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Abstract

In randomized clinical trials with baseline variables that are prognostic for the primary out-

come, there is potential to improve precision and reduce sample size by appropriately adjusting

for these variables. A major challenge is that there are multiple statistical methods to adjust

for baseline variables, but little guidance on which is best to use in a given context. The choice

of method can have important consequences. For example, one commonly used method leads to

uninterpretable estimates if there is any treatment effect heterogeneity, which would jeopardize

the validity of trial conclusions. We give practical guidance on how to avoid this problem, while

retaining the advantages of covariate adjustment. This can be achieved by using simple (but less

well-known) standardization methods from the recent statistics literature. We discuss these meth-

ods and give software in R and Stata implementing them. A data example from a recent stroke

trial is used to illustrate these methods.

Keywords: Covariate Adjustment, Post-Stratification
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1 Introduction

In a recent regulatory guideline on the analysis of clinical trials, the European Medicines Agency

states “in case of a strong or moderate association between a baseline covariate(s) and the primary

outcome measure, adjustment for such covariate(s) generally improves the efficiency of the analysis

and avoids conditional bias from chance covariate imbalance.”1 Such covariate adjustment is not

uncommon; Pocock et al.,2 who surveyed 50 clinical trial reports from major medical journals,

found that 36 used some form of adjustment for baseline variables. However, they concluded that

“the statistical properties of covariate-adjustment are quite complex and often poorly understood,

and there remains confusion as to what is an appropriate statistical strategy.” A more recent

survey reached a similar conclusion.3 We attempt to resolve some of this confusion by addressing

two important misconceptions about covariate adjustment for binary outcomes. We then make

practical recommendations.

The first misconception involves the logistic coefficient estimator, defined as the estimated

coefficient on the treatment term in a main effects logistic regression of the outcome on treatment

and baseline variables. This is a commonly used method for covariate adjustment when outcomes

are binary.4–8 An important and underappreciated vulnerability of the logistic coefficient estimator

is that it is uninterpretable unless one assumes the conditional treatment effect (on the log odds

scale) is precisely the same value for every possible stratum of the covariates adjusted for. There

is no a priori reason to believe that a treatment would lead to exactly the same benefit for every

type of patient (regardless of, e.g., age, disease severity, etc.). The state of knowledge about an

experimental treatment is typically quite limited before starting a trial (hence the reason for running

the trial), making such an assumption hard to justify. Also, it is difficult to verify this assumption

holds when the covariates include continuous or categorical variables with many levels, since then

there are few or no participants in some strata. The impact is that the logistic coefficient estimator

is uninterpretable without making the strong assumption that the treatment has the same effect

(on the log odds scale) for every stratum of covariates. In contrast, there are covariate adjusted

estimators that don’t have this drawback, described below.

A second misconception about binary outcomes is that covariate adjustment involving logistic

regression models cannot be used to estimate the marginal risk difference or relative risk. Austin et
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al.3 state “For binary outcomes, risk differences and relative risks (assuming a uniform relative risk)

are collapsible estimators. However, their use precludes the use of regression adjustment”. This

claim is correct in so far as “regression adjustment” refers only to the logistic coefficient estimator,

which is the setting of their paper. However, logistic regression models can (and we argue should)

be used to construct covariate adjusted estimators of the marginal risk difference or relative risk,

by using the standardized estimator of Moore and van der Laan9 as described below.

Our main practical recommendation is that in trials with binary outcomes and prognostic

baseline variables, the standardized estimator of the marginal risk difference or relative risk is a good

method to use for covariate adjustment. Unlike the logistic coefficient estimator, the standardized

estimator is consistent without requiring any parametric model assumptions, so is not vulnerable

to being uninterpretable as described above. The advantage of this covariate adjusted estimator

compared to the unadjusted estimator (which ignores baseline variables) is that it can have greater

precision.

2 Description of Estimators

We consider trials where the primary outcome Y is binary, representing success (Y = 1) or failure

(Y = 0). For simplicity, the trial is assumed to have two study arms: treatment and control.

Study arm assignment uses simple or block randomization independent of the baseline variables.

The study arm A is an indicator of being assigned to the treatment arm (A = 1) or control arm

(A = 0). We adhere to the intention-to-treat principle, that is, we consider the effect of assignment

to the treatment or control arm. The vector of baseline variables, denoted by W , can be any mix

of continuous, binary, ordinal, and categorical variables. The number of baseline variables should

be small relative to the sample size, as discussed in Section 6.

