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Mediation analysis for a survival outcome with
time-varying exposures, mediators, and

confounders

Sheng-Hsuan Lin, Jessica G. Young, Roger Logan, and Tyler J. VanderWeele

Abstract

We propose an approach to conduct mediation analysis for survival data with time-
varying exposures, mediators, and confounders. We identify certain interventional
direct and indirect effects through a survival mediational g-formula and describe
the required assumptions. We also provide a feasible parametric approach along
with an algorithm and software to estimate these effects. We apply this method to
analyze the Framingham Heart Study data to investigate the causal mechanism of
smoking on mortality through coronary artery disease. The risk ratio of smoking
30 cigarettes per day for ten years compared with no smoking on mortality is 2.34
(95 % CI = (1.44, 3.70)). Of the overall effect, 7.91% (95% CI: = 1.36%, 19.32%)
is mediated by coronary artery disease. The survival mediational g-formula con-
stitutes a powerful tool for conducting mediation analysis with longitudinal data.
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Summary 1 

We propose an approach to conduct mediation analysis for survival data with time-varying 2 

exposures, mediators, and confounders. We identify certain interventional direct and indirect 3 

effects through a survival mediational g-formula and describe the required assumptions. We also 4 

provide a feasible parametric approach along with an algorithm and software to estimate these 5 

effects. We apply this method to analyze the Framingham Heart Study data to investigate the 6 

causal mechanism of smoking on mortality through coronary artery disease. The risk ratio of 7 

smoking 30 cigarettes per day for ten years compared with no smoking on mortality is 2.34 (95 % 8 

CI = (1.44, 3.70)). Of the overall effect, 7.91% (95% CI: = 1.36%, 19.32%) is mediated by 9 

coronary artery disease. The survival mediational g-formula constitutes a powerful tool for 10 

conducting mediation analysis with longitudinal data. 11 

 12 

Key words: longitudinal studies, mediation analysis, mechanism investigation, path analysis, 13 

time-varying, survival 14 

 15 

1. Introduction 16 

In decomposing the total effect into direct and indirect effects, mediation analysis is 17 

essential for investigating pathways or mechanisms in epidemiology and the social sciences. 18 

Causal mediation analysis defines both direct and indirect effects based on counterfactual models, 19 

extending traditional mediation analysis to settings involving nonlinearities and interaction 20 

(Pearl, 2001; Robins and Greenland, 1992). Numerous methodological approaches based on 21 

causal mediation analysis have been developed in recent years for the estimation of natural direct 22 

effect (NDE) and natural indirect effect (NIE) which sum to a total exposure effect. These 23 

approaches allow different outcome scales, including the risk difference, the odds ratio, and 24 

scales for time-to-event data (Tchetgen and Shpitser, 2012; Valeri and VanderWeele, 2013; van 25 
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der Laan and Petersen, 2008; VanderWeele and Vansteelandt, 2009; VanderWeele, 2010; 1 

VanderWeele and Vansteelandt, 2010).  2 

Most of the approaches mentioned above only consider time-fixed exposures and mediators. 3 

When conducting causal mediation analysis with longitudinal data, using only one single 4 

exposure and mediator ignores the exposures or mediators at other time-points, thus neglecting 5 

valuable information at other times. Further, in many settings the question of scientific interest 6 

may correspond to the effect of a time-varying exposure and how it is explained by time-varying 7 

patterns of a mediating variable. 8 

A key challenge in the estimation of NDE and NIE in the context of time-varying exposures 9 

and mediators is that, in this setting, time-varying confounders for the effect of the mediator on 10 

the outcome at a given time t will be affected by past exposure. In this case, Avin et al. (2005) 11 

showed that natural effects cannot generally be identified. VanderWeele and Tchetgen Tchetgen 12 

proposed using so called “interventional effects” and derived a mediational g-formula to partially 13 

address this problem (VanderWeele and Tchetgen Tchetgen, 2016 (accepted)). This method 14 

decomposes the total effect into newly defined interventional direct effect (IDE) and 15 

interventional indirect effect (IIE) (which are also called “randomly interventional analogues of 16 

natural direct and indirect effects” in some literature (Lin et al., 2016; VanderWeele, Vansteelandt 17 

and Robins, 2014)). These effects may generally be identified in the presence of time-varying 18 

confounders affected by prior exposure.  Lin et al. proposed a parametric mediational g-formula 19 

estimator along with a corresponding Statistical Analysis System (SAS) macro for practical 20 

implementation (Lin et al., 2016).  21 

A limitation of the mediational g-formula as proposed by VanderWeele and Tchetgen 22 

Tchetgen is that it requires that the outcome of interest is a variable measured only at the end of 23 

follow up and does not immediately generalize to a survival outcome.  By contrast, Zheng and 24 
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van der Laan gave identification results and various estimators for IDE and IIE that are well-1 

defined when the outcome of interest is a survival outcome and mediators vary over time.  2 

However, these authors only considered the case where the exposure and confounders are 3 

restricted to be time-fixed (Zheng and van der Laan, 2012).  4 

 In the current study, we adapt ideas from both the mediational g-formula approach and 5 

that of Zheng and van der Laan to offer an approach that allows estimation of IDE and IIE of 6 

time-varying exposures through time-varying mediators that are well-defined for a survival 7 

outcome and, further, that may be identified when time-varying confounders are affected by past 8 

exposure. We define IDE and IIE, provide conditions under which they may be identified in an 9 

observational study and propose a parametric approach to estimate these effects, along with a 10 

corresponding SAS macro for practical implementation. We then apply this method to the case 11 

study of the Framingham Heart Study (FHS) data to investigate the effect of time-varying 12 

smoking patterns on all-cause survival mediated by time-varying coronary artery disease (CAD) 13 

status. 14 

 The paper is organized as follows: Section 2 introduces the notation and definitions of the 15 

direct and indirect effects of interest. Section 3 presents the non-parametric identification of the 16 

direct and indirect effects, and the required assumptions. Section 3 also shows that our 17 

identifying formula reduces to that provided by Zheng and van der Laan (Zheng and van der 18 

Laan, 2012) when both the exposure and confounders are restricted to be time-fixed. A feasible 19 

parametric approach along with an algorithm and software are also provided in Section 4. Section 20 

5 describes the analytical procedure and provides the estimation results for the FHS data. Section 21 

