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Abstract: This paper deals with the problem regarding the optimal placement and sizing of dis-
tribution static compensators (D-STATCOMs) in radial and meshed distribution networks. These
grids consider industrial, residential, and commercial loads within a daily operation scenario. The
optimal reactive power flow compensation problem is formulated through a mixed-integer non-
linear programming (MINLP) model. The objective function is associated with the minimization
of the expected energy losses costs for a year of operation by considering the investment costs of
D-STATCOMs. To solve the MINLP model, the application of a master–slave optimization approach
is proposed, which combines the salp swarm algorithm (SSA) in the master stage and the matricial
backward/forward power flow method in the slave stage. The master stage is entrusted with defining
the optimal nodal location and sizes of the D-STATCOMs, while the slave stage deals with the power
flow solution to determine the expected annual energy losses costs for each combination of nodes
and sizes for the D-STATCOMs as provided by the SSA. To validate the effectiveness of the proposed
master–slave optimizer, the IEEE 33-bus grid was selected as a test feeder. Numerical comparisons
were made against the exact solution of the MINLP model with different solvers in the general
algebraic modeling system (GAMS) software. All the simulations of the master–slave approach were
implemented in the MATLAB programming environment (version 2021b). Numerical results showed
that the SSA can provide multiple possible solutions for the studied problem, with small variations in
the final objective function, which makes the proposed approach an efficient tool for decision-making
in distribution companies.

Keywords: distribution static compensators; salp swarm optimization algorithm; daily load curves;
annual operating costs minimization; radial and meshed distribution networks

1. Introduction

Distribution networks play a fundamental role in electric power systems, which is why
reducing their losses and minimizing investment costs are among the greatest challenges
faced by current systems [1]. When the voltage level increases, the current circulating
through the network decreases, therefore reducing the losses caused by the Joule effect.
In the particular case of distribution networks, the voltage is reduced in such a way that
the current circulating through the network is higher. This effect generates greater losses,
despite being necessary, given that reducing the voltage levels has a significant impact on
distribution networks’ design and investment costs. In the same way, these losses have
an incidence on the power factor, given that the generators are responsible for covering
the total demand (i.e., including these losses). This causes greater uncertainty in energy
planning, which increases the design difficulty of a distribution network. The above has an
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effect on the overruns that must be assumed by the network operator and, therefore, by the
users [2].

Distributed generation (DG) may be regarded as the best option for reducing power
losses. However, its initial installation costs can be very high, especially when compared to
strategies such as the reconfiguration and connection of branch capacitors [3]. The main
issue with capacitor banks is that they inject power in fixed reactive power steps, which
does not contemplate a dynamic daily active and reactive power demand scenario along
electrical distribution networks [4].

The use of power compensation techniques by means of devices that implement
power electronics has allowed for the development of strategies that consider system
dynamics in order to present increasingly efficient solutions in the search for loss reduction
[5]. In this particular case, a focus on power electronics devices was chosen, specifically
on D-STATCOMs (Distribution Static Compensators), which are connected in parallel to
the network [6]. Among the main features of these compensators, the reactive power
absorption or injection by varying the phase amplitude and angle with respect to the
connected network can be highlighted. All this, as a function of the demand behavior [7].
These devices may be located at any node of the network. Nevertheless, it is necessary to
determine their location and sizing, so that a considerable decrease in network losses may
be achieved. The implementation of D-STATCOMs has the following advantages: (i) high
reliability, (ii) low operating costs, and (iii) durability (typically between 5 and 15 years) [5].

The specialized literature presents different reports on the optimal siting and sizing
of D-STATCOMs in distribution systems. Some of these works are described below. The
authors of [8] proposed a multiobjective particle swarm optimizer that considers the
reconfiguration of the electrical network in order to locate and size D-STATCOMs while
analyzing the minimization of power losses (objective function), voltage stability, and the
loadabilty factor of distribution lines. The main aspect of the aforementioned article is
that the optimization process is only carried out under peak load conditions, which could
lead to oversizing in the D-STATCOMs.The authors of [9] present a combination between a
genetic algorithm and a mathematical programming method based on second-order cones
in order to place and size D-STATCOMs in distribution networks. The main contribution
of this work is the utilization of industrial, residential, and commercial demand curves.
The results obtained in the IEEE 33- and 69-node systems show the effectiveness of the
proposed methodology in comparison with the solution of the exact model in the GAMS
software.