The average treatment effect involves two proportions: the proportion of the target population

who would have a successful outcome if all were assigned to treatment and the same quantity if all

were assigned to control. The average treatment effect is a contrast between these two population

proportions, such as their difference (called the risk difference), their ratio (called the relative risk)

or their log odds ratio. The unadjusted estimator of the average treatment effect involves replacing

4
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the population proportions by sample proportions using data from the completed trial.

When discussing estimators that involve a logistic regression model, we focus on the commonly

used case where this model includes an intercept and main terms for study arm and baseline

variables (and no interaction terms). We discuss the implications of including interactions in

Section 6.

No assumptions are made on the relationships among Y , A, W , except that study arm A is

assigned independent of the baseline variables W (which holds by randomization). In particular,

we do not assume that a logistic regression model correctly captures the relationships among these

variables. We assume each participant i in the trial contributes data vector (Wi, Ai, Yi), which is

an independent, identically distributed draw from the unknown, joint distribution on (W,A, Y ).

2.1 Logistic Coefficient Estimator

The logistic coefficient estimator is defined as the fitted coefficient on A from a logistic regression

model with intercept and main terms for A and each component of W . It estimates the conditional

treatment effect within strata of baseline variables, on the log odds scale (under the assumption

that the logistic regression model is correct). The logistic coefficient estimator and the unadjusted

estimator do not estimate the same quantity. The former estimates a conditional effect, while

the latter estimates an unconditional (also called marginal, or average) effect. Conditional and

unconditional effects can substantially differ, both in value and in interpretation, as emphasized by

Freedman in the article “Randomization Does Not Justify Logistic Regression”.10

Which type of effect is preferred depends on the study objective. Diggle et al.11 recommend

marginal effects when the aim of the study is to make population based inference (which is our

focus) and the conditional effect when interest lies in modeling participant-specific effects. Knowing

the true conditional effect would give a more fine-grained understanding of treatment effects and

heterogeneity, compared to the marginal effect. But, estimating the conditional effect typically

requires strong model assumptions. For example, the logistic coefficient estimator requires the

logistic regression model to be correctly specified. A logistic regression model is misspecified when

it does not correctly capture the relationship between the outcome and the treatment and baseline

variables. If there is any treatment effect heterogeneity, i.e., if the conditional treatment effect varies

5
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depending on the baseline variables, then the conditional treatment effect cannot be represented

by a single number. In such a case, the logistic regression model with main terms is guaranteed to

be misspecified, and therefore the logistic coefficient estimator is uninterpretable.

Figure 1 illustrates such a case of treatment effect heterogeneity, where W is a single, ordinal

variable, representing a disease severity score at baseline. Let logit(x) = log(x/(1− x)). The first

plot in Figure 1 depicts logit(P (Y = 1|A = 0,W )), i.e., the log odds of the probability of obtaining

a successful outcome when assigned to control, within strata of the baseline variable W . The second

plot shows the analogous function under assignment to treatment, logit(P (Y = 1|A = 1,W )). The

third plot shows the conditional treatment effect, i.e., the difference between the curves in the

second and first plots: logit(P (Y = 1|A = 1,W )) − logit(P (Y = 1|A = 0,W )) . The logistic

coefficient estimator is only interpretable if the curve in the third plot is a horizontal line. The

main terms logistic regression model not only assumes the conditional effect is constant, but also

assumes that the conditional probabilities shown in the first two plots in Figure 1 are constant.

(The curves in Figure 1 are based on smoothing the data from our trial example in Section 3,

using only National Institutes of Health Stroke Scale as the baseline variable W , as described in

Section A.4 of the online supplement.)

Even if the conditional effect could be represented by a single number, there can be several

additional reasons for model mispecification, such as missing interaction terms between the baseline

variables or using the wrong form for the baseline variables, e.g. not log transforming when a log

transformation is appropriate. In the case of continuous baseline variables there are infinitely

many possible transformations to choose from. This makes it hard to determine the appropriate

transformation in order to establish a linear relationship to the log odds of the probability of

success. In confirmatory randomized trials, the model and variables used for covariate adjustment

need to be prespecified in the study protocol, and hence can only be based on prior information

such as scientific knowledge and earlier phase trial data.1 This makes evaluating the correctness of

the model difficult, with goodness of fit tests often having low power. As a consequence, the final

logistic regression model is expected to be at least somewhat misspecified.