6 concludes by discussing the strengths and limitations of the study.  22 

 23 

2. Notation and definitions 24 

http://biostats.bepress.com/harvardbiostat/paper203



  

5 
 

2.1 Observed data 1 

 Consider an observational study where the exposures, mediators, confounders, and 2 

survival outcomes that vary over time in longitudinal data with measurements at times 1 to T. Let 3 

(A(1), ..., A(T)), (M(1), ..., M(T)), and (L(1), ..., L(T)), denote random variables corresponding to 4 

the measured time-varying exposures, mediators, and confounders, in measurement periods 1,..., 5 

T, respectively, with initial baseline confounders, V. Let S(t) = 1 indicate survival by period and 6 

S(t) = 0  death by period t = 1,…, T. When S(t) = 0, the following survival variables (i.e. S(k), k 7 

∈ {t+1, t+2, ..., T}) are all equal to zero, and the following variables other than S(k) (i.e. A(k), 8 

M(k), L(k), k ∈ {t+1, t+2, ..., T}) are all undefined. The assumed temporal order of variables in 9 

each measurement period is depicted in the causal diagram in Figure 1.  10 

 Our direct and indirect effects will be defined as contrasts in the mean of the survival 11 

indicator by time T had all subjects followed different hypothetical interventions on the time-12 

varying exposure, mediator, as well as past survival. In the next section we will develop 13 

counterfactual notation to formally define these effects. 14 

 15 

2.2 Counterfactual notation and the consistency assumption 16 

For any random variable W and realized value w, let W(t1:t2) = (W(t1), W(t1+1), ..., W(t2)) 17 

and w(t1:t2) = (w(t1), w(t1+1), ..., w(t2)), where t1 and t2 are all positive integers and t1 ＜ t2.  18 

Let a(1:T) and a(1:T)* denote two different hypothetical time-varying exposure 19 

interventions such that we set A(1:T) to a(1:T) and A(1:T) to a(1:T)*, respectively; for example, 20 

the hypothetical interventions “always expose” would be a(1:T) = (1,…,1) and “never expose” 21 

would be a(1:T)* = (0,…,0). Let S(t)a(1:t)m(1:t) be the counterfactual value of S(t), given the 22 

previous exposures A(1:t) are set to a(1:t) and the previous mediators M(1:t) are set to m(1:t). Let 23 

S(t)a(1:t)m(1:t)s(1:t-1) be the counterfactual value of S(t), given the previous exposures A(1:t) are set to 24 
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a(1:t), the previous mediators M(1:t) are set to m(1:t), and S(1:t-1) are set to s(1:t-1); for this 1 

latter counterfactual,  we are conceiving an intervention on past survival. Another way forward in 2 

this context might be to address this setting using principal stratification (Frangakis and Rubin, 3 

2002; Tchetgen Tchetgen, 2014), but this is difficult in the context of mediation. So we assume 4 

that the intervention on survival is possible as does prior literature on this topic (Zheng and van 5 

der Laan, 2012). 6 

Let M(t)a(1:t)
 and S(t)a(1:t)

 be the counterfactual value of M(t) and S(t), respectively, given 7 

A(1:t) are set to a(1:t). Let M(t)a(1:t)m(1:t)s(1:t-1) be the counterfactual value of M(t), given the 8 

previous exposures, A(1:t), are set to a(1:t), the previous mediators, M(1:t-1), are set to m(1:t-1), 9 

and S(1:t-1) is set to s(1:t-1). 10 

We will make consistency assumption (Pearl, 2009; VanderWeele and Vansteelandt, 2009; 11 

VanderWeele, 2009a). Under this assumption,  12 

 13 

S(t)a(1:t) = S(t) and M(t)a(1:t) = M(t) given A(1:t) = a(1:t)  (Consistency assumption 1);  14 

S(t)a(1:t)m(1:t) = S(t) given A(1:t) = a(1:t) and M(1:t) = m(1:t)   (Consistency assumption 2);  15 

S(t)a(1:t)m(1:t)s(1:t-1) = S(t) given A(1:t) = a(1:t), M(1:t) = m(1:t), and S(t-1) = s(t-1)   16 

(Consistency assumption 3);  17 

M(t)a(1:t)m(1:t-1)s(1:t-1) = M(t), given A(1:t) = a(1:t), M(1:t-1) = m(1:t-1), and S(t-1) = s(t-1)   18 

(Consistency assumption 4); 19 

M(1:T)a(1:T)* = M(1: T)a(1:T)∗,M(1:T−1)a(1:T−1)∗,S(T−1)a(1:T−1)∗,M(1:T−1)
a(1:T−1)∗

   20 

(Consistency assumption 5); 21 

and S(T)a(1:T),M(1:T)a(1:T)∗,𝑆(1:𝑇−1)a(1:T−1),M(1:T−1)a(1:T−1)∗
 = S(T)a(1:T),M(1:T)a(1:T)∗

  22 

(Consistency assumption 6). 23 
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 1 

2.3 Why the traditional mediation parameter is undefined for survival 2 

outcomes and time-varying mediators 3 

 For questions about the investigation of mechanisms, the direct and indirect effects are 4 

traditionally represented by NDE and NIE, respectively, which are mathematically defined 5 

below:  6 

 7 

NDE ≡ E[Ya(1:T),M(1:T)a∗
- Ya(1:T)∗,M(1:T)a(1:T)∗

|v]     (Definition 1-1) 8 

NIE ≡ E[Ya(1:T),M(1:T)a(1:T)
- Ya(1:T),M(1:T)a(1:T)∗

].     (Definition 1-2) 9 

 10 

By replacing the Y with the survival outcome at the end of follow up, the NDE and NIE would be 11 

defined as (Pearl, 2001; Robins and Greenland, 1992; VanderWeele and Vansteelandt, 2009): 12 

 13 

NDE ≡ E[S(T)a(1:T),M(1:T)a∗
- S(T)a(1:T)∗,M(1:T)a(1:T)∗

|v]     (Definition 1-3) 14 

NIE ≡ E[S(T)a(1:T),M(1:T)a(1:T)
- S(T)a(1:T),M(1:T)a(1:T)∗

]    (Definition 1-4). 15 

 16 

For simplicity of expression, we define the mediation parameter Φ(a(1:T), a(1:T)*) below: 17 