The authors of [7] present a complete review of the specialized literature with regard
to the optimal placement and sizing of D-STATCOMs in distribution systems. The main
contribution of this work is the classification of the different existing methodologies for
solving the problem. Among these methodologies, the following stand out: analytical meth-
ods, neural networks-based methods, combinatorial optimization algorithms, sensitivity
algorithms, and the combination between metaheuristic methods and sensitivity indicators.
The authors of [10] present the combination of a Chu and Beasley genetic algorithm (CBGA)
and a specialized power flow algorithm for distribution networks, with the purpose of
siting and sizing D-STATCOMs in distribution networks. The main contribution of this
methodology is the possibility of working with radial and meshed distribution networks.
The numerical results of the proposed CBGA in the IEEE 33- and 69-node systems showed
greater reductions in the network’s annual operating costs in comparison with the solution
of the exact model in the GAMS software. Other methodologies presented in the specialized
literature for the optimal integration and sizing of D-STATCOMs in distribution systems
include the particle swarm optimization algorithm with a discrete-continuous coding [11],
bat-based optimization [12], methods based on exact mathematical programming from
quadratic next-integer programming models [13], and mixed-integer second-order cone
programming [5].

Table 1 summarizes the main contributions made by the literature regarding the
problem of the optimal placement and sizing of D-STATCOMs in distribution networks.
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Table 1. Summary of methodologies used in the literature for the placement and sizing of D-STATCOMs.

Solution Methodology Objective Function Ref. Year

Artificial neural networks Mitigation of voltage sags under faults [14] 2012

Immune algorithm Power losses minimization and investment
and operating costs reduction

[15] 2014

Particle swarm optimization Power losses minimization and voltage pro-
file improvement

[16] 2014

Sensitivity index Power losses minimization and voltage pro-
file improvement

[17] 2015

Discrete-continuous vortex search algorithm Investment and operating costs reduction [9] 2017

Multiobjective particle swarm optimization Power losses minimization and voltage pro-
file improvement

[8] 2019

Evolution-based bat algorithm Power losses minimization and voltage pro-
file improvement

[12] 2021

Mixed-integer second-order cone program-
ming

Power losses minimization and investment
and operating costs reduction

[5] 2022

The main characteristics of the optimization approaches in Table 1 are as follows:
(i) the most common objective function is power losses minimization; (ii) there are two
tendencies regarding the solution of the D-STATCOM optimal location and sizing problem:
the first involves metaheuristic optimization techniques, and the second one proposes
convex formulations or combines convex and combinatorial methods; and (iii) during
the last decade, the problem regarding reactive power compensation in electrical systems
continues to be a research area of interest for academia and the industry.

The main contributions of this research are listed below:

i. The optimal integration of D-STATCOMs in distribution systems by applying the SSA
through a discrete-continuous coding.

ii. The combination of the SSA and the specialized power flow algorithm for distribu-
tion networks known as the generalized backward/forward method, which allows
working with radial and meshed topologies with no modifications to its iterative
formula.

It is important to mention that the combination between the SSA and generalized
iterative sweeping constitutes a new master–slave optimization strategy that is applicable to
the placement of parallel compensation devices in radial and meshed distribution systems,
which has not been previously proposed in the specialized literature.

Note that the selection of the salp swarm algorithm (SSA) to determine the best nodal
locations for the D-STATCOMs in distribution networks was based on the following facts:
(i) the SSA is a recently developed optimization methodology with excellent numerical
performance in both nonlinear and mixed-integer optimization problems [18], which has
not previously been applied to locate and size reactive power compensators in distribution
networks; and (ii) the computational implementation of the SSA is simple and only requires
some abilities in mathematical programming. In addition, it has a few evolution rules that
simplify its numerical validation in any programming language.

The rest of this work is structured as follows. Section 2 presents the mathematical for-
mulation of the problem regarding the optimal integration of D-STATCOMs in distribution
systems by means of a mixed-integer nonlinear programming model. Section 3 describes
the solution methodology based on a master–slave optimization algorithm. In the master
stage, the SSA is implemented, which defines the nodes for placing the D-STATCOMs, as
well as their optimal size, by means of a discrete-continuous coding. In the slave stage, a
technical evaluation of the solution is carried out by solving a multi-period power flow via
the generalized backward/forward method. Section 4 presents the main characteristics of
the test system, namely the IEEE 33-node system, which includes residential, industrial,
and commercial demand scenarios. Section 5 presents the simulation results along with
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their analysis and discussion. Finally, Section 6 describes the main conclusions derived
from this research.

2. Mathematical Modeling

This section of the article presents the model for the optimal placement and sizing of
D-STATCOMs for radial and meshed distribution networks. It must be clarified that the
problem is of the MINLP type, which means that, in order to represent the notes where the
D-STATCOMs will be located, discrete variables will be employed, as well as continues
variables for their size. Moreover, these variables have a nonlinear relationship due to the
power balance equations.