6
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Figure 1: An example of a conditional effect that depends on the value of the baseline variables
and cannot be represented using a single number. The formulas for the quantities on the vertical
axes are given in the main text.
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2.2 Standardized Estimator

The standardized estimator of Moore and van der Laan9 estimates the average treatment effect (the

same effect estimated by the unadjusted estimator) defined as a contrast between the proportion of

the target population who would have a successful outcome under treatment versus control. The

standardized estimator first estimates each of these proportions; then any contrast such as the risk

difference, relative risk, or log odds ratio can be estimated by plugging in these two proportions.

For the risk difference, the standardized estimator is a special case of the method of Scharfstein et

al.12 applied to randomized trials.

To estimate the above proportions using the standardized estimator, one first fits a main effects

logistic regression model. Using the model fit, the predicted probability of a successful outcome

under treatment is calculated for each participant i (regardless of actual study arm) by setting

the study arm variable to A = 1 and using that participant’s baseline variables Wi. Similarly, a

predicted probability under control is calculated for every participant setting A = 0. This gives two

predictions for each participant in the dataset, one corresponding to assignment to treatment and

the other to control. The final estimator for the population proportion who would have a successful

outcome under assignment to treatment (control) is the average of the predictions with the study

arm variable set to treatment (control). We refer to these estimated proportions as estimated

success probabilities. Intuitively, the purpose of the above steps is to correct for chance imbalances

in baseline variables between treatment and control arms, e.g., more high disease severity patients

assigned to one of the arms by chance.

Both the standardized and the logistic coefficient estimators require specifying a logistic regres-

sion model. The standardized estimator is a consistent estimator of the average treatment effect

even if the model is arbitrarily misspecified, as proved by Moore and van der Laan.9 Hence, the

standardized estimator, unlike the logistic coefficient estimator, does not rely on any regression

model assumptions in order to be consistent.

Table 1 summarizes the key properties of the unadjusted, standardized, and logistic coefficient

estimators. A more technical description of the estimators is given in the online supplement accom-

panied by R and Stata code for computing the standardized estimator along with a corresponding

confidence interval for the marginal risk difference. Precision gains from covariate adjustment

8
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Estimator Effect It Estimates
Requires Regression
Model Assumptions?

Adjusts for
Baseline Variables?

Unadjusted Marginal Effect No No
Standardized Marginal Effect No Yes
Logistic Coefficient Conditional Effect Yes Yes

Table 1: Properties of the unadjusted, standardized, and logistic coefficient estimators.

translate into shorter confidence intervals compared to the unadjusted estimator (asymptotically).

3 CLEAR III Trial Application

The Clot Lysis Evaluation of Accelerated Resolution of Intraventricular Hemorrhage (CLEAR III)

trial is a completed phase III randomized trial comparing removal of Intraventricular hemorrhage

(IVH) using a low dose of recombinant tissue plasminogen activator versus standard of care. The

primary outcome is a measure of disability evaluated using a dichotomized modified Rankin scale

(mRS) (≤ 3 vs > 3) at 180 days. The study protocol has been described in detail elsewhere.13 We

use data from the 491 uncensored participants, out of 500 enrolled.

Phase II data and prior scientific knowledge indicated that baseline (pre-randomization) age,

intracerebral hemorrhage volume, IVH volume, Glasgow coma scale, and the National Institutes

of Health Stroke Scale (NIHSS) are prognostic baseline variables; we let W denote these variables,

which are used by the adjusted estimators. Using the CLEAR III trial data, we calculated the

approximate prognostic value of these variables using a modified R2 computation14 described in

our online supplement; the result was R2 = 0.35. This indicates that the baseline variables are

moderately to strongly prognostic in the CLEAR III trial. This information would not be available

when planning a trial and was not used to select the baseline variables. It is presented to show

that efficiency gains may be expected using estimators that adjust for baseline variables.

The logistic coefficient estimator is only interpretable if the conditional treatment effect is the

same for all combinations of baseline age, intracerebral hemorrhage volume, IVH volume, Glascow

coma scale, and NIHSS. In contrast, the unadjusted estimator and the standardized estimators do

not require any such assumption to be consistent for the average treatment effect.

Table 2 shows point estimates and 95% confidence intervals based on each of the three esti-

9
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Outcome Type:
Modified Rankin Score ≤ 3 Survival at 180 days

Estimator:
Unadjusted 0.03 (-0.07, 0.10) 0.11 (0.03,0.19)
Standardized 0.01 (-0.07, 0.08) 0.10 (0.03, 0.17)
Logistic Coefficient 0.05 (-0.45, 0.55) 0.68 (0.19, 1.17)

Table 2: Re-analysis of the CLEAR III trial using the unadjusted, standardized, and logistic
coefficient estimators. The first two estimate the marginal risk difference, and the third aims to
estimate the conditional log odds ratio. Each cell gives the corresponding point estimate followed
by the 95% confidence interval. The middle column corresponds to the primary outcome being
the indicator of 180 day modified Rankin score ≤ 3; the right column corresponds to the primary
outcome being the indicator of 180 day survival.

mators, applied to the CLEAR III data set of 491 participants. The effects are estimated for both

the primary mRS outcome and survival at 180 days (as a binary indicator), the latter being a sec-

ondary outcome. The unadjusted and standardized estimators target the marginal risk difference.

