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Abstract. This paper proposes a novel approach to building regression trees and ensemble learn-

ing in survival analysis. By first extending the theory of censoring unbiased transformations, we

construct observed data estimators of full data loss functions in cases where responses can be right-

censored. This theory is used to construct two specific classes of methods for building regression

trees and regression ensembles that respectively make use of Buckley-James and doubly robust es-

timating equations for a given full data risk function. For the particular case of squared error loss,

we further show how to implement these algorithms using existing software (e.g., CART, random

forests) by making use of a related form of response imputation. Comparisons of these methods to

existing ensemble procedures for predicting survival probabilities are provided in both simulated

settings and through applications to four datasets. It is shown that these new methods either

improve upon, or remain competitive with, existing implementations of random survival forests,

conditional inference forests, and recursively imputed survival trees.
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1 Introduction

Recursive partitioning methods for regression problems provide a useful nonparametric alternative

to parametric and semiparametric methods. Methods based on the Classification and Regression

Trees (CART; Breiman et al., 1984) algorithm are the most popular recursive partitioning proce-

dures in use today. One of the most attractive features of CART is its focus on building a simple,

interpretable tree-structured prediction model. In the original formulation of this algorithm, the

resulting hierarchically structure predictor is determined by maximizing within-node homogeneity

using principles of loss minimization. However, a common criticism of CART is that the final

predictor can suffer from instability, a phenomenon that usually occurs in settings where a small

change in the loss can induce a large change in the form of the predictor (Breiman, 1996).

Bagging is a general method for variance reduction that averages several prediction models

derived from bootstrapping the original data. Bagging has been shown to work well with models

with low bias and high variance (e.g., fully grown CART trees); see Breiman (1996). Random

Forests (RF) attempts to further improve prediction accuracy (i.e., in the regression setting under

squared error loss) by de-correlating the individual trees through random feature selection at each

split-point (Breiman, 2001). The combination of bagging with random feature selection used by

the RF algorithm has proved to be a very effective tool for increasing prediction accuracy.

A survival tree (survival forest) is built when a suitably modified version of the CART (RF)

algorithm is applied to data involving an outcome that can be right-censored. For building single

trees, several variations of CART have been proposed and can be divided into two general categories:

one category focused on maximizing within-node homogeneity (e.g., Gordon and Olshen, 1985;

Davis and Anderson, 1989; LeBlanc and Crowley, 1992; Keleş and Segal, 2002; Molinaro et al.,

2004; Steingrimsson et al., 2016) and the other category focused on maximizing between-node

heterogeneity (e.g., Segal, 1988; Leblanc and Crowley, 1993). Ishwaran et al. (2008) proposed the

Random Survival Forests (RSF) algorithm, modifying the RF algorithm for survival data through

building the individual trees in the forest via maximizing the between-node log-rank statistic.

More recently, Zhu and Kosorok (2012) proposed the recursively imputed survival trees (RIST)

algorithm. Similarly to the RSF algorithm, RIST makes splitting decisions by maximizing a log-

rank test statistic; however, it differs from RSF in several important ways. In particular, in place of
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bagging, the RIST algorithm generates an ensemble of predictors by recursively imputing censored

observations; second, it makes use of extremely randomized trees, replacing RF’s search for optimal

split points with a splitting value that “is chosen fully at random” (i.e., decisions to split are made

on the basis of K randomly selected pairs of covariates and possible split points).

With the exception of Molinaro et al. (2004) and Steingrimsson et al. (2016), the afore-cited

methods for censored data all use splitting rules specifically constructed to deal with the presence of

censored outcome data. These various methods share a common feature, namely that none reduce

to a loss-based method of analysis that might ordinarily be used if censoring were absent. For

single trees, Molinaro et al. (2004) closed this gap between tree-based regression methods used for

censored and uncensored data by applying inverse probability censoring weighted (IPCW) theory

to construct an IPCW-weighted loss function that (i) reduces to the “full data” loss function that

would be used by CART in the absence of right-censored outcome data; and, (ii) is an unbiased

estimator of the desired full data risk in the presence of right-censored outcome data. Based on

similar principles, Hothorn et al. (2006a) proposed a RF-type algorithm that selects subjects into the

bootstrap sample using the non-parametric IPCW bootstrap. Steingrimsson et al. (2016) proposed

to use doubly robust survival trees, generalizing the methods of Molinaro et al. (2004) by using

augmentation to construct “doubly robust” loss functions that use more of the available information,

thereby improving the efficiency and stability of the tree building process. However, they did not

generalize these ideas to the problem of constructing an appropriate ensemble procedure.

The main focus of this paper is on developing a new class of ensemble algorithms for building

survival forests that use unpruned survival trees as the base learner. It is first shown that the

IPCW and the “doubly robust” survival tree methods considered in Molinaro et al. (2004) and Ste-

ingrimsson et al. (2016) are special cases of a new and more general class of tree building procedures

that can be derived from CART by making use of the theory of censoring unbiased transformations

(CUTs; e.g., Fan and Gijbels, 1996). The theory of CUTs, a type of mean imputation procedure,

has long been of importance to survival analysis; important examples include Buckley and James

(1979), Koul et al. (1981), Leurgans (1987), Fan and Gijbels (1994), and Rubin and van der Laan

(2007). The use of a CUT for the desired loss function (i.e., a loss function that would be used in

the absence of censoring) ensures that the resulting regression tree algorithm directly generalizes

its uncensored counterpart. On the basis of these results, we then propose a new class of ensemble
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algorithms for a right-censored outcome. The proposed methods extend traditional ensemble pro-

cedures by permitting the use of exchangeably weighted bootstrap sampling schemes (Præstgaard

and Wellner, 1993); in the case of the nonparametric bootstrap and squared error loss, the proposed

algorithm also reduces to the RF algorithm when censoring is absent. For the particular case of

squared error loss, we additionally show how to make use of existing CART and RF procedures for

uncensored outcomes to implement these new algorithms when censoring is present.

The remainder of this paper is organized as follows. Section 2.1 defines notation and data

structures. Section 2.2 extends the existing theory on CUTs in a substantial way. Section 2.3 uses

these results to construct observed (i.e., censored) data loss functions that are unbiased estimators

of the expected loss (i.e., risk) that is obtained when censoring is absent. Section 3 gives an overview

of how the results in Section 2.3 can be used to derive two new classes of methods for building

regression trees and regression ensembles with a right-censored outcome. An important feature

of these new algorithms is that each represents a direct generalization of a loss-based algorithm

that would be used if censoring were absent. Section 4 provides a detailed development of these

algorithms in the important case of squared error loss and shows, in particular, how response

imputation can be used to implement each one using existing software for CART and RF (i.e.,

for uncensored outcomes). Simulation studies and applications to several datasets are respectively

presented in Section 5 and 6. Section 7 contains a discussion and some general remarks on topics

for future research. A Supplementary Web Appendix contains proofs, additional developments and

further results.

2 Notation and Important Preliminaries

2.1 Data Structures

Let the full data available on a given subject be (Z,W ′)′, where Z = h(T ), T > 0 denotes a survival

time, W ∈ S is a bounded p-dimensional vector of covariates, and h(·) is a specified continuous,

monotone increasing function (e.g., h(u) = u or h(u) = log u) mapping R+ to R∗ ⊆ R.

Let S0(t|w) = P (T > t|W = w) denote the conditional survivor function for T given W = w;

it is assumed that T is continuous and that ϑS0 = inf{t : S0(t|w) = 0} is independent of w ∈ S.
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The observed (i.e., right-censored) data on a given subject will be denoted O = (Z̃,∆,W ′)′, where

Z̃ = h(T̃ ), T̃ = min(T,C) for a censoring time C, and ∆ = I(T ≤ C) indicates whether T or C

was observed. Let G0(t|w) = P (C > t|W = w) be the conditional survivor function for C given

W = w; it is assumed that C is conditionally independent of T given W , that C is continuous and

that ϑG0 = inf{t : G0(t|w) = 0} is independent of w ∈ S. Finally, define F = {(Zi,W ′i )′, i = 1 . . . n}

to be the full data available on an independent and identically distributed sample of data; similarly,

let O = {(Z̃i,∆i,W
′
i )
′, i = 1 . . . n} denote the corresponding observed data.

2.2 Censoring Unbiased Transformations: Review and Generalization

Let φ(r, w), (r, w) ∈ R∗×S be a known scalar function that is continuous for r ∈ R∗ except possibly

at a finite number of points; in addition, assume |φ(r, w)| <∞ whenever max{|r|, ‖w‖} <∞, and

suppose that E[φ(Z,W )|W = w] exists for each w ∈ S. Let Y = φ(Z,W ) and suppose Y ∗(O) is

a function of the observed data. Then, Y ∗(O) is said to be a censoring unbiased transformation

(CUT) for Y if E[Y ∗(O)|W = w] = E[Y |W = w] for every w ∈ S; see Fan and Gijbels (1996) and

also Rubin and van der Laan (2007).

Let G(t|w) and S(t|w) be functions on R+ × S. For every w ∈ S, we assume throughout this

section that G(0|w) = S(0|w) = 1 and that G(u|w) ≥ 0 and S(u|w) ≥ 0 are continuous, non-

increasing functions for u ≥ 0 (e.g., proper survivor functions). We will additionally have repeated

need for the integral

ΛG(t|w) = −
∫ t

0

dG(u|w)

G(u|w)
; (1)

note that ΛG(t|w) is just the cumulative hazard function corresponding to G(·|·) in the case where

G(·|·) is a proper survivor function.

The Buckley-James mapping (Buckley and James, 1979) is one of the earliest such examples of

a CUT. In the current context, we define the relevant Buckley-James transformation as

Y ∗b (O;S) = ∆φ(Z̃,W ) + (1−∆)mφ(T̃ ,W ;S) (2)

where

mφ(t, w;S) =

∫∞
t φ(h(u), w)dF (u|w)

S(t|w)
(3)
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is continuous and F (u|w) = 1− S(u|w) for any u ≥ 0. The original Buckley-James transformation

is recovered upon setting φ(h(u), w) = u. When S(·|·) is a proper survivor function and t is

such that (3) exists, we may interpret mφ(t, w;S) as being equal to ES [φ(Z,W )|T > t,W = w],

the expectation being calculated assuming S(·|·) is the conditional survivor function for T . The

transformation (2) has the desirable property of reducing to Y = φ(Z,W ) when ∆ = 1 (i.e., in the

absence of censoring). Provided (3) exists for each t ≥ 0, it is also easily proved that Y ∗b (O;S) is

a CUT when S(t|w) = S0(t|w) for all (t, w) ∈ R+ × S and that Y ∗b (O;S0) is the best predictor of

Y in the sense that it minimizes E[(Y ∗(O) − Y )2|W ] among all possible CUTs Y ∗(O) (e.g., Fan

and Gijbels, 1996). Because S0(·|·) is unknown, any plug-in estimator Ŝ(·|·) must be consistent for

S0(·|·) in order for Y ∗b (O; Ŝ) to behave as a CUT in large samples.

Motivated by the need to correctly specify S(·|·) in (2), Rubin and van der Laan (2007, Eqn.

7) proposed a “doubly robust” CUT in the case where Y = T ; we discuss the specific meaning of

this property later in this section. In this paper, we introduce the following generalization:

Y ∗d (O;G,S) =
∆φ(Z̃,W )

G(T̃ |W )
+

1−∆

G(T̃ |W )
mφ(T̃ ,W ;S)−

∫ T̃

0

mφ(u,W ;S)

G(u|W )
dΛG(u|W ), (4)

where ΛG(t|w) is given by (1). The selection φ(h(u), w) = u in (4) reproduces the doubly robust

CUT studied in Rubin and van der Laan (2007, Eqn. 7). Section 2.3 introduces an important class

of examples where φ(h(u), w) depends on both h(u) and w.

It can be seen that (i) (4) reduces to (2) if one defines G(t|w) = 1 for all (t, w) ∈ R+ × S;

and, (ii) (4) reduces to the IPCW estimate ∆φ(Z̃,W )/G(T̃ |W ) if mφ(t, w;S) = 0 for all (t, w) ∈

R+ × S. Under certain conditions, it will be shown that the transformation (4) can be considered

doubly robust in the sense that one obtains a CUT for Y = φ(Z,W ) if either S(t|w) = S0(t|w) or

G(t|w) = G0(t|w) for all (t, w) ∈ R+×S. Moreover, if both of these functions are correctly specified,

then Y ∗d (O;G0, S0) can be shown to minimize the variance among all transformations of the form

Y ∗d (O;G0, S). These results are summarized in Theorem 2.1 and proved in the Supplementary Web

Appendix (Section S.4). The transformation (4) also reduces to Y = φ(Z,W ) regardless of S(·|·)

when ∆ = 1 provided that G(t|W ) = 1 for t ≤ T̃ (i.e., with probability one); that is, when there is

no possibility of censoring on [0, T̃ ]. As written, (4) depends on the generic survivor functions G(·|·)

and S(·|·); the double robustness property implies that the estimated transformation Y ∗d (O; Ĝ, Ŝ)
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will behave as a CUT in large samples if at least one, but not necessarily both, of the plug-in

estimators Ĝ(·|·) and Ŝ(·|·) are respectively consistent for G0(·|·) and S0(·|·).

Theorem 2.1. Let S(·|·) and G(·|·) be any two functions on (t, w) ∈ R+ × S satisfying the regu-

larity conditions given in Appendix S.4. Then, the transformations Y ∗d (O;G,S0), Y ∗d (O;G0, S) and

Y ∗d (O;G0, S0) are each CUTs for Y ; furthermore, V ar(Y ∗d (O;G0, S)|W ) ≥ V ar(Y ∗d (O;G0, S0)|W ).

Theorem 2.1 shows V ar(Y ∗d (O;G0, S)|W ) ≥ V ar(Y ∗d (O;G0, S0)|W ) for any suitable proper

survivor function. One may also ask whether V ar(Y ∗d (O;G,S0)|W ) ≥ V ar(Y ∗d (O;G0, S0)|W ) holds

for all suitable choices of G(·|·). However, a general result in this direction is not available even for

the interesting case where G(·|·) = 1 (i.e., for (2)). The inability to establish such a domination

result reflects more general open questions surrounding the development of efficiency properties for

doubly robust estimators under misspecification of the missing data mechanism; see Rotnitzky and

Vansteelandt (2014, Sec. 9.6) for further discussion.

2.3 Using CUTs to Derive Unbiased Estimates of Risk with Censored Data

We remind the reader of the notation and assumptions introduced in Sections 2.1 and 2.2. Define

ψ : S → R to be a real-valued function of W , where ψ ∈ Ψ. Let L(Z,ψ(W )) denote a loss function

that depends on the full data (Z,W ); we can then define the corresponding risk, or expected loss,

as R(ψ) = E [L(Z,ψ(W ))] . The ψ ∈ Ψ that minimizes this risk function, say ψ0, defines a target

parameter of interest that is ideally uniquely specified. For example, given the squared error (i.e.,

L2) loss function L(Z,ψ(W )) = (Z − ψ(W ))2 , denoted hereafter by L2(Z,ψ(W )), the associated

risk is R(ψ) = E[(Z − ψ(W ))2] and is minimized at the target parameter ψ0(W ) = E[Z|W ]. Thus,

for example, selecting h(s) = log s yields Z = log T and leads to a full data loss function with

corresponding risk minimized at ψ0(W ) = E[log T |W ]. Alternatively, for a given t > 0, selecting

h(s) = I(s > t) yields Z = I(T > t) and leads to a full data loss function with corresponding risk

minimized at ψ0t(W ) = S0(t|W ). This latter formulation is directly related to the so-called Brier

score (cf., Brier, 1950).