2.1. Objective Function

The objective function comprises the sum of two functions: one of them represents the
operating costs due to energy losses ( f1), and the other one represents the investment costs
of the D-STATCOMs. Next, the way in which Equations (1) and (2) define each objective
function is shown:

f1 = CkWhT ∑
h∈H

∑
k∈N

∑
m∈N

YkmVkhVmh cos
(
δkh − δmh − θkm

)
∆h, (1)

f2 = T
k1

k2
∑

k∈N

(
α
(

QDS
k

)2
+ βQDS

k + γ

)
QDS

k , (2)

Equation (1) defines the annual operating costs due to power losses in the distribution
network, where, starting by the left CkWh is the average cost of energy in kilowatts per
hour; T is a constant associated with the period under study (365 days in this case); Ykm
is the magnitude of the admittance matrix that relates k nodes to m nodes with an angle
θkm; Vkh and Vmh are the voltages that relate nodes k and m in period h with voltage angles
denoted as δkh and δmh, respectively; ∆h represents the time associated with the power flow
(1 h); andH and N refer to the set of time periods and nodes in the network, respectively.
On the other hand, Equation (2) represents the objective function corresponding to the
investment costs of the D-STATCOMs, where k1 and k2 greater than zero are constant.
The first represents the annual investment entailed by the D-STATCOM and the second
refers to the device’s useful life. The parameters α, β, and γ are scalars greater than zero
that correspond to the installation costs of the D-STATCOMs with nominal power and
generation capacity QDS

k . Thus, the general objective function is proposed as defined in
Equation (3).

min Acost = f1 + f2. (3)

Note that Acost represents the expected annual cost of the distribution network, which
corresponds to the sum of the power losses and installation costs of the D-STATCOMs.

The main feature of the objective function defined in (3) and its components f1 and f2
in (1) and (2) is that both components (i.e., f1 and f2) are nonlinear, non-convex functions of
the main decision variables. The former is nonlinear and non-convex due to the presence of
products among voltages and trigonometric functions [19], and The latter is nonlinear and
non-convex with a mixed-integer structure; its non-convexity is governed by the presence
of a cubic function in its formulation [20].

Note that, due to the complexities of the objective function in Equations (1)–(3) and
the large dimensions of the solution space regarding the discrete variables, most of authors
deal with their solution by applying metaheuristic optimization methods [7], which is the
case of this research (SSA), as will be detailed later in this document.

2.2. Set of Constraints

The constraints for the problem regarding the optimal location and size of D-STATCOMs
in distribution networks are given by their maximum number and size, the voltage limits,
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and the active and reactive power balance. This set is presented below. It is important to
mention that Equations (4)–(7) are defined for ∀k ∈ N and ∀h ∈ H:

Pg
kh − Pd

kh = ∑
h∈H

∑
m∈N

YkmVkhVmh cos(δkh − δmh − θkm)∆h, (4)

Qg
kh −Qd

kh + QDS
k = ∑

h∈H
∑

m∈N
YkmVkhVmh sin(δkh − δmh − θkm)∆h, (5)

Vmin ≤ Vk,h ≤ Vmax, (6)

ZkQD
minS ≤ QDS

k ≤ ZkQD
maxS, (7)

∑
k∈N

Zk ≤ NDS
A . (8)

Equations (4) and (5) represent the active and reactive power balance for each node
and period. The most relevant aspect of Equation (5) is the term QDS

k , which represents the
reactive injection provided by the D-STATCOM in the nodes where it will be allocated. The
terms Pg

kh and Qg
kh are the active and reactive power injected by the generation connected

to node k in a period of time h. Given that this article uses a demand curve that varies over
time, it is highlighted that the terms Qd

kh and Pd
kh are the dynamical loads associated with

node k at time h. On the other hand, inequality (6) defines the maximum upper and lower
voltage limits at each node. This constraint is closely related to that defined by the relevant
authorities of the electrical sector. Equation (7) defines the size limit of a D-STATCOM. Zk
is a binary variable (i.e., it takes values of 0 or 1) that indicates the presence or not of a
D-STATCOM at node k. The last inequality is the theoretical limit of D-STATCOMs to be
installed in the distribution network, where NDS

A corresponds to the maximum number of
D-STATCOMs that will be able to be installed in the distribution network.

3. Solution Methodology

In order to solve the MINLP problem regarding the optimal placement and sizing of
D-STATCOMs in distribution networks, dividing the problem in two stages is proposed,
i.e., by means of a master–slave programming strategy [21,22]. In the master stage, the
SSA defines the nodes and locations of the D-STATCOMs, while the slaves stage, via
generalized iterative sweeping, evaluates the multi-period power flow and determines
the network’s operating costs, i.e., the costs of the energy losses. Next, each step of the
proposed optimization methodology are detailed.