Φ(a(1:T), a(1:T)*) ≡ E[S(T)a(1:T),M(1:T)a(1:T)∗
].     (Definition 1-5). 18 

 19 

Thus, we can rewrite the definitions 3 and 4 as follows: 20 

NDE ≡ Φ(a(1:T), a(1:T)*) - Φ(a(1:T)*, a(1:T)*)     (Definition 1-6) 21 

NIE ≡ Φ(a(1:T), a(1:T)) - Φ(a(1:T), a(1:T)*).     (Definition 1-7) 22 

 23 

This definition of NIE captures all effects of A(1:T) on S(T) through M(1:T).  24 
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 These traditional definitions present two complications in the setting of meditational 1 

analysis with a survival outcome with time-varying exposures, mediators, and confounders. First, 2 

when the confounders vary over time and are both affected by prior exposure and also affect 3 

subsequent values of both the mediator and outcome, natural direct and indirect effects are not 4 

identified from data regardless of whether data is available on the time-varying confounders or 5 

not (Avin, Shpitser and Pearl, 2005; VanderWeele and Tchetgen Tchetgen, 2016 (accepted)). Here 6 

we will deal with the first problem by changing the definition of the direct and indirect effects to 7 

their interventional analogues (i.e., IDE and IIE) (Lin et al., 2016; VanderWeele and Tchetgen 8 

Tchetgen, 2016 (accepted)) wherein the mediator for each exposed individual is not set to its 9 

level in the absence of exposure but rather to a value randomly chosen from the distribution of 10 

what would be observed if everyone had been unexposed. This slightly altered definition allows 11 

for identification of the effects of interest, as has been done in prior literature for binary and 12 

continuous outcomes at the end of follow-up (Lin et al., 2016; VanderWeele and Tchetgen 13 

Tchetgen, 2016 (accepted)). We will describe the definition of IDE and IIE in section 2.6. 14 

A second complication that arises in the survival setting is that due to death before end of 15 

follow-up the mediator trajectory under alternative settings of the exposure may be undefined. 16 

More specifically, the definition of NDE and NIE can be undefined for individuals when the 17 

exposure benefits the survival status at time T-1, not through the mediators, which can be 18 

expressed by following two equations jointly: 19 

S(T − 1)a(1:T−1),M(1:T−1)a(1:T−1)∗
= 1        (Equation 1) 20 

S(T − 1)a(1:T−1)∗,M(1:T−1)a(1:T−1)∗
= 0)       (Equation 2).  21 

 22 

Based on Equation 2, M(1:T)a(1:T)* is undefined. Consequently, the mediation parameter Φ(a(1:T), 23 

a(1:T)*) is also undefined. In addition, NDE and NIE, which are both defined by Φ(a(1:T), 24 
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a(1:T)*), are also undefined. Further discussion is provided in Appendix 5 in the Online 1 

Supplement. 2 

 3 

2.4 An alternative definition of the mediation parameter that is well-defined 4 

for a survival outcome with time-varying mediators  5 

One way to address the undefined NDE and NIE is further altering the definition of the 6 

mediation parameter (Definition 5) (Zheng and van der Laan, 2012) so that the effects are always 7 

defined. We do so using the following notation. We define M(t)** and S(t)** sequentially. When 8 

time = 1, M(1)** is defined as M(1)a(1)* and S(1)** as S(1)a(1), M(1)*. When time = 2, M(2)** is 9 

defined as M(2)a(1:2)*,M(1)**,S(1)**, and S(2)** as S(2)a(1:2),M(1:2)**,S(1)**. We continue this definition 10 

process iteratively. For time = t, M(t)** and S(t)** are defined below. 11 

M(t)** ≡ M(t)a(1:t)*,M(1:t-1)**,S(1:t-1)**      (Definition 2-1) 12 

 S(t)** ≡ S(t)a(1:t), M(1:t)**,S(1:t-1)**       (Definition 2-2). 13 

 14 

Since M(t) is undefined when S(t-1) = 0, under the counterfactual model, M(t)s(t-1)=0 is also 15 

undefined. Consequently, S(t)m(t),s(t-1)=1 is undefined when m(t) is undefined. Since S(t) is always 16 

equal to zero when S(t-1) = 0, S(t)m(t),s(t-1)=0 is always equal to zero even when m(t) is undefined.  17 

We saw in the previous section that, by Equation 2 and Consistency Assumptions 5 and 6, 18 

M(t)a(1:t)* is undefined; in words, under the hypothetical intervention defining the counterfactual 19 

corresponding to the traditional mediation parameter (Definition 1-5), the mediator under that 20 

intervention can be undefined at time t for a subject still surviving at t under that intervention. In 21 

contrast to M(t)a(1:t)*, the alternative M(t)** as we have just defined above is undefined if and 22 

only if S(t-1)** = 0; in words, under the hypothetical intervention defining our alternative 23 

counterfactual, the mediator under that intervention can only be undefined at time t if a subject 24 
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has failed by t. Therefore, S(t)** is still defined even when M(t)** is undefined since in that 1 

condition, S(t-1)** = 0, leading to S(t)** = 0; in words, regardless of the intervention under 2 

consideration, if a subject has failed by time t-1, she/he has failed by time t. 3 

By the above, we define the alternative mediation parameter (Φ(a(1:T), a(1:T)*)), NDE, and 4 

NIE as follows: 5 

Φ(a(1:T), a(1:T)*) ≡ E[S(T)**]       (Definition 3-1) 6 

NDE ≡ Φ(a(1:T), a(1:T)*) - Φ(a(1:T)*, a(1:T)*)    (Definition 3-2) 7 

NIE ≡ Φ(a(1:T), a(1:T)) - Φ(a(1:T), a(1:T)*).     (Definition 3-3) 8 

 9 

Thus at time 1, the natural direct and indirect effects are given explicitly as  10 

 11 

NDE(1) ≡ E[S(1)𝑎(1),M(1)a(1)∗
] - E[S(1)𝑎(1)∗,M(1)a(1)∗

]    (Definition 3-4) 12 

NIE(1) ≡ E[S(1)𝑎(1),M(1)a(1)
] - E[S(1)𝑎(1),M(1)a(1)∗

]    (Definition 3-5) 13 

 14 

and at time 2, the natural direct and indirect effects are given explicitly by  15 