In the case where Z can be right-censored, one cannot simply replace Z by Z̃ in L(Z̃,W ); for

example, E[L(Z̃,W )] 6= R(ψ) in general. However, as shown in Molinaro et al. (2004), it is still

possible to construct an observed data loss function that has the same risk R(ψ). Specifically,
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assuming R(ψ) exists and that P (G(T |W ) ≥ ε) = 1 for some ε > 0, the inverse probability of

censoring weighted (IPCW) loss function

Lipcw(O,ψ;G) =
∆L(Z̃, ψ(W ))

G(T̃ |W )
=

∆L(Z,ψ(W ))

G(T |W )

satisfies E[Lipcw(O,ψ;G0)] = E[L(Z,ψ(W ))] = R(ψ). That is, Lipcw(O,ψ;G0) is an unbiased

estimator of the desired risk R(ψ) when G(t|w) = G0(t|w) for all (t, w) ∈ R+ × S. In fact,

given any ψ(·), E[Lipcw(O,ψ;G0)|W ] = E[L(Z,ψ(W ))|W ] under the same regularity conditions.

Consequently, Lipcw(O,ψ;G0) is a CUT for φ(Z,W ) = L(Z,ψ(W )); see Section 2.2.

By applying the theory for augmented estimators in missing data problems as developed in

Tsiatis (2007, Ch. 9 & 10), Steingrimsson et al. (2016) derived a doubly robust estimator for R(ψ).

Specifically, the observed data estimator used in Steingrimsson et al. (2016) is given by

Ld(O,ψ;G,S) =
∆L(Z̃, ψ(W ))

G(T̃ |W )
+

1−∆

G(T̃ |W )
mL(T̃ ,W ;S)−

∫ T̃

0

mL(u,W ;S)

G(u|W )
dΛG(u|W ), (5)

where mL(r, w;S) = ES [L(h(r), ψ(w))|T > r,W = w] for any r ≥ 0 and w ∈ S and the expectation

is calculated assuming T |W = w has survivor function S(·|w). Under certain regularity conditions

(e.g., boundedness), the double robustness property stems from the fact that the marginal expec-

tation of (5) is R(ψ) if either G(·|·) = G0(·|·) or S(·|·) = S0(·|·). This estimator for R(ψ), hereafter

referred to as the doubly robust loss function, is also easily seen to be a CUT for L(Z,ψ(W ))

that is of the form (4). Specifically, for a fixed ψ(·), (5) is obtained directly from (4) upon setting

φ(Z,W ) = L(Z,ψ(W )), where mL(·, w;S) is defined as in (3) and depends on ψ(·). Under regular-

ity conditions that permit the application of Theorem 2.1, the observed data estimator (5) satisfies

E[Ld(O,ψ;G0, S0)|W ] = E[Ld(O,ψ;G0, S)|W ] = E[Ld(O,ψ;G,S0)|W ] = E[L(Z,ψ(W ))|W ]. Fol-

lowing Section 2.2, the observed data loss function

Lb(O,ψ;S) = ∆L(Z̃, ψ(W )) + (1−∆)mL(T̃ ,W ;S) (6)

is obtained as a special case of (5) upon setting G(t|w) = 1 for all (t, w) ∈ R+ × S. This observed

data estimator, hereafter referred to as the Buckley-James loss function, is a CUT of the form (2)
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for L(Z,ψ(W )) when S(t|w) = S0(t|w) for all (t, w) ∈ R+ × S.

By Theorem 2.1, for any fixed ψ(·) and under sufficient regularity conditions, Ld(O,ψ;G0, S0)

has a smaller conditional variance for estimating R(ψ) in comparison to Lipcw(O,ψ;G0). However,

it is not possible to determine in general whether the conditional variance of Lb(O,ψ;S0) exceeds

that of Ld(O,ψ;G0, S0). Estimators derived under these various loss functions can be expected to

exhibit different efficiencies. It is further expected that estimators derived under Ld(O,ψ;G0, S0)

will be more efficient than those derived under Lipcw(O,ψ;G0). However, it is in general difficult

to claim that using one of these loss functions will always lead to better estimators than another,

particularly when the unknown functions G0(·|·) and/or S0(·|·) are replaced by suitable estimators.

3 Censoring Unbiased Regression Trees and Ensembles

Regression procedures typically rely on the specification of a loss function that quantifies perfor-

mance. This includes, but is not limited to, algorithms like CART and RF, where the loss function

plays a key role in all aspects of the model fitting process. The use of a loss function implies focus-

ing on a prediction model that minimizes a corresponding measure of risk. Below, we show how

the developments of Sections 2.2 and 2.3 can be used to devise new regression tree and ensemble

methods for right-censored outcomes.

3.1 Regression Tree Algorithms for General Loss Functions

The basic CART algorithm relies on three key steps: (i) Use reduction in loss to split the covariate

space until some predetermined criteria are met; (ii) Use the training error plus a penalty propor-

tional to the number of terminal nodes of the tree to create a sequence of candidate trees; (iii)

Use cross-validation to select the “best” model from the sequence of candidate trees. Each of these

steps relies on the loss function specified in step (i), which in turn defines the relevant risk function

and thus the parameter of interest. The CART algorithm is generic in this regard and does not rely

on any specific choice of loss function. However, with a continuous outcome Z, the default choice

of loss function is almost always L2(Z,ψ(W )), with ψ(W ) being a piecewise constant prediction

function on S that CART estimates using a recursive partitioning procedure.

A direct extension of CART to the case where Z can be right-censored is obtained by replac-
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ing the uncomputable full data loss L(Z,ψ(W )) with a reasonable observed data estimator for

R(ψ) = E[L(Z,ψ(W ))]. For example, as suggested in Molinaro et al. (2004) and for a suitable esti-

mator Ĝ(·|·) of G0(·|·), one can replace the loss function L(Z,ψ(W )) with Lipcw(O,ψ; Ĝ) throughout

the CART algorithm; without further modification, this leads to a new method for building regres-

sion trees with right-censored outcomes. Following this same idea and using suitable estimators

Ĝ(·|·) and Ŝ(·|·) for both G0(·|·) and S0(·|·), Steingrimsson et al. (2016) showed how the CART

algorithm can be modified to use Ld(O,ψ; Ĝ, Ŝ) in place of L(Z,ψ(W )) to build “doubly robust”

regression trees in this same setting. Considering the developments in Section 2.3, it can be seen

that both of these procedures are derived by replacing the unobservable full data loss function with

a corresponding CUT. Although not specifically considered in the literature to date, the Buckley-

James CUT Lb(O,ψ; Ŝ) could also be used in place of either Lipcw(O,ψ; Ĝ) or Ld(O,ψ; Ĝ, Ŝ). Each

choice generates a new survival tree algorithm. We will use CURT to describe any generalization

of the CART algorithm constructed using a CUT for a given full data loss L(Z,ψ(W )). It is rea-

sonable to expect any CUT for L(Z,ψ(W )) to reduce to L(Z,ψ(W )) in the absence of censoring;

in this case, a CURT algorithm that uses a CUT for L(Z,ψ(W )) also reduces to the corresponding

CART algorithm that uses L(Z,ψ(W )) when censoring is absent.

3.2 Regression Ensemble Algorithms for General Loss Functions

Prediction accuracy is usually improved by averaging multiple bootstrapped trees; see, for example,

Hastie et al. (2009). Breiman (1996) proposed bagging, which averages fully grown CART trees (i.e.,

generated by step (i) of the CART algorithm as described in Section 3.1) using many independent

nonparametric bootstrap samples. These boostrapped trees, though conditionally independent

of each other, are marginally correlated. Breiman (2001) proposes to reduce this correlation by

additionally making use of random feature selection; specfically, the RF algorithm modifies the tree

growing procedure so that only mtry ≤ p randomly selected covariates are considered for splitting

at any given stage. The use of bootstrapping and/or random feature selection does not modify

the basic loss-based decision making process that lies at the core of the original RF algorithm.

Therefore, at least in principle, it is easy to extend the RF algorithm to the case of a right-censored

outcome and/or more general bootstrap schemes (e.g., the exchangeably weighted bootstrap; see
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Præstgaard and Wellner, 1993) using the same type of loss-substitution principle described in

Section 3.1. An extensive search of the literature revealed no examples of RF algorithms that use

bootstrap procedures other than the nonparametric bootstrap.

Specifically, consider Ld(O,ψ;G,S) in (5) calculated using some appropriate full data loss

L(Z,ψ(W )). Let O = (O1, . . . , On) be the observed data and define ω1, . . . , ωn to be a set of

exchangeable, non-negative random variables such that E[ωi] = 1 and Var(ωi) = σ2 < ∞ for

i = 1, . . . , n,
∑n

i=1 ωi = n, and ω1, . . . , ωn are completely independent of the observed data. Define

the weighted doubly robust loss function

Ld,ω(O, ψ;G,S) =
1

n

n∑
i=1

ωiLd(Oi, ψ;G,S) (7)

for some (typically estimated) choice of G(·|·) and S(·|·). For reasons that will soon be evident,

we assume that G(·|·) and S(·|·) do not depend on ω1, . . . , ωn. The loss function (7) reduces to

the empirical observed data loss function n−1
∑n

i=1 Ld(Oi, ψ;G,S) if P (ω1 = · · · = ωn = 1) = 1;

more generally, E[Ld,ω(O, ψ;G,S)|O] = Ld(O, ψ;G,S), implying that the weighted and empirical

observed data loss functions have the same marginal expectation. Substituting (7) in for the

unobserved empirical full data loss function throughout the CART algorithm leads to a general

class of case-weighted CURT algorithms that can be used to build ensemble predictors. A class of

ensemble algorithms suitable for right-censored outcomes and general sets of bootstrap weights is

summarized in Algorithm 1. The base learners used in Algorithm 1 are modified versions of fully

grown CURTs as described in Section 3.1 that incorporate random feature selection.

Algorithm 1 Censoring Unbiased Regression Ensembles (CURE)

1: Generate M independent sets of exchangeable bootstrap weights ω1, . . . , ωn.
2: For each set of bootstrap weights, build a fully grown CURT tree using the loss function (7)

where, at each stage of splitting, mtry covariates are randomly selected for candidate splits.
At each stage, the variable and split that gives the largest reduction in the loss (7) is used.
Splitting continues until some pre-specified criterion is met.

3: For each tree in the forest, calculate an estimator at each terminal node and average over the
bootstrap samples to get the final ensemble predictor.

The use of nonparametric bootstrap sampling in Steps (i) & (ii) is equivalent to the multinomial

sampling scheme (ω1, . . . , ωn) ∼ Multinomial(n, (n−1, . . . , n−1)) and places positive weights on
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approximately 63% of the observations in any given bootstrap sample. The exchangeably weighted

bootstrap avoids generating additional ties in the data when P (∪i{ωi = 0}) = 0; each observation

then appears in every bootstrap sample with some positive weight attached to its contribution.

In the absence of censoring, (7) respectively reduces to either the weighted empirical full data

loss n−1
∑n

i=1 ωiL(Zi, ψ(Wi)) or, when P (ω1 = · · · = ωn = 1) = 1, to the unweighted empirical full

data loss n−1
∑n

i=1 L(Zi, ψ(Wi)). Thus, in the case where L(Zi, ψ(Wi)) = L2(Zi, ψ(Wi)), it follows

that Algorithm 1 reduces to Breiman’s original RF algorithm when there is no censoring and the

nonparametric bootstrap is used to construct the forest.

Typically, the choice of loss function governs the estimand of interest. For example, using

L(Zi, ψ(Wi)) = L2(Zi, ψ(Wi)), the nominal focus of estimation is E[Z|W ]. However, the structure

of Algorithm 1 is flexible enough to permit other approaches since the estimator used in Step 3

need not be the same as that induced by the loss function used to construct each tree in Step 2.

4 Implementations of CURT and CURE

Perhaps the most widely used implementation of the CART algorithm is rpart (Therneau, 2014),

a package available as part of the R software platform. The rpart package permits the use of

Lipcw(O,ψ; Ĝ) for L(Z,ψ(W )) = L2(Z,ψ(W )) through the incorporation of case weights (e.g.,

Molinaro et al., 2004). The use of case weights that are exactly zero restricts consideration of

the set of covariate values as possible split points to those available on uncensored observations

only. This can be handled differently by taking advantage of the ability to incorporate user-written

splitting and evaluation functions directly into rpart (Therneau et al., 2014). Making use of this

feature, Steingrimsson et al. (2016) proposed a special case of the CURT algorithm in Section 3.1

using Ld(O,ψ; Ĝ, Ŝ). Consistent with expectations outlined earlier, the extensive simulation study

in Steingrimsson et al. (2016) demonstrates important gains in performance when using CART

implemented with Ld(O,ψ; Ĝ, Ŝ) in place of Lipcw(O,ψ; Ĝ) for Z = log T and L(Z,ψ(W )) =

L2(Z,ψ(W )). Excellent performance is also seen in comparison with the algorithm of LeBlanc and

Crowley (1992) as currently implemented in rpart. We refer the reader to Steingrimsson et al. (2016)

for additional details on implementation, including methods used to construct the estimators Ĝ(·|·)

and Ŝ(·|·). There is currently no implementation of CART that uses the Buckley-James-type loss
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function Lb(O,ψ; Ŝ); however, the flexibility of rpart easily permits this extension.

Like CURT, the CURE algorithm (see Algorithm 1) is applicable to CUTs for general full data

loss functions. However, unlike CURT, implementation for general loss functions (e.g., Ld(O,ψ; Ĝ, Ŝ)

or Lb(O,ψ; Ĝ, Ŝ)) is not as straightforward due to limitations in the prevaling RF software packages.

For the setting where L(Z,ψ(W )) = L2(Z,ψ(W )), Section 4.1 shows how response imputation can

be used to implement CURT given some implementation of CART for squared error loss (e.g.,

rpart). These developments also provide the necessary framework for implementing the CURE

algorithm using any implementation of RF for squared error loss that employs CART trees with

random feature selection as the base learner, such as the R functions randomForest (Liaw and

Wiener, 2002) and rfsrc (Ishwaran and Kogalur, 2015); see Section 4.2. It is further shown there

how one can generalize CURE for squared error loss to more general weighted boostrap schemes

provided one has available an implementation of the RF algorithm for squared error loss that is

able to incorporate case weights into the loss function calculation.