The logistic regression estimator aims to estimate a conditional effect within strata of baseline

variables on the log odds scale. Here and in our simulations, the 95% confidence interval based on

each estimator is constructed using the nonparametric bootstrap with 1000 replicated data sets, as

implemented by the R and STATA code in the online supplement.

For each estimator, the 95% confidence interval excludes 0 when the outcome is 180 day sur-

vival; the opposite holds when the outcome is 180 day mRS. The unadjusted estimator and the

standardized estimators are similar. The confidence interval for the standardized estimator is 10%

narrower for mRS and 17% narrower for 180 day survival, compared to the unadjusted estimator.

The logistic coefficient estimator has wider confidence intervals than the other estimators, for

each outcome; that remains true even if the unadjusted and standardized estimators are transformed

to the log odds scale. However, it is difficult to make a direct comparison since the logistic coefficient

estimator aims to estimate a conditional rather than unconditional treatment effect.

10
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4 Simulations Based on the CLEAR III Trial Data

4.1 Data Generating Distributions

We constructed data generating distributions for our simulations to mimic certain features of the

CLEAR III data. This was done by resampling with replacement from the CLEAR III trial, and

then making modifications described below. The reason we simulate from a trial rather than a

parametric model is that we believe the former more accurately reflects complexities in real trial

data distributions. All simulated trials have total sample size 491. The same variables are used as

in the previous section. We simulate two different settings (distributions) adapted from Colantuoni

and Rosenblum:14

• Setting 1. Baseline variables prognostic for the outcome.

• Setting 2. Baseline variables independent of the outcome.

Setting 1 is constructed to mimic the following features of the CLEAR III data: the correlation

structure within the baseline variables, and the relationship between the baseline variables and the

outcome. Setting 2 only mimics the former feature.

In both settings, the simulated distributions were constructed to have an average treatment

effect of 13% on the risk difference scale. This choice was based on the sample size calculations

for the CLEAR III trial described in Ziai et al.,13 which was powered to detect approximately this

magnitude of average treatment effect. Modifications to the resampling distribution were made in

order to achieve the 13% treatment effect; full details are given in the online supplement.

Comparisons between estimators are often in terms of signal to noise ratios. An estimator’s

signal to noise ratio is the quantity it converges to divided by the standard error. For example,

since the unadjusted and standardized estimators both converge to the average treatment effect,

this is the numerator in the signal to noise ratio for each; their denominators will generally differ.

For the logistic coefficient estimator, the numerator is defined to be the probability limit of the

estimated coefficient on the study arm variable; when the logistic model is correctly specified, the

numerator is the conditional log odds ratio. Following the literature,5,7, 15 we define the relative

11
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Estimator Average Value Empirical Standard RE RSS
of Estimator Error

Setting 1 Unadjusted 0.13 4.5 ×10−2 1 0
Standardized 0.13 3.7 ×10−2 1.40 29%
Logistic Coefficient 0.74 0.22 1.31 24%

Setting 2 Unadjusted 0.13 4.5 ×10−2 1 0
Standardized 0.13 4.5 ×10−2 0.99 −1%
Logistic Coefficient 0.54 0.19 0.94 −7%

Table 3: Average value of estimator over the 10000 simulations, empirical standard error, relative
efficiency (RE) compared to unadjusted estimator, and reduction in sample size (RSS) compared to
the unadjusted estimator. For both the unadjusted and standardized estimator the true marginal
treatment effect is 0.13 in both settings. In setting two the true log odds effect is 0.54. As the
logistic regression model is not necessarily correct in setting one, it is unclear if the true conditional
effect is interpretable as a single number.

efficiency (RE) of one estimator compared to a second estimator as the square of the following: the

signal to noise ratio of the first estimator divided by the signal to noise ratio of the second.

The practical importance of relative efficiency is its direct relationship to sample size savings.

The Wald statistic corresponding to an estimator is the estimator value divided its standard error.

The relative reduction in the required sample size for the Wald statistic based on one estimator

to achieve the same power as another estimator is 1 − (1/RE). We refer to this formula as the

“reduction in sample size” (RSS) from using one estimator vs. another, to achieve the same power.

