
with ACF1, CHRAC15 and CHRAC17 as
part of the CHRAC complex and with
WSTF as part of the WICH complex.
WSTF interacts with and phosphory-
lates H2AX at Y142 (indicated with
Y-P) to maintain S139 phosphoryla-
tion (indicated with S-P). Finally, RSF
promotes the loading of histone-fold
proteins CENP-S and CENP-X at or
near DSB sites independently of
SMARCA5. The recruitment of
SMARCA5, ACF1, WSTF and RSF likely
leads to the remodeling of chromatin
that is necessary for efficient recruit-
ment of repair factors, including
BRCA1, RAD51, Ku70/80 and XRCC4,
to facilitate repair by homologous
recombination and non-homologous
end-joining.
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their molecular activity in providing access for repair proteins, on
a larger scale ISWI complexes may function in concert with other
proteins, such as signaling kinases and phosphatases, to deter-
mine cell fate in response to DNA damage.

RSF is another ISWI complex implicated in regulating cell
fate. It consists of SMARCA5 and RSF1 (Remodeling and spac-
ing factor 1, also known as HBXAP), a protein that is frequently
found to be overexpressed in many types of cancer. Also RSF
seems to be involved in genome maintenance, because RSF1
overexpression induces DNA strand breaks via an unknown
mechanism.72 If p53 is defective, as is the case for most ovarian
serous carcinomas in which RSF1 is overexpressed, DNA damage
checkpoint signaling is absent and tumor cells proliferate in the
presence of DNA strand breaks, resulting in chromosomal aber-
rations. Thus, this suggests that the expression of chromatin
remodelers must be tightly regulated to prevent genomic instabil-
ity and inadequate repair. RSF1 was also shown to actively partic-
ipate in DDR itself, although, surprisingly, independently of
SMARCA5. Upon DSB induction, RSF interacts with and is
phosphorylated by ATM.73 Furthermore, RSF1 accumulates at
DSB sites without SMARCA5 and promotes NHEJ and HR by
facilitating the loading of centromeric histone-fold proteins
CENP-S and CENP-X at damaged chromatin, which assist the
recruitment of the NHEJ factor XRCC4/LigIV74 and the inter-
strand crosslink repair proteins FANCD2 and FANCI with
which RSF also interacts.73 Furthermore, RSF1 was found to
promote HR through a distinct, but unresolved mechanism not
involving the loading of CENP-S or CENP-X.74

The current evidence suggests that distinct ISWI complexes
have multiple functions in DSB repair (Fig. 3). The significance
of these complexes for the DDR is emphasized by the notion
that HR and NHEJ are impaired when SMARCA5 or associated
subunits are depleted. It remains however to be determined
whether the association of ISWI complexes with different com-
ponents of the repair machinery, such as with H2AX, RNF20,
RNF168 and Ku70/80, are all part of the same chromatin
remodeling event or whether these represent distinct or subse-
quent steps of the repair reaction.

ISWI chromatin remodelers in nucleotide excision repair
NER removes a large variety of single-stranded helix-distort-

ing DNA lesions, including UV induced DNA damage.75,76 It
consists of 2 damage recognition subpathways (Fig. 2B): Global
genome repair (GG-NER), which detects damage throughout
the whole genome, and transcription-coupled repair (TC-NER),
which detects and repairs damage specifically in the transcribed
strand of active genes. GG-NER is initiated by the damage
detecting protein complex XPC/HR23B, which is - for certain
less bulky lesions - assisted by the UV-DDB complex. The UV-
DDB complex is particularly important for regulating chromatin
organization during GG-NER initiation, as it recruits several
ATP-dependent chromatin remodeling proteins77-79 and induces
chromatin decondensation.80 TC-NER is initiated upon stalling
of RNA Polymerase II (RNApolII) at a DNA lesion, which serves
as a signal to attract the TC-NER factors CSA, CSB and UVSSA/
USP7. Subsequent steps are similar for TC-NER and GG-NER.

First, the transcription factor IIH unwinds the DNA helix and
verifies the presence of DNA damage, after which XPA and RPA
stabilize the repair complex and properly orient the structure spe-
cific endonucleases XPF/ERCC1 and XPG to excise the damaged
strand (Fig. 2B). The resulting »30 nt single stranded DNA gap
is filled by DNA synthesis and ligated.