4.1 CURT With Squared Error Loss (CURT-L2)

In this section, we show how an existing implementation of CART for L(Z,ψ(W ) = L2(Z,ψ(W ))

can be used to implement CURT using the CUT Lb(O,ψ; Ŝ) or Ld(O,ψ; Ĝ, Ŝ) for L2(Z,ψ(W )).

Because Lb(O,ψ;S) = Ld(O,ψ; 1, S) for any choice of S(·|·) (see Section 2.2) it suffices to demon-

strate this equivalence for Ld(O,ψ;G,S) with general choices of G(·|·) and S(·|·). For reasons to

be explained later, the results to be developed below do not extend to Lipcw(O,ψ;G,S), despite

the fact that it can also be recovered as a special case of Ld(O,ψ;G,S) .

Define L2,d(O,ψ;G,S) as (5) calculated using L(Z,ψ(W )) = L2(Z,ψ(W )).GivenO = (O1, . . . , On),

the corresponding empirical loss is L2,d(O, ψ;G,S) = n−1
∑n

i=1 L2,d(Oi, ψ;G,S). The CURT-L2

algorithm implemented in Steingrimsson et al. (2016) substitutes in L2,d(O, ψ;G,S) for the empir-

ical full data loss n−1
∑

i L2(Zi, ψ(Wi)) throughout the CART algorithm and is implemented using

rpart. As shown below, this same algorithm can also be implemented using an unmodified form of

the CART algorithm that employs a related CUT of the form (4) for the response variable.
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We begin by establishing an equivalent representation for L2,d(O, ψ;G,S). Let

Aki(G) =
∆iZ̃

k
i

G(T̃i|Wi)
, Bki(G,S) =

(1−∆i)mk(T̃i,Wi;S)

G(T̃i|Wi)
, Cki(G,S) =

∫ T̃i

0

mk(u,Wi;S)dΛG(u|Wi)

G(u|Wi)
,

for k = 0, 1, 2, where

mk(t, w;S) =

∫∞
t [h(u)]kdF (u|w)

S(t|w)
, k = 1, 2 (8)

and we have defined m0(t, w;S) = 1 for each (t, w) ∈ R+ × S. Writing L2(Zi, ψ(Wi)) = Z2
i −

2Ziψ(Wi) + ψ2(Wi), straightforward algebra gives

L2,d(O, ψ;G,S) =
1

n

n∑
i=1

[
Q(1)(Oi;G,S)− 2Ẑ(Oi;G,S)ψ(Wi) +K(Oi;G)ψ2(Wi)

]
. (9)

In this expression, K(Oi;G) = A0i(G) + B0i(G) − C0i(G), Ẑ(Oi;G,S) = A1i(G) + B1i(G,S) −

C1i(G,S), and Q(1)(Oi;G,S) = A2i(G)+B2i(G,S)−C2i(G,S) for every i. That K(Oi;G) does not

depend on S(·|·) follows from (i) the definition of A0i(G); and, (ii) the assumption m0(t, w;S) = 1,

which implies B0i(G,S) and C0i(G,S) are each independent of S(·|·) for every i. In fact, we have

K(Oi;G) =
∆i

G(T̃i|Wi)
+

(1−∆i)

G(T̃i|Wi)
−
∫ T̃i

0

dΛG(u|Wi)

G(u|Wi)
= 1

for every i under very weak conditions on G(·|·); this follows immediately from Theorem 4.1 below

upon making the identifications D = ∆i, t̃ = T̃i, and w = Wi.

Theorem 4.1. For each w ∈ S, assume G(0|w) = 1, G(u|w) ≥ 0, and that G(u|w) is a right-

continuous, non-increasing function for u ≥ 0 with at most a finite number of discontinuities on

any finite interval. Fix w ∈ S, let t̃ > 0 be finite, suppose G(t̃|w) > 0, and let D be any indicator

variable taking on the value 0 or 1. Then,

D

G(t̃|w)
+

(1−D)

G(t̃|w)
−
∫ t̃

0

dΛG(u|w)

G(u|w)
= 1.

The proof of Theorem 4.1 may be found in the Supplementary Web Appendix (Section S.5).

The observed data quantity Ẑ(Oi;G,S) is an example of (4). Hence, if either G(·|·) or S(·|·)
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is correctly specified, then Ẑ(Oi;G,S) is an unbiased estimate of ψ(Wi) = E[Z|W = Wi]. Define

the modified loss function L∗2,d(O,ψ;G,S) = n−1
∑n

i=1(Ẑ(Oi;G,S)−ψ(Wi))
2; then, expanding the

square in L∗2,d(O,ψ;G,S) and simplifying the resulting expression gives

L∗2,d(O, ψ;G,S) =
1

n

n∑
i=1

[
Q(2)(Oi;G,S)− 2Ẑ(Oi;G,S)ψ(Wi) + ψ2(Wi)

]
, (10)

where Q(2)(Oi, G, S) = [Ẑ(Oi;G,S)]2 for each i. As shown above, for any G(·|·) satisfying the

regularity conditions of Theorem 4.1, we have K(Oi;G) = 1 for every i in (9); as a result, (9) and

(10) are identical up to a term that does not involve ψ(·).

The arguments above show that each of L2,d(O, ψ;G,S) and L∗2,d(O, ψ;G,S) takes the form

n−1
∑

i L2(Oi, ψ;G,S,Q), where L2(Oi, ψ;G,S,Q) = ψ(Wi)
2+H(Oi;G,S)ψ(Wi)+Q(Oi;G,S) and

the losses differ only in the specification of Q(Oi;G,S). Theorem 4.2, given below and proved in the

Supplementary Web Appendix (Section S.6), demonstrates that the decisions made by the CART

algorithm on the basis of L2(Oi, ψ;G,S,Q), i = 1, . . . , n do not depend on Q(Oi;G,S), i = 1, . . . , n.

Theorem 4.2. For each i = 1, . . . , n, define the loss function L2(Oi, ψ;G,S,Q) = ψ(Wi)
2 +

H(Oi;G,S)ψ(Wi) + Q(Oi;G,S) and assume max{|H(Oi;G,S)|, |Q(Oi;G,S)|} < ∞. Then, the

CART algorithm that uses the loss function L2(O,ψ;G,S,Q) does not depend on Q(O;G,S).

In practical terms, Theorem 4.2 implies that one can implement CURT-L2 with (9) as described

in Section 4 by applying any (full data) CART algorithm for squared error loss to the imputed

dataset {Ẑ(Oi;G,S),Wi; i = 1, . . . , n}. This works because all decisions made by the algorithm

depend on either changes in loss or loss minimization, neither of which is affected by terms in the

loss function that are independent of ψ(·). It should be noted that these results also do not depend

on the specific nature of Z (i.e., except that it is univariate). In practice, use of either (9) and (10)

does require that the empirical positivity condition

G(T̃i|Wi) ≥ ε > 0 (11)

holds and that (8) exists for k = 1, 2 for every (T̃i,Wi), i = 1, . . . , n.

It was remarked at the beginning of this section that the equivalences just established do not
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extend to the case where L2,ipcw(O, ψ;G) is used in place of L2,d(O, ψ;G,S). The equivalence results

for L2,d(O, ψ;G,S) and L2,b(O, ψ;G,S) rely heavily on the fact that m0(t, w;S) = 1 for every

(t, w) and hence that K(Oi;G) = 1 for every i. These identities fail in the case of L2,ipcw(O, ψ;G)

because this loss function can only be treated as a special case of L2,d(O, ψ;G,S) in the event that

m0(t, w;S) = 0 for every (t, w). Under this assumption, the loss function (9) is still appropriate;

however, K(Oi;G) = ∆i/G(T̃i|Wi) 6= 1 for any i in general, showing that (9) and (10) are no longer

equivalent up to terms that do not depend on ψ(W ).

4.2 CURE With Squared Error Loss (CURE−L2)

Algorithm 1 of Section 3.2 implemented using nonparametric bootstrap sampling in combination

with one of L2,ipcw(O,ψ; Ĝ), L2,d(O,ψ; Ĝ, Ŝ), or L2,b(O,ψ; Ĝ, Ŝ) generalizes Breiman’s original RF

algorithm to the case of a right-censored outcome. As an example of a more general bootstrap

weighting scheme satisfying the conditions needed to use Algorithm 1, let D1, . . . , Dn be i.i.d.

positive random variables with finite variance that are completely independent of the observed

data and define the weights ωi = Di/
∑n

j=1Dj for i = 1, . . . , n. In contrast to the nonparametric

bootstrap, this i.i.d. weighted bootstrap (Præstgaard and Wellner, 1993) puts a positive weight on

every observation in every bootstrap sample. The Bayesian bootstrap (Rubin, 1981) is a special

case that is obtained when D1, . . . , Dn are standard exponential; in this case (ω1, . . . , ωn) follow a

uniform Dirichlet distribution, having the same expected value and correlation as the nonparametric

bootstrap weights but a variance that is smaller by a factor of n/(n+ 1).

In Algorithm 1, the loss function only comes into consideration in Step 2, where it governs

the process of growing the unpruned regression trees used to create the ensemble predictor. For

the case of L2,ipcw(O,ψ; Ĝ), Hothorn et al. (2006a, Sec. 3.1, p. 359) proposed a special case of

Algorithm 1 that used a multinomial bootstrap with sampling weights p̂i = wi/
∑n

i=1wi, i = 1, . . . , n

where wi = ∆i[Ĝ(T̃i|Wi)]
−1. This ensemble algorithm resamples only uncensored observations

and uses fully grown CART trees combined with random feature selection to estimate E[Z|W ].

Implementation of this algorithm is possible using rfsrc (Ishwaran and Kogalur, 2015) because

this R function accepts general multinomial sampling weights. The randomForest function (Liaw

and Wiener, 2002) could also be used here as long as the indicated multinomial bootstrap scheme
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carried out externally to this R function (i.e., randomForest is used to build each CART tree using

random feature selection, but is not directly used to build the entire forest).

Hereafter, we will use CURE−L2 to denote any implementation of Algorithm 1 that uses the

loss function L2,d(O, ψ; Ĝ, Ŝ). For L2,b(O, ψ; Ŝ) = L2,d(O, ψ; 1, Ŝ) and L2,d(O, ψ; Ĝ, Ŝ), Theorem

4.2 implies that CURE−L2 can be implemented with any multinomial bootstrap scheme (e.g.

nonparametric bootstrap) by applying any standard implementation of the RF algorithm (e.g.,

randomForest or rfsrc) to the imputed dataset {Ẑ(Oi; Ĝ, Ŝ),Wi; i = 1, . . . , n}. The use of random

feature selection in growing the CURT does not affect the applicability of Theorem 4.2 in justifying

this useful equivalence. The use of imputation as stated works because a multinomial bootstrap

allows for sampling weights that are exactly zero; hence, one only needs to modify the input dataset

corresponding to each bootstrap sample and not the process used for building the unpruned trees

that make up the forest. Implicit here is the assumption that Ĝ(·|·) and Ŝ(·|·) are held fixed and

not recalculated for each boostrap sample.

Unlike the multinomial boostrap, a general exchangeably weighted bootstrap with strictly pos-

itive bootstrap weights cannot be implemented using a simple resampling scheme. However, the

corresponding version of CURE−L2 can still be implemented given an implementation of RF for

squared error loss that allows case weights in calculating the loss function. Specifically, consider

L2,d,w(O, ψ;G,S) =
1

n

n∑
i=1

ωi

[
Q(1)(Oi;G,S)− 2Ẑ(Oi;G,S)ψ(Wi) + ψ2(Wi)

]
, (12)

the case-weighted version of (9). Because ω1, . . . , ωn are generated independently of the data and

each has unit mean, (9) and (12) have the same expectation. Now, consider the comparably

weighted version of loss function (10), that is,

L∗2,d(O, ψ;G,S) =
1

n

n∑
i=1

ωi

[
Q(2)(Oi;G,S)− 2Ẑ(Oi;G,S)ψ(Wi) + ψ2(Wi)

]
, (13)

where Q(2)(Oi, G, S) = [Ẑ(Oi;G,S)]2 for each i. It follows that (10) and (13) also have the same

expectation and, in addition, that the weighted losses (13) and (12) are equal up to terms that do not

involve ψ(·). Observe that these results hold as stated even when G(·|·) and/or S(·|·) are estimated,

provided that neither depends on ω1, . . . , ωn. An easy generalization of the arguments in Section 4.1
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now shows that CURE−L2 can be implemented using the imputed dataset {Ẑ(Oi; Ĝ, Ŝ),Wi; i =

1, . . . , n} with case weights ω1, . . . , ωn. We are not currently aware of an implementation of the

RF algorithm that accepts case weights in the manner required above. For the simulation study

of Section 5 and data analysis of Section 6, we have therefore extended the randomForest package

to permit case weights in the calculation of the loss function (and associated estimators) and we

use this modified RF algorithm to implement CURE−L2 for the iid-weighted bootstrap for several

different possible choices of the loss functions L2,b(O,ψ; Ŝ) and L2,d(O,ψ; Ĝ, Ŝ).

5 Simulations

In this section, we use simulation to compare the performance of several CURE−L2 algorithms to

several available implementations of survival forests. The following subsections describe the simu-

lation settings used (Section 5.1) and the choices made for implementing the CURE−L2 algorithm

(Sections 5.2 and 5.3). Section 5.4 summarizes the results; further results are also provided the Sup-

plementary Web Appendix, where we also revisit the simulation study conducted in Steingrimsson

et al. (2016) and compare the performance of the CURT−L2 algorithm using the Buckley-James

(see (6)) and doubly robust (see (5)) loss functions, with both being implemented using the impu-

tation approach described in Section 4.1.

5.1 Simulation Parameters

The simulation settings used here are very similar to Settings 1 − 4 in Zhu and Kosorok (2012).

The four settings considered are respectively described below:

1. Each simulated dataset is created using 300 independent observations where the covariate vec-

tor (W1, . . . ,W25) is multivariate normal with mean zero and covariance matrix with element

(i, j) equal to 0.9|i−j|. Survival times are simulated from an exponential distribution with

mean µ = e0.1
∑20
i=11Wi (i.e., a proportional hazards model) and the censoring distribution is

exponential with mean chosen to get approximately 30% censoring.

2. Each simulated dataset is created using 200 independent observations where the covariate

vector (W1, . . . ,W25) consists of 25 i.i.d. uniform random variables on the interval [0, 1]. The
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survival times follow an exponential distribution with mean µ = sin(W1π) + 2|W2 − 0.5| +

W 3
3 . Censoring is uniform on [0, 6] which results in approximately 24% censoring. Here, the

proportional hazards assumption is mildly violated.

3. Each simulated dataset is created using 300 independent observations where the covariates

(W1, . . . ,W25) are multivariate normal with mean zero and covariance matrix with element

(i, j) given by 0.75|i−j|. Survival times are gamma distributed with shape parameter

µ = 0.5 + 0.3

∣∣∣∣∣
15∑
i=11

Wi

∣∣∣∣∣
and scale parameter 2. Censoring times are uniform on [0, 15] which results in approximately

20% censoring. Here, the proportional hazards assumption is strongly violated.