4.2 Simulation Results

In simulation setting one, the baseline variables are prognostic for the outcome. Therefore, ad-

justed estimators have potential to leverage information in baseline variables to improve efficiency

compared to the unadjusted estimator. In setting two, the outcome is independent of the baseline

variables, i.e., the baseline variables are pure noise; this setting is used to get an idea of how much

efficiency loss (if any) occurs when the baseline variables are not prognostic.

A summary of the results from 10000 simulated trials is given in Table 3. The evaluation

measures used are: value of the estimators averaged over the 10000 simulations, the empirical

standard error of the estimators, relative efficiency, and reduction in sample size; the last two

measures are comparisons with the unadjusted estimator.

12
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In setting one, the standardized estimator has smaller variance than the unadjusted estimator,

with relative efficiency of 1.40. This corresponds to the standardized estimator requiring 29%

smaller sample size than the unadjusted estimator to have the same power. In setting two, where the

baseline variables are independent of the outcome, the standardized and unadjusted estimators have

similar efficiency, with relative efficiency of 0.99. This corresponds to the standardized estimator

requiring 1% larger sample size to achieve the same power as the unadjusted estimator. The

simulations show that both the standardized and unadjusted estimators are approximately unbiased

for the marginal treatment effect in both settings.

Table 3 also shows the performance of the logistic coefficient estimator. The logistic regression

model is not correct in setting 1. (In setting 2, where the outcome is generated independent of

baseline variables, the logistic model is correct, as discussed in the online supplement.) Therefore,

in setting 1 the logistic coefficient estimator is uninterpretable. Even if it were interpretable, the

efficiency gain from adjustment (RE) is less for the logistic coefficient estimator compared to the

standardized estimator; the same is true even if all estimators are converted to the log odds scale.

(The efficiency gain of the logistic coefficient estimator compared to the unadjusted estimator is

similar to that seen in other stroke trials.7,16) In setting 2, both adjusted estimators lose efficiency

compared to the unadjusted, but the loss is worse for the logistic coefficient estimator.

The efficiency gains from the logistic coefficient estimator compared to the unadjusted estimator

are primarily a consequence of the treatment effect being further away from the null, rather than

a reduction in estimator variance.17 This is different from the standardized estimator, where the

treatment effect being estimated (the average treatment effect) is the same as for the unadjusted

estimator, and the efficiency gains are purely a consequence of variance reduction.

5 Recommendations for Practice

For reasons described in Section 2 and illustrated using the CLEAR III trial data in Section 3, we

recommend to use the standardized estimator combined with bootstrapped confidence intervals,

when it is expected that baseline variables will be moderately to strongly prognostic for the outcome.

When the outcome is always observed but a substantial proportion of the baseline variables have

13
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missing data, the unadjusted estimator is preferred over the model standardization estimator (since

adjusting for missing data requires making untestable assumptions and can result in less precise

estimators).

In stroke trials, prognostic baseline variables are often available as baseline severity is commonly

a strong predictor for the outcome. Ideally, prognostic baseline variables should be selected based

on clinical understanding, and then evaluated using prior data sets. E.g., for a future phase III trial

being planned, phase II data can be used to evaluate the prognostic value of the baseline variables.

Colantuoni and Rosenblum14 propose a modified R2 method (as used earlier in our paper) for doing

so. A possible rule of thumb is to build the standardized estimator into the phase III study protocol

as the primary analysis if the modified R2 (which approximates the reduction in sample size due

to adjustment) is at least 10%, based on a completed phase II randomized trial with at least 100

participants. We caution that since the population enrolled in phase III may differ from phase II,

there is no guarantee that relative efficiency from the latter will be similar to the former.

We emphasize that the statistical analysis plan in a phase III trial must be prespecified. If

this includes using a covariate adjusted estimator, the precise details of the estimator need to be

prespecified (including the type of estimator and the corresponding model and variables to be used).

A conservative approach is to select just a few variables that are thought to be prognostic for the

outcome based on medical knowledge and on prior data as described above.

The relative efficiency gains resulting from the use of the standardized estimator are expected

to be similar in large and moderately sized trials; this holds in general for covariate adjusted

estimators, as noted by Pocock et al.2 This makes the potential absolute reduction in sample size

from covariate adjustment greater in larger trials.