Several studies suggest a role for ATP dependent chromatin
remodelers in the initiation of mammalian NER, including
SWI/SNF, INO80 and the TC-NER protein CSB itself, which
harbors a functional SWI2/SNF2 domain necessary for its func-
tion.11,78,79,81,82 Because NER intermediates induce a similar
DNA damage signaling response as is observed during DSB
repair, involving H2AX phosphorylation leading to MDC1
recruitment and an RNF8/RNF168 and ubiquitin-mediated sig-
naling cascade,83-85 it is to be expected that ISWI complexes
function similarly in this response when induced by NER.
Strangely, however, although SMARCA5 and RNF168 interact
after ionizing radiation, they do not interact after UV.56 Intrigu-
ingly, recent evidence from our lab shows that ISWI complexes
have yet another additional function in regulating UV damage
repair, which differs from their identified roles in DSB repair.
Within a genetic screen, isw-1, the C. elegans ortholog of
SMARCA1/SMARCA5, was identified as a novel chromatin-asso-
ciated protein involved in the UV-induced DDR.86 Follow up
experiments in mammals showed that knockdown of SMARCA5,
but also of ACF1 and WSTF, renders cells sensitive to UV irradi-
ation and defective in the TC-NER dependent re-initiation of
transcription after UV.87 SMARCA5, ACF1 and WSTF are
recruited to photolesions induced by 266 nm UV-C laser irradia-
tion and like CSB, SMARCA5 recruitment is transcription-
dependent. Moreover, SMARCA5, ACF1 and WSTF are needed
for efficient recruitment of CSB to UV damage, suggesting that
chromatin remodeling by at least 2 distinct ISWI complexes,
ACF1/CHRAC and WICH, facilitates TC-NER (Fig. 4).

Targeting ISWI complexes to DNA damage
Despite the clear evidence that ISWI complexes function in

DDR, several questions remain, such as: 1) How do ISWI com-
plexes find sites of DNA damage and identify their target nucleo-
somes?; 2) What are the exact functional differences between the
different ISWI complexes when it comes to actual chromatin
remodeling in specific cases?; 3) What determines the choice of
chromatin remodeling complex to be used?; 4) What are the inter-
actions of the different complexes in vivo? It appears that ISWI
complexes localize in a different manner to DSBs, repaired by HR
and NHEJ, than to UV-C induced photolesions, repaired by NER.
The rapid recruitment to DSBs involves an interaction with
RNF168 and depends on PARP activity but not on transcrip-
tion.54,56 In contrast, SMARCA5 does not interact with RNF168
after UV and its recruitment to 266 nm induced UV-C damage is
independent of PARP but dependent on active transcription.56,87

Furthermore, the SLIDE but not the ATPase domain of
SMARCA5 is sufficient for DSB recruitment,55 whereas in contrast
both domains of SMARCA5 are required for recruitment to UV-C
damage.87 Finally, however, recruitment to DSBs and UV-C dam-
age may both depend on H3methylation.54,87
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ISWI chromatin remodelers were proposed to continuously
sample nucleosomes by transient binding to chromatin until they
encounter a signal that permits them to bind longer and with
higher affinity to allow remodeling.88 Particularly, specific chro-
matin modifications or targeting molecules may represent such a
cue to target and activate ISWI complexes. Indeed, SMARCA5
activity is stimulated by unacetylated histone H4 tails and specifi-
cally inhibited by H4K16 acetylation.89-92 Furthermore, H3K4
methylation was shown in yeast to recruit Isw1 during transcrip-
tion.60 In addition, binding and orientation of yeast SMARCA5
orthologs depends on the presence of a specific length of extranu-
cleosomal DNA, involving an interaction with the SLIDE
domain (Fig. 1B).25,93-96 Thus, multiple cues involving different
histone modifications and DNA configurations may act synergis-
tically in determining binding site selectivity and initiation of
remodeling activity.

The relatively high concentration of SMARCA5 and its
dynamic sampling of chromatin, as observed in live cell imaging
experiments, was suggested to ensure efficient and fast loading of
SMARCA5 onto its targets, including DNA damaged chroma-
tin.41,88 This sampling model also provides a kinetic framework
for the swift localization of ISWI complexes to UV-C damaged
DNA, which represent sites where RNApolII is stalled (Fig. 4).
SMARCA5 recruitment to UV-C damage is attenuated when
specific cues cannot be detected, i.e. following treatment with
chemical inhibitors of histone deacetylation or methylation and
when the SLIDE domain that interacts with extranucleosomal
DNA is deleted.87 Because recruitment to UV-C damage is also
dependent on transcription, these specific histone mark cues that
recruit SMARCA5 may be induced as a consequence of lesion-
stalled RNApolII. A similar selection mechanism involving his-
tone modifications could also be envisioned for DSB repair, as
H3K4 methylation and H3K56 deacetylation coincide with
SMARCA5 enrichment at DSBs.54,58 Additionally, these recruit-
ment cues could be formed by specific protein interactions, such
as with SIRT6, PARylated RNF168 and NuMA. It is also likely
that accessory subunits such as ACF1 participate in site selection,
as it was shown that a small ACF1 interaction motif in
SMARCA5 is necessary for its localization to DSBs.55

The recruitment of SMARCA5 to UV-C damage, but
not to DSBs, depends on ATP hydrolysis.55,87 SMARCA5
was proposed to use the energy of ATP to associate to substrate
nucleosomes, as part of a kinetic proofreading mechanism.97,98