4. Each simulated dataset is created using 300 independent observations where the covariates

(W1, . . . ,W25) are multivariate normal with mean zero and covariance matrix where element

(i, j) is given by 0.75|i−j|. Survival times are simulated according to a log-normal distribution

with mean

µ = 0.1

∣∣∣∣∣
5∑
i=1

Wi

∣∣∣∣∣+ 0.1

∣∣∣∣∣
25∑
i=21

Wi

∣∣∣∣∣ .
Censoring times are log-normal with mean µ+0.5 and scale parameter one, and the censoring

rate is approximately 32%. Here, the underlying censoring distribution depends on covariates.

5.2 Squared Error Loss Functions

With time-to-event data, a survival probability of the form P (T > t|W ) is most often of interest.

The output from any CURT or CURE algorithm can be post-processed to generate estimators for

P (T > t|W ) with right-censored outcomes. For example, regardless of the underlying loss function

used, one can simply use a Kaplan-Meier estimator applied to the observations falling into each

terminal node of each CURT estimate that is used to build the ensemble; see Step 3 of Algorithm

1. Other related approaches (e.g., parametric survival models) can also be used to process these

terminal nodes. Alternatively, the loss function used by the CURE−L2 algorithm can be chosen

to focus specifically on estimation of P (T > t|W ) for some given t > 0; see, for example, the Brier
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loss function of Section 2.3. In the next two subsections, we describe examples of each approach to

be used in this simulation study.

5.2.1 Ensembles from Loss Functions that Estimate E[log T |W ]

With uncensored data and a continuous outcome, the most common loss function used in connection

with both the CART and RF algorithms is the L2 loss. Taking Z = log T, the relevant full data

loss function is (log T −ψ(W ))2 and the nominal focus of estimation becomes ψ0(W ) = E[log T |W ]

whether CURT-L2 or CURE−L2 is used. Equation (9) gives the corresponding doubly robust L2

loss L2,d(O, ψ;G,S) for suitable choices of G(·|·) and S(·|·); the Buckley-James L2 loss is given

by L2,d(O, ψ; 1, S). Further details on the calculation of L2,d(O, ψ;G,S) for Z = log T may be

found in Steingrimsson et al. (2016). In the results summarized in Section 5.4, we use L2 to

denote the CURE−L2 algorithm that (i) employs L2,d(O, ψ; Ĝ, Ŝ) to construct a tree using random

feature selection for each bootstrapped dataset ; and, (ii) estimates P (T > t|W ) by using Kaplan-

Meier estimators in each terminal node (see Step 3 of Algorithm 1). Here, the nonparametric

bootstrap is used to generate the ensemble. We use L2 BJ to denotes the same procedure, but

where L2,b(O, ψ; Ŝ) replaces L2,d(O, ψ; Ĝ, Ŝ). As noted earlier in Section 4.2, it is also possible to

implement such a procedure using the IPCW loss function L2,ipcw(O, ψ; Ĝ). However, the results

of Steingrimsson et al. (2016) demonstrate that trees built using this loss function tend to exhibit

substantially larger errors than do L2,d(O, ψ; Ĝ, Ŝ); consequently, we do not consider the use of this

loss function further in connection with ensemble estimators.

5.2.2 Ensembles from Loss Functions that Estimate P (T > t|W )

Let Lt;2(T, ψt(W )) = (I(T > t)−ψt(W ))2 denote the (full data) Brier loss function; see Section 2.3.

Minimizing this squared error loss function induces a simple estimator for S0(t|W ) = P (T > t|W ).

The IPCW Brier loss function

Lt;2,ipcw(O,ψt;G) =
∆(I(T̃ > t)− ψt(W ))2

G(T̃ |W )

is also a CUT for Lt;2(T, ψt(W )) when G(·|·) = G0(·|·), and leads to one possible observed data

estimator for S0(t|W ) = P (T > t|W ) when integrated into a tree or ensemble procedure.
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Graf et al. (1999) proposed a “time-dependent” Brier loss function with right-censored outcome

data that also requires the specification (or estimation) of G0(·|·). Calculations similar to Lostritto

et al. (2012) show that this loss function is constructed from terms of the form

Lt;2,ipcw(O(t), ψt;G) =
∆(t)(I(T̃ (t) > t)− ψt(W ))2

G(T̃ (t)|W )
≡ ∆(t)(I(T̃ > t)− ψt(W ))2

G(T̃ (t)|W )
,

where O(t) = {T̃ (t),∆(t),W}, T̃ (t) = min(T, t, C) and ∆(t) = I(T̃ (t) ≤ C) and the stated equiva-

lence follows from the fact that Lt;2(T (t), ψt(W )) = Lt;2(T, ψt(W )). Similarly to Lt;2,ipcw(O,ψt;G),

straightforward calculations show that Lt;2,ipcw(O(t), ψt;G) is a CUT for Lt;2(T, ψt(W )) when

G(·|·) = G0(·|·). The value of I(T > t) can be unambiguously determined when ∆(t) = 1, which

occurs if either ∆ = 1 or if ∆ = 0 and T̃ > t. As a result, Lt;2,ipcw(O(t), ψt;G) uses more of the

available information in the data for estimating S0(t|W ) when compared to Lt;2,ipcw(O,ψt;G).

Mathematically, the equivalence Lt;2(T, ψt(W )) = Lt;2(T (t), ψt(W )) combined with the con-

struction of Lt;2,ipcw(O(t), ψ;G) suggests applying (5) to the observed data structure O(t) with

L(Z,ψ(W )) = Lt;2(T (t), ψ(W )); simplifying the resulting expression, we obtain

∆(t)(I(T > t)− ψt(W ))2

G(T̃ (t)|W )
+

(1−∆(t))mt;2(T̃ (t),W ;S)

G(T̃ (t)|W )
−
∫ T̃ (t)

0

mt;2(u,W ;S)

G(u|W )
dΛG(u|W ) (14)

where mt;2(u,w;S) = ES [(I(T > t) − ψt(W ))2|T > u,W = w] for any proper survival func-

tion S(·|·). The leading term in (14) is Lt;2,ipcw(O(t), ψt;G) and it can be shown that (14) and

Lt;2(T, ψt(W )) have equal conditional (i.e., given W ) expectations if either G(·|·) = G0(·|·) or

S(·|·) = S0(·|·); hence, it is a doubly robust CUT for Lt;2(T, ψt(W )). Similarly, the direct applica-

tion of (6) to O(t) combined with the equivalence Lt;2(T, ψt(W )) = Lt;2(T (t), ψt(W )) gives

∆(t)(I(T > t)− ψt(W ))2 + (1−∆(t))mt;2(T̃ (t),W ;S) (15)

as a CUT for Lt;2(T, ψt(W )) when S(·|·) = S0(·|·).

We respectively refer to (14) and (15) as the doubly robust and Buckley-James Brier loss

functions, denoted respectively by Lt;2,dr(O(t), ψt;G,S) and Lt;2,b(O(t), ψt;S). Because (14) and

(15) are each CUTs for the Brier loss function (i.e., squared error loss) and focus directly on
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estimating S0(t|W ), the results of Section 4.1 and Theorem 4.2 can be used to justify implementing

the corresponding CURT-L2 algorithm by applying CART with squared error loss to the imputed

dataset {Ẑ(Oi(t);G,S),Wi; i = 1, . . . , n} where Ẑ(Oi(t);G,S) = A1i(G) +B1i(G,S)−C1i(G,S) is

computed by replacing (Z̃i,∆i) with (I(T̃i > t),∆i(t)). Section 4.2 gives the corresponding recipe

for implementing CURE−L2 with either (14) or (15). In the results summarized in Section 5.4,

Brier and Brier BJ denote the CURE−L2 algorithms respectively implemented using (14) and

(15). In both cases, the terminal node estimators used to construct the ensemble predictor are

naturally induced by the choice of loss function.

5.3 Estimating S(·|·) and G(·|·)

The CURE−L2 methods L2, L2 BJ, Brier, and Brier BJ each require specifying estimators Ŝ(t|w)

and/or Ĝ(t|w) for S0(r|w) = P (T > r|W = w) and G0(r|w) = P (C > r|W = w). These required

estimators are calculated prior to running these learning algorithms and not re-calculated for each

set of bootstrap weights.

Many methods are available for estimating a conditional survivor function. Preserving the

double robustness property suggests avoidance of IPCW estimators. In building survival trees

using a special case of the CURT algorithm, Steingrimsson et al. (2016) considered estimators for

S(·|·) respectively derived from Cox regression, survival regression tree models, random survival

forests, and parametric accelerated failure time (AFT) models when computing the augmented loss

function. Although the performance of the doubly robust methods differed noticeably from IPCW,

the method for estimating S(·|·) otherwise made little difference among doubly robust methods

in the chosen performance measures. Consequently, we use m1(u,w; Ŝ) in (8) with Ŝ(t|Wi), i =

1, . . . , n estimated using the random survival forests (RSF) procedure as proposed by Ishwaran

et al. (2008) and implemented in rfsrc.

In Settings 1−3, the censoring distribution is independent of covariates. Because the dependency

of the censoring distribution on covariates can be checked empirically, the censoring distribution is

estimated using the product-limit estimator. To ensure that the estimated censoring probabilities

remain bounded away from zero, a sample-dependent truncation time ϑ̂ is set such that the propor-

tion of observed times exceeding ϑ̂ is 10%; “Method 2” truncation as described in Steingrimsson
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et al. (2016) is then used. In short, times T̃i exceeding ϑ̂ are designated as failures and Ĝ(T̃i|Wi)

and Ĝ(u|Wi) are respectively replaced by Ĝ(ϑ̂∧ T̃i|Wi) and Ĝ(ϑ̂∧ u|Wi) in calculating Ẑ(Oi; Ĝ, Ŝ)

above, but survival times are not otherwise modified in the remainder of the calculations. As shown

in Steingrimsson et al. (2016), this typically performs better than the standard approach to trun-

cation (i.e., truncating all follow-up times that exceed ϑ̂ and treating each as uncensored). The

doubly robust Brier loss of Section 5.2.2 at time t automatically induces this kind of truncation with

ϑ̂ = t; hence as long as ϑ̂ is larger than the time-point used to calculate the Brier loss, “Method 2”

truncation has no discernible effect.

In Setting 4, the censoring distribution depends on the covariates and the censoring distribution

is modeled using rfsrc to reduce the possibility of misspecification. The truncation methods

described in Steingrimsson et al. (2016) only protect against large failure times; extreme covariate

values can still lead to small censoring probabilities and hence thus large inverse probability of

censoring weights. A commonly accepted method of truncation that protects against both extreme

failure time and covariate values at the expense of introducing some bias is to truncate the weights

directly. Specifically, by truncating the estimated censoring probabilities using max(Ĝ(u|W ), 0.05),

each inverse probability of censoring weight will be no more than 20, limiting the influence of each

observation on the loss function. Because Ĝ(T̃ (t)|W ) ≥ Ĝ(T̃ |W ), this kind of truncation scheme

affects the doubly robust Brier loss less compared to the L2 loss.

5.4 Simulation Results

Settings 1−4 are used to compare the performance of the CURE−L2 algorithms L2, L2 BJ, Brier,

and Brier BJ to other implementations of survival forests. We focus on estimation of survival

probabilities of the form P (T > t|W ) for a given fixed time-point t. In this section we only focus

on CURE−L2 algorithms using the nonparametric bootstrap as it has the advantage of being easily

implemented using existing RF software with uncensored outcomes. In Supplementary Web Ap-

pendix S.1.2 we present comparisons of these algorithms in Settings 1−4 to CURE−L2 algorithms

fit using the Bayesian bootstrap. The Bayesian bootstrap CURE−L2 procedure is fit by extend-

ing the capabilities of randomForest (Liaw and Wiener, 2002) to handle arbitrary nonnegative

case weights in calculating the loss function. In general, Figures S-3-S-5 in Supplementary Web
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Appendix S.1.2 demonstrate comparable performance between the nonparametric and Bayesian

bootstraps in all settings at all quantiles for all combinations of loss functions and CUTs. One

interesting trend that does emerge is that the nonparametric bootstrap tends to perform the same

as, or slightly better than, the Bayesian bootstrap when used in connection with Brier and Brier

BJ. However, the comparative performance in the case of L2 and L2 BJ depends more on both

the setting and time point, with no similar trend that emerges.

We will compare the results of L2, L2 BJ, Brier, and Brier BJ to three currently available ensem-

ble algorithms for survivor function prediction: the default method for censored data in the party

package (Hothorn et al., 2010); the default method for censored data in the randomForestSRC pack-

age (Ishwaran and Kogalur, 2015); and, recursively imputed survival trees (RIST; Zhu and Kosorok,

2012). The default method in the party package constructs a survival ensemble where conditional

inference trees based on the two sample log-rank statistic are used in place of CART trees as the base

learner (Hothorn et al., 2006b). The default method in the randomForestSRC package implements

RSF as proposed in Ishwaran et al. (2008) and relies on the logrank statistic for splitting decisions.

The RIST code is currently available from https://sites.google.com/site/teazrq/software.

All of these algorithms require specifying several tuning parameters. The tuning parameters for

the RIST algorithm are chosen as in the example code provided by the authors with the exception

that the length of the study parameter is chosen larger than the largest survival time. This includes

using two fold recursively imputed survival trees with 50 trees in each fold and mtry = d√pe. For

all other methods mtry = d√pe and the number of trees is set to 1000. All other tuning parameters

are selected as the default in the corresponding R functions.

Each survival forest procedure predicts P (T > t|W ) on an independent test set consisting of

1000 observations simulated from the full data distribution with t respectively chosen as the 25,

50 and 75th quantile of the marginal failure time distribution. For all four simulation settings the

mean squared estimation error is calculated as 0.001×
∑1000

i=1 (Ŝ(t|Wi)−S0(t|Wi))
2, where Ŝ(t|W ) is

the prediction from the algorithm and S0(t|W ) is the true conditional survival curve. Boxplots from

1000 simulations for t equal to the median of the marginal survival distribution for the four different

simulation settings are shown in Figure 1. The corresponding plots for t equal to the 25 and 75th

quantile of the marginal survival distributions are given in Figures S-1 and S-2 in Supplementary

Web Appendix S.1. In all plots, L2, L2 BJ, Brier, and Brier BJ denote the methods described
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Figure 1: Boxplots of MSE estimated at the 50th quantile of the marginal failure time distribution
for the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE−L2 algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are
the default methods for rfsrc and cforest functions. RIST is the recursively imputed survival
trees algorithm.

previously, RSF is the default method for rfsrc, CI is the default method in the party package

(i.e., the conditional inference forest), and RIST refers to the recursively imputed survival trees.

The main results from Figure 1 are summarized below.

• Overall, the CURE−L2 algorithms L2, L2 BJ, Brier and Brier BJ perform similarly in all

simulation settings, with L2 and L2 BJ showing the best overall performance. The RIST

algorithm is also a strong performer, doing the best in Setting 1 and remaining competitive

in all others. Using currently available software, the CURE−L2 algorithms run considerably

faster when compared to RIST, even when accounting for the calculations needed to compute
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the augmentation terms needed for the Buckley-James and doubly robust loss functions.