3.1. Slave Stage: Generalized Backward/Forward Method

The sweeping method is a numerical method based on graph theory that uses the
incidence matrix as a means to solve the power flow problem [23]. The incidence matrix
is a representation of the relationship between the nodes and branches of the distribu-
tion system [24]. To create an incidence matrix (node-branch), the following structure is
employed:

Ai,j =


+1 If the current leaves node i
−1 If the current reaches node i
0 If the branch j is not connected to node i


To develop the problem, this matrix is divided into two submatrices representing

generation (slack node) and demand.

A =
[
As Ad

]
(9)

With the above matrices, it is possible to obtain the relationship between the voltage
drops in branches E and the voltages at the nodes, as follows:

E = AsVs + AdVd (10)
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where Vs is the voltage at the slack node, and Vd is the vector comprising the voltages at
the nodes where there is demand. This is thus formulated because the power flow problem
revolves around finding the variable Vd.

Now, Ohm’s law is applied in order to relate the branch current J to voltages E:

E = ZJ (11)

with Z being the matrix that contains all the primitive impedances of the lines.
Now the net injected currents I can be separated as follows as a function of the slack

node current Is and the current at the demand nodes Id:

I = [Is Id]
> (12)

Now, Kirchoff’s current law is applied in order to find the relationship between the net
injected currents at the system nodes I and the branch currents J, with which the following
structure is obtained in matrix form:

Is = A>s J (13)

Id = A>d J (14)

Note that, by considering Equation (14) and substituting Equations (10) and (11), a
general expression for the demanded current is obtained:

Id = A>d YAsVs + A>d YAdVd (15)

with Y being the primitive admittances matrix, i.e., Y = Z−1.
On the other hand, it is known that the relationship between the demanded currents

and the voltages has a nonlinear hyperbolic form [25], which is defined below.

Id = −diag−1(V∗d )(S
∗
d), (16)

Now, by equalizing Equations (15) and (16), a general equation is obtained which
relates the demand node voltages between each other in a nonlinear way.

Vd = −[A>d YAd]
−1
[
diag−1(V∗d )(S

∗
d) + A>d YAsVs

]
, (17)

finally, Equation (17) is adjusted in order to make it iterative and achieve that the expected
voltage value is reached with the predefined convergence error via loop programming
logic. The iterative sweeping formula is presented below.

Vt+1
d = −[A>d YAd]

−1
[
diag−1(Vt∗

d )(S∗d) + A>d YAsVs

]
, (18)

Note that the convergence error is defined as ε = 1× 10−10 and the iterative process
starts with t = 0 and V0

d = 1∠0◦, which ends if and only if max
{
||Vt+1

d | − |Vt
d ||
}
≤ ε.

3.2. Master Stage: Salp Swarm Algorithm

The master stage is entrusted with modifying the network by implementing the D-
STATCOMs. This paper suggests solving this stage of the problem by using the salp swarm
algorithm, which is explained below.

Salps are organisms that move by contraction as they pump water through their
gelatinous body. The pumped water used for moving also allows them to obtain their
food, which consists of phytoplankton filtered from water [26]. When salps look for food,
they do so in swarms, which are also called chains. These chains significantly improve
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efficiency when looking for food. This model was imitated and proposed as a combinatorial
optimization algorithm by [27] in 2017.

3.2.1. Generating the Initial Population

Equation (19) is used to generate the initial population of the salp chain Sk, where each
salp in the population is a possible solution to the problem, i.e., it defines the node and size
of each D-STATCOM available for installation in the distribution system.

Sk,j = Xmin
j + (Xmax

j − Xmin
j ), j = 1, . . . , d (19)

where sub-index k represents the salp chain k, and sub-index j represents element j in the
salp chain (variable of interest -node- or -size-), with d being the number of variables in
the problem. The values generated by Equation (19) within the solution space are defined
by Xmin and Xmax, which were mentioned in the problem’s set of constraints. This initial
population can be represented by a matrix of size nxd, where n is the number of salps as
possible solutions to the problem. Equation (20) defines the initial population employed in
the SSA.

MS =



S1,1 S1,2 · · · · · · S1,d
...

...
. . .

...
...

Sk,1 Sk,2 · · · · · · Sk,d
...

...
. . .

...
...

Sn,1 Sn,2 · · · · · · Sn,d

 =



S1
...

Sk
...

Sn

 (20)

3.2.2. Calculating the Objective Function

Each individual contained in MS (matrix row) is evaluated in the objective function
with the help of the slave stage of the algorithm’s solution. This evaluation is in turn
organized in a vector of size nx1, which is denoted as MOS. It is important to remember
that, given the problem constraints, it is guaranteed that the salps are within the solution
space, (i.e., each candidate solution Sk is checked in order to ensure that the nodes are
integers and the sizes of the D-STATCOMs are within the permitted range [28]).