In this model, ISWI complexes act as dimers, containing 2
ATPases99 in which the first ATP-hydrolysis is used to become
committed to a nucleosomeal target, after sampling for cues,
which is followed by a second ATP-hydrolysis event that is used
for DNA-nucleosome translocation (remodeling). This model is
supported by the observation that ATP hydrolysis promotes a
more stable and extensive binding of yeast ISW1a and ISW2 to
template nucleosomes, before actual translocation takes place.100

Thus, ATPase dependent recruitment to UV-C damage may
imply that SMARCA5 employs both a sampling as well as a
proofreading mechanism to identify and subsequently associate
with substrate nucleosomes near or containing UV-damaged
DNA.

Chromatin remodeling activity of ISWI complexes at sites of
DNA damage

Following target identification, several observations suggest
that SMARCA5, as expected, indeed remodels nucleosomes to
promote an open chromatin environment to stimulate repair.
The requirement of RNF20, SIRT6 and SMARCA5 in HR can
be bypassed by forced chemical chromatin relaxation and DNA
near a DSB is less accessible to nuclease digestion if SIRT6 is
knocked down.54,58 Furthermore, ATPase activity of SMARCA5
is necessary for both BRCA1 accumulation56 and its stimulation
of NHEJ.55 Both at DSBs and at UV-C lesions, SMARCA5 has
been observed to re-localize to the periphery of a DNA damaged
area upon initial recruitment which may represent the remodel-
ing of chromatin. In case of DSBs, this re-localization depends
on PARP1 activity and involves chromatin expansion and spread-
ing of SMARCA5 and downstream DSB factors throughout

Figure 4. ISWI chromatin remodeling during NER. Depicted is a hypo-
thetical model of how ISWI complexes function in transcription-coupled
nucleotide excision repair. ISWI complexes, including ACF (SMARCA5
and ACF1) and WICH (SMARCA5 and WSTF), continuously sample DNA
and only associate with chromatin when encountering specific signals.
Such signals could be dependent on RNA polymerase II (RNApolII) arrest
at DNA damage and could involve histone deacetylation (acetylation is
indicated with Ac) and methylation (indicated with M). DNA damage
arrested RNApolII binds with more affinity to the essential repair protein
CSB and is itself reverse translocated, likely to make the lesion accessible
for repair. SMARCA5 is necessary for efficient loading of CSB at sites of
UV-induced transcriptional arrest, suggesting that chromatin remodeling
facilitates access to DNA. Reverse translocation of RNApolII probably also
requires chromatin remodeling.
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damaged chromatin.56 Although PARP1 also stimulates chroma-
tin remodeling and the re-localization of histones during GG-
NER initiation,77,80 a similar chromatin expansion is not
observed at sites of laser-induced UV-C damage101 and
SMARCA5 spreading to the periphery of these sites also does not
depend on PARP activity.87 This suggests that chromatin remod-
eling activities of ISWI complexes at sites of DSBs and UV
lesions are different, but it is not known which substrates define
these differences. Dedicated research is thus required to disclose
the molecular mechanisms of nucleosome and/or histone dis-
placement by ISWI complexes at different DNA lesions. Further-
more, understanding how ISWI complexes localize to DNA
damage may prove to be very helpful to uncover how exactly
chromatin remodeling complexes identify their target nucleo-
somes in vivo.

Concluding remarks
In summary, it appears that distinct ISWI complexes carry out

a variety of different functions in the mammalian DDR and have
multiple different ways of accommodating chromatin structure
to facilitate efficient DNA repair and signaling. Importantly,
chromatin organization involving SMARCA5 complexes may be
an important determinant for cancer development and treatment.
SMARCA5 expression is regulated by the miR-99 family of
microRNAs, consisting of miR-99a and miR-100, which is
induced upon DNA damage induction102 but shows reduced
expression in more advanced cancers.103 Differences in radiation
sensitivity between breast tumor cell lines were attributed to the

ability of cells to express the miR-99 family in response to DNA
damage.103 Upregulated miR-99a and miR-100 expression leads
to SMARCA5 downregulation, which in turn reduces DNA
repair, making cells more sensitive to DNA damage and espe-
cially to multiple rounds of DNA damage induction such as used
in cancer therapy. Therefore, decreased expression of this
miRNA family in cancers may be a mechanism for tumor cells to
upregulate DNA repair and acquire resistance to DNA damaging
agents. Thus, SMARCA5 may be a component in cancer resis-
tance to DNA damaging agents and therefore a potential thera-
peutic target. Interestingly, inhibition of the other ISWI ATPase,
SMARCA1, selectively activates the DDR and leads to growth
inhibition and apoptosis of highly malignant tumor cells,104

implying that ISWI complexes in general may be promising tar-
gets for cancer treatment.
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