NDE(2) ≡ E[ S(2)𝑎(1),M(1)a(1)∗,𝑆(1)a(1),M(1)a(1)∗
,𝑎(2), M(2)a(1)∗,M(1)a(1)∗,𝑆(1)𝑎(1),M(1)a(1)∗

,𝑎(2)∗
] - 16 

E[S(2)𝑎(1)∗,M(1)a(1)∗,𝑆(1)a(1)∗,M(1)a(1)∗
,𝑎(2)∗, M(2)a(1)∗,M(1)a(1)∗,𝑆(1)𝑎(1)∗,M(1)a(1)∗

,𝑎(2)∗
]  17 

(Definition 3-6) 18 

NIE(2) ≡ E[ S(2)𝑎(1),M(1)a(1),𝑆(1)a(1),M(1)a(1)
,𝑎(2), M(2)a(1),M(1)a(1),𝑆(1)𝑎(1),M(1)a(1)

,𝑎(2)
] - 19 

E[S(2)𝑎(1),M(1)a(1)∗,𝑆(1)a(1),M(1)a(1)∗
,𝑎(2), M(2)a(1)∗,M(1)a(1)∗,𝑆(1)𝑎(1),M(1)a(1)∗

,𝑎(2)∗
]  20 

(Definition 3-7). 21 

 22 
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2.5 Relation to path-specific effects  1 

The distinctions between these definitions and the traditional definitions can be illustrated 2 

by considering path-specific effects (Avin et al., 2005; VanderWeele and Tchetgen Tchetgen, 3 

2016 (accepted); Zheng and van der Laan, 2012). Under the traditional definition, an indirect 4 

effect consists of two groups of path-specific effects: first, the path of exposures affecting the 5 

mediators through earlier survival history, and second, the path of exposures affecting the 6 

mediators not through earlier survival history. Under our definition for the alternative mediation 7 

parameter (Definition 3-1), the indirect effect includes the second path-specific effect, and the 8 

first path-specific effect is included in the direct effect. Consider the simplest setting as an 9 

example: given T = 2, and V, A(2), L(1), and L(2) are all empty (Figure 2). According to 10 

traditional definition, NIE includes (a) A → M(2) → S(2), (b) A → M(1) → M(2) → S(2), (c) 11 

A → M(1) → S(1) → M(2) → S(2), (d) A → M(1) → S(1) → S(2), (e) A → M(1) → S(2), and (f) 12 

A→S(1)→M(2)→S(2); NDE includes (a)A→S(1)→S(2) and (b)A→S(2). From the eight possible 13 

path-specific effects, A→S(1)→M(2)→S(2) is traditionally included as part of NIE since M(2) is 14 

involved. Under our definition (Definition 3-1 to 3-3), A→S(1)→M(2)→S(2) is included in the 15 

direct effect since the exposure affects survival history (S(1)) first, not through the earlier 16 

mediator (M(1)). For the natural effects, the path (A→S(1)→M(2)→S(2)) can be measured by 17 

E[S(2)𝑎,M(1)a∗,𝑆(1)a,M(1)a∗ ,M(2)a∗,M(1)a∗,𝑆(1)𝑎,M(1)a∗
] - E[S(2)𝑎,M(1)a∗,𝑆(1)a,M(1)a∗ ,M(2)a∗,M(1)a∗,𝑆(1)𝑎∗,M(1)a∗

]. 18 

Now, when exposure affects survival status at time 1 beneficially (mathematically expressed as 19 

(S(1)a,M(1)a∗
,S(1)a*) = (1,0)), the quantity Φ(a,a*) (= E[S(2)𝑎,M(1)a∗,s(1)=1,M(2)a∗,M(1)a∗,𝑆(1)=0

]) is 20 

undefined, and consequently, the path, A→S(1)→M(2)→S(2), is undefined. On the other hand, 21 

when exposure has monotonically harmful effect on survival status at time 1 (mathematically 22 

expressed as (S(1)a,M(1)a∗
,S(1)a*) ∈ {(1,1), (0,0), (0,1)}), the path is always equal to zero (when 23 
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S(1)a,M(1)a∗
= 0, E[ S(2)𝑎,M(1)a∗,s(1)=0,M(2)a∗,M(1)a∗,𝑆(1)=0

] = 0 and Φ(a,a*) = 1 

E[S(2)𝑎,M(1)a∗,s(1)=0,M(2)a∗,M(1)a∗,𝑆(1)𝑎∗,M(1)a∗
] = 0; when S(1)a,M(1)a∗

= 1 and S(1)a* = 1, Φ(a,a*) are 2 

all equal to E[ S(2)𝑎,M(1)a∗,s(1)=1,M(2)a∗,M(1)a∗,𝑆(1)=1
]). In conclusion, the the traditional and 3 

alternative mediation parameters will coincide unless the tradition parameter is undefined in 4 

which case their difference is also of course undefined. Thus, the path-specific effect might be 5 

thought to be a reasonable alternative definition for the direct and indirect effects. 6 

 7 

2.6 Randomized interventional analogues for identification  8 

Following arguments of Avin et al., even the effects above cannot be identified by empirical 9 

data. We can, as prior literature, proceed by defining effects that correspond reasonably closely to 10 

natural direct and indirect effects, but that are still defined in the context of survival outcomes, 11 

and that also, as will be seen in the next section can be identified with data. We do so using the 12 

following notation, which is similar to Definitions 2-1 and 2-2. We define M(t)*, G(t)*, and S(t)* 13 

sequentially. When time = 1, M(1)* is defined as M(1)a(1)*, G(1)* as a random draw of M(1)*, 14 

and S(1)* as S(1)a(1), G(1)*.When time = 2, M(2)* is defined as M(2)a(1:2)*,G(1)*,S(1)*, G(2)* as a 15 

random draw of M(2)*, and S(2)* as S(2)a(1:2),G(1:2)*,S(1)*. We continue this definition process 16 

iteratively. For time = t, M(t)*, G(t)*, and S(t)* are defined below: 17 

M(t)* ≡ M(t)a(1:t)*,G(1:t-1)*,S(1:t-1)*       (Definition 4-1) 18 

G(t)* ≡ a random draw of the distribution of M(t)*    (Definition 4-2) 19 

S(t)* ≡ S(t)a(1:t), G(1:t)*,S(1:t-1)*      (Definition 4-3). 20 

 21 

Similar to the argument for S(t)**, S(t) is also always well-defined and equal to zero when M(t)* 22 

is undefined.  23 
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By the above, we define the alternative mediation parameter, Ψ(a(1:T), a(1:T)*), as well as 1 