MOS =



f1([S1,1, S1,2, · · · , S1,d])
...

fk([Sk,1, Sk,2, · · · , Sk,d])
...

fn([Sn,1, Sn,2, · · · , Sn,d])

 (21)

Once the entire population has been evaluated and built, the vector MOS organizes
the evaluated results from lowest to highest, as the main proposal of this article is solving a
minimization problem. Note that this organization is also applied to the initial population,
with the purpose of preserving the correspondence between the candidate solution Sk and
its objective function fk(Sk).

3.2.3. Salp Chain Movement

The proposed salp swarm algorithm employs an iterative process, i.e., with each
iteration, a new chain is generated and the salps are divided into two: the leader and the
followers [27]. The leader is the head of the chain, while the others follow it. The leader is
responsible for leading the swarm throughout the solution space [29]. The salp with the
highest impact on the network (i.e., the lowest objective function) is chosen as the leader Sl .

Sbest = S1, (22)
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with S1 being the first row of the matrix MS, which has been organized from lowest to
highest with respect to the objective function value.

The leader is updated in each iteration outside the iterative algorithm. Moreover, in
the first cycle, the leader is chosen as food (phytoplankton). This is due to the fact that
the leader is the one that finds the area with the best food, which translates to the solution
space, and it is within this same space that advancing with the chain is decided. The
phytoplankton is represented by a vector of dimension 1xd, as it stores the information of
each chain leader. Note that there will be as many leaders as variables d in the problem
under study.

Modifying the Population by Means of the Leader

Within this first strategy, the initial population is sectioned in two equal parts. The
first half is updated using the information of the leader, as expressed in Equation (23).

S(i,j) =

S(best,j) + C1

(
(Xmax

j − Xmin
j )C2 + Xmin

j

)
C3 ≤ 0.5

S(best,j) − C1

(
(Xmax

j − Xmin
j )C2 + Xmin

j

)
C3 > 0.5

 (23)

Equation (23) is made up of the actual position of the salp in the variable S(i,j) and a
set of control constants that allow the salp chain to be exclusively within the solution space.
The equation is the movement mechanism used by the first part of the salp chain, where
the position is updated in Si,j. C2 and C3 are constants with a uniform distribution within a
range of 0 to 1 which limit the movement of the chain in order to guarantee that it is in the
best problem solution space. In addition to these constants is C1, which is entrusted with
controlling the exploration and exploitation of the solution within the movement, as given
by the following equation.

C1 = 2e−4( l
L )

2

(24)

where the variables l are the program’s current iteration, and L is the maximum number of
iterations.

Modifying the Population Using NEWTON’s Movement Laws

For this part of the algorithm, the chain moves using Newton’s third law, which is
represented via the following equation:

Si,j =
(Si,j − Si−1,j)

2
(25)

This movement mechanism involves the salps sharing information with each other
in order to move through the solution space and generate new potential solutions to the
nonlinear programming problem. However, with this movement, it must be verified that
the variable limits are still fulfilled. If not, the necessary corrections for the new possible
candidate solution.

Remark 1. Note that the SSA approach evolves through the solution space by using the evolution
rules proposed in [27], which were designed for continuous optimization problems. However, this
research applied the same rules, and, after each iteration, the component of the coding regarding the
nodes where the D-STATCOMs must be placed is rounded as recommended in [30] for optimization
problems with discrete variables.
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3.3. Summary of the Proposed Solution Methodology

With the purpose of illustrating the application of the SSA to general optimization
problems, the Algorithm 1 is employed.

Algorithm 1: General application of the salp swarm algorithm to optimization
problems.

1 Define the distribution system under study Define the size n of the initial
population;

2 Define the maximum number of iterations L;
3 Generate the salp initial population MS;
4 Make l = 0; for l = 1 : L do
5 Evaluate the initial population by means of the slave stage;
6 Organize the population MS;
7 Select the leader in the population Sbest;
8 Select the constant C1;
9 for i = 1 : n

2 do
10 Define the values of the constants C2 and C3;
11 for j = 1 : d do
12 if C3 ≤ 0.5 then
13 S(i,j) = S(i,j) + C1

(
(Xmax

j − Xmin
j )C2 + Xmin

j

)
;

14 else
15 S(i,j) = S(i,j) − C1

(
(Xmax

j − Xmin
j )C2 + Xmin

j

)
;

16 Check the feasibility of each individual;

17 for k = n
2 + 1 : n do

18 for j = 1 : d do

19 Si,j =
(Si,j−Si−1,j)

2 ;

20 Check the feasibility of each individual;

21 Report the best solution Sbest

Additionally, in order to clarify the application of the SSA approach to locate and size
D-STATCOMs in radial and meshed distribution networks, the flow chart of the proposed
methodology is presented in Figure 1.
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Usa este diagrama de flujo básico para:
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- Analizar y mejorar tu proceso.
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de diagramas de flujo de 
Lucidchart.