The ratio of the standardized estimator to its standard error can be used as a test statistic for

the null hypothesis of no average treatment effect. Precision gains of the standardized estimator

compared to the unadjusted estimator lead to this test having higher asymptotic power compared

to the analogous test for the unadjusted estimator. We emphasize that a robust standard error

method, e.g., the nonparametric bootstrap, must be used, for which code is given in the online

supplement.
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6 Discussion

The main benefits of the standardized estimator over the logistic coefficient estimator are that

(i) the former does not require correct model specification in order to be consistent, and (ii) the

former is a consistent estimator of the average treatment effect, which always has an interpretation

as a single population value (the same as being estimated by the unadjusted estimator), unlike the

conditional treatment effect (which may be a complex function rather than a single value).

Our results illustrate the potential advantages of using the standardized estimator when analysing

data from randomized trials. They are not meant as a complete analysis of the CLEAR III trial.

One important component not considered here is that an adaptive randomization scheme was used

when randomizing participants to study arms in the CLEAR III trial. For simplicity and since

many trials use simple or block randomization, we focused on this case. When covariate adaptive

randomization is used, it is recommended to adjust for the covariates in the analysis.1

Throughout, we considered logistic regression models with main terms only. This accords with

the European Medicines Agency guideline on covariate adjustment, which recommends that the

primary analysis should not include treatment by baseline variable interactions.1 This causes no

problems for the standardized estimator, which is guaranteed to be consistent for the marginal

treatment effect whether the true population distribution involves interactions or not.

Stratified block randomization can be used to balance, by design, the levels of baseline vari-

ables across study arms. However, such a design can only be used to balance a small number of

strata. The standardized estimator can incorporate multiple variables (continuous, ordinal, and/or

categorical), and can therefore potentially leverage more of the prognostic information compared

to using stratified block randomization on a small number of strata. Alternatively, the standard-

ized estimator can be used in conjunction with this randomization scheme to leverage additional

prognostic information in variables that were not stratified on by design.

Sample size calculations for the standardized estimator require specifying how prognostic the

baseline variables are for the outcome. A conservative approach is to calculate the sample size

as if there would be no precision gain compared to an unadjusted estimator, but plan to use the

standardized estimator in the primary analysis. When the baseline variables are prognostic, this

15
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would result in a study with higher power than originally intended. The potential reduction in

variance can result in smaller expected sample sizes associated with the standardized estimator in

group sequential trials with information monitoring.18

There are several covariate adjusted estimators for binary outcomes that share the desirable

properties of the standardized estimator.14 For simplicity, we only focused on the standardized

estimator. If some participants have missing outcomes and the missingness probability can be

correctly modeled, the standardized estimator can adjust for the resulting bias by adding weights

to the logistic regression models.14 The standardized estimator can also adjust for baseline variables

when responder analysis is used to define the outcomes.19

There are several other settings where estimators that share the desirable properties of the

standardized estimator are available. Estimators with similar qualities have been derived for other

generalized linear models such as when the outcome is continuous, ordinal, or a count measure.20,21

For longitudinal studies, such as if mRS was measured at 30, 90, and 180 days, the targeted maxi-

mum likelihood estimator22 can be used. For group sequential designs, precision can be improved

by using the standardized estimator at every analysis, as long as covariances are computed using a

robust method such as the nonparametric bootstrap.
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A Online Supplement.

In this online supplement we:

1. Give additional simulation results where the unadjusted and standardized estimator are trans-

formed to the log odds scale.

2. Describe how to calculate the standardized estimator, the logistic coefficient estimator, the

unadjusted estimator, and the modified R2 estimator.

3. Give the curves based on raw data used to create Figure 1.

4. Give further details on how the simulation studies were conducted, and give R and Stata

code for calculating the standardized estimator and variance estimator for the standardized

estimator.

We start by defining some common notation. Let A be the study arm variable, W be a vector of

the baseline variables, and Y be the outcome. In the context of the CLEAR III trial discussed in the

main article, A is an indicator if the participant recieved IVH removal or not, Y is the dichotomized

mRS at 180 days, and W is the vector of baseline variables (age, intracerebral hemorrhage volume,

IVH volume, Glascow coma scale, NIHSS).

A.1 Simulation Results on the Log Odds Scale

Table 4 shows simulation results comparing the unadjusted, standardized, and logistic coefficient

estimator where the unadjusted and standardized estimator are transformed to a log odds scale.

The simulation setting used is described in Section A.3. In Setting two, where the baseline variables

are independent of the outcome, the logistic regression model is correctly specified. This is because

in that case P (Y |A,W ) = P (Y |A), and therefore the logistic regression model with all coefficients

equal to 0 for baseline variable terms is correct.