IDE and IIE as following: 2 

Ψ(a(1:T) = E[S(T)*]       (Definition 5-1) 3 

IDE = Ψ(a(1:T), a(1:T)*) -Ψ(a(1:T)*, a(1:T)*)     (Definition 5-2) 4 

IIE = Ψ(a(1:T), a(1:T)) - Ψ(a(1:T), a(1:T)*).     (Definition 5-3) 5 

 6 

Thus at time 1, the interventional direct and indirect effects are given explicitly as  7 

IDE(1) = E[S(1)𝑎(1),G(1)a(1)∗
] - E[S(1)𝑎(1)∗,G(1)a(1)∗

]    (Definition 5-4) 8 

IIE(1) = E[S(1)𝑎(1),G(1)a(1)
] - E[S(1)𝑎(1),G(1)a(1)∗

]    (Definition 5-5) 9 

 10 

and at time 2, the interventional direct and indirect effects are given explicitly by  11 

 12 

IDE(2) = E[ S(2)𝑎(1),G(1)a(1)∗,𝑆(1)a(1),G(1)a(1)∗
,𝑎(2), G(2)a(1)∗,G(1)a(1)∗,𝑆(1)𝑎(1),G(1)a(1)∗

,𝑎(2)∗
] - 13 

E[S(2)𝑎(1)∗,G(1)a(1)∗,𝑆(1)a(1)∗,G(1)a(1)∗
,𝑎(2)∗, G(2)a(1)∗,G(1)a(1)∗,𝑆(1)𝑎(1)∗,G(1)a(1)∗

,𝑎(2)∗
]    14 

(Definition 5-6) 15 

IIE(2) = E[ S(2)𝑎(1),G(1)a(1),𝑆(1)a(1),G(1)a(1)
,𝑎(2), G(2)a(1),G(1)a(1),𝑆(1)𝑎(1),G(1)a(1)

,𝑎(2)
] - 16 

E[S(2)𝑎(1),G(1)a(1)∗,𝑆(1)a(1),G(1)a(1)∗
,𝑎(2), G(2)a(1)∗,G(1)a(1)∗,𝑆(1)𝑎(1),G(1)a(1)∗

,𝑎(2)∗
].    17 

(Definition 5-7) 18 

 19 

3. Identification and estimation of survival mediational g-formula 20 

 For identifying the mediation parameter, Ψ(a(1:T), a(1:T)*), we can make the following 21 

four, sequential no unmeasured confounding assumptions for t = 1, 2, ..., T: 22 
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1. S(T)a(1:t),m(1:t),s(1:t-1)=1,G(t+1:T)*,S(t:T-1)*⊥A(t)|v,A(1:t-1)=a(1:t-1),M(1:t-1)=m(1:t-1),L(1:t-1),S(1:t-1 

1)*=1, G(1:t)*=m(1:t) (no unmeasured exposure-outcome confounding conditional on the past 2 

covariates, while ⊥ indicates independence)     (Assumption 1) 3 

2. S(T)a(1:t), m(1:t), s(1:t-1)=1,G(t+1:T)*,S(t:T-1)*⊥M(t)|v,A(1:t)=a(1:t),M(1:t-1)=m(1:t-1),L(1:t-1),S(1:t-4 

1)*=1, G(1:t)*=m(1:t)(no unmeasured mediator-outcome confounding conditional on the past 5 

covariates)          (Assumption 2) 6 

3. M(t)a(1:t)*,m(1:t-1),s(1:t-1)=1⊥S(t-1)|v,A(1:t-1),M(1:t-1),L(1:t-1),S(1:t-2)=1 (no unmeasured 7 

mediator-previous survival confounding conditional on the past covariates) (Assumption 3) 8 

4. M(t)a(1:t)*,m(1:t-1),s(1:t-1)=1⊥A(t)|A(1:t-1),M(1:t-1),L(1:t-1),S(1:t-1)=1,v (no unmeasured exposure-9 

mediator confounding conditional on the past covariates)   (Assumption 4) 10 

 11 

 It is worth noting that a common cause of survival status at different time points is 12 

allowed by assumption 3. We illustrate this in Appendix 4 of the Online Supplement. Under the 13 

four assumptions, the mediation parameter Ψ(a(1:T), a(1:T)*) can be identified as 14 

 Ψ(a(1:T), a(1:T)*) = Q(a(1:T), a(1:T)*)     (Equation 3), 15 

where  16 

Q(a(1:T), a(1:T)*) = ∑ ∑ ∏ E[S(t)|a(1: t), m(1: t), l(1: t), S(t − 1) = 1, v]T
t=1 ×l(1:T)v,m(1:T)17 

∏ P(l(t)|a(1: t), m(1: t), l(1: t − 1), S(t − 1) = 1, v)T−1
t=1 ×18 

∑ ∏ Pr(m(t)|a∗(1: t), m(1: t − 1), l′(1: t − 1), S(1: t − 1) = 1, v) ×T
t=1l′(1:T−1)19 

Pr(l′(t − 1)|a∗(1: t − 1), m(1: t − 1), l′(1: t − 2), S(1: t − 2) = 1, v) Pr (v) (Equation 4) 20 

 21 

The Q(a(1:T), a(1:T)*) can also be expressed by the counting process notation, N(t), and the 22 

continuous time-varying mediators and confounders as follows. 23 

Q(a(1:T), a(1:T)*) 24 
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=∫ ∏ E[1 − N(t)|a(1: t), m(1: t), l(1: t), N(t − 1) = 0, v]T
t=1 ×

m(1:T),l(1:T)
1 

∏ 𝑓𝐿(𝑡)(l(t)|a(1: t), m(1: t), l(1: t − 1), N(t − 1) = 0, v)T−1
t=1 dl(1: T) ×2 

∫ ∏ 𝑓𝑀(𝑡)(m(t)|a∗(1: t), m(1: t − 1), l′(1: t − 1), N(1: t − 1) = 0, v) ×T
t=1l′(1:T−1)

3 

𝑓𝐿′(𝑡−1)(l′(t − 1)|a∗(1: t − 1), m(1: t − 1), l′(1: t − 2), N(1: t − 2) = 0, v)dm(1: T)dl′(1: T − 1) 4 