• Settings 1 − 3 are used to illustrate the performance under different degrees of misspecifica-

tion of the proportional hazard assumption (correctly specified, mildly misspecified, and a

more severe misspecification). Figure 1 shows that as the severity of the misspecification in-

creases the relative performance of the methods not utilizing log-rank based splitting statistics

(i.e., the CURE−L2 algorithms) becomes better compared to the algorithms where splitting

decisions utilize such statistics (i.e., RSF, CI, RIST ).

The use of the L2 loss function for predicting E(log T |W ) can be viewed as making use of informa-

tion across time, whereas the Brier loss for predicting P (T > t|W ) arguably makes more limited

use of the available data. This may help to explain why the CURE−L2 algorithms tend to have

somewhat lower MSE.

6 Applications to Four Public-Use Datasets

In this section we evaluate the performance of the CURE−L2 algorithms on four datasets:

1. TRACE Study Group Data: This dataset consists of 1878 subjects that were randomly sam-

pled from 6600 patients and is included in the R package timereg. The event of interest is

death from acute myocardial infarction. Subjects that died from other causes or were alive

when they left the study were considered censored. Two observations with an undefined cen-

soring status were removed from the dataset. Information on gender, age, diabetes status, if

clinical heart pump failure (CHF) was present, if the patient had ventricular fibrillation, and

a measure of the heart pumping effect was also collected. As in Steingrimsson et al. (2016),

who analyzed the dataset using doubly robust survival trees (i.e., an example of CURT), we

focus on the subset of patients surviving past 30 days. The final dataset analyzed consists of

1689 patients with a 53.8% censoring rate.

2. Worcester Heart Attack Study Data: This dataset consists of 500 patients followed after

hospital admission for acute myocardial infarction (AMI). Data were collected during thirteen

1-year periods beginning in 1975 and extending through 2001 on all AMI patients admitted to

hospitals in the Worcester, Massachusetts Standard Metropolitan Statistical Area. The event
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of interest is overall survival and the censoring rate is 57%. There are 14 covariates, which are

listed in Table S-2 in Supplementary Web Appendix S.3. These publicly available data are

available from www.umass.edu/statdata/statdata/data/ and this dataset consists of data

from the years 1997, 1999, and 2001. The data has been analyzed for illustrative purposes in

Hosmer et al. (2008).

3. Netherlands Breast Cancer Study Data: This dataset consists of 144 lymph node positive

breast cancer patients and is included in the R package penalized. The event of interest

is time to distant metastasis; subjects who were alive at the end of study, died from causes

other than breast cancer, had recurrence of local or regional disease, or developed a second

primary cancer were considered censored. The clinical factors measured are: number of

affected lymph nodes, age, diameter of the tumor, estrogen receptor status, and grade of the

tumor. Additionally, the dataset includes gene expression information for 70 genes that are

used to build the prognostic model in both Van’t Veer et al. (2002) and Van De Vijver et al.

(2002). The censoring rate is 67%.

4. R-Chop Study Data: This dataset consists of 233 patients with diffuse large B-cell lymphoma

undergoing R-Chop treatment and followed until death. The dataset is publicly available

in the R package bujar. The covariate vector consists of microarray data, with 3833 probe

sets preselected from a set of 54675 probe sets as described in Wang and Wang (2010). The

censoring rate is 74%.

We first compare the prediction performance of the CURE−L2 algorithms to the default meth-

ods in the randomForestSRC and party package. The RIST method is only included in the com-

parison for the third dataset because its current software implementation is unable to handle

categorical predictors. All algorithms are used to predict P (T > t|W ), where t is set equal to 3

years; respectively, the corresponding marginal survival probabilities (i.e., estimated using a Kaplan

Meier curve) are 0.73, 0.61, 0.83, and 0.73 for the TRACE, Worcester, Netherlands, and R-Chop

datasets. The estimator for S0(·|·) used in calculating the augmentation terms in the CURE−L2

algorithms is obtained using the random survival forest procedure; the doubly robust methods em-

ploy a Kaplan-Meier estimator for G0(·|·) and use Method 2 truncation as described in Section 5.3.

Prediction performance is evaluated using a cross-validated version of the censored data Brier score
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Figure 2: Censored data Brier Score at t = 3 years for the four datasets described in Section 6;
lower values indicate better prediction accuracy. L2, L2 BJ, Brier, and Brier BJ are the CURE−L2

algorithms, with BJ referring to the use of the Buckley-James CUT, and L2 and Brier referring
to the choice of loss function. RSF and CI are the default methods for the rfsrc and cforest R

functions. RIST is the recursively imputed survival trees algorithm.

of Graf et al. (1999, Sec. 6); this MSE-type measure is calculated using two fold cross-validation

procedure that approximately balances censoring rates in the training and test sets. Figure 2 shows

boxplots of the censored data Brier score for 200 different splits into test and training sets for the

four datasets; lower values indicate better performance. The results show that L2 and L2 BJ have

the overall best performance, performing similarly to or better than all other methods for all four

datasets. The Brier and Brier BJ algorithms also show good overall performance.

Variable importance measures (VIMPs) are commonly used to evaluate the importance of each

variable in the predictions generated by an ensemble algorithm. With the nonparametric bootstrap,
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every bootstrap sample excludes a subset of subjects (i.e., the out-of-bag, or OOB, data). The VIMP

measure for a covariate j is often calculated as the increase in L2 prediction error compared to that

for the original forest, where the increase is calculated under a setting in which the relationship

between covariate j and the response is destroyed; see, for example, Breiman (2001) and Ishwaran

et al. (2008). The method of Breiman (2001) involves permuting the observed values of covariate j

in each OOB sample before evaluating the increase in prediction error; see Section S.2 for further

details on the calculation of this OOB prediction error measure for the case of L2 loss and the

corresponding VIMP. Theorem S.2.1 in Supplementary Web Appendix S.2 shows that calculating

the VIMP of Breiman (2001) using the imputed dataset {Ẑ(Oi;G,S),Wi; i = 1, . . . , n} is identical

to the version that would be calculated if the (unobserved full data) L2 loss were replaced by the

CUT for this loss function that corresponds to Ẑ(Oi;G,S), i = 1, . . . , n.

Ishwaran et al. (2010) proposed an alternative VIMP measure based on the intuitively sensible

idea that splits made early in the individual trees in the forest are more likely to be important

predictors. In particular, if the depth of a given node in a given tree is defined as the number of

splits that are made between that node and the root node, then one can determine the minimal

observed depth for any given variable by calculating the depth for all nodes that split on that

particular variable. This calculation can be done for each variable in each tree in the ensemble; the

resulting minimal depth VIMP for each variable is then calculated as the average of the minimal

observed depths for that variable over all trees. Variables with lower average minimal depth are

considered more influential. Because the minimal depth VIMPs do not require the presence of

an OOB sample, such measures can be calculated for CURE−L2 algorithms using more general

bootstrap schemes, such as the i.i.d.-weighted or Bayesian bootstrap.

Below, we illustrate the use of the minimal depth VIMP measure using the TRACE data. Table

1 shows these measures calculated using the four CURE−L2 algorithms and the RSF method. One

of the main findings in Jensen et al. (1997) was that the effect of ventricular fibrillation, an acute

emergency condition, vanished when analyzing the data consisting of subjects surviving beyond 30

days. The results in Table 1 are arranged in decreasing importance as measured by the RSF VIMP

values and support this conclusion as ventricular fibrillation has the highest minimal depth VIMP

of all variables for all algorithms (i.e., judged as the least important). Age and CHF have the two

lowest VIMP measures for all methods, a result consistent with those in Steingrimsson et al. (2016),

29

Hosted by The Berkeley Electronic Press



where all trees are observed to split on age and (with one exception) also on CHF. Diabetes was

the only other variable split on in the analysis in Steingrimsson et al. (2016) and it is seen to be

the third most influential variable in three of the four CURE−L2 algorithms; the BJ L2 algorithm

switches the order of diabetes and gender, factors that are strongly associated with each other. The

corresponding results for the OOB prediction error VIMPs are presented in Supplementary Web

Appendix S.3 and lead to the same conclusions.

L2 L2 BJ Brier Brier BJ RSF

Age 0.90 1.13 0.89 0.92 0.82
CHF 1.02 0.96 1.07 0.98 1.11

Diabetes 1.67 2.04 1.51 1.51 1.45
Gender 1.99 1.15 1.90 1.98 2.02

VF 2.14 2.17 2.27 2.27 2.43

Table 1: Minimal depth variable importance measures for the TRACE data; lower values indicate
more influential variables. Brier and L2 refer to the loss function used. BJ refers to the Buckley-
James transformation. RSF is the default method in the randomForestSRC package. CHF stands
for clinical heart pump failure and VF stands for ventricular fibrillation.

Further results for the remaining three studies may be found in Supplementary Web Appendix

S.3. For example, we show that earlier results on the importance of certain predictors in the

Worcester study are supported by the VIMP measures; see Table S-2. In addition, Figure S-8

compares the prediction performance of the CURE−L2 algorithms fit using only clinical factors

and using both clinical factors and gene expression measurements for the Netherlands study. The

results demonstrate that a substantial improvement in prediction accuracy is achieved when the

gene expression data are included, supporting one of the main conclusions in Van’t Veer et al.

(2002). Natural killer cell counts have been shown to be important predictors for survival in diffuse

large B-cell lymphoma patients. As further discussed in Supplementary Web Appendix S.3, both

the CURE−L2 algorithms fit to the R-Chop data identify a probe set that is a known natural killer

cell receptor as being the most influential probe set.

7 Discussion

This paper makes several contributions to the literature. We extend the theory of censoring unbi-

ased transformations in a substantial way and establish some useful efficiency results. This theory
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is applied to the problem of risk estimation, leading to the so-called class of censoring unbiased

loss functions. These results are subsequently used to extend the CART and RF algorithms to the

case of right-censored outcome data by replacing the full data loss by doubly robust and Buckley-

James observed data loss functions. For the special case of the L2 loss function, we show that a

certain form of response imputation can be used to implement these new algorithms using standard

software for uncensored responses. The proposed methods are shown to perform well compared to

several existing ensemble methods both in simulations and when predicting risk using four different

public-use datasets.

The use of the L2 loss function for predicting E(log T |W ) can be viewed as making use of

information across time, whereas the Brier loss for predicting P (T > t|W ) arguably makes more

limited use of the available data. This may help to explain why the CURE−L2 algorithms based

on the former tend to have somewhat lower MSE than those based on the latter. The use of a

composite Brier loss function incorporating information for estimating P (T > t|W ) using several

different choices for t may improve performance further. However, it is unclear whether one can

use imputation methods like those introduced earlier in combination with existing software to im-

plement such methods; we intend to explore this in future work. Other potentially interesting

future research directions include: extensions to more complex data-structures such as multivari-

ate outcomes, competing risks, missing covariate data and more complex sampling schemes (i.e.

case-cohort or nested case-control designs); studying the performance of iterated versions of this al-

gorithm, where the conditional expectations required for computing the doubly robust and Buckley

James loss functions are updated using the latest ensemble predictor (or possibly updated dynam-

ically in batches); and, deriving asymptotic properties of the CURE algorithm (or certain special

cases, such as CURE−L2), such as extending the consistency results in Scornet et al. (2015) or

developing methods to calculate asymptotically valid confidence intervals for the predictions from

the CURE algorithm (e.g. Mentch and Hooker, 2016).

The theory justifying the use of censoring unbiased loss functions is not restricted to the CART

algorithm or to ensemble methods that use CART trees as building blocks. For example, it is

possible to use the results in this paper in connection with other recursive partitioning methods

(e.g., the partDSA algorithm; see Lostritto et al., 2012), which builds a predictor by recursively

partitioning the covariate space using both ’and’ and ’or’ statements. Implementation using im-
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puted response data as done here in the case of L2 loss remains possible more generally in cases

where model building decisions do not depend on the absolute level of loss (e.g., relative change,

loss minimization, etcetera). Finally, we note that the doubly robust Brier loss function (14) and

the Buckley-James Brier loss function (15) are potentially of interest in settings that extend outside

the scope of this paper. For example, similarly to Graf et al. (1999), one may find these methods

useful in validating prognostic models (Gerds et al., 2008; Kim, 2009; Collins and Altman, 2010).
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Supplementary Web Appendix

References to figures, tables, theorems and equations preceded by “S-” are internal to this supple-
ment; all other references refer to the main paper.

S.1 Additional Simulation Results

In this section we present additional simulation results supplementing the results given in Section
5 in the main document.

S.1.1 Results for 75th and 25th quantile

Figures S-1 and S-2 show results estimating P (T > t|W ) with t chosen as the 25th and 75th quantile
of the marginal failure time distribution in simulation settings 1−4. Details of the simulation setup
can be found in Section 5.1. The trends for the CURE−L2 algorithm are similar to the ones seen
in Figure 1. The CURE−L2 algorithms L2 and L2 BJ outperform RSF in all settings. Compared
to CI, these methods are significantly better in Settings 3 and 4 and perform similarly in Settings
1 and 2. For RIST, performance is similar in all settings and at all quantiles. There is somewhat
greater variation in the performance comparisons for the single time point methods Brier and
Brier BJ methods, though generally speaking these methods remain competitive to the others
(each of which uses information across time). The respective performance of the Buckley-James
and doubly robust CUTs is similar in all settings, though there are notable improvements using
the Buckley-James CUT (Brier BJ vs. Brier) at the 75th quantile in Setting 4. It is well known
that estimators based on IPCW weights, such as doubly robust estimators, have the disadvantage
of not being guaranteed to respect the natural range of the target parameter (Rose and van der
Laan, 2011). Using the Brier loss function, the target parameter is a probability and is therefore
constrained to fall in [0, 1]; when the terminal node estimators used in CURT trees that comprise
the Brier predictions are truncated to fall in that interval the performance of the modified Brier
algorithm is again comparable to Brier BJ.
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Figure S-1: Boxplots of MSE estimated at the 25th quantile of the marginal failure time distribution
for the four simulation settings of Section 5.1. L2, L2 BJ, Brier and Brier BJ are the CURE−L2

algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default
methods for rfsrc and cforest package. RIST is the recursively imputed survival trees.
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Figure S-2: Boxplots of MSE estimated at the 75th quantile of the marginal failure time distribution
for the four simulation settings of Section 5.1. L2, L2 BJ, Brier and Brier BJ are the CURE−L2

algorithms, with BJ referring to the use of the Buckley-James CUT. RSF and CI are the default
methods for rfsrc and cforest package. RIST is the recursively imputed survival trees.
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S.1.2 Comparison of nonparametric and Bayesian bootstrap for ensembles

In this section we compare the performance of the CURE−L2 algorithm implemented using the
Bayesian and the non-parametric bootstrap. Both bootstraps are implemented using the R function
randomForest in the randomForest package (Liaw and Wiener, 2002) with the Bayesian bootstrap
requiring extending the capabilities of the function to allow for arbitrary bootstrap weights. The
simulation settings used are the same as used in the main document; see Section 5.1 for further
details. The results for each CURE -L2 algorithm are given in Figures S-3 - S-5.