Para personalizar esta plantilla: 
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Consejo pro: Activa mosaico automático 
(en la pestaña de configuración de 
página      a la derecha del lienzo) para 
permitir que el lienzo se ajuste 
automáticamente.

 Diagrama de flujo
Andres Mora  |  September 24, 2022

Define the  
maximun number 
of iterations L and 
Error Stop criteria

Evaluate initial 
population and 

solve  power flow 
trough  the slave 

phase 

Generate the 
salp initial 
population 

Select the leader 
in the population 

Sbest

Move salps 
population 

following to the 
leader  until max 
number of salps

Leader i s 
matched to 

phytoplankton

Evaluate  
population and 

solve  power flow 
trough  the slave 

phase 

phytoplankton is 
matched to new 

leader

phytoplankton is 
the same

Error between Leader in 
iteration L  and Leader in 

iteration L-1 < default error

YES

NO

YES

Stop criteria 

Figure 1. Flow diagram of the proposed SSA applied to the optimal location and sizing D-STATCOMs
in distribution networks (See Section 3.1).

4. Test System

To evaluate the effectiveness of the proposed solution methodology for placing and
sizing D-STATCOMs in medium-voltage distribution systems, the IEEE 33-node system is
employed. The electrical configuration of this system is presented in Figure 2.
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Figure 2. Electrical configuration of the IEEE 33-node system.

As for the parametric information of the network, the peak consumption data at each
demand node are presented in Table 2.

Table 2. Impedance and demand data for the IEEE 33-node system.

Node i Node j Rij (Ω) Xij (Ω) Pj (kW) Qi (kvar)

1 2 0.0922 0.04770 100 60
2 3 0.4930 0.25110 90 40
3 4 0.3660 0.18640 120 80
4 5 0.3811 0.19410 60 30
5 6 0.8190 0.70700 60 20
6 7 0.1872 0.61880 200 100
7 8 17.114 123.510 200 100
8 9 10.300 0.74000 60 20
9 10 10.400 0.74000 60 20
10 11 0.1966 0.06500 45 30
11 12 0.3744 0.12380 60 35
12 13 14.680 115.500 60 35
13 14 0.5416 0.71290 120 80
14 15 0.5910 0.52600 60 10
15 16 0.7463 0.54500 60 20
16 17 12.860 172.100 60 20
17 18 0.7320 0.57400 90 40
2 19 0.1640 0.15650 90 40
19 20 1.5042 1.35540 90 40
20 21 0.4095 0.47840 90 40
21 22 0.7089 0.93730 90 40
3 23 0.4512 0.30830 90 50
23 24 0.8980 0.70910 420 200
24 25 0.8960 0.70110 420 200
6 26 0.2030 0.10340 60 25
26 27 0.2842 0.14470 60 25
27 28 10.590 0.93370 60 20
28 29 0.8042 0.70060 120 70
29 30 0.5075 0.25850 200 600
30 31 0.9744 0.96300 150 70
31 32 0.3105 0.36190 210 100
32 33 0.3410 0.53020 60 40
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Since this project is focused on selecting reactive compensators for radial and meshed
distribution systems with varying demand according to the type of consumers across the
distribution network, in order to evaluate these operating conditions, the demand data are
considered according to that reported in [10], as shown in Table 3.

Table 3. Load consumption profiles per user type: residential (Res.), industrial (Ind.), and commercial
(Com.).

Hour Ind. (pu) Res. (pu) Com. (pu)

1 0.56 0.69 0.2
2 0.54 0.65 0.19
3 0.52 0.62 0.18
4 0.5 0.56 0.18
5 0.55 0.58 0.2
6 0.58 0.61 0.22
7 0.68 0.64 0.25
8 0.8 0.76 0.4
9 0.9 0.9 0.65
10 0.98 0.95 0.86
11 1 0.98 0.9
12 0.94 1 0.92
13 0.95 0.99 0.89
14 0.96 0.99 0.92
15 0.9 1 0.94
16 0.83 0.96 0.96
17 0.78 0.96 1
18 0.72 0.94 0.88
19 0.71 0.93 0.76
20 0.7 0.92 0.73
21 0.69 0.91 0.65
22 0.67 0.88 0.5
23 0.65 0.84 0.28
24 0.6 0.72 0.22

Note that the selection of these power consumption profiles was based on the typical
load variation in a distribution circuit in the metropolitan area of Bogotá, Colombia. These
values were estimated after multiple measurements taken during work days in a distri-
bution substation operated with 11.4 kV. No geographical information is provided due to
confidentiality commitments made with the energy distribution company.