(Equation 5) 5 

 6 

 The proof is given in Appendices 1 and 3 of the Online Supplement. We refer to this final 7 

expression Q(a(1:T), a(1:T)*) as the survival mediational g-formula (sMGF, Equations 4 and 5). 8 

Consequently, the IDE and IIE can be identified non-parametrically by the following equations: 9 

 10 

IDE = Q(a(1:T), a(1:T)*) - Q(a(1:T)*, a(1:T)*)     (Equation 6) 11 

IIE = Q(a(1:T), a(1:T)) - Q(a(1:T), a(1:T)*)       (Equation 7) 12 

 13 

 Intuitively, the sMGF (Equations 1 and 2) can be understood as a weighted average. Each 14 

weighed term  15 

(∑ ∑ ∏ E[S(t)|a(1: t), m(1: t), l(1: t), S(t − 1) = 1, v]T
t=1 ×l(1:T)m(1:T)16 

∏ P(l(t)|a(1: t), m(1: t), l(1: t − 1), S(t − 1) = 1, v)T−1
t=1      (Formula 1))  17 

 18 

is the g-formula for the probability of survival by time T had all subjects undergone time-varying 19 

intervention set A(1:t) to a(1:t)and set M(1:t) to some m(1:t) through all surviving times t=1,…T 20 

without censoring (Hernán, 2004; Robins, 1986; Taubman et al., 2009). The weights for each 21 

m(1:t) in the previous sum are 22 
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∑ ∏ Pr(m(t)|a∗(1: t), m(1: t − 1), l′(1: t − 1), S(1: t − 1) = 1, v)
T

t=1l′(1:T−1)
1 

× Pr(l′(t − 1)|a∗(1: t − 1), m(1: t − 1), l′(1: t − 2), S(1: t − 2) = 1, v) 2 

 (Formula 2), 3 

 4 

which, given our assumptions, identifies the joint distribution of the counterfactual mediators, 5 

M(1:T)*a(1:T)*,for survivors; i.e. those with S(1:T-1)* . =1. 6 

 When the set of mediators is empty, the survival mediational g-formula reduces to the 7 

following form: 8 

E[S(T)a(1:T)]= 9 

∑ ∏ E[S(t)|a(1: t), l(1: t), S(t − 1) = 1, v]T
t=1 ×l(1:T)10 

∏ P(l(t)|a(1: t), l(1: t − 1), S(t − 1) = 1, v)T−1
t=1       (Equation 8) 11 

 12 

which is the standard g-formula associated with an intervention a(1:T). Thus we can conclude 13 

that the survival mediational g-formula, similar to the mediational g-formula (VanderWeele and 14 

Tchetgen Tchetgen, 2016 (accepted)), is a generalized form of the g-formula that applies when 15 

assessing mediation is of interest.  16 

 When S(T-1) is always equal to one, this expression reduces to  17 

∑ ∑ E[S(T)|a(1: T), m(1: T), l(1: T), v] × ∏ P(l(t)|a(1: t), m(1: t), l(1: t − 1), v)T−1
t=1l(1:T)m(1:T) ×18 

∑ ∏ Pr(m(t)|a∗(1: t), m(1: t − 1), l′(1: t − 1), v) ×T
t=1l′(1:T−1)19 

Pr(l′(t − 1)|a∗(1: t − 1), m(1: t − 1), l′(1: t − 2), v)    (Formula 3) 20 

 21 

 which is the mediational g-formula provided by VanderWeele and Tchetgen Tchetgen's 22 

work (VanderWeele and Tchetgen Tchetgen, 2016 (accepted)), given that the outcome of interest 23 
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(denoted as Y) is survival status at the end of follow up (S(T)).  1 

 If neither the confounders nor the exposure is time-varying (i.e. A(2:T) and L(1:T) are 2 

empty) (Figure 3), the survival mediational g-formula reduces to  3 

∑ ∏ E[S(t)|a, m(1: t), S(t − 1) = 1, v]
T

t=1m(1:T)
× Pr(m(t)|a∗, m(1: t − 1), S(t − 1) = 1, v) 4 

         (Formula 4) 5 

 6 

which is the identifying formula given by Zheng’s and van der Laan (equation 6 and equation 24) 7 

(Zheng and van der Laan, 2012). However, our survival mediational g-formula can still be used, 8 

unlike the approach of Zheng and van der Laan, even if the exposures and confounders are time-9 

varying. 10 

Furthermore, under the monotonicity assumption: 11 

S(t)a,m(1:t-1) ≤ S(t)a*,m(1:t-1) for all individuals where t = 1, 2, ..., T-1  (monotonicity 12 

assumption), 13 

 14 

the traditional definition of mediation parameter Φ(a(1:T), a(1:T)*) can be defined and identified 15 

by the following expression: 16 

∑ ∏ E[S(t)|a(1: t), m(1: t), S(t − 1) = 1, v]T
t=1m(1:T) ×17 

Pr(m(t)|a(1: t)∗, m(1: t − 1), S(t − 1) = 1, v)     (Formula 5) 18 

 19 

 The proof is provided in Appendix 2 of the Online Supplement. This expression is also a 20 

special case of the sMGF when both A(2:T) and L(1:T) are empty. In other words, given time-21 

varying confounders do not exist and exposures have monotonically harmful effect on survival, 22 

the alternative definitions of IDE and IIE are the same as the traditional definitions of NDE and 23 
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NIE, respectively, and under these assumptions the traditional definitions will always be defined 1 

(i.e., the difference between the traditional and alternative mediation parameters is equal to zero).  2 

 3 

4. Parametric approach for survival mediational g-formula 4 

We here describe a parametric approach to estimate the survival mediational g-formula 5 

functional and develop a corresponding SAS macro. Since the survival mediational g-formula is a 6 

generalized form of the g-formula, we create the algorithm and a macro for the survival 7 

mediational g-formula based on the framework of the g-formula macro 8 

(http://www.hsph.harvard.edu/causal) (Taubman et al., 2009). First, we specify parametric 9 

regression models for the distribution of the time-varying exposures, mediators, confounders, and 10 

survival variables. For each model, we include former covariates as the independent variables to 11 

try to eliminate confounding and to ensure that the four assumptions (mentioned in Section 3) 12 

hold. By fitting these models with data, maximum likelihood estimates for all parameters can be 13 

obtained. Finally, these estimates are substituted for the parameters in the survival mediational g-14 

formula, deriving consistent estimates for IDE and IIE based on Monte-Carlo simulation. 15 