From Figures S-3 - S-5 we see that the CURE−L2 algorithm is not very sensitive to the choice
of bootstrap weights. For the Brier loss function, the nonparametric bootstrap does as well or
slightly better than the Bayesian bootstrap in all settings and at all quantiles. For the L2 loss,
the relative performance of the two bootstrap procedures depends on the simulation setting and
quantile considered.
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Figure S-3: Boxplots of MSE at the 25th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE−L2 algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the non-parametric and Bayesian bootstrap weights.

5

Hosted by The Berkeley Electronic Press



●

●
●●

●

●

●
●

●

●
●
●●●
●

●

●●

●

●

●

●
●
●●
●

●

●●

●
●●

●

●
●●

●
●●
●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

●
●
●●●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●●
●●
●●

●

●●●

●

●
●

●

●
●

●●

●

●
●
●

●

●

●

●

●●

●
●
●
●

●

●

●
●

●●

●
●
●

●●
●
●●●

●

●●●●
●●
●

●

●●
●

●

●
●

●
●

●
●●
●

●

●

●

●●●●

●

●●●

●

●

●
●

●
●

●●

●●

●●●

●●
●

●

●

●
●
●
●
●

●

●
●

0.01

0.02

L2
 B

B

L2
 N

B

L2
 B

J 
B

B

L2
 B

J 
N

B

B
rie

r 
B

B

B
rie

r 
N

B

B
rie

r 
B

J 
B

B

B
rie

r 
B

J 
N

B

Method

M
S

E

Setting 1

●
●

●

●

●

●●
●

●

●

●
●●●●●●

●
●●
●
●●

●

●
●

●

●●

●

●

●

●●

●
●●
●●
●

●

●

●
●

●
●●
●

●

●

●

●

●●●
●

●

●
●●
●●●

●
●

●
●●

●

●
●

●

●

●

●

●●
●

●

●●

●●
●
●●

●
●

●

●
●

●●
●●

●

●

●●
●
●
●●●●
●
●

●
● ●

●●
●●
●●

●

●

●●●●

●●●
●

●

●

●● ●●●
●
●
●

●

●

●

●
●●
●
●●
●
●●●
●

●●
●●
●
●
●
●

●

●

●

●
●●
●
●●

●

●●
●
●
●
●●

0.01

0.02

0.03

0.04

0.05

L2
 B

B

L2
 N

B

L2
 B

J 
B

B

L2
 B

J 
N

B

B
rie

r 
B

B

B
rie

r 
N

B

B
rie

r 
B

J 
B

B

B
rie

r 
B

J 
N

B

Method

M
S

E

Setting 2

●
●●

●
●●

●●●

●

●

●
●

●●

●●●●
●

●

●●
●
●
●●

●

●

●
●●

●

●

●
●

●

●●

●
●
●●●●

●

●
●
●

●
●●●
●●
●●●

●●●
●
●●●
●

●

●
●
●
●

●

●

●

●

●●

●
●
●●●●●

●

●

●
●

●

●
●

●●

●

●
●

●

●
●

●●
●
●
●

●

●●
●●

●

●

●

●

●

●

●
●●
●
●
●

●

●
●

●

●●

●
●

●

●

●

●●

●

●
●●
●
●

●

●●
●
●

●●

●

●

●

●●

●
●

●●
●
●●

●
●

●

0.02

0.03

0.04

L2
 B

B

L2
 N

B

L2
 B

J 
B

B

L2
 B

J 
N

B

B
rie

r 
B

B

B
rie

r 
N

B

B
rie

r 
B

J 
B

B

B
rie

r 
B

J 
N

B

Method

M
S

E

Setting 3

●
●

●

●
●●
●

●
●
●

●

●
●●
●●
●
●

●

●
●● ●

●
●

●

●

●
●
●

●
●
●

●

●
●●
●●
●
●

●
●
●●

●●●
●

●
●
●

●

●●●

●
●

●
●

●
●

●

●

●

●

●

●
●●●

●●●

●

●
●

●

●●

●●

●

●

●
●

●

●

●
●●●
●
●●

●●●

●
●●
●
●●
● ●

●
●●
●●

●
●●●
●
●
●
●

0.02

0.03

0.04

0.05

0.06

L2
 B

B

L2
 N

B

L2
 B

J 
B

B

L2
 B

J 
N

B

B
rie

r 
B

B

B
rie

r 
N

B

B
rie

r 
B

J 
B

B

B
rie

r 
B

J 
N

B

Method

M
S

E

Setting 4

Figure S-4: Boxplots of MSE at the 50th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE−L2 algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the non-parametric and Bayesian bootstrap weights.
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Figure S-5: Boxplots of MSE at the 75th quantile of the marginal failure time distribution for
the four simulation settings described in Section 5.1. L2, L2 BJ, Brier and Brier BJ are the
CURE−L2 algorithms, with BJ referring to the use of the Buckley-James CUT. NB and BB
respectively indicate use of the non-parametric and Bayesian bootstrap weights.
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S.1.3 Revisiting the simulation study in Steingrimsson et al. (2016)

In this section, we revisit the simulation studies for survival trees conducted in Steingrimsson et al.
(2016) and compare the performance of the CURT−L2 algorithm using the Buckley-James (see
(6)) and doubly robust (see (5)) loss functions, with both being implemented using the imputation
approach described in Section 4.1. The following two subsections revisit the simulation settings
used in Steingrimsson et al. (2016) (Section S.1.3) and summarize the results (Section S.1.3).

A.1 Simulation Settings

Steingrimsson et al. (2016) considered two simulation settings. Both settings contain a training set
of 250 independent subjects from the observed data distribution (subject to right censoring) and a
test set of 2000 independent observations from the full data distribution (with no censoring). We
simulate 1000 independent training and test set combinations. We briefly review the two settings
considered below:

Simulation Setting 1: There are five covariates W1, . . . ,W5, each of which follows a discrete
uniform distribution on the integers 1-100. The response Z = log(T ) and survival times T are gen-
erated from an exponential distribution with a covariate-dependent mean parameter µ = aI(W1 >
50 | W2 > 75) + 0.5I(W1 ≤ 50 & W2 ≤ 75). We consider “high” (a = 5), “medium” (a = 2) and
“low” (a = 1) signal settings representing different degrees of separation in the survival curves. The
censoring time C follows an exponential distribution with mean parameter µc, where µc is chosen
to (approximately) achieve a 30% marginal censoring rate, in other words, P (T ≥ C;µc) = 0.3.

Simulation Setting 2: This simulation setting is similar to setting D in LeBlanc and Crowley
(1992). It differs from Setting 1 in that the proportional hazard assumption does not hold. Assume
that covariates W1, . . . ,W5 are independently uniformly distributed on the interval [0,1]. Survival
times are generated from a distribution with survivor function S(t|W ) = [1 + t exp(aI(W1 ≤
0.5,W2 > 0.5) + 0.367)]−1. The choices a = 2, 1.5 and 1 respectively correspond to “high”,
“medium” and “low” signal settings. The censoring times C follow a uniform distribution on
[0, b], where b is chosen to (approximately) achieve a 30% marginal censoring rate.

A.2 Simulation Results

The censoring distributions in both Settings 1 and 2 are independent of covariates; each is estimated
using a Kaplan-Meier estimator. The conditional expectations required for computing the doubly
robust and Buckley-James loss functions are respectively estimated using a parametric accelerated
failure time (AFT) model with lognormal errors and also using random survival forests; see Section
3.2.2 of Steingrimsson et al. (2016) for details. The performance of the different survival trees for
Settings 1 and 2 is respectively summarized in Figures S-6 and S-7 using the mean squared error
of survival differences at the 25th, 50th and 75th quantile of the marginal failure time distribution
(MSE25, MSE50 and MSE75). Each figure contains 9 plots and summarizes the results for MSE25,
MSE50 and MSE75 under high, medium and low signal settings. The 6 boxplots in each plot
respectively correspond to the method of LeBlanc and Crowley (1992) as implemented in rpart

(EXP); the inverse probability censoring weighted L2 loss (IPCW ); the doubly robust L2 loss
calculated using the parametric AFT model (DR-AFT ); the doubly robust L2 loss calculated
using random survival forest predictions (DR-RF ); the Buckley-James L2 loss calculated using
the parametric AFT model (BJ-AFT ); and, the Buckley-James L2 loss calculated using random
survival forest predictions (BJ-RF ).

Figure S-6 shows that the performance of EXP, IPCW and doubly robust survival trees with
conditional expectation estimated using either the AFT model or random survival forests are very

8
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similar, a result entirely consistent with the results for Simulation 1 in Steingrimsson et al. (2016).
The doubly robust trees perform better than the IPCW trees in the high and medium signal setting
and show similar performance in the low signal setting; performs similarly or slightly better than
EXP in high signal setting, however, as well or slightly worse in medium and low signal settings.
The performance of Buckley-James trees is essentially the same as the doubly robust trees in nearly
all signal settings, with the Buckley-James trees fit using the AFT model having slightly smaller
MSE at the 75th quantile.

For Simulation Setting 2, Figure S-7 shows that the doubly robust and Buckley-James trees
perform noticeably better than both the IPCW trees and EXP method in the high and medium
setting; performance is comparable for all methods in the low signal setting. Each of DR-AFT, DR-
RF, BJ-AFT and BJ-RF have comparable performance in high and low signal settings; BJ-AFT
performs best, with DR-RF being second best, in the medium signal setting.

For completeness we also looked at the performance of all survival trees in terms of prediction
error as we did in Steingrimsson et al. (2016) (results not shown here). The results for EXP, IPCW,
DR-AFT and DR-RF are consistent with those results, the pattern of prediction error agreeing
with that observed in MSE25, MSE50 and MSE75.

9
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Figure S-6: Boxplots of mean squared error of survival differences at the 25th, 50th and 75th
quantile of the marginal failure time distribution (MSE25, MSE50 and MSE75) using the default
method in rpart (EXP), inverse probability censoring weighted loss (IPCW ), doubly robust L2

loss with the AFT model (DR-AFT ), doubly robust L2 loss with RSF (DR-RF ), Buckley-James L2

loss with the AFT model (BJ-AFT ) and Buckley-James L2 loss with RSF (BJ-RF ), respectively
for the high, medium and low signal settings in Setting 1.

●

●
●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●●
●●

●

●●

●

●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●●
●●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●
●●
●

●
●●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●
●●

●

●

●
●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

High Signal Setting

M
S

E
2

5

●●

●
●

●

●
●●
●●

●

●●

●

●

●

●

●

●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●
●●●●●

●
●

●
●●●

●
●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●●

●
●●

●

●

●

●

●
●

●

●

●●●●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●
●
●

●●

●
●

●

●

●

●

●

●
●
●

●

●●

●●

●
●●●

●●
●

●

●●

●

●
●

●

●

●●

●●

●
●●
●

●
●

●

●
●

●
●●●
●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●●
●●

●

●
●
●

●

●
●
●●

●

●

●

●

●●●
●
●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

0.05

Medium Signal Setting

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●
●
●
●

●

●

●
●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●
●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●

●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●

●

●

●
●

●●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●
●

●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●
●

●

●●

●

●
●
●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●
●

●●●●
●●
●

●

●●

●

●
●

●●

●
●
●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●
●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●

●

●
●
●

●

●●
●
●●

●
●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Low Signal Setting

●●
●

●●●

●●

●

●
●
●
●

●

●●

●
●

●

●●●●

●

●●
●

●

●
●●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●
●●

●

●

●

●

●

●●
●

●

●●

●

●●

●

●

●
●●

●

●●

●

●

●

●

●

●

●
●

●●

●●

●
●

●

●

●●

●●

●

●

●
●

●

●

●
●
●

●

●●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●

●
●
●

●●

●

●

●●

●

●

●

●

●●●

●●
●●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.02

0.04

0.06

0.08

M
S

E
5

0

●

●

●●

●

●
●●
●

●●
●

●

●

●

●
●

●
●●

●

●●
●●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●
●
●●●

●

●
●
●●●
●●●●

●

●●●●●●
●●●●
●
●●●●●●
●●

●

●●
●● ●

●●

●

●

●

●

●●

●

●

●

●

●

●●
●
●●
●●

●

●

●

●

●

●

●
●

●

●●
●
●

●

●

●

●●

●●●●

●
●

●●

●●●●●●●●
●
●●
●

●

●
●

●

●

●●

●

●●●

●

●

●

●

●

●●●●●

●

●

●

●

●
●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.02

0.04

0.06

0.08

●

●
●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

● ●

●●
●●●

●

●

●

●

●

●●

●

●
●
●

●

●
●

●

●●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●
●

●
●●●

●
●
●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●
●
●●●

●

●

●

●●
●

●●

●

●●

●●
●

●
●

●●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●●●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●●