5. Results and Discussion

To validate the proposed solution methodology, the solution of the optimization model
for placing and sizing D-STATCOM in electrical distribution systems by using the AESDC
was implemented in MATLAB’s R2021b version on a computer with an Intel Core i7-10750H
@2.6 GHz and 16.0 GB of DDR4 RAM at 2300 MHz running the 64-bits version of Microsoft
Windows 10 Home.

5.1. Radial Configuration Results

To verify the efficiency of the proposed solution methodology, 20 evaluations were
performed for the radial configuration. The best result obtained had a cost of 108,249.36.
Furthermore, this solution had a repeatability higher than 50% of the total evaluations.
The best solution found for this test system corresponds to nodes 13, 25, and 30, with
D-STATCOMs sizes of 258.51, 105.47, and 538.02 kvar, respectively. Note that, in this
simulation, 20 individuals and 1000 iterations were set to evaluate the performance of the
SSA.

The best five solutions reached by the methodology proposed for the IEEE 33-node
system with a radial topology are presented in Table 4. The criteria used to select the five
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best solutions is the lowest operating cost using SSA without considering the execution
time.

Table 4. Best five solutions found by the proposed solution methodology for the radial operation
case.

Sol. Nodes Sizes (Mvar) Annual Costs
(USD/year)

Time
(min)

1
[
30 25 13

] [
0.52801 0.10547 0.25851

]
108,249.36 2.3753

2
[
14 25 30

] [
0.21204 0.11348 0.60418

]
108,368.92 2.1772

3
[
30 25 13

] [
0.54889 0.13481 0.27254

]
108,371.63 2.3908

4
[
14 30 25

] [
0.24129 0.60751 0.07779

]
108,422.55 2.1387

5
[
14 10 30

] [
0.18037 0.08217 0.60597

]
108,428.91 2.4317

Note that the fifth result in Table 4 corresponds to a value of 108,428.91 dollars per
year and defines the D-STATCOM locations at nodes 14, 10, and 30, with sizes of 180.37,
82.17, and 605.97 kvar, respectively. In this way, it can be stated that, for both the best and
the worst solution, there is an optimal location at node 30. Furthermore, the difference
between the two is 179.55 dollars, which means an approximate error of 0.166%. Even
though this is a low error, it can be said that the gap between the two demonstrates that the
solution space is large, despite the fact that they converge to a similar result.

The processing times for each algorithm evaluation regarding the best and worst result
are 2.4317 and 2.0876 min, respectively. Which is an adequate computational effort due to
the complexity of the studied problem. It is also important to mention that the nodes at
which the D-STATCOMs are optimally placed are numbers 30 (commercial), 25 (industrial),
and 13 (industrial).

5.2. Meshed Configuration Results

As with the radial topology, a population of 20 individuals (salps) was used to test
the developed algorithm, as well as 20 consecutive evaluations of the whole methodology,
considering 1000 iterations per evaluation. Table 5 summarizes the best five solutions
obtained for the meshed IEEE 33-node system.

Table 5. Best five solutions found by the proposed solution methodology for the meshed operation
case.

Sol. Nodes Sizes (Mvar) Annual Costs
(USD/year) Time (min)

1
[
32 30 14

] [
0.2023 0.3944 0.1462

]
77,870.17 1.9360

2
[
14 32 30

] [
0.1394 0.2130 0.4002

]
77,872.48 1.9130

3
[
14 32 30

] [
0.1902 0.1572 0.4327

]
77,890.14 1.9250

4
[
14 33 30

] [
0.1011 0.1737 0.5155

]
77,894.51 1.9311

5
[
30 14 32

] [
0.5056 0.1762 0.0982

]
77,896.67 1.9166

In the Table above, it is highlighted that the best result among the iteration entails
operating costs of 77,870.17 dollars per year with D-STATCOMs located at nodes 32, 30,
and 14, with powers of 202.30, 394.40, and 146.20 kvar, respectively. Note that the optimal
solution for this algorithm was found 25% of the times that the entire methodology was
evaluated. Moreover, the worst result entails 77,896.67 dollars per year and positions
30, 14, and 32, with sizes of 505.60, 176.20, and 98.20 kvar, respectively (see solution no.
5 in Table 5). The difference between the best and worst result is 26.50 dollars. Note
that this difference is very small in comparison with the objective function values, which
demonstrates that the proposed methodology can find very high-quality solutions in each
evaluation.
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Note that the processing times for each algorithm evaluation regarding the best and
worst result are 1.9360 and 1.9392 min, respectively, i.e., the algorithm has a tendency
towards finding the space and solution of the problem in similar periods of time.