The estimation algorithm is as follows:  16 

(1) Fit parametric models for: 17 

(1a) for t > 1, the joint density of the observed confounders, exposures, and mediators at t, 18 

given past covariate history and survival to t-1. 19 

(1b) for all t, the probability of surviving by t given past covariate history and survival to 20 

t-1. 21 

(2) Estimate the joint distribution of the counterfactual mediators, M(1:T)*, for survivors as 22 

identified by Equation 4. 23 

(2a) Set baseline (t = 1) covariates to the observed values for subject i. Recursively, for 24 
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each time t = 1, …, T and each subject i = 1, …, n: 1 

(2a.i) For t ≥ 1, generate time t confounders, exposure, and mediator based on the 2 

estimated model coefficients of (1a) and previously generated covariates 3 

under the time-varying exposure intervention a(1:t-1). 4 

(2a.ii) Assign time t exposure under the intervention a(1:T).   5 

(2b) For each t = 1, …, T, randomly permute the n values of the joint mediators assigned 6 

under intervention a(1:T) in (2a). For each t, save this permutation for use in (3) 7 

below (i.e., we obtain the random draw G(1:T)* of M(1:T)* amongst survivors in 8 

this step). 9 

(2c) Repeat (2a) replacing intervention a(1:T) with a(1:T)*.   10 

(2d) Repeat (2b) replacing intervention a(1:T) with a(1:T)* (i.e., we obtain the random 11 

draw G(1:T)* of M(1:T)* amongst survivors in this step). 12 

(3) Estimate Q(a(1:T), a(1:T)), Q(a(1:T)*, a(1:T)), Q(a(1:T), a(1:T)*) and Q(a(1:T)*, a(1:T)*) by 13 

repeating the following for each (a(1:T)1, a(1:T)2) = (a(1:T), a(1:T)) , (a(1:T), a(1:T)*), (a(1:T)*, 14 

a(1:T)), and (a(1:T)*, a(1:T)*): 15 

(3a) Recursively for each time t = 1,…, T and each subject i = 1, …, n: 16 

(3a.i) Repeat (2a.i) but replacing “time-varying exposure intervention a(1:T) through 17 

T-1’’ with the joint “time-varying exposure and mediator intervention 18 

(a(1:T)1,G(1: T)a(1:T)2,s(T−1)=1)’’. 19 

(3a.ii) Assign the time t mediator as the ith component of the permuted vector for 20 

time t from (2b) (if a(1: T)2 =a(1:T)) or (2d) (if a(1: T)2 = a(1:T)*). 21 

(3a.iii) Assign time t exposure under the intervention a(1: T)1. 22 

(3a.iv) Estimate the the probability of surviving by t given past covariate history and 23 

survival to t-1 given the generated history in (3.a.i) through (3.a.iii) based on 24 
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the estimated regression coefficients from (1b) 1 

(3b) For each of the i=1, …, n, generated histories, take the product of the time t-specific 2 

estimated probabilities in (3.a.iv) over all t=1,…T 3 

(3c) Estimate Q(a(1: T)1,a(1: T)2) as the mean over the n products in (3b).    4 

 5 

Estimates of the IDE and IIE are then calculated from the estimates of the four 6 

Q(a(1: T)1,a(1: T)2) in (3). 95% confidence intervals are calculated based on repeating the above 7 

algorithm in 500 bootstrap samples of the original n observations. This algorithm can be 8 

implemented with the mgformula macro, freely accessible with documentation at 9 

http://www.hsph.harvard.edu/causal/software/.  10 

 11 

5. Analysis of Framingham Heart Study data 12 

In this section, we apply the survival mediational g-formula to the Framingham Heart Study 13 

(FHS) dataset to investigate the causal mechanism of smoking on overall mortality mediated by 14 

CAD. FHS is a longitudinal cohort study beginning in Framingham, Massachusetts in 1948. The 15 

original cohort consisted of 5,209 participants between 30 and 62 years old without any symptom 16 

of cardiovascular disease (CVD) at baseline. All the participants underwent examinations at the 17 

beginning of the study and every two years during the follow up. For each examination, potential 18 

CVD risk factors including socio-demographic data, lifestyle characteristics, detailed medical 19 

history, physical examination data and blood samples were collected. Further details on the 20 

design of FHS are available elsewhere (Dawber, Meadors and Moore Jr, 1951; Kannel et al., 21 

1961).  22 

 Exam 3 is specified as the first exam and exams 1 and 2 as pre-baseline covariates to 23 

allow lag predictive models. As the analysis is intended only as an illustration we make some 24 

http://biostats.bepress.com/harvardbiostat/paper203

http://www.hsph.harvard.edu/causal/software/


  

21 
 

simplifications in the analysis. We focus on only ten year follow up (i.e. exam 3 to exam 7; the 1 

total exam number T = 5). Three exclusion criteria are listed below: (1) no record at baseline on 2 

weight, height, smoking status, former smoking history, systolic blood pressure (SBP), or total 3 

cholesterol level; (2) diagnosis of diabetes, cancer, or CVD at baseline; and (3) value for smoking 4 

status or BMI missing more than once. After these exclusions, 3,116 participants are eligible for 5 

analysis. For simplicity, we now refer to the original FHS exams 3,..., 7 as exams 1,..., 5. 6 

 The smoking status at all five exams, measured as self-reported average number of 7 

cigarettes smoked per day, are exposures of interest (A(1:5)); mortality at the end of follow up is 8 

the outcome of interest (S(5)); and the CAD status at all exams are the mediators of interest 9 

(M(1:5)). For missing smoking status at one time point, we carry forward the last observed 10 

smoking status for one exam period only. We considered "smoking 30 cigarettes per day" and "no 11 

smoking" at all exams as two hypothetical intervention statuses, A(1:T) = a(1:T) and A(1:T) = 12 

a*(1:T). Time-varying covariates L(1:T) include the exam number, the systolic blood pressure 13 

(mm/hg), body mass index (kg/mm), and the usage of antihypertensive drugs. Baseline covariates 14 