●

●
●

●

●
●
●

●

●●

●

●
●●

●

●

●
●
●

●●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●

●
●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●
●
●

●

●

●
●●●

●●

●●

●●●●●
●

●●

●●

●

●

●●●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●●●●
●

●

●

●
●●

●
●
●●
●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●
●
●

●

●
●
●
●
●●●

●●●

●●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●●
●

●

●●●

●

●

●

●
●

●
●
●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●●●●
●

●

●
●●

●

●
●

●

●

●

●

●●●
●●●

●
●

●

●●

●
●●
●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●
●

●
●●

●

●●

●

●

●

●●●●
●
●●
●●

●

●
●
●●

●

●●

●

●●
●●

●

●
●

●
●
●

●
●

●
●

●

●

●
●

●●●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●

●

●

●●
●●
●●●
●

●

●

●

●●

●

●
●

●

●
●
●

●

●

●
●
●

●

●●

●
●

●
●

●●

●

●

●
●

●

●

●

●
●●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●●●●●

●
●

●
●

●
●

●

●●

●

●

●

●

●●●●●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●

●
●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●

●
●
●●
●●●●

●

●●

●

●
●●●●
●
●●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●
●●
●

●●

●
●●●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●

●
●

●

●

●

●

●●
●
●

●

●

●

●

●

●

●

●

●●●
●●
●

●

●

●

●●

●

●

●●

●
●
●

●

●●
●

●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●●

●

●●

●

●●●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●●●●

●
●

●

●

●
●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●
●●●●
●
●●

●

●●

●

●●

●

●

●

●●

●

●●
●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●●

●●

●●

●

●

●●
●●
●

●
●●
●
●

●

●
●

●●

●

●●●
●

●

●
●
●

●

●
●●

●

●
●●

●

●

●

●
●●

●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.02

0.04

0.06

0.08

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●●

●
●

●

●

●

●

●●
●●
●

●
●

●

●
●

●

●●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●●
●

●

●

●●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●●●

●

●

●

●

●
●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●
●

●●

●

●

●
●

●

●

●
●

●●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

0.05

M
S

E
7

5

●
●●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●
●●
●

●

●

●

●

●

●

●

●●

●

●●●

●

●
●

●

●●

●

●●
●
●
●
●

●

●

●●
●
●●●

●

●

●●

●

●
●
●●●●●●●●●●

●●●

●

●

●

●
●

●

●

●●

●●

●

●

●●

●

●
●

●

●
●

●

●
●

●
●
●

●

●

●

●
●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●
●●
●

●●
●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●

●

●

●●

●

●

●
●●
●

●

●
●

●

●
●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

0.05

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●
●

●

●●

●●
●

●

●

●

●
●●

●

●

●●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●●
●
●●●

●●

●
●●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●●

●●

●●

●
●

●

●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●

●
●

●●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●
●

●
●●

●●
●
●

●
●

●

●

●
●

●
●

●
●●

●

●

●●
●
●

●

●

●

●
●

●

●●

●
●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●●

●

●●
●
●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●●●●
●
●

●

●

●

●

●●●●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●●

●

●
●

●

●
●●

●

●

●

●
●

●

●
●

●

●
●

●

●

●●

●

●●

●

●

●●

●●

●

●
●

●

●●●
●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●●

●
●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●●●●

●

●●

●

●

●

●

●

●

●

●
●●●
●

●

●
●

●

●●●

●

●
●
●●●●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●
●

●●

●

●

●

●●
●
●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●
●
●●

●
●

●

●

●●

●

●●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●
●

●

●●●

●

●

●

●

●

●

●
●

●●●
●
●

●

●
●

●
●●

●

●

●

●

●
●

●●

●

●

●

●●●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●●●●

●

●

●

●

●●●

●

●
●●●

●

●●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●●

●

●

●

●

●

●

●

●

●

●
●●
●
●
●●●

●

●●

●

●

●
●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●
●●

●

●●

●

●

●

●●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●●

●

●

●
●
●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●
●●

●●

●●

●
●●
●

●

●
●

●

●

●

●
●

●

●●●●●

●

●

●

●

●

●●
●●●●

●

●
●

●

●

●

●●

●

●●●

●

●

●
●●●●●●

●

●

●

●●
●

●

●

●

●
●●●●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●
●

●

●●

●

●●
●●
●●

●
●

●
●●

●

●●
●

●
●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

E
X

P

IP
C

W

D
R

−
A

F
T

D
R

−
R

F

B
J−

A
F

T

B
J−

R
F

0.00

0.01

0.02

0.03

0.04

0.05

0.06

10

http://biostats.bepress.com/jhubiostat/paper282



Figure S-7: Boxplots of mean squared error of survival differences at the 25th, 50th and 75th
quantile of the marginal failure time distribution (MSE25, MSE50 and MSE75) using the default
method in rpart (EXP), inverse probability censoring weighted loss (IPCW ), doubly robust L2

loss with the AFT model (DR-AFT ), doubly robust L2 loss with RSF (DR-RF ), Buckley-James L2

loss with the AFT model (BJ-AFT ) and Buckley-James L2 loss with RSF (BJ-RF ), respectively
for the high, medium and low signal settings in Setting 2.
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S.2 Further Details on OOB-Based Variable Importance Measures

Consider an ensemble generated by the nonparametric bootstrap. Given a tree m from this ensem-
ble, let ψ̂m(W ) be the corresponding prediction for a subject with covariate information W . Let
Bm be the set of OOB data associated with the bootstrap sample used to create tree m. The L2

OOB data prediction error for tree m is defined as

1

|Bm|

n∑
i=1

I(i ∈ Bm)L2(Zi, ψ̂m(Wi)), (S-1)

where |Bm| denotes the size of the OOB sample. For each i ∈ Bm let W
(j)
i be the covariate vector

for subject i with the j-th component of the covariate permuted. Define the OOB L2 loss prediction
error using the resulting permuted OOB dataset as

1

|Bm|

n∑
i=1

I(i ∈ Bm)L2(Zi, ψ̂m(W
(j)
i )). (S-2)

The OOB prediction error VIMP proposed by Breiman (2001) is calculated as the difference between
(S-2) and (S-1), averaged over all the trees in the ensemble. That is, for covariate j the OOB
prediction error VIMP is defined as

1

M

M∑
m=1

(
1

|Bm|

n∑
i=1

I(i ∈ Bm)(L2(Zi, ψ̂m(W
(j)
i ))− L2(Zi, ψ̂m(Wi)))

)
. (S-3)

This calculation assumes that (Zi,Wi), i ∈ Bm are fully observed. The corresponding VIMP using
a CUT for the L2 loss function can simply be defined as that which is obtained by replacing the
(unobserved) L2 loss in (S-3) with its corresponding CUT as given in (9).

As the OOB prediction error VIMP is defined as the difference between two loss functions the
proof of the following theorem follows from exactly the same arguments as used to prove Theorem
4.2. For the notation used in the theorem we refer to Section 4 in main paper.

Theorem S.2.1. For each i = 1, . . . , n, define the loss function L2(Oi, ψ;G,S,Q) = ψ(Wi)
2 +

H(Oi;G,S)ψ(Wi) + Q(Oi;G,S) and assume max{|H(Oi;G,S)|, |Q(Oi;G,S)|} < ∞. The OOB
prediction error VIMPs using the loss function L2(O,ψ;G,S,Q) do not depend on Q(O;G,S).

An important implication of Theorem S.2.1 is that the OOB data prediction error VIMPs using
the L2 loss in connection with doubly robust and Buckley-James CUTs can be implemented by
running standard software calculating the OOB prediction error VIMPs for fully observed responses
on the corresponding “imputed” dataset {(Ẑ(Oi;G,S),Wi); i = 1, . . . , n}.

S.3 Additional Results from Data Analysis Section

In this section we present additional results for the data analyzed in Section 6 of the main paper.
Table S-1 shows the OOB prediction error for the TRACE data. In agreement with the results

obtained from the minimal depth variable importance measures, Table S-1 shows that ventricular
fibrillation is consistently the least important predictor across all methods and age and CHF are
consistently the two most influential variables.

Table S-2 shows the minimal depth VIMPs for the Worcester heart attack study, again ordered
by decreasing importance according to the RSF VIMPs. All algorithms show age as being the
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L2 L2 BJ Brier Brier BJ RSF

Age 0.54 0.26 0.04 0.04 0.08
CHF 0.25 0.23 0.02 0.02 0.04

Diabetes 0.17 0.19 0.01 0.01 0.00
Gender 0.01 0.03 0.01 0.01 0.01

VF -0.02 0.01 0.00 0.00 0.00

Table S-1: Out-of-bag prediction error variable importance measures for the TRACE data; higher
values indicate more influential variables. Brier and L2 refer to the loss function used. BJ refers to
the Buckley-James transformation. RSF is the default method in the randomForestSRC package.
CHF stands for clinical heart pump failure and VF stands for ventricular fibrillation.

most influential predictor, a result that agrees well with several studies showing the importance of
age as a predictor for overall survival; see Goldberg et al. (1989) and references there within. BMI
has the second lowest VIMP for three out of the five algorithms and the third lowest for the other
two. BMI has been shown to be an important predictor for myocardial infarction (Fitzgibbons
et al., 2009). Complete heart block is consistently the least important predictor; the results in
Nicod et al. (1988, Figure 2) show no significant impact of complete heart block on the long-term
prognosis of patients. Table S-3 shows the corresponding OOB prediction error VIMPs for these
data, with similar conclusions between and across methods. Importantly, in contrast to minimal
depth VIMPs, higher positive values indicate more influential variables and values close to zero (or
negative) indicate that the variable is not important.

L2 L2 BJ Brier Brier BJ RSF

Age 1.13 1.16 1.08 1.05 1.74
BMI 1.65 1.73 1.72 1.71 1.95

Heart Rate 2.50 2.61 1.80 1.78 2.37
Diastolic Blood Pressure 2.53 2.37 2.49 2.49 2.47
Systolic Blood Pressure 2.40 2.38 2.78 2.84 2.57

Congestive Heart Complications 2.75 2.88 1.50 1.56 2.58
Cardiogenic Shock 3.57 3.25 7.57 7.02 3.58

Cohort Year 3.31 3.46 3.71 3.67 3.74
MI Type 6.35 6.28 6.14 5.96 4.43

MI Order 6.65 6.05 5.95 5.98 4.54
Atrial Fibrillation 6.62 6.89 5.56 6.34 4.62

Gender 6.63 6.46 5.51 5.66 4.86
History of Cardiovascular Disease 7.83 7.74 7.16 7.86 5.32

Complete Heart Block 12.42 12.05 12.22 10.67 7.49

Table S-2: Minimal depth variable importance measures for the Worcester Study; lower values
indicate more influential variables. Brier and L2 refer to the loss function used. BJ refers to the
Buckley-James transformation. RSF is the default method in the randomForestSRC package.

The Netherlands and R-Chop datasets are comparatively high dimensional and tabular displays
of variable importance are not especially informative. In the case of the Netherlands study (Van
De Vijver et al., 2002), the genes included for analysis were already selected from a much larger pool,
and one of the main conclusions in this study is that models that include these 70 gene expression
profiles provide more information than models that do not rely on that information. In Figure
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L2 L2 BJ Brier Brier BJ RSF

Age 0.952 0.948 0.071 0.072 0.090
BMI 0.140 0.199 0.013 0.011 0.012

Heart Rate 0.051 0.065 0.015 0.015 0.011
Diastolic Blood Pressure 0.156 0.135 0.003 0.003 0.005
Systolic Blood Pressure 0.095 0.098 0.001 0.002 0.005

Congestive Heart Complications 0.154 0.124 0.039 0.038 0.026
Cardiogenic Shock 0.138 0.127 0.002 0.003 0.008

Cohort Year 0.302 0.143 0.007 0.007 0.006
MI Type 0.011 0.018 0.000 0.000 -0.001

MI Order 0.005 0.002 0.001 0.002 0.002
Atrial Fibrillation 0.021 0.009 -0.001 -0.000 0.002

Gender -0.008 -0.007 0.001 0.001 -0.001
History of Cardiovascular Disease -0.018 -0.005 -0.000 -0.000 -0.001

Complete Heart Block 0.000 -0.002 -0.000 -0.000 -0.000

Table S-3: Out-of-bag prediction error variable importance measures for the Worcester Study;
higher values indicate more influential variables. Brier and L2 refer to the loss function used. BJ
refers to the Buckley-James transformation. RSF is the default method in the randomForestSRC

package.

S-8, we compare the prediction accuracy of the CURE−L2 algorithms built using both clinical
information and gene expression measurements to models built using only clinical information.
Consistent with the findings in Van De Vijver et al. (2002), we see that adding gene expression
information substantially improves the prediction power of the algorithms. In the case of the
R-Chop data, which involves 3833 probe sets, the minimal depth VIMP measures for both the
CURE−L2 algorithms and the RSF algorithm identify the same probe set as being the most
influential. This probe set corresponds to a killer cell lectin-like receptor NKG2A that is a known
natural killer (NK) cell receptor; see Brooks et al. (1997). Plonquet et al. (2007) found NK cell
counts to be an important predictor for clinical outcomes in diffuse large B-cell lymphoma. We
also calculated the OOB prediction error VIMP measures and then evaluated the degree of overlap
between the 25 most influential probe sets for both VIMPs. The number of probe sets that were
in the top 25 most influential variables for both VIMP measures was 13, 10, 7, and 13 for the DR
L2, BJ L2, DR Brier and BJ Brier algorithms, respectively.
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Figure S-8: Prediction error for four CURE−L2 algorithms (with and without genetic information)
on the Netherlands breast cancer study data. L2, L2 BJ, Brier and Brier BJ are the CURE−L2

algorithms, with BJ referring to the use of the Buckley-James CUT, and L2 and Brier referring
to the choice of loss function. Clin refers to the model only being built using clinical factors.

S.4 Proof of Theorem 2.1

S.4.1 Regularity Conditions

The conditions of Section 2.1 specify that S0(t|w) and G0(t|w) are each continuous functions in t ∈
R+ for each w×S and, in addition, that ϑS0 = inf{t : S0(t|w) = 0} and ϑG0 = inf{t : G0(t|w) = 0}
are independent of w ∈ S. The conditions of Section 2.2 imply that φ(h(u), w), (u,w) ∈ R+ × S is
a known scalar function that is continuous in u except possibly at a finite number of points and
bounded if max{|r|, ‖w‖} < ∞. Let µ(w) = E[φ(Z,W )|W = w] =

∫∞
0 φ(h(u), w)dF0(u|w) < ∞

for each w ∈ S, where F0(u|w) = 1 − S0(u|w). We assume that S(t|w) and G(t|w) are each right-
continuous, non-increasing functions for t ≥ 0 that satisfy S(0|w) = G(0|w) = 1, S(t|w) ≥ 0
and G(t|w) ≥ 0 for each w ∈ S. Below, let F (u|w) = 1 − S(u|w), Ḡ(u|w) = 1 − G(u|w), and
Ḡ0(u|w) = 1−G0(u|w).

The conditions imposed are weak enough to accomodate (2) as a special case of (4). For each
w ∈ S, we further assume

(C1) I1 =
∫∞

0 φ(h(u), w) G0(u|w)
G(u−|w)dF0(u|w) <∞;

(C2) M1(r) =
∫ r

0
S0(u|w)
S(u|w)

dḠ0(u|w)
G(u−|w) <∞ and M2(r) =

∫ r
0
G0(u|w)S0(u|w)
G(u|w)S(u|w)

dḠ(u|w)
G(u−|w) <∞ for each r > 0;

(C3) I2 =
∫∞

0 φ(h(u), w) [M1(u−)−M2(u−)] dF (u|w) <∞;

(C4)
∫∞

0
[φ(h(u),w)]2

G0(u|w) dF0(u|w) <∞;

(C5)
∫∞

0

m2
φ(u,w;S)

G2
0(u|w)

S0(u|w)dḠ0(u|w) <∞;

(C6) M3(r) =
∫ r

0
|mφ(u,w;S)|
G2

0(u|w)
dḠ0(u|w) <∞ for each r > 0;
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S.4.2 Proof that Y ∗d (O;G,S0), Y
∗
d (O;G0, S) and Y ∗d (O;G0, S0) are each CUTs for

Y = φ(Z,W )

Assume Conditions (C1)-(C3) hold. Then, calculations similar to those in Rubin and van der Laan
(2007) show that E[Y ∗d (O;G,S)|W = w] = I1 + I2. Consider now the following cases:

• Suppose only that G(u|w) = G0(u|w) for every (u,w). Then, because G0(u|w) is continuous,
G0(u|w)/G0(u− |w) = 1 everywhere and it follows that

I1 =

∫ ∞
0

φ(h(u), w)dF0(u|w) = µ(w).

In addition, for every r ≥ 0, we obtain

M1(r)−M2(r) =

∫ r

0

S0(u|w)

S(u|w)

dḠ0(u|w)

G0(u|w)
−
∫ r

0

G0(u|w)

G0(u|w)

S0(u|w)

S(u|w)

dḠ0(u|w)

G0(u|w)
= 0

and hence I2 = 0. Consequently, E[Y ∗d (O;G0, S)|W = w] = I1 + I2 = µ(w).