A.2 Calculating the Estimators

Define p1 = P (Y = 1|A = 1) as the true but unknown proportion of successful outcomes in the

treatment group and p0 = P (Y = 1|A = 0) as the true but unknown proportion of successful

1
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Estimator Average Value Standard RE RSS
of Estimator Error

Setting 1 Unadjusted 0.51 0.18 1 0

Standardized 0.52 0.16 1.41 29%

Logistic Coefficient 0.74 0.22 1.36 26%

Setting 2 Unadjusted 0.53 0.18 1 0

Standardized 0.53 0.19 0.99 −1%

Logistic Coefficient 0.54 0.19 0.97 −3%

Table 4: Average treatment effect, average standard error , relative efficiency (RE), and reduction in
sample size (RSS) of the unadjusted estimator, the standardized, and logistic coefficient estimators
for the two settings described in Section 4. All estimators are given on the log odds scale. The
logistic coefficient estimator estimates a conditional effect, while the other estimators estimate a
marginal effect.

outcomes in the control group. The true risk difference between the treatment and control group

is defined as p1 − p0. The unadjusted estimators for p1 and p0 are given by

p̂1 =
1∑n

i=1Ai

n∑
i=1

AiYi, p̂0 =
1∑n

i=1(1−Ai)

n∑
i=1

(1−Ai)Yi.

That is, p̂1 and p̂0 are the proportions of successful outcomes observed in the treatment and control

group, respectively. The unadjusted estimator for the risk difference between the treatment and

control group is defined as p̂1 − p̂0.

Now we describe how the standardized estimator for the difference between the proportions of

successful outcomes in the treatment and control group is calculated. Define the expit function as

expit(x) = 1/(1 + e−x). The first step is to fit the following main terms logistic regression model:

P (Y = 1|A,W ) = expit(β0 + β1A+ β2W ), (1)

where β2 and W are vectors of the same length. Denote the estimated coefficents by β̂0, β̂1, β̂2. The

estimator for the probability P (Y = 1|W,A) from the above model is given by

L̂(A,W ) = expit(β̂0 + β̂1A+ β̂2W ).

Here, L̂(1,Wi) is the predicted probability for a participant who receives treatment and has baseline

variables Wi. Similarly, L̂(0,Wi) is the predicted probability for a participant in the control group

2
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that has baseline variables Wi. Define the adjusted estimator for p1 as

p̂
(ad)
1 =

1

n

n∑
i=1

L̂(1,Wi),

and the adjusted estimator for p0 as

p̂
(ad)
0 =

1

n

n∑
i=1

L̂(0,Wi).

The adjusted estimator is defined as p̂
(ad)
1 − p̂(ad)0 . As written, the logistic regression model given

by equation (1) only includes main effects, but it can easily be extended to incorporate interac-

tion terms; in that case, the standardized estimator is still a consistent estimator for the average

treatment effect.9

The logistic coefficient estimator is defined as the coefficient β̂1 in model (1).

The estimator for the modified R2 is given by

1−
∑n

i=1(Yi − L̂(Ai,Wi))
2∑n

i=1(Yi − p̂Ai)
2

,

where p̂Ai is the unadjusted estimator from the treatment group for participants in the treatment

group and the unadjusted estimator for the control group for participants in the control group. As

described in14 leave one-out cross-validation can be used to avoid overfitting. To implement leave

one out cross-validation, the models L̂(Ai,Wi) and p̂Ai are fit on the dataset that does not include

participant i.

A.3 Simulations Setup

In this section we will describe in more detail how the simulations in the results section are con-

ducted.

For setting 1, the pair (Y,W ) is sampled with replacement from the CLEAR III data. Initially,

the treatment indicator A is generated from a Bernoulli distribution with probability 0.5, indepen-

dent of (Y,W ). To create a positive treatment effect of 0.13, the value of Y for the participants

with A = 1 is set (overwritten) to 1 with probability 0.13/P (Y = 0).

3
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For setting 2, W is sampled with replacement from the CLEAR III trial. The study arm

variable A is simulated from a Bernoulli distribution with parameter 0.5, independenet of W . The

outcome Y is simulated from a Bernoulli distribution with probability P (Y = 1) + 0.065 when

A = 1 and P (Y = 1)− 0.065 when A = 0.

One participant had missing Glasgow Coma Scale and 37 participants had missing NIHSS score

(7.5%). In order to keep the analysis simple, the results presented in sections 3 and 4.2 use median

imputation for the missing baseline variables.