V include gender and age (years).       15 

 The parametric g-formula is used to estimate the total effect of smoking 30 cigarettes per 16 

day (v.s. no smoking) on mortality at exam 5, by the g-formula SAS macro. The survival 17 

mediational g-formula is applied to conduct mediation analysis with time-varying exposures, 18 

mediators, and confounders by the mGFORMULA SAS macro. For conducting the survival 19 

mediational g-formula, we specify model for the distribution of time-varying exposures, 20 

mediators, confounders, and survival variables at each time point. We use current covariates and 21 

covariates at one period back (one period lagged model) as the predictors. Specifically, for t = 1, 22 

2, ..., 5, we regress S(t) on A(t), M(t), L(t), A(t-1), M(t-1), and L(t-1); regress L(t) on A(t), M(t), 23 

A(t-1), M(t-1), and L(t-1); regress M(t) on A(t), A(t-1), M(t-1), and L(t-1); and regress A(t) on 24 
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A(t-1), M(t-1), and L(t-1). All analyses are conducted using SAS 9.4 (Cary, NC).  1 

 The mortalities among the original group, a hypothetical group if everyone did not smoke 2 

for 10 years, and a hypothetical group if everyone smoked 30 cigarettes per day for 10 years, are 3 

4.52%, 3.37%, and 7.87 %, respectively (Table 1). The risk ratio (RR) is 2.34 (95 % CI = (1.44, 4 

3.70)), which is close to the result calculated by mGFORMULA macro (RR = 2.30; 95 % CI = 5 

(1.36, 2.88)). On the additive scale, smoking increases mortality by 3.96% directly not through 6 

changing CAD, and by 0.34 % through changing CAD. The proportion of the total effect 7 

explained by the mediation of CAD is 7.91 % (95 % CI= (1.36, 19.32)) (Table 2). 8 

 9 

6. Discussion 10 

 This is the first paper providing a general framework for causal mediation analysis with a 11 

survival outcome and with time-varying exposures, mediators, and confounders. We provided 12 

identification results for the interventional direct and indirect effects and the required 13 

assumptions, and used a parametric approach for the point and interval estimation. Based on the 14 

g-formula macro, we have developed a feasible algorithm and a mGFORMULA SAS macro (Lin 15 

et al., 2016; VanderWeele and Tchetgen Tchetgen, 2016 (accepted)). Similar to the g-formula 16 

macro, we use Monte-Carlo simulation and bootstrapping for point and interval estimation, 17 

respectively. Like other simulation-based methods (Imai, Keele and Tingley, 2010), our approach 18 

has the advantage of allowing for very flexible models.  19 

 The survival mediational g-formula is currently the only method for investigating the 20 

mechanisms of an effect on a survival outcome with time-varying exposures, mediators, and 21 

confounders. Under traditional techniques for causal mediation analysis with survival outcome, 22 

only one mediator is allowed, and this mediator should occur immediately after the exposure to 23 

ensure that the identification assumption holds. Thus traditional techniques do not adequately 24 
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capture the indirect effect in settings in which the mediators vary over time (VanderWeele, 2015; 1 

VanderWeele, 2009b). When both the exposure and confounders are fixed, our formula also 2 

reduces to Zheng’s and van der Laan’s formula (Zheng and van der Laan, 2012), but our formula 3 

can be used more generally when, in addition to the mediators, the exposures and confounders 4 

also vary over time. 5 

 Several limitations of this study should be noted. First, our path-specific definition is 6 

different from the traditional definition for direct and indirect effect. This is inevitable for causal 7 

mediation analysis with time-varying mediators because the NDE/NIE (as well as IDE/IIE) 8 

cannot be defined. Because the difference of traditional and alternative definitions is undefined or 9 

zero, it may be considered reasonable to use this alternative definition. Second, the outcome only 10 

focuses on survival probability at the end of follow up. Extending the outcome model to different 11 

survival models such as the Cox proportional hazard model or the accelerated failure time model 12 

could be developed in future research. Third, non-ignorable drop-out has not been adjusted for 13 

here. In the illustration, we restricted our follow up to ten years to partially address this selection 14 

bias. The relatively low proportion of loss to follow up (<20%) perhaps partially mitigates this 15 

problem. Our method is also sensitive to the violation of model misspecification, which is the 16 

trade-off in obtaining efficient estimates with a parametric approach. However, in our approach, 17 

the allowance for using very flexible models (including splines) partially mitigates this issue. 18 

Finally, the analysis is subject to potential violation of the confounding assumptions. Future 19 

research could develop sensitivity analysis techniques for violations of these assumptions. 20 

 The survival mediational g-formula serves as a powerful and useful tool for mediation 21 

analysis with longitudinal data and survival outcomes. When the outcome of interest is survival 22 

variable, researchers can apply our method to disentangle the complicated causal mechanisms 23 

arising from time-varying mediators, exposures, and confounders. 24 
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Table 1. Estimates of the overall effect of smoking 30 cigarettes per day for 10 year (compared 1 

with no smoking) on mortality. 2 

Intervention Mortality 

(%) 

Difference 95% CI Ratio 95% CI 

No intervention 4.52 1.15 0.58, 2.09 1.34 1.16, 1.69 

No smoking  3.37 Ref.  Ref.  

30 cigarettes/day 7.87 4.90 1.59, 8.18 2.34 1.44, 3.70 

CI: confident interval; 3 

 4 

 5 

 6 
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Table 2.Mediation analysis for the effect of smoking 30 cigarettes per day for 10 years 1 

(compared with no smoking) on overall mortality, mediated by cardiovascular disease. 2 

 Estimate 95% CI 

Additive scale   

 Total effect 4.3 1.37, 6.30 

 Direct effect 3.96 1.22, 6.06 

 Indirect effect 0.34 0.05, 0.96 

Multiplicative scale   

 Total effect 2.30 1.36, 2.88 

 Direct effect 2.20 1.33, 2.70 

 Indirect effect 1.05 1.01, 1.12 

Proportion mediated (%) 7.91 1.36, 19.32 

CI: confident interval; 3 
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Figure 1. Time-varying mediation with variables of A(t), M(t), L(t), and S(t), for t = 1 to T. 1 
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Figure 2. Simple model for survival mediation analysis with fixed exposure and time-varying 1 

mediators with 2 time points. 2 

 3 
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Figure 3. Simple model for survival mediation analysis with fixed exposure and time-varying 1 

mediators. 2 
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