• Suppose only that S(u|w) = S0(u|w) for every (u,w). Then,

I1 + I2 =

∫ ∞
0

φ(h(u), w)
G0(u|w)

G(u− |w)
dF0(u|w) +

∫ ∞
0

φ(h(u), w) [M1(u−)−M2(u−)] dF0(u|w)

and we see that E[Y ∗d (O;G,S0)|W = w] = I1 + I2 = µ(w) provided that

G0(u|w)

G(u− |w)
+ [M1(u−)−M2(u−)] = 1.

Under the assumption S(u|w) = S0(u|w), the definitions of Mi(·), i = 1, 2 and the fact that
G0(u|w) is continuous implies that we need only show

G0(u|w)

G(u|w)
+

∫ u

0

dḠ0(r|w)

G(r− |w)
−
∫ u

0

G0(r|w)

G(r|w)

dḠ(r|w)

G(r− |w)
= 1 (S-4)

for every u ≥ 0. Using integration by parts (e.g., Last and Brandt, 1995, Thm. A.4.6),

G0(u|w)

G(u|w)
= 1 +

∫ u

0
G0(r|w)

(
−dG(r|w)

G(r− |w)G(r|w)

)
+

∫ u

0

dG0(r|w)

G(r− |w)
;

rearranging this expression, we see

G0(u|w)

G(u|w)
+

∫ u

0

dḠ0(r|w)

G(r− |w)
−
∫ u

0
G0(r|w)

(
dḠ(r|w)

G(r− |w)G(r|w)

)
= 1

which is exactly (S-4). This proves E[Y ∗d (O;G,S0)|W = w] = µ(w).

The result that E[Y ∗d (O;G0, S0)|W = w] = µ(w) clearly follows from either of the above arguments,
completing this part of the proof.
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S.4.3 Proof that V ar(Y ∗d (O;G0, S)|W ) ≥ V ar(Y ∗d (O;G0, S0)|W ).

Let G(u|w) = G0(u|w) be continuous and consider the class of transformations

Y ∗s (O;G0, γ) =
∆φ(Z̃,W )

G0(T̃ |W )
+ (1−∆)γ(T̃ ,W )−

∫ T̃

0
γ(u,W )dΛG0(u|W ), (S-5)

where γ(u,W ) is some specified function. The class of transformations defined by (S-5) is essen-
tially seen to be the same as that considered in Suzukawa (2004, Prop. 3; Eqn. 3.6), but general-
ized here to allow for covariates and not restricted to depend on G0(·|·) alone. Importantly, it is
also easy to see that selecting γ∗(u,W ) = m(u,W ;S)/G0(u|W ) in (S-5) gives Y ∗s (O;G0, γ

∗) =
Y ∗d (O;G0, S). For continuous G0(u|w), the regularity conditions (C4)-(C6) generalize those in
Suzukawa (2004) needed to prove Propositions 3, 5 and 6 in Suzukawa (2004). In particular,
we have E[Y ∗d (O;G0, S)|W = w] = µ(w) and, mimicking the arguments used to prove Propositions
5 and 6, that V ar[Y ∗d (O;G0, S)|W = w] = H1(w;G0, S0) +H2(w;G0, S0, S), where

H1(w;G0, S0) =

∫ ∞
0

[φ(h(x), w)]2

G0(x|w)
dF0(x|w)−

∫ ∞
0

S0(x|w)[m(x,w;S0)]2

G0(x|w)2
dḠ0(x|w)− µ2(w)

and

H2(w;G0, S0, S) =

∫ ∞
0

S0(x|w)(m(x,w;S)−m(x,w;S0))2

G0(x|w)2
dḠ0(x|w).

This proves V ar[Y ∗d (O;G0, S)|W = w] ≥ V ar[Y ∗d (O;G0, S0)|W = w] = H1(w,G0, S0), with strict
inequality when S(t|w) and S0(t|w) differ (hence m(t, w;S) and m(t, w;S0) differ) for t in some
interval with positive length.

S.5 Proof of Theorem 4.1

We require the following lemma.

Lemma S.5.1. Let x ≥ 0 be finite. Let d be any indicator variable taking on the values 0 and 1. Let
B(s) be a right-continuous, non-decreasing function for s ≥ 0 with B(0) = 0. Define B̄(s) = 1−B(s)
and H(s) =

∫ s
0 B̄

−1(u−)dB(u) for any s such that H(s) exists.
Suppose B̄(x) > 0. Then, H(s) exists for s ∈ [0, x] and

d

B̄(x)
+

1− d
B̄(x)

−
∫ x

0

dH(u)

B̄(u)
= 1.

There is no specific relationship assumed between x, d and B(·), hence H(·). Using notation
from both the theorem statement and Lemma S.5.1, we can make the following identifications:
B̄(t) = G(t|w), H(t) = ΛG(t|w), x = t̃, and d = D. The conditions of Theorem ensure that the
conditions of Lemma S.5.1 are satisfied; applying Lemma S.5.1 immediately gives the desired result:

D

G(t̃|w)
+

(1−D)

G(t̃|w)
−
∫ t̃

0

dΛG(u|t)
G(u|t)

= 1.

Proof of Lemma S.5.1. Because B̄(x) > 0 and is non-increasing with B̄(0) = 1, right-continuity
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implies infs≤x B̄(s) > 0. Hence, we may write (e.g., Last and Brandt, 1995, Cor A.4.8, p. 426)

d

(
1

B̄(u)

)
= − dB̄(u)

B̄(u−)B̄(u)
=

dB(u)

B̄(u−)B̄(u)
(S-6)

Let K(·) be any right-continuous function of bounded variation on [0, x]. Then, we may write (Last
and Brandt, 1995, Thm. A.4.6)

K(x)

B̄(x)
− K(0)

B̄(0)
=

∫ x

0
K(u−) d

(
1

B̄(u)

)
+

∫ x

0

(
1

B̄(u)

)
dK(u).

Using (S-6) and assuming K(s) = 1 for s ≥ 0, we obtain the identity

1

B̄(x)
− 1 =

∫ x

0
d

(
1

B̄(u)

)
+

∫ x

0

(
1

B̄(u)

)
d(1) =

∫ x

0

dB(u)

B̄(u−)B̄(u)
=

∫ x

0

dH(u)

B̄(u)
. (S-7)

Observe that we may also write
d

B̄(x)
=

1

B̄(x)
− 1− d
B̄(x)

;

using (S-7), it then follows that

d

B̄(x)
+

1− d
B̄(x)

− 1 =

∫ x

0

dH(u)

B̄(u)
,

from which the required identity follows immediately.

S.6 Proof of Theorem 4.2

Considering G(·|·) and S(·|·) as fixed functions, we will for simplicity rewrite L2(O,ψ(W );G,S,Q)
as L2(O,ψ(W );Q) = ψ(W )2+H(O)ψ(W )+Q(O). Under the stated conditions, we can also assume
without loss of generality that L2(O,ψ(W );Q) ≥ 0. The proof of this theorem will follow if one
can show that all key decisions made by CART are invariant to the form of Q(O). The availability
of a sample O1, . . . , On such that H(Oi) and Q(Oi) satisfy the conditions of the theorem for each
i = 1, . . . , n is assumed. Throughout this proof, it is assumed at each stage of the algorithm that one
is working with some finite partition {τj , j = 1, . . . , J} of S and that ψ(W ) =

∑J
j=1 I{W ∈ τj}ψj

is the corresponding piecewise constant predictor. In this case, for any subset τj ,

n−1
n∑
i=1

I{Wi ∈ τj}L2(Oi, ψ(Wi);Q) = n−1
n∑
i=1

I{Wi ∈ τj}
[
ψ2
j +H(Oi)ψj +Q(Oi)

]
is uniquely minimized at ψ̂j =

∑n
i=1−H(Oi)/(2nj) for nj =

∑n
i=1 I{Wi ∈ τj}.

Now we show that all three steps of the CART algorithm used in connection with L2(O,ψ(W );Q)
involve decisions that are invariant to the specification of Q(O).

S.6.1 Growing the tree

The first stage of the tree building process is to grow a very large tree. Three elements are required
to accomplish this step: (i) developing the candidate set of binary splits; (ii) specifying the node
splitting rule; and, (iii) specifying the rule to stop splitting nodes. Only step (ii) depends on the
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specification of the loss function; hence, we focus on this step below. The following lemma is
critical.

Lemma S.6.1. Suppose L2(O,ψ(W );Q) = ψ(W )2+H(O)ψ(W )+Q(O) is used to evaluate the loss.
Let R(τ) denote the loss within a given subset τ ⊂ S; that is, R(τ) =

∑n
i=1 I{Wi ∈ τ}L2(Oi, ψ̂τ ;Q),

where ψ̂τ minimizes the loss function using the data falling into τ . If τ is then split into L ≥ 2
mutually exclusive subsets τ1, . . . , τL and τ1 ∪ τ2 ∪ . . . ∪ τL = τ , the corresponding change in total
loss is given by

R(τ)−
L∑
`=1

R(τ`) =
L∑
`=1

n∑
i=1

I{Wi ∈ τ`}
[
(ψ̂2

τ − ψ̂2
τ`

) +H(Oi)(ψ̂τ − ψ̂τ`)
]
,

where ψ̂τ` is the value which minimizes the loss function using the data from the `th subset.

Proof. We have

R(τ) =
n∑
i=1

I{Wi ∈ τ}
[
ψ̂2
τ +H(Oi)ψ̂τ +Q(Oi)

]
and

L∑
`=1

R(τ`) =

L∑
`=1

n∑
i=1

I{Wi ∈ τ`}
[
ψ̂2
τ`

+H(Oi)ψ̂τ` +Q(Oi)
]
.

Subtracting the second from the first, algebra shows that the change in total loss reduces to

R(τ)−
L∑
`=1

R(τ`) =
L∑
`=1

n∑
i=1

I{Wi ∈ τ`}
[
(ψ̂2

τ − ψ̂2
τ`

) +H(Oi)(ψ̂τ − ψ̂2
τ`

)
]
.

In the process of growing a tree, CART considers at each step all possible candidate splits of a
given parent node τ into left and right child nodes, say τL and τR, and then chooses the (covariate,
split) combination that maximizes the decrease R(τ)−R(τL)−R(τR). This process continues until
the stop-splitting rule used in (iii) takes effect, generating a maximally-sized tree Tmax. Lemma
S.6.1 shows that the reduction in loss is independent of Q(Oi), i = 1 . . . n regardless of the stage
of partitioning; hence, all splitting decisions made while growing the tree to its maximal size are
invariant to the values of Q(Oi), i = 1 . . . n.

S.6.2 Pruning

Once a maximally-sized tree Tmax is obtained, the second stage of the CART algorithm involves
generating a sequence of candidate trees from which a final tree can be selected. The indicated
sequence of candidate trees is generated using minimal cost-complexity pruning (Breiman et al.,
1984, Sec. 3.3, 8.5).

For a given tree T , let T̃ and N(T ) = #(T̃ ) respectively denote the set and number of terminal
nodes. Define the loss of the tree T as total loss in all terminal nodes: R(T ) =

∑
τ∈T̃ R(τ). Finally,

let the cost-complexity of a tree T be defined as Rα(T ) = R(T )+αN(T ), where α is a non-negative
real number called the complexity parameter.

Paraphrasing Breiman et al. (1984, Sec. 8.5), minimal cost complexity pruning generates a
decreasing sequence of subtrees Tmax � T1 � T2 � · · · � {τ1} and an increasing sequence of
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complexity parameters α1 < α2 < · · · such that Tk is the smallest subtree of Tmax for αk ≤ α < αk+1

that minimizes Rα(T ). Breiman et al. (1984, Sec. 3.3) provide a detailed description of the process
by which the sequence of subtrees is generated. Briefly, beginning with the smallest subtree T1 of
Tmax such that R(T1) = R(Tmax), CART begins the pruning process by considering all nodes τ
from the tree T1 and computing

g1(τ) =

{
R(τ)−R(T1,τ )
N(T1,τ )−1 , τ 6∈ T̃1,τ

+∞, τ ∈ T̃1,τ

where T̃1,τ denotes the subtree of T1 with root node τ . The node(s) minimizing this function are
pruned, yielding the next tree in the sequence T2. This process is repeated until the root node of
T1 is reached.

Critically, the process for pruning any Tk and hence generating Tk+1 depends on mimimizing

gk(τ) =

{
R(τ)−R(Tk,τ )
N(Tk,τ )−1 , τ 6∈ T̃k

+∞, τ ∈ T̃k

for each τ ∈ Tk. Evidently, the function gk(τ) depends on the loss function only through R(τ) −
R(Tk,τ ); applying Lemma S.6.1 shows this quantity does not depend on Q(Oi), i = 1 . . . n. As a
result, the decision made to prune away any subtree and consequently the sequence of candidate
trees generated by this process will be invariant to Q(Oi), i = 1 . . . n.

S.6.3 Choosing the best candidate tree via cross-validation

Selection of the optimally sized tree from the sequence of candidate trees is done using V -fold cross
validation. Specifically, suppose a given data set O = (O1, . . . , On) is divided into V mutually
exclusive subsets O1, . . . ,OV . Suppose that the procedure of Section S.6.2 generated M trees with
complexity parameters α1, . . . , αM using the loss function L2(O,ψ(W );Q) = ψ(W )2+H(O)ψ(W )+
Q(O). Define γ1 = 0, γj =

√
αjαj+1, j = 2, . . . ,M − 1, and γM =∞; see Breiman et al. (1984, Sec.

3.4 & 8.5.2) for discussion. For each v = 1, . . . , V let Tm(L−v),m = 1 . . .M be a sequence of trees
built using the learning set L−v = O−Ov as follows: (i) growing a tree Tmax,v as described in Section
S.6.1; (ii) determining the associated sequence of pruned trees using minimal cost complexity
pruning as described in Section S.6.2; and, (iii) identifying the sequence elements that correspond
to using the complexity parameters γ1, . . . , γM . For m = 1, . . . ,M, let ψ̂(W ; Tm(L−v)) be the
prediction for a subject with covariate information W that is obtained using the tree Tm(L−v).
Then, the cross-validation error associated with γm is Cm/(nV ) where

Cm =
V∑
v=1

n∑
i=1

I(i ∈ Ov)L2(Oi, ψ̂(Wi; Tm(L−v));Q) ,

=

V∑
v=1

n∑
i=1

I(i ∈ Ov)
[
Q(Oi) +H(Oi)ψ̂(Wi; Tm(L−v)) + ψ̂(Wi; Tm(L−v))2

]
,

= C∗ +

V∑
v=1

n∑
i=1

I(i ∈ Ov)
[
H(Oi)ψ̂(Wi; Tm(L−v)) + ψ̂(Wi; Tm(L−v))2

]
,

(S-8)
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for m = 1, . . . ,M and C∗ =
∑V

v=1

∑n
i=1 I(i ∈ Ov)Q(Oi). The optimal tree is now given by Tm∗(O),

where m∗ = argminm∈{1,...,M}Cm and Tm(O) is the mth candidate tree built using the full dataset O
(i.e., that corresponding to αm). Evidently, the constant C∗ plays no role in selecting the member
of the sequence that minimizes Cm,m = 1, . . . ,M and hence selection of the optimally sized tree
is also invariant to Q(Oi), i = 1 . . . n.
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