A.4 Treatment Effect as a Function of NIHSS in CLEAR III Data

Figure 2 shows the conditional probability of success within study arm (on the log-odds scale) as

a function of the baseline variable NIHSS in the CLEAR III trial. The first two plots in Figure

2 are created using local polynomial regression with span equal to 0.75. The first plot shows

the log odds of the probability of obtaining a successful outcome when assigned to control as a

function of NIHSS, logit(P (Y = 1|A = 0,W )). The second plot is the analogous plot for treatment,

logit(P (Y = 1|A = 1,W )). The third plot shows the treatment effect on the log-odds scale as a

function of NIHSS, logit(P (Y = 1|A = 1,W ))− logit(P (Y = 1|A = 0,W )). The logistic coefficient

estimator assumes that the effect seen in the third plot is a constant, that is, it is the same for

all values of NIHSS. The plots in Figure 1 in the main paper are created by fitting a third degree

polynomial to the data shown in plots one and two in Figure 2.

A.5 R and Stata code to Calculate the Standardized Estimator

The following R function calculates the standardized estimator.

# The first function calculates the standardized

# estimator and the second function calculates

# the bootstrapped variance estimator.

# The inputs are: outcome Y

# the treatment indicator A

# the baseline covariates W

4
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Figure 2: The conditional effect (on log-odds scale) of treatment as function of the NIHSS score
in the CLEAR III data. The first two plots show the conditional probability of success (on the log
odds scale) as a function of NIHSS, when assigned to treatment and control group, respectively.
The third plot shows the conditional treatment effect (on the log odds scale) as a function of NIHSS.
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# For the second function n.boot is the number of bootstrap

# samples used to calculate the variance estimator.

# The output of the first function is the standardized estimator

# and the output of the second function is the variance of the

# standardized estimator.

stand.est = function(Y, A, W){

# Creating the data frame

data.used = data.frame(W, A, Y)

# Fitting the logistic regression model

log.reg = glm(Y ~., data = data.used, family = "binomial")

# Creating dataset for calculating the predictions corresponding to

# A = 1 and A = 0

data.a.1 = data.used

data.a.1$A = 1

data.a.0 = data.used

data.a.0$A = 0

# Calculating the predictions

pred.1 = predict.glm(log.reg, newdata =

data.a.1[, colnames(data.used) != "Y"]

, type = "response")

pred.0 = predict.glm(log.reg, newdata =

data.a.0[, colnames(data.used) != "Y"]

, type = "response")

res.gcomp = mean(pred.1) - mean(pred.0)

6
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return(res.gcomp)

}

# Calculating the variance estimator

var.stand.est = function(Y, A, W, n.boot){

# Creating the data frame

data.used = data.frame(W, A, Y)

# Calculating the variance estimator

boot.gcomp = rep(NA, n.boot)

for(i in 1:n.boot){

# Finding the bootstrap sample

bs = sample(1:nrow(data.used), size = nrow(data.used), replace = TRUE)

# Fitting the bootstrapped logistic regression model

log.reg.bs = glm(Y ~., data = data.used[bs, ], family = "binomial")

data.a.1 = data.used[bs, ]

data.a.1$A = 1

data.a.0 = data.used[bs, ]

data.a.0$A = 0

# Calculating the predictions

p.1.bs = predict.glm(log.reg.bs, newdata =

data.a.1[, colnames(data.used) != "Y"]

, type = "response")

p.0.bs = predict.glm(log.reg.bs, newdata =

data.a.0[, colnames(data.used) != "Y"]

, type = "response")

7
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# Calculating the bootstrap estimator

boot.gcomp[i] = mean(p.1.bs) - mean(p.0.bs)

}

# Returning the estimator and variance estimator

return(var(boot.gcomp))

}

The following Stata code (written on Stata version 12) calculates the standardized estimator and

the corresponding bootstrapped variance estimator.

* Stata code that calculates the standardized

* estimator as well as bootstrap variance

* estimator. The variables used are a binary

* outcome Y a binary study arm variable A

* and 5 covariates W1-W5. In the following

* all the covariates are continuous expect for

* W3 which is categorical.

* Fit the logistic regression model

logit Y i.A W1 W2 i.W3 W4 W5

* Getting the adjusted estimators for the risk difference

margins, dydx(A)

* Creating a program the bootstraps the

* standardized estimator for the risk difference

program bootmargins, rclass

logit Y i.A W1 W2 i.W3 W4 W5

margins, dydx(A)

matrix b = r(b)

8
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return scalar riskdiff = b[1,2]

end

* Performing the bootstrap procedure

. bootstrap r(riskdiff), reps(1000) seed(1): bootmargins

9
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