The next section only compares the proposed algorithm within the meshed configura-
tions, given that, in the specialized literature, the use of industrial, commercial, and residential
curves in the studied problem has not yet been presented for radial configurations.

5.3. Comparative Analysis: Meshed Configuration

For the particular case of the meshed network, the baseline case presented in [10]
was employed, as well as the XPRESS, SBB, DICOPT, and LINDO optimization algorithms
available in the General Algebraic Modeling System software. The percentage differences
for the aforementioned algorithms, in comparison with the proposed solution methodology,
are favorable by 11.57, 2.13, and 1.90%, respectively. Table 6 shows the figures associated
with the percentages describing the differences between the implemented solutions.

Table 6. Best results obtained for the baseline case; the XPRESS, SBB, DICOPT, and LINDO optimizers;
and the proposed methodology.

Case Location (Nodes) and Sizing (Mvar) Cost (USD$/Year)

Baseline case — 86,882.81
XPRESS [13 (0.2000), 16 (0.0453), 32 (0.3923)] 79,535.02

SBB, DICOPT, and LINDO [13 (0.0960), 16 (0.0531), 32 (0.4480)] 79,350.36

Proposed algorithm [32 (0.2023), 30 (0.3944), 14 (0.1462)] 77,870.17

Finally, it is important to mention that the number of salps in the population was set
as 20 in the radial and meshed configuration cases because of the compromise between
the total processing time and the quality of the optimal solutions reached. This number
of individuals was reached after constructing a meshed grid with sizes of populations
between 5 and 30, evaluating the total processing time and the variability of the final
solution after 100 consecutive iterations per population size.

6. Conclusions and Future Works

This paper studied the problem regarding the optimal placement and sizing of D-
STATCOMs for electrical distribution networks with radial and meshed configurations.
The optimization problem was formulated using an MINLP model, where the binary
variables were associated with the nodes where the D-STATCOMs must be placed. The
continuous variables were related to the power flow solution, i.e., the voltages, currents,
and power variables. The objective of the MINLP model was to reduce the expected annual
energy loss costs after installing D-STATCOMs across the distribution network. The main
contribution of this research is the consideration of three different load profiles to classify the
distribution grid as a function of energy usage (residential, industrial, and commercial). To
solve the MINLP model, a master–slave optimization strategy was proposed. The master
stage was entrusted with defining the nodes where the D-STATCOMs will be located
and their corresponding sizes. In the slave stage, an efficient power flow formulation
was implemented, which allowed calculating the expected annual grid operating costs.
Numerical results in the IEEE 33-bus grid with radial and meshed configurations confirmed
the effectiveness of the proposed solution methodology in comparison with the MINLP
solvers available in the GAMS software.

An important result when comparing radial and meshed distribution topologies is that,
even if the proposed optimization methodology is independent of the grid configuration,
the expected annual operating costs are drastically affected by the grid configuration. The
final objective function value was about USD/year 108,249.36, whereas, for the meshed
topology, it was about USD/year 77,870.17, i.e., a difference of 30,379.19 dollars per year of
operation. These differences are clearly explained by the nature of the meshed topology,



Algorithms 2022, 15, 345 15 of 16

where the voltage profiles are improved and a better distribution of the load flows is
presented.

The main limitations of the proposed master–slave optimization method are its de-
pendence on the experience of the programmer with the whole algorithm, including the
selection of the algorithm parameters, in addition the fact that a statistical analysis is re-
quired to determine the average performance of the methodology regarding the objective
function values and the processing times. Another important limitation of our proposal
corresponds to its extension to power systems: even if the SSA approach can define the
location and size of the reactive power compensators, the power flow employed in this
research is only applicable to distribution networks without voltage-controlled nodes,
which is not the case of power systems, where multiple power generates control voltage
profiles in different nodes of the network. This implies the need for replacing the power
flow solver with one that can deal with multiple voltage-controlled sources.

As future work, it will be possible to conduct the following studies: (i) combining
D-STATCOMS and renewable energy resources to reduce the expected grid operating cost
for a planning horizon of 10 or 20 years; (ii) considering the combination of D-STATCOMs
and batteries in the same MINLP model and the proposed master–slave optimization
methodologies using recently developed metaheuristic optimizers such as the generalized
normal distribution optimizer and the arithmetic optimization algorithm; (iii) improving
the mathematical formulation used to represent the D-STATCOMs in order to allow for
simultaneous dynamic and steady-state analyses of the distribution network; and (iv)
implementing new metaheuristic optimizers such as the Farmland Fertility algorithm, the
African Vultures Optimization algorithm, and the Artificial Gorilla Troops algorithm to
deal with the problem studied in this research.
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